fs/adfs: return f_fsid for statfs(2)
[linux-2.6/mini2440.git] / drivers / net / 3c59x.c
blobc56698402420ab5493c83fed72dc3f2b44089f47
1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
2 /*
3 Written 1996-1999 by Donald Becker.
5 This software may be used and distributed according to the terms
6 of the GNU General Public License, incorporated herein by reference.
8 This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
9 Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
10 and the EtherLink XL 3c900 and 3c905 cards.
12 Problem reports and questions should be directed to
13 vortex@scyld.com
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
23 * FIXME: This driver _could_ support MTU changing, but doesn't. See Don's hamachi.c implementation
24 * as well as other drivers
26 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
27 * due to dead code elimination. There will be some performance benefits from this due to
28 * elimination of all the tests and reduced cache footprint.
32 #define DRV_NAME "3c59x"
36 /* A few values that may be tweaked. */
37 /* Keep the ring sizes a power of two for efficiency. */
38 #define TX_RING_SIZE 16
39 #define RX_RING_SIZE 32
40 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
42 /* "Knobs" that adjust features and parameters. */
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44 Setting to > 1512 effectively disables this feature. */
45 #ifndef __arm__
46 static int rx_copybreak = 200;
47 #else
48 /* ARM systems perform better by disregarding the bus-master
49 transfer capability of these cards. -- rmk */
50 static int rx_copybreak = 1513;
51 #endif
52 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
53 static const int mtu = 1500;
54 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
55 static int max_interrupt_work = 32;
56 /* Tx timeout interval (millisecs) */
57 static int watchdog = 5000;
59 /* Allow aggregation of Tx interrupts. Saves CPU load at the cost
60 * of possible Tx stalls if the system is blocking interrupts
61 * somewhere else. Undefine this to disable.
63 #define tx_interrupt_mitigation 1
65 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
66 #define vortex_debug debug
67 #ifdef VORTEX_DEBUG
68 static int vortex_debug = VORTEX_DEBUG;
69 #else
70 static int vortex_debug = 1;
71 #endif
73 #include <linux/module.h>
74 #include <linux/kernel.h>
75 #include <linux/string.h>
76 #include <linux/timer.h>
77 #include <linux/errno.h>
78 #include <linux/in.h>
79 #include <linux/ioport.h>
80 #include <linux/slab.h>
81 #include <linux/interrupt.h>
82 #include <linux/pci.h>
83 #include <linux/mii.h>
84 #include <linux/init.h>
85 #include <linux/netdevice.h>
86 #include <linux/etherdevice.h>
87 #include <linux/skbuff.h>
88 #include <linux/ethtool.h>
89 #include <linux/highmem.h>
90 #include <linux/eisa.h>
91 #include <linux/bitops.h>
92 #include <linux/jiffies.h>
93 #include <asm/irq.h> /* For nr_irqs only. */
94 #include <asm/io.h>
95 #include <asm/uaccess.h>
97 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
98 This is only in the support-all-kernels source code. */
100 #define RUN_AT(x) (jiffies + (x))
102 #include <linux/delay.h>
105 static const char version[] __devinitconst =
106 DRV_NAME ": Donald Becker and others.\n";
108 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
109 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
110 MODULE_LICENSE("GPL");
113 /* Operational parameter that usually are not changed. */
115 /* The Vortex size is twice that of the original EtherLinkIII series: the
116 runtime register window, window 1, is now always mapped in.
117 The Boomerang size is twice as large as the Vortex -- it has additional
118 bus master control registers. */
119 #define VORTEX_TOTAL_SIZE 0x20
120 #define BOOMERANG_TOTAL_SIZE 0x40
122 /* Set iff a MII transceiver on any interface requires mdio preamble.
123 This only set with the original DP83840 on older 3c905 boards, so the extra
124 code size of a per-interface flag is not worthwhile. */
125 static char mii_preamble_required;
127 #define PFX DRV_NAME ": "
132 Theory of Operation
134 I. Board Compatibility
136 This device driver is designed for the 3Com FastEtherLink and FastEtherLink
137 XL, 3Com's PCI to 10/100baseT adapters. It also works with the 10Mbs
138 versions of the FastEtherLink cards. The supported product IDs are
139 3c590, 3c592, 3c595, 3c597, 3c900, 3c905
141 The related ISA 3c515 is supported with a separate driver, 3c515.c, included
142 with the kernel source or available from
143 cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
145 II. Board-specific settings
147 PCI bus devices are configured by the system at boot time, so no jumpers
148 need to be set on the board. The system BIOS should be set to assign the
149 PCI INTA signal to an otherwise unused system IRQ line.
151 The EEPROM settings for media type and forced-full-duplex are observed.
152 The EEPROM media type should be left at the default "autoselect" unless using
153 10base2 or AUI connections which cannot be reliably detected.
155 III. Driver operation
157 The 3c59x series use an interface that's very similar to the previous 3c5x9
158 series. The primary interface is two programmed-I/O FIFOs, with an
159 alternate single-contiguous-region bus-master transfer (see next).
161 The 3c900 "Boomerang" series uses a full-bus-master interface with separate
162 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
163 DEC Tulip and Intel Speedo3. The first chip version retains a compatible
164 programmed-I/O interface that has been removed in 'B' and subsequent board
165 revisions.
167 One extension that is advertised in a very large font is that the adapters
168 are capable of being bus masters. On the Vortex chip this capability was
169 only for a single contiguous region making it far less useful than the full
170 bus master capability. There is a significant performance impact of taking
171 an extra interrupt or polling for the completion of each transfer, as well
172 as difficulty sharing the single transfer engine between the transmit and
173 receive threads. Using DMA transfers is a win only with large blocks or
174 with the flawed versions of the Intel Orion motherboard PCI controller.
176 The Boomerang chip's full-bus-master interface is useful, and has the
177 currently-unused advantages over other similar chips that queued transmit
178 packets may be reordered and receive buffer groups are associated with a
179 single frame.
181 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
182 Rather than a fixed intermediate receive buffer, this scheme allocates
183 full-sized skbuffs as receive buffers. The value RX_COPYBREAK is used as
184 the copying breakpoint: it is chosen to trade-off the memory wasted by
185 passing the full-sized skbuff to the queue layer for all frames vs. the
186 copying cost of copying a frame to a correctly-sized skbuff.
188 IIIC. Synchronization
189 The driver runs as two independent, single-threaded flows of control. One
190 is the send-packet routine, which enforces single-threaded use by the
191 dev->tbusy flag. The other thread is the interrupt handler, which is single
192 threaded by the hardware and other software.
194 IV. Notes
196 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
197 3c590, 3c595, and 3c900 boards.
198 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
199 the EISA version is called "Demon". According to Terry these names come
200 from rides at the local amusement park.
202 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
203 This driver only supports ethernet packets because of the skbuff allocation
204 limit of 4K.
207 /* This table drives the PCI probe routines. It's mostly boilerplate in all
208 of the drivers, and will likely be provided by some future kernel.
210 enum pci_flags_bit {
211 PCI_USES_MASTER=4,
214 enum { IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
215 EEPROM_8BIT=0x10, /* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
216 HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
217 INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
218 EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
219 EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
221 enum vortex_chips {
222 CH_3C590 = 0,
223 CH_3C592,
224 CH_3C597,
225 CH_3C595_1,
226 CH_3C595_2,
228 CH_3C595_3,
229 CH_3C900_1,
230 CH_3C900_2,
231 CH_3C900_3,
232 CH_3C900_4,
234 CH_3C900_5,
235 CH_3C900B_FL,
236 CH_3C905_1,
237 CH_3C905_2,
238 CH_3C905B_1,
240 CH_3C905B_2,
241 CH_3C905B_FX,
242 CH_3C905C,
243 CH_3C9202,
244 CH_3C980,
245 CH_3C9805,
247 CH_3CSOHO100_TX,
248 CH_3C555,
249 CH_3C556,
250 CH_3C556B,
251 CH_3C575,
253 CH_3C575_1,
254 CH_3CCFE575,
255 CH_3CCFE575CT,
256 CH_3CCFE656,
257 CH_3CCFEM656,
259 CH_3CCFEM656_1,
260 CH_3C450,
261 CH_3C920,
262 CH_3C982A,
263 CH_3C982B,
265 CH_905BT4,
266 CH_920B_EMB_WNM,
270 /* note: this array directly indexed by above enums, and MUST
271 * be kept in sync with both the enums above, and the PCI device
272 * table below
274 static struct vortex_chip_info {
275 const char *name;
276 int flags;
277 int drv_flags;
278 int io_size;
279 } vortex_info_tbl[] __devinitdata = {
280 {"3c590 Vortex 10Mbps",
281 PCI_USES_MASTER, IS_VORTEX, 32, },
282 {"3c592 EISA 10Mbps Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
283 PCI_USES_MASTER, IS_VORTEX, 32, },
284 {"3c597 EISA Fast Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
285 PCI_USES_MASTER, IS_VORTEX, 32, },
286 {"3c595 Vortex 100baseTx",
287 PCI_USES_MASTER, IS_VORTEX, 32, },
288 {"3c595 Vortex 100baseT4",
289 PCI_USES_MASTER, IS_VORTEX, 32, },
291 {"3c595 Vortex 100base-MII",
292 PCI_USES_MASTER, IS_VORTEX, 32, },
293 {"3c900 Boomerang 10baseT",
294 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
295 {"3c900 Boomerang 10Mbps Combo",
296 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
297 {"3c900 Cyclone 10Mbps TPO", /* AKPM: from Don's 0.99M */
298 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
299 {"3c900 Cyclone 10Mbps Combo",
300 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
302 {"3c900 Cyclone 10Mbps TPC", /* AKPM: from Don's 0.99M */
303 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
304 {"3c900B-FL Cyclone 10base-FL",
305 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
306 {"3c905 Boomerang 100baseTx",
307 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
308 {"3c905 Boomerang 100baseT4",
309 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
310 {"3c905B Cyclone 100baseTx",
311 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
313 {"3c905B Cyclone 10/100/BNC",
314 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
315 {"3c905B-FX Cyclone 100baseFx",
316 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
317 {"3c905C Tornado",
318 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
319 {"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
320 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
321 {"3c980 Cyclone",
322 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
324 {"3c980C Python-T",
325 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
326 {"3cSOHO100-TX Hurricane",
327 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
328 {"3c555 Laptop Hurricane",
329 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
330 {"3c556 Laptop Tornado",
331 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
332 HAS_HWCKSM, 128, },
333 {"3c556B Laptop Hurricane",
334 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
335 WNO_XCVR_PWR|HAS_HWCKSM, 128, },
337 {"3c575 [Megahertz] 10/100 LAN CardBus",
338 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
339 {"3c575 Boomerang CardBus",
340 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
341 {"3CCFE575BT Cyclone CardBus",
342 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
343 INVERT_LED_PWR|HAS_HWCKSM, 128, },
344 {"3CCFE575CT Tornado CardBus",
345 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
346 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
347 {"3CCFE656 Cyclone CardBus",
348 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
349 INVERT_LED_PWR|HAS_HWCKSM, 128, },
351 {"3CCFEM656B Cyclone+Winmodem CardBus",
352 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
353 INVERT_LED_PWR|HAS_HWCKSM, 128, },
354 {"3CXFEM656C Tornado+Winmodem CardBus", /* From pcmcia-cs-3.1.5 */
355 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
356 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
357 {"3c450 HomePNA Tornado", /* AKPM: from Don's 0.99Q */
358 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
359 {"3c920 Tornado",
360 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
361 {"3c982 Hydra Dual Port A",
362 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
364 {"3c982 Hydra Dual Port B",
365 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
366 {"3c905B-T4",
367 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
368 {"3c920B-EMB-WNM Tornado",
369 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
371 {NULL,}, /* NULL terminated list. */
375 static struct pci_device_id vortex_pci_tbl[] = {
376 { 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
377 { 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
378 { 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
379 { 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
380 { 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
382 { 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
383 { 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
384 { 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
385 { 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
386 { 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
388 { 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
389 { 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
390 { 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
391 { 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
392 { 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
394 { 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
395 { 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
396 { 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
397 { 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
398 { 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
399 { 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
401 { 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
402 { 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
403 { 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
404 { 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
405 { 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
407 { 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
408 { 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
409 { 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
410 { 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
411 { 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
413 { 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
414 { 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
415 { 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
416 { 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
417 { 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
419 { 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
420 { 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
422 {0,} /* 0 terminated list. */
424 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
427 /* Operational definitions.
428 These are not used by other compilation units and thus are not
429 exported in a ".h" file.
431 First the windows. There are eight register windows, with the command
432 and status registers available in each.
434 #define EL3WINDOW(win_num) iowrite16(SelectWindow + (win_num), ioaddr + EL3_CMD)
435 #define EL3_CMD 0x0e
436 #define EL3_STATUS 0x0e
438 /* The top five bits written to EL3_CMD are a command, the lower
439 11 bits are the parameter, if applicable.
440 Note that 11 parameters bits was fine for ethernet, but the new chip
441 can handle FDDI length frames (~4500 octets) and now parameters count
442 32-bit 'Dwords' rather than octets. */
444 enum vortex_cmd {
445 TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
446 RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
447 UpStall = 6<<11, UpUnstall = (6<<11)+1,
448 DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
449 RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
450 FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
451 SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
452 SetTxThreshold = 18<<11, SetTxStart = 19<<11,
453 StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
454 StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
456 /* The SetRxFilter command accepts the following classes: */
457 enum RxFilter {
458 RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
460 /* Bits in the general status register. */
461 enum vortex_status {
462 IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
463 TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
464 IntReq = 0x0040, StatsFull = 0x0080,
465 DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
466 DMAInProgress = 1<<11, /* DMA controller is still busy.*/
467 CmdInProgress = 1<<12, /* EL3_CMD is still busy.*/
470 /* Register window 1 offsets, the window used in normal operation.
471 On the Vortex this window is always mapped at offsets 0x10-0x1f. */
472 enum Window1 {
473 TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14,
474 RxStatus = 0x18, Timer=0x1A, TxStatus = 0x1B,
475 TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
477 enum Window0 {
478 Wn0EepromCmd = 10, /* Window 0: EEPROM command register. */
479 Wn0EepromData = 12, /* Window 0: EEPROM results register. */
480 IntrStatus=0x0E, /* Valid in all windows. */
482 enum Win0_EEPROM_bits {
483 EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
484 EEPROM_EWENB = 0x30, /* Enable erasing/writing for 10 msec. */
485 EEPROM_EWDIS = 0x00, /* Disable EWENB before 10 msec timeout. */
487 /* EEPROM locations. */
488 enum eeprom_offset {
489 PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
490 EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
491 NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
492 DriverTune=13, Checksum=15};
494 enum Window2 { /* Window 2. */
495 Wn2_ResetOptions=12,
497 enum Window3 { /* Window 3: MAC/config bits. */
498 Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
501 #define BFEXT(value, offset, bitcount) \
502 ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
504 #define BFINS(lhs, rhs, offset, bitcount) \
505 (((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) | \
506 (((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
508 #define RAM_SIZE(v) BFEXT(v, 0, 3)
509 #define RAM_WIDTH(v) BFEXT(v, 3, 1)
510 #define RAM_SPEED(v) BFEXT(v, 4, 2)
511 #define ROM_SIZE(v) BFEXT(v, 6, 2)
512 #define RAM_SPLIT(v) BFEXT(v, 16, 2)
513 #define XCVR(v) BFEXT(v, 20, 4)
514 #define AUTOSELECT(v) BFEXT(v, 24, 1)
516 enum Window4 { /* Window 4: Xcvr/media bits. */
517 Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
519 enum Win4_Media_bits {
520 Media_SQE = 0x0008, /* Enable SQE error counting for AUI. */
521 Media_10TP = 0x00C0, /* Enable link beat and jabber for 10baseT. */
522 Media_Lnk = 0x0080, /* Enable just link beat for 100TX/100FX. */
523 Media_LnkBeat = 0x0800,
525 enum Window7 { /* Window 7: Bus Master control. */
526 Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
527 Wn7_MasterStatus = 12,
529 /* Boomerang bus master control registers. */
530 enum MasterCtrl {
531 PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
532 TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
535 /* The Rx and Tx descriptor lists.
536 Caution Alpha hackers: these types are 32 bits! Note also the 8 byte
537 alignment contraint on tx_ring[] and rx_ring[]. */
538 #define LAST_FRAG 0x80000000 /* Last Addr/Len pair in descriptor. */
539 #define DN_COMPLETE 0x00010000 /* This packet has been downloaded */
540 struct boom_rx_desc {
541 __le32 next; /* Last entry points to 0. */
542 __le32 status;
543 __le32 addr; /* Up to 63 addr/len pairs possible. */
544 __le32 length; /* Set LAST_FRAG to indicate last pair. */
546 /* Values for the Rx status entry. */
547 enum rx_desc_status {
548 RxDComplete=0x00008000, RxDError=0x4000,
549 /* See boomerang_rx() for actual error bits */
550 IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
551 IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
554 #ifdef MAX_SKB_FRAGS
555 #define DO_ZEROCOPY 1
556 #else
557 #define DO_ZEROCOPY 0
558 #endif
560 struct boom_tx_desc {
561 __le32 next; /* Last entry points to 0. */
562 __le32 status; /* bits 0:12 length, others see below. */
563 #if DO_ZEROCOPY
564 struct {
565 __le32 addr;
566 __le32 length;
567 } frag[1+MAX_SKB_FRAGS];
568 #else
569 __le32 addr;
570 __le32 length;
571 #endif
574 /* Values for the Tx status entry. */
575 enum tx_desc_status {
576 CRCDisable=0x2000, TxDComplete=0x8000,
577 AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
578 TxIntrUploaded=0x80000000, /* IRQ when in FIFO, but maybe not sent. */
581 /* Chip features we care about in vp->capabilities, read from the EEPROM. */
582 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
584 struct vortex_extra_stats {
585 unsigned long tx_deferred;
586 unsigned long tx_max_collisions;
587 unsigned long tx_multiple_collisions;
588 unsigned long tx_single_collisions;
589 unsigned long rx_bad_ssd;
592 struct vortex_private {
593 /* The Rx and Tx rings should be quad-word-aligned. */
594 struct boom_rx_desc* rx_ring;
595 struct boom_tx_desc* tx_ring;
596 dma_addr_t rx_ring_dma;
597 dma_addr_t tx_ring_dma;
598 /* The addresses of transmit- and receive-in-place skbuffs. */
599 struct sk_buff* rx_skbuff[RX_RING_SIZE];
600 struct sk_buff* tx_skbuff[TX_RING_SIZE];
601 unsigned int cur_rx, cur_tx; /* The next free ring entry */
602 unsigned int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */
603 struct vortex_extra_stats xstats; /* NIC-specific extra stats */
604 struct sk_buff *tx_skb; /* Packet being eaten by bus master ctrl. */
605 dma_addr_t tx_skb_dma; /* Allocated DMA address for bus master ctrl DMA. */
607 /* PCI configuration space information. */
608 struct device *gendev;
609 void __iomem *ioaddr; /* IO address space */
610 void __iomem *cb_fn_base; /* CardBus function status addr space. */
612 /* Some values here only for performance evaluation and path-coverage */
613 int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
614 int card_idx;
616 /* The remainder are related to chip state, mostly media selection. */
617 struct timer_list timer; /* Media selection timer. */
618 struct timer_list rx_oom_timer; /* Rx skb allocation retry timer */
619 int options; /* User-settable misc. driver options. */
620 unsigned int media_override:4, /* Passed-in media type. */
621 default_media:4, /* Read from the EEPROM/Wn3_Config. */
622 full_duplex:1, autoselect:1,
623 bus_master:1, /* Vortex can only do a fragment bus-m. */
624 full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang */
625 flow_ctrl:1, /* Use 802.3x flow control (PAUSE only) */
626 partner_flow_ctrl:1, /* Partner supports flow control */
627 has_nway:1,
628 enable_wol:1, /* Wake-on-LAN is enabled */
629 pm_state_valid:1, /* pci_dev->saved_config_space has sane contents */
630 open:1,
631 medialock:1,
632 must_free_region:1, /* Flag: if zero, Cardbus owns the I/O region */
633 large_frames:1; /* accept large frames */
634 int drv_flags;
635 u16 status_enable;
636 u16 intr_enable;
637 u16 available_media; /* From Wn3_Options. */
638 u16 capabilities, info1, info2; /* Various, from EEPROM. */
639 u16 advertising; /* NWay media advertisement */
640 unsigned char phys[2]; /* MII device addresses. */
641 u16 deferred; /* Resend these interrupts when we
642 * bale from the ISR */
643 u16 io_size; /* Size of PCI region (for release_region) */
644 spinlock_t lock; /* Serialise access to device & its vortex_private */
645 struct mii_if_info mii; /* MII lib hooks/info */
648 #ifdef CONFIG_PCI
649 #define DEVICE_PCI(dev) (((dev)->bus == &pci_bus_type) ? to_pci_dev((dev)) : NULL)
650 #else
651 #define DEVICE_PCI(dev) NULL
652 #endif
654 #define VORTEX_PCI(vp) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL)
656 #ifdef CONFIG_EISA
657 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
658 #else
659 #define DEVICE_EISA(dev) NULL
660 #endif
662 #define VORTEX_EISA(vp) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL)
664 /* The action to take with a media selection timer tick.
665 Note that we deviate from the 3Com order by checking 10base2 before AUI.
667 enum xcvr_types {
668 XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
669 XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
672 static const struct media_table {
673 char *name;
674 unsigned int media_bits:16, /* Bits to set in Wn4_Media register. */
675 mask:8, /* The transceiver-present bit in Wn3_Config.*/
676 next:8; /* The media type to try next. */
677 int wait; /* Time before we check media status. */
678 } media_tbl[] = {
679 { "10baseT", Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
680 { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
681 { "undefined", 0, 0x80, XCVR_10baseT, 10000},
682 { "10base2", 0, 0x10, XCVR_AUI, (1*HZ)/10},
683 { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
684 { "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14*HZ)/10},
685 { "MII", 0, 0x41, XCVR_10baseT, 3*HZ },
686 { "undefined", 0, 0x01, XCVR_10baseT, 10000},
687 { "Autonegotiate", 0, 0x41, XCVR_10baseT, 3*HZ},
688 { "MII-External", 0, 0x41, XCVR_10baseT, 3*HZ },
689 { "Default", 0, 0xFF, XCVR_10baseT, 10000},
692 static struct {
693 const char str[ETH_GSTRING_LEN];
694 } ethtool_stats_keys[] = {
695 { "tx_deferred" },
696 { "tx_max_collisions" },
697 { "tx_multiple_collisions" },
698 { "tx_single_collisions" },
699 { "rx_bad_ssd" },
702 /* number of ETHTOOL_GSTATS u64's */
703 #define VORTEX_NUM_STATS 5
705 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
706 int chip_idx, int card_idx);
707 static int vortex_up(struct net_device *dev);
708 static void vortex_down(struct net_device *dev, int final);
709 static int vortex_open(struct net_device *dev);
710 static void mdio_sync(void __iomem *ioaddr, int bits);
711 static int mdio_read(struct net_device *dev, int phy_id, int location);
712 static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
713 static void vortex_timer(unsigned long arg);
714 static void rx_oom_timer(unsigned long arg);
715 static int vortex_start_xmit(struct sk_buff *skb, struct net_device *dev);
716 static int boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev);
717 static int vortex_rx(struct net_device *dev);
718 static int boomerang_rx(struct net_device *dev);
719 static irqreturn_t vortex_interrupt(int irq, void *dev_id);
720 static irqreturn_t boomerang_interrupt(int irq, void *dev_id);
721 static int vortex_close(struct net_device *dev);
722 static void dump_tx_ring(struct net_device *dev);
723 static void update_stats(void __iomem *ioaddr, struct net_device *dev);
724 static struct net_device_stats *vortex_get_stats(struct net_device *dev);
725 static void set_rx_mode(struct net_device *dev);
726 #ifdef CONFIG_PCI
727 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
728 #endif
729 static void vortex_tx_timeout(struct net_device *dev);
730 static void acpi_set_WOL(struct net_device *dev);
731 static const struct ethtool_ops vortex_ethtool_ops;
732 static void set_8021q_mode(struct net_device *dev, int enable);
734 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
735 /* Option count limit only -- unlimited interfaces are supported. */
736 #define MAX_UNITS 8
737 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
738 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
739 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
740 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
741 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
742 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
743 static int global_options = -1;
744 static int global_full_duplex = -1;
745 static int global_enable_wol = -1;
746 static int global_use_mmio = -1;
748 /* Variables to work-around the Compaq PCI BIOS32 problem. */
749 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
750 static struct net_device *compaq_net_device;
752 static int vortex_cards_found;
754 module_param(debug, int, 0);
755 module_param(global_options, int, 0);
756 module_param_array(options, int, NULL, 0);
757 module_param(global_full_duplex, int, 0);
758 module_param_array(full_duplex, int, NULL, 0);
759 module_param_array(hw_checksums, int, NULL, 0);
760 module_param_array(flow_ctrl, int, NULL, 0);
761 module_param(global_enable_wol, int, 0);
762 module_param_array(enable_wol, int, NULL, 0);
763 module_param(rx_copybreak, int, 0);
764 module_param(max_interrupt_work, int, 0);
765 module_param(compaq_ioaddr, int, 0);
766 module_param(compaq_irq, int, 0);
767 module_param(compaq_device_id, int, 0);
768 module_param(watchdog, int, 0);
769 module_param(global_use_mmio, int, 0);
770 module_param_array(use_mmio, int, NULL, 0);
771 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
772 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
773 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
774 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
775 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
776 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
777 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
778 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
779 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
780 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
781 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
782 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
783 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
784 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
785 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
786 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
787 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
789 #ifdef CONFIG_NET_POLL_CONTROLLER
790 static void poll_vortex(struct net_device *dev)
792 struct vortex_private *vp = netdev_priv(dev);
793 unsigned long flags;
794 local_irq_save(flags);
795 (vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev);
796 local_irq_restore(flags);
798 #endif
800 #ifdef CONFIG_PM
802 static int vortex_suspend(struct pci_dev *pdev, pm_message_t state)
804 struct net_device *dev = pci_get_drvdata(pdev);
806 if (dev && netdev_priv(dev)) {
807 if (netif_running(dev)) {
808 netif_device_detach(dev);
809 vortex_down(dev, 1);
811 pci_save_state(pdev);
812 pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
813 free_irq(dev->irq, dev);
814 pci_disable_device(pdev);
815 pci_set_power_state(pdev, pci_choose_state(pdev, state));
817 return 0;
820 static int vortex_resume(struct pci_dev *pdev)
822 struct net_device *dev = pci_get_drvdata(pdev);
823 struct vortex_private *vp = netdev_priv(dev);
824 int err;
826 if (dev && vp) {
827 pci_set_power_state(pdev, PCI_D0);
828 pci_restore_state(pdev);
829 err = pci_enable_device(pdev);
830 if (err) {
831 printk(KERN_WARNING "%s: Could not enable device \n",
832 dev->name);
833 return err;
835 pci_set_master(pdev);
836 if (request_irq(dev->irq, vp->full_bus_master_rx ?
837 &boomerang_interrupt : &vortex_interrupt, IRQF_SHARED, dev->name, dev)) {
838 printk(KERN_WARNING "%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
839 pci_disable_device(pdev);
840 return -EBUSY;
842 if (netif_running(dev)) {
843 err = vortex_up(dev);
844 if (err)
845 return err;
846 else
847 netif_device_attach(dev);
850 return 0;
853 #endif /* CONFIG_PM */
855 #ifdef CONFIG_EISA
856 static struct eisa_device_id vortex_eisa_ids[] = {
857 { "TCM5920", CH_3C592 },
858 { "TCM5970", CH_3C597 },
859 { "" }
861 MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
863 static int __init vortex_eisa_probe(struct device *device)
865 void __iomem *ioaddr;
866 struct eisa_device *edev;
868 edev = to_eisa_device(device);
870 if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
871 return -EBUSY;
873 ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
875 if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
876 edev->id.driver_data, vortex_cards_found)) {
877 release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
878 return -ENODEV;
881 vortex_cards_found++;
883 return 0;
886 static int __devexit vortex_eisa_remove(struct device *device)
888 struct eisa_device *edev;
889 struct net_device *dev;
890 struct vortex_private *vp;
891 void __iomem *ioaddr;
893 edev = to_eisa_device(device);
894 dev = eisa_get_drvdata(edev);
896 if (!dev) {
897 printk("vortex_eisa_remove called for Compaq device!\n");
898 BUG();
901 vp = netdev_priv(dev);
902 ioaddr = vp->ioaddr;
904 unregister_netdev(dev);
905 iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
906 release_region(dev->base_addr, VORTEX_TOTAL_SIZE);
908 free_netdev(dev);
909 return 0;
912 static struct eisa_driver vortex_eisa_driver = {
913 .id_table = vortex_eisa_ids,
914 .driver = {
915 .name = "3c59x",
916 .probe = vortex_eisa_probe,
917 .remove = __devexit_p(vortex_eisa_remove)
921 #endif /* CONFIG_EISA */
923 /* returns count found (>= 0), or negative on error */
924 static int __init vortex_eisa_init(void)
926 int eisa_found = 0;
927 int orig_cards_found = vortex_cards_found;
929 #ifdef CONFIG_EISA
930 int err;
932 err = eisa_driver_register (&vortex_eisa_driver);
933 if (!err) {
935 * Because of the way EISA bus is probed, we cannot assume
936 * any device have been found when we exit from
937 * eisa_driver_register (the bus root driver may not be
938 * initialized yet). So we blindly assume something was
939 * found, and let the sysfs magic happend...
941 eisa_found = 1;
943 #endif
945 /* Special code to work-around the Compaq PCI BIOS32 problem. */
946 if (compaq_ioaddr) {
947 vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
948 compaq_irq, compaq_device_id, vortex_cards_found++);
951 return vortex_cards_found - orig_cards_found + eisa_found;
954 /* returns count (>= 0), or negative on error */
955 static int __devinit vortex_init_one(struct pci_dev *pdev,
956 const struct pci_device_id *ent)
958 int rc, unit, pci_bar;
959 struct vortex_chip_info *vci;
960 void __iomem *ioaddr;
962 /* wake up and enable device */
963 rc = pci_enable_device(pdev);
964 if (rc < 0)
965 goto out;
967 unit = vortex_cards_found;
969 if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
970 /* Determine the default if the user didn't override us */
971 vci = &vortex_info_tbl[ent->driver_data];
972 pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
973 } else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
974 pci_bar = use_mmio[unit] ? 1 : 0;
975 else
976 pci_bar = global_use_mmio ? 1 : 0;
978 ioaddr = pci_iomap(pdev, pci_bar, 0);
979 if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
980 ioaddr = pci_iomap(pdev, 0, 0);
982 rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
983 ent->driver_data, unit);
984 if (rc < 0) {
985 pci_disable_device(pdev);
986 goto out;
989 vortex_cards_found++;
991 out:
992 return rc;
995 static const struct net_device_ops boomrang_netdev_ops = {
996 .ndo_open = vortex_open,
997 .ndo_stop = vortex_close,
998 .ndo_start_xmit = boomerang_start_xmit,
999 .ndo_tx_timeout = vortex_tx_timeout,
1000 .ndo_get_stats = vortex_get_stats,
1001 #ifdef CONFIG_PCI
1002 .ndo_do_ioctl = vortex_ioctl,
1003 #endif
1004 .ndo_set_multicast_list = set_rx_mode,
1005 .ndo_change_mtu = eth_change_mtu,
1006 .ndo_set_mac_address = eth_mac_addr,
1007 .ndo_validate_addr = eth_validate_addr,
1008 #ifdef CONFIG_NET_POLL_CONTROLLER
1009 .ndo_poll_controller = poll_vortex,
1010 #endif
1013 static const struct net_device_ops vortex_netdev_ops = {
1014 .ndo_open = vortex_open,
1015 .ndo_stop = vortex_close,
1016 .ndo_start_xmit = vortex_start_xmit,
1017 .ndo_tx_timeout = vortex_tx_timeout,
1018 .ndo_get_stats = vortex_get_stats,
1019 #ifdef CONFIG_PCI
1020 .ndo_do_ioctl = vortex_ioctl,
1021 #endif
1022 .ndo_set_multicast_list = set_rx_mode,
1023 .ndo_change_mtu = eth_change_mtu,
1024 .ndo_set_mac_address = eth_mac_addr,
1025 .ndo_validate_addr = eth_validate_addr,
1026 #ifdef CONFIG_NET_POLL_CONTROLLER
1027 .ndo_poll_controller = poll_vortex,
1028 #endif
1032 * Start up the PCI/EISA device which is described by *gendev.
1033 * Return 0 on success.
1035 * NOTE: pdev can be NULL, for the case of a Compaq device
1037 static int __devinit vortex_probe1(struct device *gendev,
1038 void __iomem *ioaddr, int irq,
1039 int chip_idx, int card_idx)
1041 struct vortex_private *vp;
1042 int option;
1043 unsigned int eeprom[0x40], checksum = 0; /* EEPROM contents */
1044 int i, step;
1045 struct net_device *dev;
1046 static int printed_version;
1047 int retval, print_info;
1048 struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1049 const char *print_name = "3c59x";
1050 struct pci_dev *pdev = NULL;
1051 struct eisa_device *edev = NULL;
1053 if (!printed_version) {
1054 printk (version);
1055 printed_version = 1;
1058 if (gendev) {
1059 if ((pdev = DEVICE_PCI(gendev))) {
1060 print_name = pci_name(pdev);
1063 if ((edev = DEVICE_EISA(gendev))) {
1064 print_name = dev_name(&edev->dev);
1068 dev = alloc_etherdev(sizeof(*vp));
1069 retval = -ENOMEM;
1070 if (!dev) {
1071 printk (KERN_ERR PFX "unable to allocate etherdev, aborting\n");
1072 goto out;
1074 SET_NETDEV_DEV(dev, gendev);
1075 vp = netdev_priv(dev);
1077 option = global_options;
1079 /* The lower four bits are the media type. */
1080 if (dev->mem_start) {
1082 * The 'options' param is passed in as the third arg to the
1083 * LILO 'ether=' argument for non-modular use
1085 option = dev->mem_start;
1087 else if (card_idx < MAX_UNITS) {
1088 if (options[card_idx] >= 0)
1089 option = options[card_idx];
1092 if (option > 0) {
1093 if (option & 0x8000)
1094 vortex_debug = 7;
1095 if (option & 0x4000)
1096 vortex_debug = 2;
1097 if (option & 0x0400)
1098 vp->enable_wol = 1;
1101 print_info = (vortex_debug > 1);
1102 if (print_info)
1103 printk (KERN_INFO "See Documentation/networking/vortex.txt\n");
1105 printk(KERN_INFO "%s: 3Com %s %s at %p.\n",
1106 print_name,
1107 pdev ? "PCI" : "EISA",
1108 vci->name,
1109 ioaddr);
1111 dev->base_addr = (unsigned long)ioaddr;
1112 dev->irq = irq;
1113 dev->mtu = mtu;
1114 vp->ioaddr = ioaddr;
1115 vp->large_frames = mtu > 1500;
1116 vp->drv_flags = vci->drv_flags;
1117 vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1118 vp->io_size = vci->io_size;
1119 vp->card_idx = card_idx;
1121 /* module list only for Compaq device */
1122 if (gendev == NULL) {
1123 compaq_net_device = dev;
1126 /* PCI-only startup logic */
1127 if (pdev) {
1128 /* EISA resources already marked, so only PCI needs to do this here */
1129 /* Ignore return value, because Cardbus drivers already allocate for us */
1130 if (request_region(dev->base_addr, vci->io_size, print_name) != NULL)
1131 vp->must_free_region = 1;
1133 /* enable bus-mastering if necessary */
1134 if (vci->flags & PCI_USES_MASTER)
1135 pci_set_master(pdev);
1137 if (vci->drv_flags & IS_VORTEX) {
1138 u8 pci_latency;
1139 u8 new_latency = 248;
1141 /* Check the PCI latency value. On the 3c590 series the latency timer
1142 must be set to the maximum value to avoid data corruption that occurs
1143 when the timer expires during a transfer. This bug exists the Vortex
1144 chip only. */
1145 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1146 if (pci_latency < new_latency) {
1147 printk(KERN_INFO "%s: Overriding PCI latency"
1148 " timer (CFLT) setting of %d, new value is %d.\n",
1149 print_name, pci_latency, new_latency);
1150 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1155 spin_lock_init(&vp->lock);
1156 vp->gendev = gendev;
1157 vp->mii.dev = dev;
1158 vp->mii.mdio_read = mdio_read;
1159 vp->mii.mdio_write = mdio_write;
1160 vp->mii.phy_id_mask = 0x1f;
1161 vp->mii.reg_num_mask = 0x1f;
1163 /* Makes sure rings are at least 16 byte aligned. */
1164 vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1165 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1166 &vp->rx_ring_dma);
1167 retval = -ENOMEM;
1168 if (!vp->rx_ring)
1169 goto free_region;
1171 vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1172 vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1174 /* if we are a PCI driver, we store info in pdev->driver_data
1175 * instead of a module list */
1176 if (pdev)
1177 pci_set_drvdata(pdev, dev);
1178 if (edev)
1179 eisa_set_drvdata(edev, dev);
1181 vp->media_override = 7;
1182 if (option >= 0) {
1183 vp->media_override = ((option & 7) == 2) ? 0 : option & 15;
1184 if (vp->media_override != 7)
1185 vp->medialock = 1;
1186 vp->full_duplex = (option & 0x200) ? 1 : 0;
1187 vp->bus_master = (option & 16) ? 1 : 0;
1190 if (global_full_duplex > 0)
1191 vp->full_duplex = 1;
1192 if (global_enable_wol > 0)
1193 vp->enable_wol = 1;
1195 if (card_idx < MAX_UNITS) {
1196 if (full_duplex[card_idx] > 0)
1197 vp->full_duplex = 1;
1198 if (flow_ctrl[card_idx] > 0)
1199 vp->flow_ctrl = 1;
1200 if (enable_wol[card_idx] > 0)
1201 vp->enable_wol = 1;
1204 vp->mii.force_media = vp->full_duplex;
1205 vp->options = option;
1206 /* Read the station address from the EEPROM. */
1207 EL3WINDOW(0);
1209 int base;
1211 if (vci->drv_flags & EEPROM_8BIT)
1212 base = 0x230;
1213 else if (vci->drv_flags & EEPROM_OFFSET)
1214 base = EEPROM_Read + 0x30;
1215 else
1216 base = EEPROM_Read;
1218 for (i = 0; i < 0x40; i++) {
1219 int timer;
1220 iowrite16(base + i, ioaddr + Wn0EepromCmd);
1221 /* Pause for at least 162 us. for the read to take place. */
1222 for (timer = 10; timer >= 0; timer--) {
1223 udelay(162);
1224 if ((ioread16(ioaddr + Wn0EepromCmd) & 0x8000) == 0)
1225 break;
1227 eeprom[i] = ioread16(ioaddr + Wn0EepromData);
1230 for (i = 0; i < 0x18; i++)
1231 checksum ^= eeprom[i];
1232 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1233 if (checksum != 0x00) { /* Grrr, needless incompatible change 3Com. */
1234 while (i < 0x21)
1235 checksum ^= eeprom[i++];
1236 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1238 if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1239 printk(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1240 for (i = 0; i < 3; i++)
1241 ((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1242 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1243 if (print_info)
1244 printk(" %pM", dev->dev_addr);
1245 /* Unfortunately an all zero eeprom passes the checksum and this
1246 gets found in the wild in failure cases. Crypto is hard 8) */
1247 if (!is_valid_ether_addr(dev->dev_addr)) {
1248 retval = -EINVAL;
1249 printk(KERN_ERR "*** EEPROM MAC address is invalid.\n");
1250 goto free_ring; /* With every pack */
1252 EL3WINDOW(2);
1253 for (i = 0; i < 6; i++)
1254 iowrite8(dev->dev_addr[i], ioaddr + i);
1256 if (print_info)
1257 printk(", IRQ %d\n", dev->irq);
1258 /* Tell them about an invalid IRQ. */
1259 if (dev->irq <= 0 || dev->irq >= nr_irqs)
1260 printk(KERN_WARNING " *** Warning: IRQ %d is unlikely to work! ***\n",
1261 dev->irq);
1263 EL3WINDOW(4);
1264 step = (ioread8(ioaddr + Wn4_NetDiag) & 0x1e) >> 1;
1265 if (print_info) {
1266 printk(KERN_INFO " product code %02x%02x rev %02x.%d date %02d-"
1267 "%02d-%02d\n", eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1268 step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1272 if (pdev && vci->drv_flags & HAS_CB_FNS) {
1273 unsigned short n;
1275 vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1276 if (!vp->cb_fn_base) {
1277 retval = -ENOMEM;
1278 goto free_ring;
1281 if (print_info) {
1282 printk(KERN_INFO "%s: CardBus functions mapped "
1283 "%16.16llx->%p\n",
1284 print_name,
1285 (unsigned long long)pci_resource_start(pdev, 2),
1286 vp->cb_fn_base);
1288 EL3WINDOW(2);
1290 n = ioread16(ioaddr + Wn2_ResetOptions) & ~0x4010;
1291 if (vp->drv_flags & INVERT_LED_PWR)
1292 n |= 0x10;
1293 if (vp->drv_flags & INVERT_MII_PWR)
1294 n |= 0x4000;
1295 iowrite16(n, ioaddr + Wn2_ResetOptions);
1296 if (vp->drv_flags & WNO_XCVR_PWR) {
1297 EL3WINDOW(0);
1298 iowrite16(0x0800, ioaddr);
1302 /* Extract our information from the EEPROM data. */
1303 vp->info1 = eeprom[13];
1304 vp->info2 = eeprom[15];
1305 vp->capabilities = eeprom[16];
1307 if (vp->info1 & 0x8000) {
1308 vp->full_duplex = 1;
1309 if (print_info)
1310 printk(KERN_INFO "Full duplex capable\n");
1314 static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1315 unsigned int config;
1316 EL3WINDOW(3);
1317 vp->available_media = ioread16(ioaddr + Wn3_Options);
1318 if ((vp->available_media & 0xff) == 0) /* Broken 3c916 */
1319 vp->available_media = 0x40;
1320 config = ioread32(ioaddr + Wn3_Config);
1321 if (print_info) {
1322 printk(KERN_DEBUG " Internal config register is %4.4x, "
1323 "transceivers %#x.\n", config, ioread16(ioaddr + Wn3_Options));
1324 printk(KERN_INFO " %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1325 8 << RAM_SIZE(config),
1326 RAM_WIDTH(config) ? "word" : "byte",
1327 ram_split[RAM_SPLIT(config)],
1328 AUTOSELECT(config) ? "autoselect/" : "",
1329 XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1330 media_tbl[XCVR(config)].name);
1332 vp->default_media = XCVR(config);
1333 if (vp->default_media == XCVR_NWAY)
1334 vp->has_nway = 1;
1335 vp->autoselect = AUTOSELECT(config);
1338 if (vp->media_override != 7) {
1339 printk(KERN_INFO "%s: Media override to transceiver type %d (%s).\n",
1340 print_name, vp->media_override,
1341 media_tbl[vp->media_override].name);
1342 dev->if_port = vp->media_override;
1343 } else
1344 dev->if_port = vp->default_media;
1346 if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1347 dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1348 int phy, phy_idx = 0;
1349 EL3WINDOW(4);
1350 mii_preamble_required++;
1351 if (vp->drv_flags & EXTRA_PREAMBLE)
1352 mii_preamble_required++;
1353 mdio_sync(ioaddr, 32);
1354 mdio_read(dev, 24, MII_BMSR);
1355 for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1356 int mii_status, phyx;
1359 * For the 3c905CX we look at index 24 first, because it bogusly
1360 * reports an external PHY at all indices
1362 if (phy == 0)
1363 phyx = 24;
1364 else if (phy <= 24)
1365 phyx = phy - 1;
1366 else
1367 phyx = phy;
1368 mii_status = mdio_read(dev, phyx, MII_BMSR);
1369 if (mii_status && mii_status != 0xffff) {
1370 vp->phys[phy_idx++] = phyx;
1371 if (print_info) {
1372 printk(KERN_INFO " MII transceiver found at address %d,"
1373 " status %4x.\n", phyx, mii_status);
1375 if ((mii_status & 0x0040) == 0)
1376 mii_preamble_required++;
1379 mii_preamble_required--;
1380 if (phy_idx == 0) {
1381 printk(KERN_WARNING" ***WARNING*** No MII transceivers found!\n");
1382 vp->phys[0] = 24;
1383 } else {
1384 vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1385 if (vp->full_duplex) {
1386 /* Only advertise the FD media types. */
1387 vp->advertising &= ~0x02A0;
1388 mdio_write(dev, vp->phys[0], 4, vp->advertising);
1391 vp->mii.phy_id = vp->phys[0];
1394 if (vp->capabilities & CapBusMaster) {
1395 vp->full_bus_master_tx = 1;
1396 if (print_info) {
1397 printk(KERN_INFO " Enabling bus-master transmits and %s receives.\n",
1398 (vp->info2 & 1) ? "early" : "whole-frame" );
1400 vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1401 vp->bus_master = 0; /* AKPM: vortex only */
1404 /* The 3c59x-specific entries in the device structure. */
1405 if (vp->full_bus_master_tx) {
1406 dev->netdev_ops = &boomrang_netdev_ops;
1407 /* Actually, it still should work with iommu. */
1408 if (card_idx < MAX_UNITS &&
1409 ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1410 hw_checksums[card_idx] == 1)) {
1411 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1413 } else
1414 dev->netdev_ops = &vortex_netdev_ops;
1416 if (print_info) {
1417 printk(KERN_INFO "%s: scatter/gather %sabled. h/w checksums %sabled\n",
1418 print_name,
1419 (dev->features & NETIF_F_SG) ? "en":"dis",
1420 (dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1423 dev->ethtool_ops = &vortex_ethtool_ops;
1424 dev->watchdog_timeo = (watchdog * HZ) / 1000;
1426 if (pdev) {
1427 vp->pm_state_valid = 1;
1428 pci_save_state(VORTEX_PCI(vp));
1429 acpi_set_WOL(dev);
1431 retval = register_netdev(dev);
1432 if (retval == 0)
1433 return 0;
1435 free_ring:
1436 pci_free_consistent(pdev,
1437 sizeof(struct boom_rx_desc) * RX_RING_SIZE
1438 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1439 vp->rx_ring,
1440 vp->rx_ring_dma);
1441 free_region:
1442 if (vp->must_free_region)
1443 release_region(dev->base_addr, vci->io_size);
1444 free_netdev(dev);
1445 printk(KERN_ERR PFX "vortex_probe1 fails. Returns %d\n", retval);
1446 out:
1447 return retval;
1450 static void
1451 issue_and_wait(struct net_device *dev, int cmd)
1453 struct vortex_private *vp = netdev_priv(dev);
1454 void __iomem *ioaddr = vp->ioaddr;
1455 int i;
1457 iowrite16(cmd, ioaddr + EL3_CMD);
1458 for (i = 0; i < 2000; i++) {
1459 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1460 return;
1463 /* OK, that didn't work. Do it the slow way. One second */
1464 for (i = 0; i < 100000; i++) {
1465 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1466 if (vortex_debug > 1)
1467 printk(KERN_INFO "%s: command 0x%04x took %d usecs\n",
1468 dev->name, cmd, i * 10);
1469 return;
1471 udelay(10);
1473 printk(KERN_ERR "%s: command 0x%04x did not complete! Status=0x%x\n",
1474 dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1477 static void
1478 vortex_set_duplex(struct net_device *dev)
1480 struct vortex_private *vp = netdev_priv(dev);
1481 void __iomem *ioaddr = vp->ioaddr;
1483 printk(KERN_INFO "%s: setting %s-duplex.\n",
1484 dev->name, (vp->full_duplex) ? "full" : "half");
1486 EL3WINDOW(3);
1487 /* Set the full-duplex bit. */
1488 iowrite16(((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1489 (vp->large_frames ? 0x40 : 0) |
1490 ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1491 0x100 : 0),
1492 ioaddr + Wn3_MAC_Ctrl);
1495 static void vortex_check_media(struct net_device *dev, unsigned int init)
1497 struct vortex_private *vp = netdev_priv(dev);
1498 unsigned int ok_to_print = 0;
1500 if (vortex_debug > 3)
1501 ok_to_print = 1;
1503 if (mii_check_media(&vp->mii, ok_to_print, init)) {
1504 vp->full_duplex = vp->mii.full_duplex;
1505 vortex_set_duplex(dev);
1506 } else if (init) {
1507 vortex_set_duplex(dev);
1511 static int
1512 vortex_up(struct net_device *dev)
1514 struct vortex_private *vp = netdev_priv(dev);
1515 void __iomem *ioaddr = vp->ioaddr;
1516 unsigned int config;
1517 int i, mii_reg1, mii_reg5, err = 0;
1519 if (VORTEX_PCI(vp)) {
1520 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
1521 if (vp->pm_state_valid)
1522 pci_restore_state(VORTEX_PCI(vp));
1523 err = pci_enable_device(VORTEX_PCI(vp));
1524 if (err) {
1525 printk(KERN_WARNING "%s: Could not enable device \n",
1526 dev->name);
1527 goto err_out;
1531 /* Before initializing select the active media port. */
1532 EL3WINDOW(3);
1533 config = ioread32(ioaddr + Wn3_Config);
1535 if (vp->media_override != 7) {
1536 printk(KERN_INFO "%s: Media override to transceiver %d (%s).\n",
1537 dev->name, vp->media_override,
1538 media_tbl[vp->media_override].name);
1539 dev->if_port = vp->media_override;
1540 } else if (vp->autoselect) {
1541 if (vp->has_nway) {
1542 if (vortex_debug > 1)
1543 printk(KERN_INFO "%s: using NWAY device table, not %d\n",
1544 dev->name, dev->if_port);
1545 dev->if_port = XCVR_NWAY;
1546 } else {
1547 /* Find first available media type, starting with 100baseTx. */
1548 dev->if_port = XCVR_100baseTx;
1549 while (! (vp->available_media & media_tbl[dev->if_port].mask))
1550 dev->if_port = media_tbl[dev->if_port].next;
1551 if (vortex_debug > 1)
1552 printk(KERN_INFO "%s: first available media type: %s\n",
1553 dev->name, media_tbl[dev->if_port].name);
1555 } else {
1556 dev->if_port = vp->default_media;
1557 if (vortex_debug > 1)
1558 printk(KERN_INFO "%s: using default media %s\n",
1559 dev->name, media_tbl[dev->if_port].name);
1562 init_timer(&vp->timer);
1563 vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait);
1564 vp->timer.data = (unsigned long)dev;
1565 vp->timer.function = vortex_timer; /* timer handler */
1566 add_timer(&vp->timer);
1568 init_timer(&vp->rx_oom_timer);
1569 vp->rx_oom_timer.data = (unsigned long)dev;
1570 vp->rx_oom_timer.function = rx_oom_timer;
1572 if (vortex_debug > 1)
1573 printk(KERN_DEBUG "%s: Initial media type %s.\n",
1574 dev->name, media_tbl[dev->if_port].name);
1576 vp->full_duplex = vp->mii.force_media;
1577 config = BFINS(config, dev->if_port, 20, 4);
1578 if (vortex_debug > 6)
1579 printk(KERN_DEBUG "vortex_up(): writing 0x%x to InternalConfig\n", config);
1580 iowrite32(config, ioaddr + Wn3_Config);
1582 if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1583 EL3WINDOW(4);
1584 mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1585 mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1586 vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1587 vp->mii.full_duplex = vp->full_duplex;
1589 vortex_check_media(dev, 1);
1591 else
1592 vortex_set_duplex(dev);
1594 issue_and_wait(dev, TxReset);
1596 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1598 issue_and_wait(dev, RxReset|0x04);
1601 iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1603 if (vortex_debug > 1) {
1604 EL3WINDOW(4);
1605 printk(KERN_DEBUG "%s: vortex_up() irq %d media status %4.4x.\n",
1606 dev->name, dev->irq, ioread16(ioaddr + Wn4_Media));
1609 /* Set the station address and mask in window 2 each time opened. */
1610 EL3WINDOW(2);
1611 for (i = 0; i < 6; i++)
1612 iowrite8(dev->dev_addr[i], ioaddr + i);
1613 for (; i < 12; i+=2)
1614 iowrite16(0, ioaddr + i);
1616 if (vp->cb_fn_base) {
1617 unsigned short n = ioread16(ioaddr + Wn2_ResetOptions) & ~0x4010;
1618 if (vp->drv_flags & INVERT_LED_PWR)
1619 n |= 0x10;
1620 if (vp->drv_flags & INVERT_MII_PWR)
1621 n |= 0x4000;
1622 iowrite16(n, ioaddr + Wn2_ResetOptions);
1625 if (dev->if_port == XCVR_10base2)
1626 /* Start the thinnet transceiver. We should really wait 50ms...*/
1627 iowrite16(StartCoax, ioaddr + EL3_CMD);
1628 if (dev->if_port != XCVR_NWAY) {
1629 EL3WINDOW(4);
1630 iowrite16((ioread16(ioaddr + Wn4_Media) & ~(Media_10TP|Media_SQE)) |
1631 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1634 /* Switch to the stats window, and clear all stats by reading. */
1635 iowrite16(StatsDisable, ioaddr + EL3_CMD);
1636 EL3WINDOW(6);
1637 for (i = 0; i < 10; i++)
1638 ioread8(ioaddr + i);
1639 ioread16(ioaddr + 10);
1640 ioread16(ioaddr + 12);
1641 /* New: On the Vortex we must also clear the BadSSD counter. */
1642 EL3WINDOW(4);
1643 ioread8(ioaddr + 12);
1644 /* ..and on the Boomerang we enable the extra statistics bits. */
1645 iowrite16(0x0040, ioaddr + Wn4_NetDiag);
1647 /* Switch to register set 7 for normal use. */
1648 EL3WINDOW(7);
1650 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1651 vp->cur_rx = vp->dirty_rx = 0;
1652 /* Initialize the RxEarly register as recommended. */
1653 iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1654 iowrite32(0x0020, ioaddr + PktStatus);
1655 iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1657 if (vp->full_bus_master_tx) { /* Boomerang bus master Tx. */
1658 vp->cur_tx = vp->dirty_tx = 0;
1659 if (vp->drv_flags & IS_BOOMERANG)
1660 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1661 /* Clear the Rx, Tx rings. */
1662 for (i = 0; i < RX_RING_SIZE; i++) /* AKPM: this is done in vortex_open, too */
1663 vp->rx_ring[i].status = 0;
1664 for (i = 0; i < TX_RING_SIZE; i++)
1665 vp->tx_skbuff[i] = NULL;
1666 iowrite32(0, ioaddr + DownListPtr);
1668 /* Set receiver mode: presumably accept b-case and phys addr only. */
1669 set_rx_mode(dev);
1670 /* enable 802.1q tagged frames */
1671 set_8021q_mode(dev, 1);
1672 iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1674 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1675 iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1676 /* Allow status bits to be seen. */
1677 vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1678 (vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1679 (vp->full_bus_master_rx ? UpComplete : RxComplete) |
1680 (vp->bus_master ? DMADone : 0);
1681 vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1682 (vp->full_bus_master_rx ? 0 : RxComplete) |
1683 StatsFull | HostError | TxComplete | IntReq
1684 | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1685 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1686 /* Ack all pending events, and set active indicator mask. */
1687 iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1688 ioaddr + EL3_CMD);
1689 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1690 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
1691 iowrite32(0x8000, vp->cb_fn_base + 4);
1692 netif_start_queue (dev);
1693 err_out:
1694 return err;
1697 static int
1698 vortex_open(struct net_device *dev)
1700 struct vortex_private *vp = netdev_priv(dev);
1701 int i;
1702 int retval;
1704 /* Use the now-standard shared IRQ implementation. */
1705 if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1706 &boomerang_interrupt : &vortex_interrupt, IRQF_SHARED, dev->name, dev))) {
1707 printk(KERN_ERR "%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1708 goto err;
1711 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1712 if (vortex_debug > 2)
1713 printk(KERN_DEBUG "%s: Filling in the Rx ring.\n", dev->name);
1714 for (i = 0; i < RX_RING_SIZE; i++) {
1715 struct sk_buff *skb;
1716 vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1717 vp->rx_ring[i].status = 0; /* Clear complete bit. */
1718 vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1720 skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1721 GFP_KERNEL);
1722 vp->rx_skbuff[i] = skb;
1723 if (skb == NULL)
1724 break; /* Bad news! */
1726 skb_reserve(skb, NET_IP_ALIGN); /* Align IP on 16 byte boundaries */
1727 vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1729 if (i != RX_RING_SIZE) {
1730 int j;
1731 printk(KERN_EMERG "%s: no memory for rx ring\n", dev->name);
1732 for (j = 0; j < i; j++) {
1733 if (vp->rx_skbuff[j]) {
1734 dev_kfree_skb(vp->rx_skbuff[j]);
1735 vp->rx_skbuff[j] = NULL;
1738 retval = -ENOMEM;
1739 goto err_free_irq;
1741 /* Wrap the ring. */
1742 vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1745 retval = vortex_up(dev);
1746 if (!retval)
1747 goto out;
1749 err_free_irq:
1750 free_irq(dev->irq, dev);
1751 err:
1752 if (vortex_debug > 1)
1753 printk(KERN_ERR "%s: vortex_open() fails: returning %d\n", dev->name, retval);
1754 out:
1755 return retval;
1758 static void
1759 vortex_timer(unsigned long data)
1761 struct net_device *dev = (struct net_device *)data;
1762 struct vortex_private *vp = netdev_priv(dev);
1763 void __iomem *ioaddr = vp->ioaddr;
1764 int next_tick = 60*HZ;
1765 int ok = 0;
1766 int media_status, old_window;
1768 if (vortex_debug > 2) {
1769 printk(KERN_DEBUG "%s: Media selection timer tick happened, %s.\n",
1770 dev->name, media_tbl[dev->if_port].name);
1771 printk(KERN_DEBUG "dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1774 disable_irq_lockdep(dev->irq);
1775 old_window = ioread16(ioaddr + EL3_CMD) >> 13;
1776 EL3WINDOW(4);
1777 media_status = ioread16(ioaddr + Wn4_Media);
1778 switch (dev->if_port) {
1779 case XCVR_10baseT: case XCVR_100baseTx: case XCVR_100baseFx:
1780 if (media_status & Media_LnkBeat) {
1781 netif_carrier_on(dev);
1782 ok = 1;
1783 if (vortex_debug > 1)
1784 printk(KERN_DEBUG "%s: Media %s has link beat, %x.\n",
1785 dev->name, media_tbl[dev->if_port].name, media_status);
1786 } else {
1787 netif_carrier_off(dev);
1788 if (vortex_debug > 1) {
1789 printk(KERN_DEBUG "%s: Media %s has no link beat, %x.\n",
1790 dev->name, media_tbl[dev->if_port].name, media_status);
1793 break;
1794 case XCVR_MII: case XCVR_NWAY:
1796 ok = 1;
1797 /* Interrupts are already disabled */
1798 spin_lock(&vp->lock);
1799 vortex_check_media(dev, 0);
1800 spin_unlock(&vp->lock);
1802 break;
1803 default: /* Other media types handled by Tx timeouts. */
1804 if (vortex_debug > 1)
1805 printk(KERN_DEBUG "%s: Media %s has no indication, %x.\n",
1806 dev->name, media_tbl[dev->if_port].name, media_status);
1807 ok = 1;
1810 if (!netif_carrier_ok(dev))
1811 next_tick = 5*HZ;
1813 if (vp->medialock)
1814 goto leave_media_alone;
1816 if (!ok) {
1817 unsigned int config;
1819 do {
1820 dev->if_port = media_tbl[dev->if_port].next;
1821 } while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1822 if (dev->if_port == XCVR_Default) { /* Go back to default. */
1823 dev->if_port = vp->default_media;
1824 if (vortex_debug > 1)
1825 printk(KERN_DEBUG "%s: Media selection failing, using default "
1826 "%s port.\n",
1827 dev->name, media_tbl[dev->if_port].name);
1828 } else {
1829 if (vortex_debug > 1)
1830 printk(KERN_DEBUG "%s: Media selection failed, now trying "
1831 "%s port.\n",
1832 dev->name, media_tbl[dev->if_port].name);
1833 next_tick = media_tbl[dev->if_port].wait;
1835 iowrite16((media_status & ~(Media_10TP|Media_SQE)) |
1836 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1838 EL3WINDOW(3);
1839 config = ioread32(ioaddr + Wn3_Config);
1840 config = BFINS(config, dev->if_port, 20, 4);
1841 iowrite32(config, ioaddr + Wn3_Config);
1843 iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1844 ioaddr + EL3_CMD);
1845 if (vortex_debug > 1)
1846 printk(KERN_DEBUG "wrote 0x%08x to Wn3_Config\n", config);
1847 /* AKPM: FIXME: Should reset Rx & Tx here. P60 of 3c90xc.pdf */
1850 leave_media_alone:
1851 if (vortex_debug > 2)
1852 printk(KERN_DEBUG "%s: Media selection timer finished, %s.\n",
1853 dev->name, media_tbl[dev->if_port].name);
1855 EL3WINDOW(old_window);
1856 enable_irq_lockdep(dev->irq);
1857 mod_timer(&vp->timer, RUN_AT(next_tick));
1858 if (vp->deferred)
1859 iowrite16(FakeIntr, ioaddr + EL3_CMD);
1860 return;
1863 static void vortex_tx_timeout(struct net_device *dev)
1865 struct vortex_private *vp = netdev_priv(dev);
1866 void __iomem *ioaddr = vp->ioaddr;
1868 printk(KERN_ERR "%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1869 dev->name, ioread8(ioaddr + TxStatus),
1870 ioread16(ioaddr + EL3_STATUS));
1871 EL3WINDOW(4);
1872 printk(KERN_ERR " diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1873 ioread16(ioaddr + Wn4_NetDiag),
1874 ioread16(ioaddr + Wn4_Media),
1875 ioread32(ioaddr + PktStatus),
1876 ioread16(ioaddr + Wn4_FIFODiag));
1877 /* Slight code bloat to be user friendly. */
1878 if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1879 printk(KERN_ERR "%s: Transmitter encountered 16 collisions --"
1880 " network cable problem?\n", dev->name);
1881 if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1882 printk(KERN_ERR "%s: Interrupt posted but not delivered --"
1883 " IRQ blocked by another device?\n", dev->name);
1884 /* Bad idea here.. but we might as well handle a few events. */
1887 * Block interrupts because vortex_interrupt does a bare spin_lock()
1889 unsigned long flags;
1890 local_irq_save(flags);
1891 if (vp->full_bus_master_tx)
1892 boomerang_interrupt(dev->irq, dev);
1893 else
1894 vortex_interrupt(dev->irq, dev);
1895 local_irq_restore(flags);
1899 if (vortex_debug > 0)
1900 dump_tx_ring(dev);
1902 issue_and_wait(dev, TxReset);
1904 dev->stats.tx_errors++;
1905 if (vp->full_bus_master_tx) {
1906 printk(KERN_DEBUG "%s: Resetting the Tx ring pointer.\n", dev->name);
1907 if (vp->cur_tx - vp->dirty_tx > 0 && ioread32(ioaddr + DownListPtr) == 0)
1908 iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1909 ioaddr + DownListPtr);
1910 if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE)
1911 netif_wake_queue (dev);
1912 if (vp->drv_flags & IS_BOOMERANG)
1913 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1914 iowrite16(DownUnstall, ioaddr + EL3_CMD);
1915 } else {
1916 dev->stats.tx_dropped++;
1917 netif_wake_queue(dev);
1920 /* Issue Tx Enable */
1921 iowrite16(TxEnable, ioaddr + EL3_CMD);
1922 dev->trans_start = jiffies;
1924 /* Switch to register set 7 for normal use. */
1925 EL3WINDOW(7);
1929 * Handle uncommon interrupt sources. This is a separate routine to minimize
1930 * the cache impact.
1932 static void
1933 vortex_error(struct net_device *dev, int status)
1935 struct vortex_private *vp = netdev_priv(dev);
1936 void __iomem *ioaddr = vp->ioaddr;
1937 int do_tx_reset = 0, reset_mask = 0;
1938 unsigned char tx_status = 0;
1940 if (vortex_debug > 2) {
1941 printk(KERN_ERR "%s: vortex_error(), status=0x%x\n", dev->name, status);
1944 if (status & TxComplete) { /* Really "TxError" for us. */
1945 tx_status = ioread8(ioaddr + TxStatus);
1946 /* Presumably a tx-timeout. We must merely re-enable. */
1947 if (vortex_debug > 2
1948 || (tx_status != 0x88 && vortex_debug > 0)) {
1949 printk(KERN_ERR "%s: Transmit error, Tx status register %2.2x.\n",
1950 dev->name, tx_status);
1951 if (tx_status == 0x82) {
1952 printk(KERN_ERR "Probably a duplex mismatch. See "
1953 "Documentation/networking/vortex.txt\n");
1955 dump_tx_ring(dev);
1957 if (tx_status & 0x14) dev->stats.tx_fifo_errors++;
1958 if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
1959 if (tx_status & 0x08) vp->xstats.tx_max_collisions++;
1960 iowrite8(0, ioaddr + TxStatus);
1961 if (tx_status & 0x30) { /* txJabber or txUnderrun */
1962 do_tx_reset = 1;
1963 } else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET)) { /* maxCollisions */
1964 do_tx_reset = 1;
1965 reset_mask = 0x0108; /* Reset interface logic, but not download logic */
1966 } else { /* Merely re-enable the transmitter. */
1967 iowrite16(TxEnable, ioaddr + EL3_CMD);
1971 if (status & RxEarly) { /* Rx early is unused. */
1972 vortex_rx(dev);
1973 iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
1975 if (status & StatsFull) { /* Empty statistics. */
1976 static int DoneDidThat;
1977 if (vortex_debug > 4)
1978 printk(KERN_DEBUG "%s: Updating stats.\n", dev->name);
1979 update_stats(ioaddr, dev);
1980 /* HACK: Disable statistics as an interrupt source. */
1981 /* This occurs when we have the wrong media type! */
1982 if (DoneDidThat == 0 &&
1983 ioread16(ioaddr + EL3_STATUS) & StatsFull) {
1984 printk(KERN_WARNING "%s: Updating statistics failed, disabling "
1985 "stats as an interrupt source.\n", dev->name);
1986 EL3WINDOW(5);
1987 iowrite16(SetIntrEnb | (ioread16(ioaddr + 10) & ~StatsFull), ioaddr + EL3_CMD);
1988 vp->intr_enable &= ~StatsFull;
1989 EL3WINDOW(7);
1990 DoneDidThat++;
1993 if (status & IntReq) { /* Restore all interrupt sources. */
1994 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1995 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1997 if (status & HostError) {
1998 u16 fifo_diag;
1999 EL3WINDOW(4);
2000 fifo_diag = ioread16(ioaddr + Wn4_FIFODiag);
2001 printk(KERN_ERR "%s: Host error, FIFO diagnostic register %4.4x.\n",
2002 dev->name, fifo_diag);
2003 /* Adapter failure requires Tx/Rx reset and reinit. */
2004 if (vp->full_bus_master_tx) {
2005 int bus_status = ioread32(ioaddr + PktStatus);
2006 /* 0x80000000 PCI master abort. */
2007 /* 0x40000000 PCI target abort. */
2008 if (vortex_debug)
2009 printk(KERN_ERR "%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2011 /* In this case, blow the card away */
2012 /* Must not enter D3 or we can't legally issue the reset! */
2013 vortex_down(dev, 0);
2014 issue_and_wait(dev, TotalReset | 0xff);
2015 vortex_up(dev); /* AKPM: bug. vortex_up() assumes that the rx ring is full. It may not be. */
2016 } else if (fifo_diag & 0x0400)
2017 do_tx_reset = 1;
2018 if (fifo_diag & 0x3000) {
2019 /* Reset Rx fifo and upload logic */
2020 issue_and_wait(dev, RxReset|0x07);
2021 /* Set the Rx filter to the current state. */
2022 set_rx_mode(dev);
2023 /* enable 802.1q VLAN tagged frames */
2024 set_8021q_mode(dev, 1);
2025 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2026 iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2030 if (do_tx_reset) {
2031 issue_and_wait(dev, TxReset|reset_mask);
2032 iowrite16(TxEnable, ioaddr + EL3_CMD);
2033 if (!vp->full_bus_master_tx)
2034 netif_wake_queue(dev);
2038 static int
2039 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2041 struct vortex_private *vp = netdev_priv(dev);
2042 void __iomem *ioaddr = vp->ioaddr;
2044 /* Put out the doubleword header... */
2045 iowrite32(skb->len, ioaddr + TX_FIFO);
2046 if (vp->bus_master) {
2047 /* Set the bus-master controller to transfer the packet. */
2048 int len = (skb->len + 3) & ~3;
2049 iowrite32(vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len, PCI_DMA_TODEVICE),
2050 ioaddr + Wn7_MasterAddr);
2051 iowrite16(len, ioaddr + Wn7_MasterLen);
2052 vp->tx_skb = skb;
2053 iowrite16(StartDMADown, ioaddr + EL3_CMD);
2054 /* netif_wake_queue() will be called at the DMADone interrupt. */
2055 } else {
2056 /* ... and the packet rounded to a doubleword. */
2057 iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2058 dev_kfree_skb (skb);
2059 if (ioread16(ioaddr + TxFree) > 1536) {
2060 netif_start_queue (dev); /* AKPM: redundant? */
2061 } else {
2062 /* Interrupt us when the FIFO has room for max-sized packet. */
2063 netif_stop_queue(dev);
2064 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2068 dev->trans_start = jiffies;
2070 /* Clear the Tx status stack. */
2072 int tx_status;
2073 int i = 32;
2075 while (--i > 0 && (tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2076 if (tx_status & 0x3C) { /* A Tx-disabling error occurred. */
2077 if (vortex_debug > 2)
2078 printk(KERN_DEBUG "%s: Tx error, status %2.2x.\n",
2079 dev->name, tx_status);
2080 if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2081 if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2082 if (tx_status & 0x30) {
2083 issue_and_wait(dev, TxReset);
2085 iowrite16(TxEnable, ioaddr + EL3_CMD);
2087 iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2090 return 0;
2093 static int
2094 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2096 struct vortex_private *vp = netdev_priv(dev);
2097 void __iomem *ioaddr = vp->ioaddr;
2098 /* Calculate the next Tx descriptor entry. */
2099 int entry = vp->cur_tx % TX_RING_SIZE;
2100 struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2101 unsigned long flags;
2103 if (vortex_debug > 6) {
2104 printk(KERN_DEBUG "boomerang_start_xmit()\n");
2105 printk(KERN_DEBUG "%s: Trying to send a packet, Tx index %d.\n",
2106 dev->name, vp->cur_tx);
2109 if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2110 if (vortex_debug > 0)
2111 printk(KERN_WARNING "%s: BUG! Tx Ring full, refusing to send buffer.\n",
2112 dev->name);
2113 netif_stop_queue(dev);
2114 return 1;
2117 vp->tx_skbuff[entry] = skb;
2119 vp->tx_ring[entry].next = 0;
2120 #if DO_ZEROCOPY
2121 if (skb->ip_summed != CHECKSUM_PARTIAL)
2122 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2123 else
2124 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2126 if (!skb_shinfo(skb)->nr_frags) {
2127 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2128 skb->len, PCI_DMA_TODEVICE));
2129 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2130 } else {
2131 int i;
2133 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2134 skb->len-skb->data_len, PCI_DMA_TODEVICE));
2135 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len-skb->data_len);
2137 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2138 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2140 vp->tx_ring[entry].frag[i+1].addr =
2141 cpu_to_le32(pci_map_single(VORTEX_PCI(vp),
2142 (void*)page_address(frag->page) + frag->page_offset,
2143 frag->size, PCI_DMA_TODEVICE));
2145 if (i == skb_shinfo(skb)->nr_frags-1)
2146 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size|LAST_FRAG);
2147 else
2148 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size);
2151 #else
2152 vp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE));
2153 vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2154 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2155 #endif
2157 spin_lock_irqsave(&vp->lock, flags);
2158 /* Wait for the stall to complete. */
2159 issue_and_wait(dev, DownStall);
2160 prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2161 if (ioread32(ioaddr + DownListPtr) == 0) {
2162 iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2163 vp->queued_packet++;
2166 vp->cur_tx++;
2167 if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2168 netif_stop_queue (dev);
2169 } else { /* Clear previous interrupt enable. */
2170 #if defined(tx_interrupt_mitigation)
2171 /* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2172 * were selected, this would corrupt DN_COMPLETE. No?
2174 prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2175 #endif
2177 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2178 spin_unlock_irqrestore(&vp->lock, flags);
2179 dev->trans_start = jiffies;
2180 return 0;
2183 /* The interrupt handler does all of the Rx thread work and cleans up
2184 after the Tx thread. */
2187 * This is the ISR for the vortex series chips.
2188 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2191 static irqreturn_t
2192 vortex_interrupt(int irq, void *dev_id)
2194 struct net_device *dev = dev_id;
2195 struct vortex_private *vp = netdev_priv(dev);
2196 void __iomem *ioaddr;
2197 int status;
2198 int work_done = max_interrupt_work;
2199 int handled = 0;
2201 ioaddr = vp->ioaddr;
2202 spin_lock(&vp->lock);
2204 status = ioread16(ioaddr + EL3_STATUS);
2206 if (vortex_debug > 6)
2207 printk("vortex_interrupt(). status=0x%4x\n", status);
2209 if ((status & IntLatch) == 0)
2210 goto handler_exit; /* No interrupt: shared IRQs cause this */
2211 handled = 1;
2213 if (status & IntReq) {
2214 status |= vp->deferred;
2215 vp->deferred = 0;
2218 if (status == 0xffff) /* h/w no longer present (hotplug)? */
2219 goto handler_exit;
2221 if (vortex_debug > 4)
2222 printk(KERN_DEBUG "%s: interrupt, status %4.4x, latency %d ticks.\n",
2223 dev->name, status, ioread8(ioaddr + Timer));
2225 do {
2226 if (vortex_debug > 5)
2227 printk(KERN_DEBUG "%s: In interrupt loop, status %4.4x.\n",
2228 dev->name, status);
2229 if (status & RxComplete)
2230 vortex_rx(dev);
2232 if (status & TxAvailable) {
2233 if (vortex_debug > 5)
2234 printk(KERN_DEBUG " TX room bit was handled.\n");
2235 /* There's room in the FIFO for a full-sized packet. */
2236 iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2237 netif_wake_queue (dev);
2240 if (status & DMADone) {
2241 if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2242 iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2243 pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2244 dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2245 if (ioread16(ioaddr + TxFree) > 1536) {
2247 * AKPM: FIXME: I don't think we need this. If the queue was stopped due to
2248 * insufficient FIFO room, the TxAvailable test will succeed and call
2249 * netif_wake_queue()
2251 netif_wake_queue(dev);
2252 } else { /* Interrupt when FIFO has room for max-sized packet. */
2253 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2254 netif_stop_queue(dev);
2258 /* Check for all uncommon interrupts at once. */
2259 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2260 if (status == 0xffff)
2261 break;
2262 vortex_error(dev, status);
2265 if (--work_done < 0) {
2266 printk(KERN_WARNING "%s: Too much work in interrupt, status "
2267 "%4.4x.\n", dev->name, status);
2268 /* Disable all pending interrupts. */
2269 do {
2270 vp->deferred |= status;
2271 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2272 ioaddr + EL3_CMD);
2273 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2274 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2275 /* The timer will reenable interrupts. */
2276 mod_timer(&vp->timer, jiffies + 1*HZ);
2277 break;
2279 /* Acknowledge the IRQ. */
2280 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2281 } while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2283 if (vortex_debug > 4)
2284 printk(KERN_DEBUG "%s: exiting interrupt, status %4.4x.\n",
2285 dev->name, status);
2286 handler_exit:
2287 spin_unlock(&vp->lock);
2288 return IRQ_RETVAL(handled);
2292 * This is the ISR for the boomerang series chips.
2293 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2296 static irqreturn_t
2297 boomerang_interrupt(int irq, void *dev_id)
2299 struct net_device *dev = dev_id;
2300 struct vortex_private *vp = netdev_priv(dev);
2301 void __iomem *ioaddr;
2302 int status;
2303 int work_done = max_interrupt_work;
2305 ioaddr = vp->ioaddr;
2308 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2309 * and boomerang_start_xmit
2311 spin_lock(&vp->lock);
2313 status = ioread16(ioaddr + EL3_STATUS);
2315 if (vortex_debug > 6)
2316 printk(KERN_DEBUG "boomerang_interrupt. status=0x%4x\n", status);
2318 if ((status & IntLatch) == 0)
2319 goto handler_exit; /* No interrupt: shared IRQs can cause this */
2321 if (status == 0xffff) { /* h/w no longer present (hotplug)? */
2322 if (vortex_debug > 1)
2323 printk(KERN_DEBUG "boomerang_interrupt(1): status = 0xffff\n");
2324 goto handler_exit;
2327 if (status & IntReq) {
2328 status |= vp->deferred;
2329 vp->deferred = 0;
2332 if (vortex_debug > 4)
2333 printk(KERN_DEBUG "%s: interrupt, status %4.4x, latency %d ticks.\n",
2334 dev->name, status, ioread8(ioaddr + Timer));
2335 do {
2336 if (vortex_debug > 5)
2337 printk(KERN_DEBUG "%s: In interrupt loop, status %4.4x.\n",
2338 dev->name, status);
2339 if (status & UpComplete) {
2340 iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2341 if (vortex_debug > 5)
2342 printk(KERN_DEBUG "boomerang_interrupt->boomerang_rx\n");
2343 boomerang_rx(dev);
2346 if (status & DownComplete) {
2347 unsigned int dirty_tx = vp->dirty_tx;
2349 iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2350 while (vp->cur_tx - dirty_tx > 0) {
2351 int entry = dirty_tx % TX_RING_SIZE;
2352 #if 1 /* AKPM: the latter is faster, but cyclone-only */
2353 if (ioread32(ioaddr + DownListPtr) ==
2354 vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2355 break; /* It still hasn't been processed. */
2356 #else
2357 if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2358 break; /* It still hasn't been processed. */
2359 #endif
2361 if (vp->tx_skbuff[entry]) {
2362 struct sk_buff *skb = vp->tx_skbuff[entry];
2363 #if DO_ZEROCOPY
2364 int i;
2365 for (i=0; i<=skb_shinfo(skb)->nr_frags; i++)
2366 pci_unmap_single(VORTEX_PCI(vp),
2367 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2368 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2369 PCI_DMA_TODEVICE);
2370 #else
2371 pci_unmap_single(VORTEX_PCI(vp),
2372 le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2373 #endif
2374 dev_kfree_skb_irq(skb);
2375 vp->tx_skbuff[entry] = NULL;
2376 } else {
2377 printk(KERN_DEBUG "boomerang_interrupt: no skb!\n");
2379 /* dev->stats.tx_packets++; Counted below. */
2380 dirty_tx++;
2382 vp->dirty_tx = dirty_tx;
2383 if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2384 if (vortex_debug > 6)
2385 printk(KERN_DEBUG "boomerang_interrupt: wake queue\n");
2386 netif_wake_queue (dev);
2390 /* Check for all uncommon interrupts at once. */
2391 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2392 vortex_error(dev, status);
2394 if (--work_done < 0) {
2395 printk(KERN_WARNING "%s: Too much work in interrupt, status "
2396 "%4.4x.\n", dev->name, status);
2397 /* Disable all pending interrupts. */
2398 do {
2399 vp->deferred |= status;
2400 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2401 ioaddr + EL3_CMD);
2402 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2403 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2404 /* The timer will reenable interrupts. */
2405 mod_timer(&vp->timer, jiffies + 1*HZ);
2406 break;
2408 /* Acknowledge the IRQ. */
2409 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2410 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
2411 iowrite32(0x8000, vp->cb_fn_base + 4);
2413 } while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2415 if (vortex_debug > 4)
2416 printk(KERN_DEBUG "%s: exiting interrupt, status %4.4x.\n",
2417 dev->name, status);
2418 handler_exit:
2419 spin_unlock(&vp->lock);
2420 return IRQ_HANDLED;
2423 static int vortex_rx(struct net_device *dev)
2425 struct vortex_private *vp = netdev_priv(dev);
2426 void __iomem *ioaddr = vp->ioaddr;
2427 int i;
2428 short rx_status;
2430 if (vortex_debug > 5)
2431 printk(KERN_DEBUG "vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2432 ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2433 while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2434 if (rx_status & 0x4000) { /* Error, update stats. */
2435 unsigned char rx_error = ioread8(ioaddr + RxErrors);
2436 if (vortex_debug > 2)
2437 printk(KERN_DEBUG " Rx error: status %2.2x.\n", rx_error);
2438 dev->stats.rx_errors++;
2439 if (rx_error & 0x01) dev->stats.rx_over_errors++;
2440 if (rx_error & 0x02) dev->stats.rx_length_errors++;
2441 if (rx_error & 0x04) dev->stats.rx_frame_errors++;
2442 if (rx_error & 0x08) dev->stats.rx_crc_errors++;
2443 if (rx_error & 0x10) dev->stats.rx_length_errors++;
2444 } else {
2445 /* The packet length: up to 4.5K!. */
2446 int pkt_len = rx_status & 0x1fff;
2447 struct sk_buff *skb;
2449 skb = dev_alloc_skb(pkt_len + 5);
2450 if (vortex_debug > 4)
2451 printk(KERN_DEBUG "Receiving packet size %d status %4.4x.\n",
2452 pkt_len, rx_status);
2453 if (skb != NULL) {
2454 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2455 /* 'skb_put()' points to the start of sk_buff data area. */
2456 if (vp->bus_master &&
2457 ! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2458 dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2459 pkt_len, PCI_DMA_FROMDEVICE);
2460 iowrite32(dma, ioaddr + Wn7_MasterAddr);
2461 iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2462 iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2463 while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2465 pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2466 } else {
2467 ioread32_rep(ioaddr + RX_FIFO,
2468 skb_put(skb, pkt_len),
2469 (pkt_len + 3) >> 2);
2471 iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2472 skb->protocol = eth_type_trans(skb, dev);
2473 netif_rx(skb);
2474 dev->stats.rx_packets++;
2475 /* Wait a limited time to go to next packet. */
2476 for (i = 200; i >= 0; i--)
2477 if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2478 break;
2479 continue;
2480 } else if (vortex_debug > 0)
2481 printk(KERN_NOTICE "%s: No memory to allocate a sk_buff of "
2482 "size %d.\n", dev->name, pkt_len);
2483 dev->stats.rx_dropped++;
2485 issue_and_wait(dev, RxDiscard);
2488 return 0;
2491 static int
2492 boomerang_rx(struct net_device *dev)
2494 struct vortex_private *vp = netdev_priv(dev);
2495 int entry = vp->cur_rx % RX_RING_SIZE;
2496 void __iomem *ioaddr = vp->ioaddr;
2497 int rx_status;
2498 int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2500 if (vortex_debug > 5)
2501 printk(KERN_DEBUG "boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2503 while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2504 if (--rx_work_limit < 0)
2505 break;
2506 if (rx_status & RxDError) { /* Error, update stats. */
2507 unsigned char rx_error = rx_status >> 16;
2508 if (vortex_debug > 2)
2509 printk(KERN_DEBUG " Rx error: status %2.2x.\n", rx_error);
2510 dev->stats.rx_errors++;
2511 if (rx_error & 0x01) dev->stats.rx_over_errors++;
2512 if (rx_error & 0x02) dev->stats.rx_length_errors++;
2513 if (rx_error & 0x04) dev->stats.rx_frame_errors++;
2514 if (rx_error & 0x08) dev->stats.rx_crc_errors++;
2515 if (rx_error & 0x10) dev->stats.rx_length_errors++;
2516 } else {
2517 /* The packet length: up to 4.5K!. */
2518 int pkt_len = rx_status & 0x1fff;
2519 struct sk_buff *skb;
2520 dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2522 if (vortex_debug > 4)
2523 printk(KERN_DEBUG "Receiving packet size %d status %4.4x.\n",
2524 pkt_len, rx_status);
2526 /* Check if the packet is long enough to just accept without
2527 copying to a properly sized skbuff. */
2528 if (pkt_len < rx_copybreak && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
2529 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2530 pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2531 /* 'skb_put()' points to the start of sk_buff data area. */
2532 memcpy(skb_put(skb, pkt_len),
2533 vp->rx_skbuff[entry]->data,
2534 pkt_len);
2535 pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2536 vp->rx_copy++;
2537 } else {
2538 /* Pass up the skbuff already on the Rx ring. */
2539 skb = vp->rx_skbuff[entry];
2540 vp->rx_skbuff[entry] = NULL;
2541 skb_put(skb, pkt_len);
2542 pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2543 vp->rx_nocopy++;
2545 skb->protocol = eth_type_trans(skb, dev);
2546 { /* Use hardware checksum info. */
2547 int csum_bits = rx_status & 0xee000000;
2548 if (csum_bits &&
2549 (csum_bits == (IPChksumValid | TCPChksumValid) ||
2550 csum_bits == (IPChksumValid | UDPChksumValid))) {
2551 skb->ip_summed = CHECKSUM_UNNECESSARY;
2552 vp->rx_csumhits++;
2555 netif_rx(skb);
2556 dev->stats.rx_packets++;
2558 entry = (++vp->cur_rx) % RX_RING_SIZE;
2560 /* Refill the Rx ring buffers. */
2561 for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2562 struct sk_buff *skb;
2563 entry = vp->dirty_rx % RX_RING_SIZE;
2564 if (vp->rx_skbuff[entry] == NULL) {
2565 skb = netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN);
2566 if (skb == NULL) {
2567 static unsigned long last_jif;
2568 if (time_after(jiffies, last_jif + 10 * HZ)) {
2569 printk(KERN_WARNING "%s: memory shortage\n", dev->name);
2570 last_jif = jiffies;
2572 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2573 mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2574 break; /* Bad news! */
2577 skb_reserve(skb, NET_IP_ALIGN);
2578 vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2579 vp->rx_skbuff[entry] = skb;
2581 vp->rx_ring[entry].status = 0; /* Clear complete bit. */
2582 iowrite16(UpUnstall, ioaddr + EL3_CMD);
2584 return 0;
2588 * If we've hit a total OOM refilling the Rx ring we poll once a second
2589 * for some memory. Otherwise there is no way to restart the rx process.
2591 static void
2592 rx_oom_timer(unsigned long arg)
2594 struct net_device *dev = (struct net_device *)arg;
2595 struct vortex_private *vp = netdev_priv(dev);
2597 spin_lock_irq(&vp->lock);
2598 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE) /* This test is redundant, but makes me feel good */
2599 boomerang_rx(dev);
2600 if (vortex_debug > 1) {
2601 printk(KERN_DEBUG "%s: rx_oom_timer %s\n", dev->name,
2602 ((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2604 spin_unlock_irq(&vp->lock);
2607 static void
2608 vortex_down(struct net_device *dev, int final_down)
2610 struct vortex_private *vp = netdev_priv(dev);
2611 void __iomem *ioaddr = vp->ioaddr;
2613 netif_stop_queue (dev);
2615 del_timer_sync(&vp->rx_oom_timer);
2616 del_timer_sync(&vp->timer);
2618 /* Turn off statistics ASAP. We update dev->stats below. */
2619 iowrite16(StatsDisable, ioaddr + EL3_CMD);
2621 /* Disable the receiver and transmitter. */
2622 iowrite16(RxDisable, ioaddr + EL3_CMD);
2623 iowrite16(TxDisable, ioaddr + EL3_CMD);
2625 /* Disable receiving 802.1q tagged frames */
2626 set_8021q_mode(dev, 0);
2628 if (dev->if_port == XCVR_10base2)
2629 /* Turn off thinnet power. Green! */
2630 iowrite16(StopCoax, ioaddr + EL3_CMD);
2632 iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2634 update_stats(ioaddr, dev);
2635 if (vp->full_bus_master_rx)
2636 iowrite32(0, ioaddr + UpListPtr);
2637 if (vp->full_bus_master_tx)
2638 iowrite32(0, ioaddr + DownListPtr);
2640 if (final_down && VORTEX_PCI(vp)) {
2641 vp->pm_state_valid = 1;
2642 pci_save_state(VORTEX_PCI(vp));
2643 acpi_set_WOL(dev);
2647 static int
2648 vortex_close(struct net_device *dev)
2650 struct vortex_private *vp = netdev_priv(dev);
2651 void __iomem *ioaddr = vp->ioaddr;
2652 int i;
2654 if (netif_device_present(dev))
2655 vortex_down(dev, 1);
2657 if (vortex_debug > 1) {
2658 printk(KERN_DEBUG"%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2659 dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2660 printk(KERN_DEBUG "%s: vortex close stats: rx_nocopy %d rx_copy %d"
2661 " tx_queued %d Rx pre-checksummed %d.\n",
2662 dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2665 #if DO_ZEROCOPY
2666 if (vp->rx_csumhits &&
2667 (vp->drv_flags & HAS_HWCKSM) == 0 &&
2668 (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2669 printk(KERN_WARNING "%s supports hardware checksums, and we're "
2670 "not using them!\n", dev->name);
2672 #endif
2674 free_irq(dev->irq, dev);
2676 if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2677 for (i = 0; i < RX_RING_SIZE; i++)
2678 if (vp->rx_skbuff[i]) {
2679 pci_unmap_single( VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2680 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2681 dev_kfree_skb(vp->rx_skbuff[i]);
2682 vp->rx_skbuff[i] = NULL;
2685 if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2686 for (i = 0; i < TX_RING_SIZE; i++) {
2687 if (vp->tx_skbuff[i]) {
2688 struct sk_buff *skb = vp->tx_skbuff[i];
2689 #if DO_ZEROCOPY
2690 int k;
2692 for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2693 pci_unmap_single(VORTEX_PCI(vp),
2694 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2695 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2696 PCI_DMA_TODEVICE);
2697 #else
2698 pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2699 #endif
2700 dev_kfree_skb(skb);
2701 vp->tx_skbuff[i] = NULL;
2706 return 0;
2709 static void
2710 dump_tx_ring(struct net_device *dev)
2712 if (vortex_debug > 0) {
2713 struct vortex_private *vp = netdev_priv(dev);
2714 void __iomem *ioaddr = vp->ioaddr;
2716 if (vp->full_bus_master_tx) {
2717 int i;
2718 int stalled = ioread32(ioaddr + PktStatus) & 0x04; /* Possible racy. But it's only debug stuff */
2720 printk(KERN_ERR " Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2721 vp->full_bus_master_tx,
2722 vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2723 vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2724 printk(KERN_ERR " Transmit list %8.8x vs. %p.\n",
2725 ioread32(ioaddr + DownListPtr),
2726 &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2727 issue_and_wait(dev, DownStall);
2728 for (i = 0; i < TX_RING_SIZE; i++) {
2729 printk(KERN_ERR " %d: @%p length %8.8x status %8.8x\n", i,
2730 &vp->tx_ring[i],
2731 #if DO_ZEROCOPY
2732 le32_to_cpu(vp->tx_ring[i].frag[0].length),
2733 #else
2734 le32_to_cpu(vp->tx_ring[i].length),
2735 #endif
2736 le32_to_cpu(vp->tx_ring[i].status));
2738 if (!stalled)
2739 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2744 static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2746 struct vortex_private *vp = netdev_priv(dev);
2747 void __iomem *ioaddr = vp->ioaddr;
2748 unsigned long flags;
2750 if (netif_device_present(dev)) { /* AKPM: Used to be netif_running */
2751 spin_lock_irqsave (&vp->lock, flags);
2752 update_stats(ioaddr, dev);
2753 spin_unlock_irqrestore (&vp->lock, flags);
2755 return &dev->stats;
2758 /* Update statistics.
2759 Unlike with the EL3 we need not worry about interrupts changing
2760 the window setting from underneath us, but we must still guard
2761 against a race condition with a StatsUpdate interrupt updating the
2762 table. This is done by checking that the ASM (!) code generated uses
2763 atomic updates with '+='.
2765 static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2767 struct vortex_private *vp = netdev_priv(dev);
2768 int old_window = ioread16(ioaddr + EL3_CMD);
2770 if (old_window == 0xffff) /* Chip suspended or ejected. */
2771 return;
2772 /* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2773 /* Switch to the stats window, and read everything. */
2774 EL3WINDOW(6);
2775 dev->stats.tx_carrier_errors += ioread8(ioaddr + 0);
2776 dev->stats.tx_heartbeat_errors += ioread8(ioaddr + 1);
2777 dev->stats.tx_window_errors += ioread8(ioaddr + 4);
2778 dev->stats.rx_fifo_errors += ioread8(ioaddr + 5);
2779 dev->stats.tx_packets += ioread8(ioaddr + 6);
2780 dev->stats.tx_packets += (ioread8(ioaddr + 9)&0x30) << 4;
2781 /* Rx packets */ ioread8(ioaddr + 7); /* Must read to clear */
2782 /* Don't bother with register 9, an extension of registers 6&7.
2783 If we do use the 6&7 values the atomic update assumption above
2784 is invalid. */
2785 dev->stats.rx_bytes += ioread16(ioaddr + 10);
2786 dev->stats.tx_bytes += ioread16(ioaddr + 12);
2787 /* Extra stats for get_ethtool_stats() */
2788 vp->xstats.tx_multiple_collisions += ioread8(ioaddr + 2);
2789 vp->xstats.tx_single_collisions += ioread8(ioaddr + 3);
2790 vp->xstats.tx_deferred += ioread8(ioaddr + 8);
2791 EL3WINDOW(4);
2792 vp->xstats.rx_bad_ssd += ioread8(ioaddr + 12);
2794 dev->stats.collisions = vp->xstats.tx_multiple_collisions
2795 + vp->xstats.tx_single_collisions
2796 + vp->xstats.tx_max_collisions;
2799 u8 up = ioread8(ioaddr + 13);
2800 dev->stats.rx_bytes += (up & 0x0f) << 16;
2801 dev->stats.tx_bytes += (up & 0xf0) << 12;
2804 EL3WINDOW(old_window >> 13);
2805 return;
2808 static int vortex_nway_reset(struct net_device *dev)
2810 struct vortex_private *vp = netdev_priv(dev);
2811 void __iomem *ioaddr = vp->ioaddr;
2812 unsigned long flags;
2813 int rc;
2815 spin_lock_irqsave(&vp->lock, flags);
2816 EL3WINDOW(4);
2817 rc = mii_nway_restart(&vp->mii);
2818 spin_unlock_irqrestore(&vp->lock, flags);
2819 return rc;
2822 static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2824 struct vortex_private *vp = netdev_priv(dev);
2825 void __iomem *ioaddr = vp->ioaddr;
2826 unsigned long flags;
2827 int rc;
2829 spin_lock_irqsave(&vp->lock, flags);
2830 EL3WINDOW(4);
2831 rc = mii_ethtool_gset(&vp->mii, cmd);
2832 spin_unlock_irqrestore(&vp->lock, flags);
2833 return rc;
2836 static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2838 struct vortex_private *vp = netdev_priv(dev);
2839 void __iomem *ioaddr = vp->ioaddr;
2840 unsigned long flags;
2841 int rc;
2843 spin_lock_irqsave(&vp->lock, flags);
2844 EL3WINDOW(4);
2845 rc = mii_ethtool_sset(&vp->mii, cmd);
2846 spin_unlock_irqrestore(&vp->lock, flags);
2847 return rc;
2850 static u32 vortex_get_msglevel(struct net_device *dev)
2852 return vortex_debug;
2855 static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2857 vortex_debug = dbg;
2860 static int vortex_get_sset_count(struct net_device *dev, int sset)
2862 switch (sset) {
2863 case ETH_SS_STATS:
2864 return VORTEX_NUM_STATS;
2865 default:
2866 return -EOPNOTSUPP;
2870 static void vortex_get_ethtool_stats(struct net_device *dev,
2871 struct ethtool_stats *stats, u64 *data)
2873 struct vortex_private *vp = netdev_priv(dev);
2874 void __iomem *ioaddr = vp->ioaddr;
2875 unsigned long flags;
2877 spin_lock_irqsave(&vp->lock, flags);
2878 update_stats(ioaddr, dev);
2879 spin_unlock_irqrestore(&vp->lock, flags);
2881 data[0] = vp->xstats.tx_deferred;
2882 data[1] = vp->xstats.tx_max_collisions;
2883 data[2] = vp->xstats.tx_multiple_collisions;
2884 data[3] = vp->xstats.tx_single_collisions;
2885 data[4] = vp->xstats.rx_bad_ssd;
2889 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2891 switch (stringset) {
2892 case ETH_SS_STATS:
2893 memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2894 break;
2895 default:
2896 WARN_ON(1);
2897 break;
2901 static void vortex_get_drvinfo(struct net_device *dev,
2902 struct ethtool_drvinfo *info)
2904 struct vortex_private *vp = netdev_priv(dev);
2906 strcpy(info->driver, DRV_NAME);
2907 if (VORTEX_PCI(vp)) {
2908 strcpy(info->bus_info, pci_name(VORTEX_PCI(vp)));
2909 } else {
2910 if (VORTEX_EISA(vp))
2911 strcpy(info->bus_info, dev_name(vp->gendev));
2912 else
2913 sprintf(info->bus_info, "EISA 0x%lx %d",
2914 dev->base_addr, dev->irq);
2918 static const struct ethtool_ops vortex_ethtool_ops = {
2919 .get_drvinfo = vortex_get_drvinfo,
2920 .get_strings = vortex_get_strings,
2921 .get_msglevel = vortex_get_msglevel,
2922 .set_msglevel = vortex_set_msglevel,
2923 .get_ethtool_stats = vortex_get_ethtool_stats,
2924 .get_sset_count = vortex_get_sset_count,
2925 .get_settings = vortex_get_settings,
2926 .set_settings = vortex_set_settings,
2927 .get_link = ethtool_op_get_link,
2928 .nway_reset = vortex_nway_reset,
2931 #ifdef CONFIG_PCI
2933 * Must power the device up to do MDIO operations
2935 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2937 int err;
2938 struct vortex_private *vp = netdev_priv(dev);
2939 void __iomem *ioaddr = vp->ioaddr;
2940 unsigned long flags;
2941 pci_power_t state = 0;
2943 if(VORTEX_PCI(vp))
2944 state = VORTEX_PCI(vp)->current_state;
2946 /* The kernel core really should have pci_get_power_state() */
2948 if(state != 0)
2949 pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
2950 spin_lock_irqsave(&vp->lock, flags);
2951 EL3WINDOW(4);
2952 err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
2953 spin_unlock_irqrestore(&vp->lock, flags);
2954 if(state != 0)
2955 pci_set_power_state(VORTEX_PCI(vp), state);
2957 return err;
2959 #endif
2962 /* Pre-Cyclone chips have no documented multicast filter, so the only
2963 multicast setting is to receive all multicast frames. At least
2964 the chip has a very clean way to set the mode, unlike many others. */
2965 static void set_rx_mode(struct net_device *dev)
2967 struct vortex_private *vp = netdev_priv(dev);
2968 void __iomem *ioaddr = vp->ioaddr;
2969 int new_mode;
2971 if (dev->flags & IFF_PROMISC) {
2972 if (vortex_debug > 3)
2973 printk(KERN_NOTICE "%s: Setting promiscuous mode.\n", dev->name);
2974 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
2975 } else if ((dev->mc_list) || (dev->flags & IFF_ALLMULTI)) {
2976 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
2977 } else
2978 new_mode = SetRxFilter | RxStation | RxBroadcast;
2980 iowrite16(new_mode, ioaddr + EL3_CMD);
2983 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
2984 /* Setup the card so that it can receive frames with an 802.1q VLAN tag.
2985 Note that this must be done after each RxReset due to some backwards
2986 compatibility logic in the Cyclone and Tornado ASICs */
2988 /* The Ethernet Type used for 802.1q tagged frames */
2989 #define VLAN_ETHER_TYPE 0x8100
2991 static void set_8021q_mode(struct net_device *dev, int enable)
2993 struct vortex_private *vp = netdev_priv(dev);
2994 void __iomem *ioaddr = vp->ioaddr;
2995 int old_window = ioread16(ioaddr + EL3_CMD);
2996 int mac_ctrl;
2998 if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
2999 /* cyclone and tornado chipsets can recognize 802.1q
3000 * tagged frames and treat them correctly */
3002 int max_pkt_size = dev->mtu+14; /* MTU+Ethernet header */
3003 if (enable)
3004 max_pkt_size += 4; /* 802.1Q VLAN tag */
3006 EL3WINDOW(3);
3007 iowrite16(max_pkt_size, ioaddr+Wn3_MaxPktSize);
3009 /* set VlanEtherType to let the hardware checksumming
3010 treat tagged frames correctly */
3011 EL3WINDOW(7);
3012 iowrite16(VLAN_ETHER_TYPE, ioaddr+Wn7_VlanEtherType);
3013 } else {
3014 /* on older cards we have to enable large frames */
3016 vp->large_frames = dev->mtu > 1500 || enable;
3018 EL3WINDOW(3);
3019 mac_ctrl = ioread16(ioaddr+Wn3_MAC_Ctrl);
3020 if (vp->large_frames)
3021 mac_ctrl |= 0x40;
3022 else
3023 mac_ctrl &= ~0x40;
3024 iowrite16(mac_ctrl, ioaddr+Wn3_MAC_Ctrl);
3027 EL3WINDOW(old_window);
3029 #else
3031 static void set_8021q_mode(struct net_device *dev, int enable)
3036 #endif
3038 /* MII transceiver control section.
3039 Read and write the MII registers using software-generated serial
3040 MDIO protocol. See the MII specifications or DP83840A data sheet
3041 for details. */
3043 /* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
3044 met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3045 "overclocking" issues. */
3046 #define mdio_delay() ioread32(mdio_addr)
3048 #define MDIO_SHIFT_CLK 0x01
3049 #define MDIO_DIR_WRITE 0x04
3050 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3051 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3052 #define MDIO_DATA_READ 0x02
3053 #define MDIO_ENB_IN 0x00
3055 /* Generate the preamble required for initial synchronization and
3056 a few older transceivers. */
3057 static void mdio_sync(void __iomem *ioaddr, int bits)
3059 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3061 /* Establish sync by sending at least 32 logic ones. */
3062 while (-- bits >= 0) {
3063 iowrite16(MDIO_DATA_WRITE1, mdio_addr);
3064 mdio_delay();
3065 iowrite16(MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr);
3066 mdio_delay();
3070 static int mdio_read(struct net_device *dev, int phy_id, int location)
3072 int i;
3073 struct vortex_private *vp = netdev_priv(dev);
3074 void __iomem *ioaddr = vp->ioaddr;
3075 int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3076 unsigned int retval = 0;
3077 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3079 if (mii_preamble_required)
3080 mdio_sync(ioaddr, 32);
3082 /* Shift the read command bits out. */
3083 for (i = 14; i >= 0; i--) {
3084 int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3085 iowrite16(dataval, mdio_addr);
3086 mdio_delay();
3087 iowrite16(dataval | MDIO_SHIFT_CLK, mdio_addr);
3088 mdio_delay();
3090 /* Read the two transition, 16 data, and wire-idle bits. */
3091 for (i = 19; i > 0; i--) {
3092 iowrite16(MDIO_ENB_IN, mdio_addr);
3093 mdio_delay();
3094 retval = (retval << 1) | ((ioread16(mdio_addr) & MDIO_DATA_READ) ? 1 : 0);
3095 iowrite16(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3096 mdio_delay();
3098 return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3101 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3103 struct vortex_private *vp = netdev_priv(dev);
3104 void __iomem *ioaddr = vp->ioaddr;
3105 int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3106 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3107 int i;
3109 if (mii_preamble_required)
3110 mdio_sync(ioaddr, 32);
3112 /* Shift the command bits out. */
3113 for (i = 31; i >= 0; i--) {
3114 int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3115 iowrite16(dataval, mdio_addr);
3116 mdio_delay();
3117 iowrite16(dataval | MDIO_SHIFT_CLK, mdio_addr);
3118 mdio_delay();
3120 /* Leave the interface idle. */
3121 for (i = 1; i >= 0; i--) {
3122 iowrite16(MDIO_ENB_IN, mdio_addr);
3123 mdio_delay();
3124 iowrite16(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3125 mdio_delay();
3127 return;
3130 /* ACPI: Advanced Configuration and Power Interface. */
3131 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3132 static void acpi_set_WOL(struct net_device *dev)
3134 struct vortex_private *vp = netdev_priv(dev);
3135 void __iomem *ioaddr = vp->ioaddr;
3137 device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3139 if (vp->enable_wol) {
3140 /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3141 EL3WINDOW(7);
3142 iowrite16(2, ioaddr + 0x0c);
3143 /* The RxFilter must accept the WOL frames. */
3144 iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3145 iowrite16(RxEnable, ioaddr + EL3_CMD);
3147 if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3148 printk(KERN_INFO "%s: WOL not supported.\n",
3149 pci_name(VORTEX_PCI(vp)));
3151 vp->enable_wol = 0;
3152 return;
3155 /* Change the power state to D3; RxEnable doesn't take effect. */
3156 pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3161 static void __devexit vortex_remove_one(struct pci_dev *pdev)
3163 struct net_device *dev = pci_get_drvdata(pdev);
3164 struct vortex_private *vp;
3166 if (!dev) {
3167 printk("vortex_remove_one called for Compaq device!\n");
3168 BUG();
3171 vp = netdev_priv(dev);
3173 if (vp->cb_fn_base)
3174 pci_iounmap(VORTEX_PCI(vp), vp->cb_fn_base);
3176 unregister_netdev(dev);
3178 if (VORTEX_PCI(vp)) {
3179 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
3180 if (vp->pm_state_valid)
3181 pci_restore_state(VORTEX_PCI(vp));
3182 pci_disable_device(VORTEX_PCI(vp));
3184 /* Should really use issue_and_wait() here */
3185 iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3186 vp->ioaddr + EL3_CMD);
3188 pci_iounmap(VORTEX_PCI(vp), vp->ioaddr);
3190 pci_free_consistent(pdev,
3191 sizeof(struct boom_rx_desc) * RX_RING_SIZE
3192 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3193 vp->rx_ring,
3194 vp->rx_ring_dma);
3195 if (vp->must_free_region)
3196 release_region(dev->base_addr, vp->io_size);
3197 free_netdev(dev);
3201 static struct pci_driver vortex_driver = {
3202 .name = "3c59x",
3203 .probe = vortex_init_one,
3204 .remove = __devexit_p(vortex_remove_one),
3205 .id_table = vortex_pci_tbl,
3206 #ifdef CONFIG_PM
3207 .suspend = vortex_suspend,
3208 .resume = vortex_resume,
3209 #endif
3213 static int vortex_have_pci;
3214 static int vortex_have_eisa;
3217 static int __init vortex_init(void)
3219 int pci_rc, eisa_rc;
3221 pci_rc = pci_register_driver(&vortex_driver);
3222 eisa_rc = vortex_eisa_init();
3224 if (pci_rc == 0)
3225 vortex_have_pci = 1;
3226 if (eisa_rc > 0)
3227 vortex_have_eisa = 1;
3229 return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3233 static void __exit vortex_eisa_cleanup(void)
3235 struct vortex_private *vp;
3236 void __iomem *ioaddr;
3238 #ifdef CONFIG_EISA
3239 /* Take care of the EISA devices */
3240 eisa_driver_unregister(&vortex_eisa_driver);
3241 #endif
3243 if (compaq_net_device) {
3244 vp = netdev_priv(compaq_net_device);
3245 ioaddr = ioport_map(compaq_net_device->base_addr,
3246 VORTEX_TOTAL_SIZE);
3248 unregister_netdev(compaq_net_device);
3249 iowrite16(TotalReset, ioaddr + EL3_CMD);
3250 release_region(compaq_net_device->base_addr,
3251 VORTEX_TOTAL_SIZE);
3253 free_netdev(compaq_net_device);
3258 static void __exit vortex_cleanup(void)
3260 if (vortex_have_pci)
3261 pci_unregister_driver(&vortex_driver);
3262 if (vortex_have_eisa)
3263 vortex_eisa_cleanup();
3267 module_init(vortex_init);
3268 module_exit(vortex_cleanup);