hide spinlock in linux/quota.h behind __KERNEL__
[linux-2.6/mini2440.git] / net / sunrpc / sched.c
blob4a53e94f813415ac757f5180bf0d20a3323ba2d2
1 /*
2 * linux/net/sunrpc/sched.c
4 * Scheduling for synchronous and asynchronous RPC requests.
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
12 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
23 #include <linux/sunrpc/clnt.h>
25 #ifdef RPC_DEBUG
26 #define RPCDBG_FACILITY RPCDBG_SCHED
27 #define RPC_TASK_MAGIC_ID 0xf00baa
28 static int rpc_task_id;
29 #endif
32 * RPC slabs and memory pools
34 #define RPC_BUFFER_MAXSIZE (2048)
35 #define RPC_BUFFER_POOLSIZE (8)
36 #define RPC_TASK_POOLSIZE (8)
37 static struct kmem_cache *rpc_task_slabp __read_mostly;
38 static struct kmem_cache *rpc_buffer_slabp __read_mostly;
39 static mempool_t *rpc_task_mempool __read_mostly;
40 static mempool_t *rpc_buffer_mempool __read_mostly;
42 static void __rpc_default_timer(struct rpc_task *task);
43 static void rpciod_killall(void);
44 static void rpc_async_schedule(struct work_struct *);
45 static void rpc_release_task(struct rpc_task *task);
48 * RPC tasks sit here while waiting for conditions to improve.
50 static RPC_WAITQ(delay_queue, "delayq");
53 * All RPC tasks are linked into this list
55 static LIST_HEAD(all_tasks);
58 * rpciod-related stuff
60 static DEFINE_MUTEX(rpciod_mutex);
61 static unsigned int rpciod_users;
62 struct workqueue_struct *rpciod_workqueue;
65 * Spinlock for other critical sections of code.
67 static DEFINE_SPINLOCK(rpc_sched_lock);
70 * Disable the timer for a given RPC task. Should be called with
71 * queue->lock and bh_disabled in order to avoid races within
72 * rpc_run_timer().
74 static inline void
75 __rpc_disable_timer(struct rpc_task *task)
77 dprintk("RPC: %5u disabling timer\n", task->tk_pid);
78 task->tk_timeout_fn = NULL;
79 task->tk_timeout = 0;
83 * Run a timeout function.
84 * We use the callback in order to allow __rpc_wake_up_task()
85 * and friends to disable the timer synchronously on SMP systems
86 * without calling del_timer_sync(). The latter could cause a
87 * deadlock if called while we're holding spinlocks...
89 static void rpc_run_timer(struct rpc_task *task)
91 void (*callback)(struct rpc_task *);
93 callback = task->tk_timeout_fn;
94 task->tk_timeout_fn = NULL;
95 if (callback && RPC_IS_QUEUED(task)) {
96 dprintk("RPC: %5u running timer\n", task->tk_pid);
97 callback(task);
99 smp_mb__before_clear_bit();
100 clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
101 smp_mb__after_clear_bit();
105 * Set up a timer for the current task.
107 static inline void
108 __rpc_add_timer(struct rpc_task *task, rpc_action timer)
110 if (!task->tk_timeout)
111 return;
113 dprintk("RPC: %5u setting alarm for %lu ms\n",
114 task->tk_pid, task->tk_timeout * 1000 / HZ);
116 if (timer)
117 task->tk_timeout_fn = timer;
118 else
119 task->tk_timeout_fn = __rpc_default_timer;
120 set_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
121 mod_timer(&task->tk_timer, jiffies + task->tk_timeout);
125 * Delete any timer for the current task. Because we use del_timer_sync(),
126 * this function should never be called while holding queue->lock.
128 static void
129 rpc_delete_timer(struct rpc_task *task)
131 if (RPC_IS_QUEUED(task))
132 return;
133 if (test_and_clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate)) {
134 del_singleshot_timer_sync(&task->tk_timer);
135 dprintk("RPC: %5u deleting timer\n", task->tk_pid);
140 * Add new request to a priority queue.
142 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
144 struct list_head *q;
145 struct rpc_task *t;
147 INIT_LIST_HEAD(&task->u.tk_wait.links);
148 q = &queue->tasks[task->tk_priority];
149 if (unlikely(task->tk_priority > queue->maxpriority))
150 q = &queue->tasks[queue->maxpriority];
151 list_for_each_entry(t, q, u.tk_wait.list) {
152 if (t->tk_cookie == task->tk_cookie) {
153 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
154 return;
157 list_add_tail(&task->u.tk_wait.list, q);
161 * Add new request to wait queue.
163 * Swapper tasks always get inserted at the head of the queue.
164 * This should avoid many nasty memory deadlocks and hopefully
165 * improve overall performance.
166 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
168 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
170 BUG_ON (RPC_IS_QUEUED(task));
172 if (RPC_IS_PRIORITY(queue))
173 __rpc_add_wait_queue_priority(queue, task);
174 else if (RPC_IS_SWAPPER(task))
175 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
176 else
177 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
178 task->u.tk_wait.rpc_waitq = queue;
179 queue->qlen++;
180 rpc_set_queued(task);
182 dprintk("RPC: %5u added to queue %p \"%s\"\n",
183 task->tk_pid, queue, rpc_qname(queue));
187 * Remove request from a priority queue.
189 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
191 struct rpc_task *t;
193 if (!list_empty(&task->u.tk_wait.links)) {
194 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
195 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
196 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
198 list_del(&task->u.tk_wait.list);
202 * Remove request from queue.
203 * Note: must be called with spin lock held.
205 static void __rpc_remove_wait_queue(struct rpc_task *task)
207 struct rpc_wait_queue *queue;
208 queue = task->u.tk_wait.rpc_waitq;
210 if (RPC_IS_PRIORITY(queue))
211 __rpc_remove_wait_queue_priority(task);
212 else
213 list_del(&task->u.tk_wait.list);
214 queue->qlen--;
215 dprintk("RPC: %5u removed from queue %p \"%s\"\n",
216 task->tk_pid, queue, rpc_qname(queue));
219 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
221 queue->priority = priority;
222 queue->count = 1 << (priority * 2);
225 static inline void rpc_set_waitqueue_cookie(struct rpc_wait_queue *queue, unsigned long cookie)
227 queue->cookie = cookie;
228 queue->nr = RPC_BATCH_COUNT;
231 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
233 rpc_set_waitqueue_priority(queue, queue->maxpriority);
234 rpc_set_waitqueue_cookie(queue, 0);
237 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, int maxprio)
239 int i;
241 spin_lock_init(&queue->lock);
242 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
243 INIT_LIST_HEAD(&queue->tasks[i]);
244 queue->maxpriority = maxprio;
245 rpc_reset_waitqueue_priority(queue);
246 #ifdef RPC_DEBUG
247 queue->name = qname;
248 #endif
251 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
253 __rpc_init_priority_wait_queue(queue, qname, RPC_PRIORITY_HIGH);
256 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
258 __rpc_init_priority_wait_queue(queue, qname, 0);
260 EXPORT_SYMBOL(rpc_init_wait_queue);
262 static int rpc_wait_bit_interruptible(void *word)
264 if (signal_pending(current))
265 return -ERESTARTSYS;
266 schedule();
267 return 0;
270 static void rpc_set_active(struct rpc_task *task)
272 if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0)
273 return;
274 spin_lock(&rpc_sched_lock);
275 #ifdef RPC_DEBUG
276 task->tk_magic = RPC_TASK_MAGIC_ID;
277 task->tk_pid = rpc_task_id++;
278 #endif
279 /* Add to global list of all tasks */
280 list_add_tail(&task->tk_task, &all_tasks);
281 spin_unlock(&rpc_sched_lock);
285 * Mark an RPC call as having completed by clearing the 'active' bit
287 static void rpc_mark_complete_task(struct rpc_task *task)
289 smp_mb__before_clear_bit();
290 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
291 smp_mb__after_clear_bit();
292 wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
296 * Allow callers to wait for completion of an RPC call
298 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
300 if (action == NULL)
301 action = rpc_wait_bit_interruptible;
302 return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
303 action, TASK_INTERRUPTIBLE);
305 EXPORT_SYMBOL(__rpc_wait_for_completion_task);
308 * Make an RPC task runnable.
310 * Note: If the task is ASYNC, this must be called with
311 * the spinlock held to protect the wait queue operation.
313 static void rpc_make_runnable(struct rpc_task *task)
315 BUG_ON(task->tk_timeout_fn);
316 rpc_clear_queued(task);
317 if (rpc_test_and_set_running(task))
318 return;
319 /* We might have raced */
320 if (RPC_IS_QUEUED(task)) {
321 rpc_clear_running(task);
322 return;
324 if (RPC_IS_ASYNC(task)) {
325 int status;
327 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
328 status = queue_work(task->tk_workqueue, &task->u.tk_work);
329 if (status < 0) {
330 printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
331 task->tk_status = status;
332 return;
334 } else
335 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
339 * Prepare for sleeping on a wait queue.
340 * By always appending tasks to the list we ensure FIFO behavior.
341 * NB: An RPC task will only receive interrupt-driven events as long
342 * as it's on a wait queue.
344 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
345 rpc_action action, rpc_action timer)
347 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
348 task->tk_pid, rpc_qname(q), jiffies);
350 if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
351 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
352 return;
355 __rpc_add_wait_queue(q, task);
357 BUG_ON(task->tk_callback != NULL);
358 task->tk_callback = action;
359 __rpc_add_timer(task, timer);
362 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
363 rpc_action action, rpc_action timer)
365 /* Mark the task as being activated if so needed */
366 rpc_set_active(task);
369 * Protect the queue operations.
371 spin_lock_bh(&q->lock);
372 __rpc_sleep_on(q, task, action, timer);
373 spin_unlock_bh(&q->lock);
377 * __rpc_do_wake_up_task - wake up a single rpc_task
378 * @task: task to be woken up
380 * Caller must hold queue->lock, and have cleared the task queued flag.
382 static void __rpc_do_wake_up_task(struct rpc_task *task)
384 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
385 task->tk_pid, jiffies);
387 #ifdef RPC_DEBUG
388 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
389 #endif
390 /* Has the task been executed yet? If not, we cannot wake it up! */
391 if (!RPC_IS_ACTIVATED(task)) {
392 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
393 return;
396 __rpc_disable_timer(task);
397 __rpc_remove_wait_queue(task);
399 rpc_make_runnable(task);
401 dprintk("RPC: __rpc_wake_up_task done\n");
405 * Wake up the specified task
407 static void __rpc_wake_up_task(struct rpc_task *task)
409 if (rpc_start_wakeup(task)) {
410 if (RPC_IS_QUEUED(task))
411 __rpc_do_wake_up_task(task);
412 rpc_finish_wakeup(task);
417 * Default timeout handler if none specified by user
419 static void
420 __rpc_default_timer(struct rpc_task *task)
422 dprintk("RPC: %5u timeout (default timer)\n", task->tk_pid);
423 task->tk_status = -ETIMEDOUT;
424 rpc_wake_up_task(task);
428 * Wake up the specified task
430 void rpc_wake_up_task(struct rpc_task *task)
432 rcu_read_lock_bh();
433 if (rpc_start_wakeup(task)) {
434 if (RPC_IS_QUEUED(task)) {
435 struct rpc_wait_queue *queue = task->u.tk_wait.rpc_waitq;
437 /* Note: we're already in a bh-safe context */
438 spin_lock(&queue->lock);
439 __rpc_do_wake_up_task(task);
440 spin_unlock(&queue->lock);
442 rpc_finish_wakeup(task);
444 rcu_read_unlock_bh();
448 * Wake up the next task on a priority queue.
450 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
452 struct list_head *q;
453 struct rpc_task *task;
456 * Service a batch of tasks from a single cookie.
458 q = &queue->tasks[queue->priority];
459 if (!list_empty(q)) {
460 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
461 if (queue->cookie == task->tk_cookie) {
462 if (--queue->nr)
463 goto out;
464 list_move_tail(&task->u.tk_wait.list, q);
467 * Check if we need to switch queues.
469 if (--queue->count)
470 goto new_cookie;
474 * Service the next queue.
476 do {
477 if (q == &queue->tasks[0])
478 q = &queue->tasks[queue->maxpriority];
479 else
480 q = q - 1;
481 if (!list_empty(q)) {
482 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
483 goto new_queue;
485 } while (q != &queue->tasks[queue->priority]);
487 rpc_reset_waitqueue_priority(queue);
488 return NULL;
490 new_queue:
491 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
492 new_cookie:
493 rpc_set_waitqueue_cookie(queue, task->tk_cookie);
494 out:
495 __rpc_wake_up_task(task);
496 return task;
500 * Wake up the next task on the wait queue.
502 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
504 struct rpc_task *task = NULL;
506 dprintk("RPC: wake_up_next(%p \"%s\")\n",
507 queue, rpc_qname(queue));
508 rcu_read_lock_bh();
509 spin_lock(&queue->lock);
510 if (RPC_IS_PRIORITY(queue))
511 task = __rpc_wake_up_next_priority(queue);
512 else {
513 task_for_first(task, &queue->tasks[0])
514 __rpc_wake_up_task(task);
516 spin_unlock(&queue->lock);
517 rcu_read_unlock_bh();
519 return task;
523 * rpc_wake_up - wake up all rpc_tasks
524 * @queue: rpc_wait_queue on which the tasks are sleeping
526 * Grabs queue->lock
528 void rpc_wake_up(struct rpc_wait_queue *queue)
530 struct rpc_task *task, *next;
531 struct list_head *head;
533 rcu_read_lock_bh();
534 spin_lock(&queue->lock);
535 head = &queue->tasks[queue->maxpriority];
536 for (;;) {
537 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
538 __rpc_wake_up_task(task);
539 if (head == &queue->tasks[0])
540 break;
541 head--;
543 spin_unlock(&queue->lock);
544 rcu_read_unlock_bh();
548 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
549 * @queue: rpc_wait_queue on which the tasks are sleeping
550 * @status: status value to set
552 * Grabs queue->lock
554 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
556 struct rpc_task *task, *next;
557 struct list_head *head;
559 rcu_read_lock_bh();
560 spin_lock(&queue->lock);
561 head = &queue->tasks[queue->maxpriority];
562 for (;;) {
563 list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
564 task->tk_status = status;
565 __rpc_wake_up_task(task);
567 if (head == &queue->tasks[0])
568 break;
569 head--;
571 spin_unlock(&queue->lock);
572 rcu_read_unlock_bh();
575 static void __rpc_atrun(struct rpc_task *task)
577 rpc_wake_up_task(task);
581 * Run a task at a later time
583 void rpc_delay(struct rpc_task *task, unsigned long delay)
585 task->tk_timeout = delay;
586 rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun);
590 * Helper to call task->tk_ops->rpc_call_prepare
592 static void rpc_prepare_task(struct rpc_task *task)
594 lock_kernel();
595 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
596 unlock_kernel();
600 * Helper that calls task->tk_ops->rpc_call_done if it exists
602 void rpc_exit_task(struct rpc_task *task)
604 task->tk_action = NULL;
605 if (task->tk_ops->rpc_call_done != NULL) {
606 lock_kernel();
607 task->tk_ops->rpc_call_done(task, task->tk_calldata);
608 unlock_kernel();
609 if (task->tk_action != NULL) {
610 WARN_ON(RPC_ASSASSINATED(task));
611 /* Always release the RPC slot and buffer memory */
612 xprt_release(task);
616 EXPORT_SYMBOL(rpc_exit_task);
618 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
620 if (ops->rpc_release != NULL) {
621 lock_kernel();
622 ops->rpc_release(calldata);
623 unlock_kernel();
628 * This is the RPC `scheduler' (or rather, the finite state machine).
630 static void __rpc_execute(struct rpc_task *task)
632 int status = 0;
634 dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
635 task->tk_pid, task->tk_flags);
637 BUG_ON(RPC_IS_QUEUED(task));
639 for (;;) {
641 * Garbage collection of pending timers...
643 rpc_delete_timer(task);
646 * Execute any pending callback.
648 if (RPC_DO_CALLBACK(task)) {
649 /* Define a callback save pointer */
650 void (*save_callback)(struct rpc_task *);
653 * If a callback exists, save it, reset it,
654 * call it.
655 * The save is needed to stop from resetting
656 * another callback set within the callback handler
657 * - Dave
659 save_callback=task->tk_callback;
660 task->tk_callback=NULL;
661 save_callback(task);
665 * Perform the next FSM step.
666 * tk_action may be NULL when the task has been killed
667 * by someone else.
669 if (!RPC_IS_QUEUED(task)) {
670 if (task->tk_action == NULL)
671 break;
672 task->tk_action(task);
676 * Lockless check for whether task is sleeping or not.
678 if (!RPC_IS_QUEUED(task))
679 continue;
680 rpc_clear_running(task);
681 if (RPC_IS_ASYNC(task)) {
682 /* Careful! we may have raced... */
683 if (RPC_IS_QUEUED(task))
684 return;
685 if (rpc_test_and_set_running(task))
686 return;
687 continue;
690 /* sync task: sleep here */
691 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
692 /* Note: Caller should be using rpc_clnt_sigmask() */
693 status = out_of_line_wait_on_bit(&task->tk_runstate,
694 RPC_TASK_QUEUED, rpc_wait_bit_interruptible,
695 TASK_INTERRUPTIBLE);
696 if (status == -ERESTARTSYS) {
698 * When a sync task receives a signal, it exits with
699 * -ERESTARTSYS. In order to catch any callbacks that
700 * clean up after sleeping on some queue, we don't
701 * break the loop here, but go around once more.
703 dprintk("RPC: %5u got signal\n", task->tk_pid);
704 task->tk_flags |= RPC_TASK_KILLED;
705 rpc_exit(task, -ERESTARTSYS);
706 rpc_wake_up_task(task);
708 rpc_set_running(task);
709 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
712 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
713 task->tk_status);
714 /* Release all resources associated with the task */
715 rpc_release_task(task);
719 * User-visible entry point to the scheduler.
721 * This may be called recursively if e.g. an async NFS task updates
722 * the attributes and finds that dirty pages must be flushed.
723 * NOTE: Upon exit of this function the task is guaranteed to be
724 * released. In particular note that tk_release() will have
725 * been called, so your task memory may have been freed.
727 void rpc_execute(struct rpc_task *task)
729 rpc_set_active(task);
730 rpc_set_running(task);
731 __rpc_execute(task);
734 static void rpc_async_schedule(struct work_struct *work)
736 __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
740 * rpc_malloc - allocate an RPC buffer
741 * @task: RPC task that will use this buffer
742 * @size: requested byte size
744 * To prevent rpciod from hanging, this allocator never sleeps,
745 * returning NULL if the request cannot be serviced immediately.
746 * The caller can arrange to sleep in a way that is safe for rpciod.
748 * Most requests are 'small' (under 2KiB) and can be serviced from a
749 * mempool, ensuring that NFS reads and writes can always proceed,
750 * and that there is good locality of reference for these buffers.
752 * In order to avoid memory starvation triggering more writebacks of
753 * NFS requests, we avoid using GFP_KERNEL.
755 void *rpc_malloc(struct rpc_task *task, size_t size)
757 size_t *buf;
758 gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
760 size += sizeof(size_t);
761 if (size <= RPC_BUFFER_MAXSIZE)
762 buf = mempool_alloc(rpc_buffer_mempool, gfp);
763 else
764 buf = kmalloc(size, gfp);
765 *buf = size;
766 dprintk("RPC: %5u allocated buffer of size %u at %p\n",
767 task->tk_pid, size, buf);
768 return (void *) ++buf;
772 * rpc_free - free buffer allocated via rpc_malloc
773 * @buffer: buffer to free
776 void rpc_free(void *buffer)
778 size_t size, *buf = (size_t *) buffer;
780 if (!buffer)
781 return;
782 size = *buf;
783 buf--;
785 dprintk("RPC: freeing buffer of size %u at %p\n",
786 size, buf);
787 if (size <= RPC_BUFFER_MAXSIZE)
788 mempool_free(buf, rpc_buffer_mempool);
789 else
790 kfree(buf);
794 * Creation and deletion of RPC task structures
796 void rpc_init_task(struct rpc_task *task, struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
798 memset(task, 0, sizeof(*task));
799 init_timer(&task->tk_timer);
800 task->tk_timer.data = (unsigned long) task;
801 task->tk_timer.function = (void (*)(unsigned long)) rpc_run_timer;
802 atomic_set(&task->tk_count, 1);
803 task->tk_client = clnt;
804 task->tk_flags = flags;
805 task->tk_ops = tk_ops;
806 if (tk_ops->rpc_call_prepare != NULL)
807 task->tk_action = rpc_prepare_task;
808 task->tk_calldata = calldata;
810 /* Initialize retry counters */
811 task->tk_garb_retry = 2;
812 task->tk_cred_retry = 2;
814 task->tk_priority = RPC_PRIORITY_NORMAL;
815 task->tk_cookie = (unsigned long)current;
817 /* Initialize workqueue for async tasks */
818 task->tk_workqueue = rpciod_workqueue;
820 if (clnt) {
821 atomic_inc(&clnt->cl_users);
822 if (clnt->cl_softrtry)
823 task->tk_flags |= RPC_TASK_SOFT;
824 if (!clnt->cl_intr)
825 task->tk_flags |= RPC_TASK_NOINTR;
828 BUG_ON(task->tk_ops == NULL);
830 /* starting timestamp */
831 task->tk_start = jiffies;
833 dprintk("RPC: new task initialized, procpid %u\n",
834 current->pid);
837 static struct rpc_task *
838 rpc_alloc_task(void)
840 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
843 static void rpc_free_task(struct rcu_head *rcu)
845 struct rpc_task *task = container_of(rcu, struct rpc_task, u.tk_rcu);
846 dprintk("RPC: %5u freeing task\n", task->tk_pid);
847 mempool_free(task, rpc_task_mempool);
851 * Create a new task for the specified client. We have to
852 * clean up after an allocation failure, as the client may
853 * have specified "oneshot".
855 struct rpc_task *rpc_new_task(struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
857 struct rpc_task *task;
859 task = rpc_alloc_task();
860 if (!task)
861 goto cleanup;
863 rpc_init_task(task, clnt, flags, tk_ops, calldata);
865 dprintk("RPC: allocated task %p\n", task);
866 task->tk_flags |= RPC_TASK_DYNAMIC;
867 out:
868 return task;
870 cleanup:
871 /* Check whether to release the client */
872 if (clnt) {
873 printk("rpc_new_task: failed, users=%d, oneshot=%d\n",
874 atomic_read(&clnt->cl_users), clnt->cl_oneshot);
875 atomic_inc(&clnt->cl_users); /* pretend we were used ... */
876 rpc_release_client(clnt);
878 goto out;
882 void rpc_put_task(struct rpc_task *task)
884 const struct rpc_call_ops *tk_ops = task->tk_ops;
885 void *calldata = task->tk_calldata;
887 if (!atomic_dec_and_test(&task->tk_count))
888 return;
889 /* Release resources */
890 if (task->tk_rqstp)
891 xprt_release(task);
892 if (task->tk_msg.rpc_cred)
893 rpcauth_unbindcred(task);
894 if (task->tk_client) {
895 rpc_release_client(task->tk_client);
896 task->tk_client = NULL;
898 if (task->tk_flags & RPC_TASK_DYNAMIC)
899 call_rcu_bh(&task->u.tk_rcu, rpc_free_task);
900 rpc_release_calldata(tk_ops, calldata);
902 EXPORT_SYMBOL(rpc_put_task);
904 static void rpc_release_task(struct rpc_task *task)
906 #ifdef RPC_DEBUG
907 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
908 #endif
909 dprintk("RPC: %5u release task\n", task->tk_pid);
911 /* Remove from global task list */
912 spin_lock(&rpc_sched_lock);
913 list_del(&task->tk_task);
914 spin_unlock(&rpc_sched_lock);
916 BUG_ON (RPC_IS_QUEUED(task));
918 /* Synchronously delete any running timer */
919 rpc_delete_timer(task);
921 #ifdef RPC_DEBUG
922 task->tk_magic = 0;
923 #endif
924 /* Wake up anyone who is waiting for task completion */
925 rpc_mark_complete_task(task);
927 rpc_put_task(task);
931 * rpc_run_task - Allocate a new RPC task, then run rpc_execute against it
932 * @clnt: pointer to RPC client
933 * @flags: RPC flags
934 * @ops: RPC call ops
935 * @data: user call data
937 struct rpc_task *rpc_run_task(struct rpc_clnt *clnt, int flags,
938 const struct rpc_call_ops *ops,
939 void *data)
941 struct rpc_task *task;
942 task = rpc_new_task(clnt, flags, ops, data);
943 if (task == NULL) {
944 rpc_release_calldata(ops, data);
945 return ERR_PTR(-ENOMEM);
947 atomic_inc(&task->tk_count);
948 rpc_execute(task);
949 return task;
951 EXPORT_SYMBOL(rpc_run_task);
954 * Kill all tasks for the given client.
955 * XXX: kill their descendants as well?
957 void rpc_killall_tasks(struct rpc_clnt *clnt)
959 struct rpc_task *rovr;
960 struct list_head *le;
962 dprintk("RPC: killing all tasks for client %p\n", clnt);
965 * Spin lock all_tasks to prevent changes...
967 spin_lock(&rpc_sched_lock);
968 alltask_for_each(rovr, le, &all_tasks) {
969 if (! RPC_IS_ACTIVATED(rovr))
970 continue;
971 if (!clnt || rovr->tk_client == clnt) {
972 rovr->tk_flags |= RPC_TASK_KILLED;
973 rpc_exit(rovr, -EIO);
974 rpc_wake_up_task(rovr);
977 spin_unlock(&rpc_sched_lock);
980 static DECLARE_MUTEX_LOCKED(rpciod_running);
982 static void rpciod_killall(void)
984 unsigned long flags;
986 while (!list_empty(&all_tasks)) {
987 clear_thread_flag(TIF_SIGPENDING);
988 rpc_killall_tasks(NULL);
989 flush_workqueue(rpciod_workqueue);
990 if (!list_empty(&all_tasks)) {
991 dprintk("RPC: rpciod_killall: waiting for tasks "
992 "to exit\n");
993 yield();
997 spin_lock_irqsave(&current->sighand->siglock, flags);
998 recalc_sigpending();
999 spin_unlock_irqrestore(&current->sighand->siglock, flags);
1003 * Start up the rpciod process if it's not already running.
1006 rpciod_up(void)
1008 struct workqueue_struct *wq;
1009 int error = 0;
1011 mutex_lock(&rpciod_mutex);
1012 dprintk("RPC: rpciod_up: users %u\n", rpciod_users);
1013 rpciod_users++;
1014 if (rpciod_workqueue)
1015 goto out;
1017 * If there's no pid, we should be the first user.
1019 if (rpciod_users > 1)
1020 printk(KERN_WARNING "rpciod_up: no workqueue, %u users??\n", rpciod_users);
1022 * Create the rpciod thread and wait for it to start.
1024 error = -ENOMEM;
1025 wq = create_workqueue("rpciod");
1026 if (wq == NULL) {
1027 printk(KERN_WARNING "rpciod_up: create workqueue failed, error=%d\n", error);
1028 rpciod_users--;
1029 goto out;
1031 rpciod_workqueue = wq;
1032 error = 0;
1033 out:
1034 mutex_unlock(&rpciod_mutex);
1035 return error;
1038 void
1039 rpciod_down(void)
1041 mutex_lock(&rpciod_mutex);
1042 dprintk("RPC: rpciod_down sema %u\n", rpciod_users);
1043 if (rpciod_users) {
1044 if (--rpciod_users)
1045 goto out;
1046 } else
1047 printk(KERN_WARNING "rpciod_down: no users??\n");
1049 if (!rpciod_workqueue) {
1050 dprintk("RPC: rpciod_down: Nothing to do!\n");
1051 goto out;
1053 rpciod_killall();
1055 destroy_workqueue(rpciod_workqueue);
1056 rpciod_workqueue = NULL;
1057 out:
1058 mutex_unlock(&rpciod_mutex);
1061 #ifdef RPC_DEBUG
1062 void rpc_show_tasks(void)
1064 struct list_head *le;
1065 struct rpc_task *t;
1067 spin_lock(&rpc_sched_lock);
1068 if (list_empty(&all_tasks)) {
1069 spin_unlock(&rpc_sched_lock);
1070 return;
1072 printk("-pid- proc flgs status -client- -prog- --rqstp- -timeout "
1073 "-rpcwait -action- ---ops--\n");
1074 alltask_for_each(t, le, &all_tasks) {
1075 const char *rpc_waitq = "none";
1077 if (RPC_IS_QUEUED(t))
1078 rpc_waitq = rpc_qname(t->u.tk_wait.rpc_waitq);
1080 printk("%5u %04d %04x %6d %8p %6d %8p %8ld %8s %8p %8p\n",
1081 t->tk_pid,
1082 (t->tk_msg.rpc_proc ? t->tk_msg.rpc_proc->p_proc : -1),
1083 t->tk_flags, t->tk_status,
1084 t->tk_client,
1085 (t->tk_client ? t->tk_client->cl_prog : 0),
1086 t->tk_rqstp, t->tk_timeout,
1087 rpc_waitq,
1088 t->tk_action, t->tk_ops);
1090 spin_unlock(&rpc_sched_lock);
1092 #endif
1094 void
1095 rpc_destroy_mempool(void)
1097 if (rpc_buffer_mempool)
1098 mempool_destroy(rpc_buffer_mempool);
1099 if (rpc_task_mempool)
1100 mempool_destroy(rpc_task_mempool);
1101 if (rpc_task_slabp)
1102 kmem_cache_destroy(rpc_task_slabp);
1103 if (rpc_buffer_slabp)
1104 kmem_cache_destroy(rpc_buffer_slabp);
1108 rpc_init_mempool(void)
1110 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1111 sizeof(struct rpc_task),
1112 0, SLAB_HWCACHE_ALIGN,
1113 NULL, NULL);
1114 if (!rpc_task_slabp)
1115 goto err_nomem;
1116 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1117 RPC_BUFFER_MAXSIZE,
1118 0, SLAB_HWCACHE_ALIGN,
1119 NULL, NULL);
1120 if (!rpc_buffer_slabp)
1121 goto err_nomem;
1122 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1123 rpc_task_slabp);
1124 if (!rpc_task_mempool)
1125 goto err_nomem;
1126 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1127 rpc_buffer_slabp);
1128 if (!rpc_buffer_mempool)
1129 goto err_nomem;
1130 return 0;
1131 err_nomem:
1132 rpc_destroy_mempool();
1133 return -ENOMEM;