2 * processor_idle - idle state submodule to the ACPI processor driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
46 * Include the apic definitions for x86 to have the APIC timer related defines
47 * available also for UP (on SMP it gets magically included via linux/smp.h).
48 * asm/acpi.h is not an option, as it would require more include magic. Also
49 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
56 #include <asm/uaccess.h>
58 #include <acpi/acpi_bus.h>
59 #include <acpi/processor.h>
60 #include <asm/processor.h>
62 #define ACPI_PROCESSOR_COMPONENT 0x01000000
63 #define ACPI_PROCESSOR_CLASS "processor"
64 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
65 ACPI_MODULE_NAME("processor_idle");
66 #define ACPI_PROCESSOR_FILE_POWER "power"
67 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
68 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
69 #ifndef CONFIG_CPU_IDLE
70 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
71 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
72 static void (*pm_idle_save
) (void) __read_mostly
;
74 #define C2_OVERHEAD 1 /* 1us */
75 #define C3_OVERHEAD 1 /* 1us */
77 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
79 static unsigned int max_cstate __read_mostly
= ACPI_PROCESSOR_MAX_POWER
;
80 #ifdef CONFIG_CPU_IDLE
81 module_param(max_cstate
, uint
, 0000);
83 module_param(max_cstate
, uint
, 0644);
85 static unsigned int nocst __read_mostly
;
86 module_param(nocst
, uint
, 0000);
88 #ifndef CONFIG_CPU_IDLE
90 * bm_history -- bit-mask with a bit per jiffy of bus-master activity
91 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
92 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
93 * 100 HZ: 0x0000000F: 4 jiffies = 40ms
94 * reduce history for more aggressive entry into C3
96 static unsigned int bm_history __read_mostly
=
97 (HZ
>= 800 ? 0xFFFFFFFF : ((1U << (HZ
/ 25)) - 1));
98 module_param(bm_history
, uint
, 0644);
100 static int acpi_processor_set_power_policy(struct acpi_processor
*pr
);
102 #else /* CONFIG_CPU_IDLE */
103 static unsigned int latency_factor __read_mostly
= 2;
104 module_param(latency_factor
, uint
, 0644);
108 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
109 * For now disable this. Probably a bug somewhere else.
111 * To skip this limit, boot/load with a large max_cstate limit.
113 static int set_max_cstate(const struct dmi_system_id
*id
)
115 if (max_cstate
> ACPI_PROCESSOR_MAX_POWER
)
118 printk(KERN_NOTICE PREFIX
"%s detected - limiting to C%ld max_cstate."
119 " Override with \"processor.max_cstate=%d\"\n", id
->ident
,
120 (long)id
->driver_data
, ACPI_PROCESSOR_MAX_POWER
+ 1);
122 max_cstate
= (long)id
->driver_data
;
127 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
128 callers to only run once -AK */
129 static struct dmi_system_id __cpuinitdata processor_power_dmi_table
[] = {
130 { set_max_cstate
, "IBM ThinkPad R40e", {
131 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
132 DMI_MATCH(DMI_BIOS_VERSION
,"1SET70WW")}, (void *)1},
133 { set_max_cstate
, "IBM ThinkPad R40e", {
134 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
135 DMI_MATCH(DMI_BIOS_VERSION
,"1SET60WW")}, (void *)1},
136 { set_max_cstate
, "IBM ThinkPad R40e", {
137 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
138 DMI_MATCH(DMI_BIOS_VERSION
,"1SET43WW") }, (void*)1},
139 { set_max_cstate
, "IBM ThinkPad R40e", {
140 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
141 DMI_MATCH(DMI_BIOS_VERSION
,"1SET45WW") }, (void*)1},
142 { set_max_cstate
, "IBM ThinkPad R40e", {
143 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
144 DMI_MATCH(DMI_BIOS_VERSION
,"1SET47WW") }, (void*)1},
145 { set_max_cstate
, "IBM ThinkPad R40e", {
146 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
147 DMI_MATCH(DMI_BIOS_VERSION
,"1SET50WW") }, (void*)1},
148 { set_max_cstate
, "IBM ThinkPad R40e", {
149 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
150 DMI_MATCH(DMI_BIOS_VERSION
,"1SET52WW") }, (void*)1},
151 { set_max_cstate
, "IBM ThinkPad R40e", {
152 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
153 DMI_MATCH(DMI_BIOS_VERSION
,"1SET55WW") }, (void*)1},
154 { set_max_cstate
, "IBM ThinkPad R40e", {
155 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
156 DMI_MATCH(DMI_BIOS_VERSION
,"1SET56WW") }, (void*)1},
157 { set_max_cstate
, "IBM ThinkPad R40e", {
158 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
159 DMI_MATCH(DMI_BIOS_VERSION
,"1SET59WW") }, (void*)1},
160 { set_max_cstate
, "IBM ThinkPad R40e", {
161 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
162 DMI_MATCH(DMI_BIOS_VERSION
,"1SET60WW") }, (void*)1},
163 { set_max_cstate
, "IBM ThinkPad R40e", {
164 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
165 DMI_MATCH(DMI_BIOS_VERSION
,"1SET61WW") }, (void*)1},
166 { set_max_cstate
, "IBM ThinkPad R40e", {
167 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
168 DMI_MATCH(DMI_BIOS_VERSION
,"1SET62WW") }, (void*)1},
169 { set_max_cstate
, "IBM ThinkPad R40e", {
170 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
171 DMI_MATCH(DMI_BIOS_VERSION
,"1SET64WW") }, (void*)1},
172 { set_max_cstate
, "IBM ThinkPad R40e", {
173 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
174 DMI_MATCH(DMI_BIOS_VERSION
,"1SET65WW") }, (void*)1},
175 { set_max_cstate
, "IBM ThinkPad R40e", {
176 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
177 DMI_MATCH(DMI_BIOS_VERSION
,"1SET68WW") }, (void*)1},
178 { set_max_cstate
, "Medion 41700", {
179 DMI_MATCH(DMI_BIOS_VENDOR
,"Phoenix Technologies LTD"),
180 DMI_MATCH(DMI_BIOS_VERSION
,"R01-A1J")}, (void *)1},
181 { set_max_cstate
, "Clevo 5600D", {
182 DMI_MATCH(DMI_BIOS_VENDOR
,"Phoenix Technologies LTD"),
183 DMI_MATCH(DMI_BIOS_VERSION
,"SHE845M0.86C.0013.D.0302131307")},
188 static inline u32
ticks_elapsed(u32 t1
, u32 t2
)
192 else if (!(acpi_gbl_FADT
.flags
& ACPI_FADT_32BIT_TIMER
))
193 return (((0x00FFFFFF - t1
) + t2
) & 0x00FFFFFF);
195 return ((0xFFFFFFFF - t1
) + t2
);
198 static inline u32
ticks_elapsed_in_us(u32 t1
, u32 t2
)
201 return PM_TIMER_TICKS_TO_US(t2
- t1
);
202 else if (!(acpi_gbl_FADT
.flags
& ACPI_FADT_32BIT_TIMER
))
203 return PM_TIMER_TICKS_TO_US(((0x00FFFFFF - t1
) + t2
) & 0x00FFFFFF);
205 return PM_TIMER_TICKS_TO_US((0xFFFFFFFF - t1
) + t2
);
209 * Callers should disable interrupts before the call and enable
210 * interrupts after return.
212 static void acpi_safe_halt(void)
214 current_thread_info()->status
&= ~TS_POLLING
;
216 * TS_POLLING-cleared state must be visible before we
220 if (!need_resched()) {
224 current_thread_info()->status
|= TS_POLLING
;
227 #ifndef CONFIG_CPU_IDLE
230 acpi_processor_power_activate(struct acpi_processor
*pr
,
231 struct acpi_processor_cx
*new)
233 struct acpi_processor_cx
*old
;
238 old
= pr
->power
.state
;
241 old
->promotion
.count
= 0;
242 new->demotion
.count
= 0;
244 /* Cleanup from old state. */
248 /* Disable bus master reload */
249 if (new->type
!= ACPI_STATE_C3
&& pr
->flags
.bm_check
)
250 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD
, 0);
255 /* Prepare to use new state. */
258 /* Enable bus master reload */
259 if (old
->type
!= ACPI_STATE_C3
&& pr
->flags
.bm_check
)
260 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD
, 1);
264 pr
->power
.state
= new;
269 static atomic_t c3_cpu_count
;
271 /* Common C-state entry for C2, C3, .. */
272 static void acpi_cstate_enter(struct acpi_processor_cx
*cstate
)
274 /* Don't trace irqs off for idle */
275 stop_critical_timings();
276 if (cstate
->entry_method
== ACPI_CSTATE_FFH
) {
277 /* Call into architectural FFH based C-state */
278 acpi_processor_ffh_cstate_enter(cstate
);
281 /* IO port based C-state */
282 inb(cstate
->address
);
283 /* Dummy wait op - must do something useless after P_LVL2 read
284 because chipsets cannot guarantee that STPCLK# signal
285 gets asserted in time to freeze execution properly. */
286 unused
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
288 start_critical_timings();
290 #endif /* !CONFIG_CPU_IDLE */
292 #ifdef ARCH_APICTIMER_STOPS_ON_C3
295 * Some BIOS implementations switch to C3 in the published C2 state.
296 * This seems to be a common problem on AMD boxen, but other vendors
297 * are affected too. We pick the most conservative approach: we assume
298 * that the local APIC stops in both C2 and C3.
300 static void acpi_timer_check_state(int state
, struct acpi_processor
*pr
,
301 struct acpi_processor_cx
*cx
)
303 struct acpi_processor_power
*pwr
= &pr
->power
;
304 u8 type
= local_apic_timer_c2_ok
? ACPI_STATE_C3
: ACPI_STATE_C2
;
307 * Check, if one of the previous states already marked the lapic
310 if (pwr
->timer_broadcast_on_state
< state
)
313 if (cx
->type
>= type
)
314 pr
->power
.timer_broadcast_on_state
= state
;
317 static void acpi_propagate_timer_broadcast(struct acpi_processor
*pr
)
319 unsigned long reason
;
321 reason
= pr
->power
.timer_broadcast_on_state
< INT_MAX
?
322 CLOCK_EVT_NOTIFY_BROADCAST_ON
: CLOCK_EVT_NOTIFY_BROADCAST_OFF
;
324 clockevents_notify(reason
, &pr
->id
);
327 /* Power(C) State timer broadcast control */
328 static void acpi_state_timer_broadcast(struct acpi_processor
*pr
,
329 struct acpi_processor_cx
*cx
,
332 int state
= cx
- pr
->power
.states
;
334 if (state
>= pr
->power
.timer_broadcast_on_state
) {
335 unsigned long reason
;
337 reason
= broadcast
? CLOCK_EVT_NOTIFY_BROADCAST_ENTER
:
338 CLOCK_EVT_NOTIFY_BROADCAST_EXIT
;
339 clockevents_notify(reason
, &pr
->id
);
345 static void acpi_timer_check_state(int state
, struct acpi_processor
*pr
,
346 struct acpi_processor_cx
*cstate
) { }
347 static void acpi_propagate_timer_broadcast(struct acpi_processor
*pr
) { }
348 static void acpi_state_timer_broadcast(struct acpi_processor
*pr
,
349 struct acpi_processor_cx
*cx
,
357 * Suspend / resume control
359 static int acpi_idle_suspend
;
361 int acpi_processor_suspend(struct acpi_device
* device
, pm_message_t state
)
363 acpi_idle_suspend
= 1;
367 int acpi_processor_resume(struct acpi_device
* device
)
369 acpi_idle_suspend
= 0;
373 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
374 static int tsc_halts_in_c(int state
)
376 switch (boot_cpu_data
.x86_vendor
) {
379 * AMD Fam10h TSC will tick in all
380 * C/P/S0/S1 states when this bit is set.
382 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
385 case X86_VENDOR_INTEL
:
386 /* Several cases known where TSC halts in C2 too */
388 return state
> ACPI_STATE_C1
;
393 #ifndef CONFIG_CPU_IDLE
394 static void acpi_processor_idle(void)
396 struct acpi_processor
*pr
= NULL
;
397 struct acpi_processor_cx
*cx
= NULL
;
398 struct acpi_processor_cx
*next_state
= NULL
;
403 * Interrupts must be disabled during bus mastering calculations and
404 * for C2/C3 transitions.
408 pr
= __get_cpu_var(processors
);
415 * Check whether we truly need to go idle, or should
418 if (unlikely(need_resched())) {
423 cx
= pr
->power
.state
;
424 if (!cx
|| acpi_idle_suspend
) {
426 pm_idle_save(); /* enables IRQs */
438 * Check for bus mastering activity (if required), record, and check
441 if (pr
->flags
.bm_check
) {
443 unsigned long diff
= jiffies
- pr
->power
.bm_check_timestamp
;
448 pr
->power
.bm_activity
<<= diff
;
450 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS
, &bm_status
);
452 pr
->power
.bm_activity
|= 0x1;
453 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS
, 1);
456 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
457 * the true state of bus mastering activity; forcing us to
458 * manually check the BMIDEA bit of each IDE channel.
460 else if (errata
.piix4
.bmisx
) {
461 if ((inb_p(errata
.piix4
.bmisx
+ 0x02) & 0x01)
462 || (inb_p(errata
.piix4
.bmisx
+ 0x0A) & 0x01))
463 pr
->power
.bm_activity
|= 0x1;
466 pr
->power
.bm_check_timestamp
= jiffies
;
469 * If bus mastering is or was active this jiffy, demote
470 * to avoid a faulty transition. Note that the processor
471 * won't enter a low-power state during this call (to this
472 * function) but should upon the next.
474 * TBD: A better policy might be to fallback to the demotion
475 * state (use it for this quantum only) istead of
476 * demoting -- and rely on duration as our sole demotion
477 * qualification. This may, however, introduce DMA
478 * issues (e.g. floppy DMA transfer overrun/underrun).
480 if ((pr
->power
.bm_activity
& 0x1) &&
481 cx
->demotion
.threshold
.bm
) {
483 next_state
= cx
->demotion
.state
;
488 #ifdef CONFIG_HOTPLUG_CPU
490 * Check for P_LVL2_UP flag before entering C2 and above on
491 * an SMP system. We do it here instead of doing it at _CST/P_LVL
492 * detection phase, to work cleanly with logical CPU hotplug.
494 if ((cx
->type
!= ACPI_STATE_C1
) && (num_online_cpus() > 1) &&
495 !pr
->flags
.has_cst
&& !(acpi_gbl_FADT
.flags
& ACPI_FADT_C2_MP_SUPPORTED
))
496 cx
= &pr
->power
.states
[ACPI_STATE_C1
];
502 * Invoke the current Cx state to put the processor to sleep.
504 if (cx
->type
== ACPI_STATE_C2
|| cx
->type
== ACPI_STATE_C3
) {
505 current_thread_info()->status
&= ~TS_POLLING
;
507 * TS_POLLING-cleared state must be visible before we
511 if (need_resched()) {
512 current_thread_info()->status
|= TS_POLLING
;
523 * Use the appropriate idle routine, the one that would
524 * be used without acpi C-states.
527 pm_idle_save(); /* enables IRQs */
534 * TBD: Can't get time duration while in C1, as resumes
535 * go to an ISR rather than here. Need to instrument
536 * base interrupt handler.
538 * Note: the TSC better not stop in C1, sched_clock() will
541 sleep_ticks
= 0xFFFFFFFF;
546 /* Get start time (ticks) */
547 t1
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
548 /* Tell the scheduler that we are going deep-idle: */
549 sched_clock_idle_sleep_event();
551 acpi_state_timer_broadcast(pr
, cx
, 1);
552 acpi_cstate_enter(cx
);
553 /* Get end time (ticks) */
554 t2
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
556 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
557 /* TSC halts in C2, so notify users */
558 if (tsc_halts_in_c(ACPI_STATE_C2
))
559 mark_tsc_unstable("possible TSC halt in C2");
561 /* Compute time (ticks) that we were actually asleep */
562 sleep_ticks
= ticks_elapsed(t1
, t2
);
564 /* Tell the scheduler how much we idled: */
565 sched_clock_idle_wakeup_event(sleep_ticks
*PM_TIMER_TICK_NS
);
567 /* Re-enable interrupts */
569 /* Do not account our idle-switching overhead: */
570 sleep_ticks
-= cx
->latency_ticks
+ C2_OVERHEAD
;
572 current_thread_info()->status
|= TS_POLLING
;
573 acpi_state_timer_broadcast(pr
, cx
, 0);
577 acpi_unlazy_tlb(smp_processor_id());
579 * Must be done before busmaster disable as we might
580 * need to access HPET !
582 acpi_state_timer_broadcast(pr
, cx
, 1);
585 * bm_check implies we need ARB_DIS
586 * !bm_check implies we need cache flush
587 * bm_control implies whether we can do ARB_DIS
589 * That leaves a case where bm_check is set and bm_control is
590 * not set. In that case we cannot do much, we enter C3
591 * without doing anything.
593 if (pr
->flags
.bm_check
&& pr
->flags
.bm_control
) {
594 if (atomic_inc_return(&c3_cpu_count
) ==
597 * All CPUs are trying to go to C3
598 * Disable bus master arbitration
600 acpi_set_register(ACPI_BITREG_ARB_DISABLE
, 1);
602 } else if (!pr
->flags
.bm_check
) {
603 /* SMP with no shared cache... Invalidate cache */
604 ACPI_FLUSH_CPU_CACHE();
607 /* Get start time (ticks) */
608 t1
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
610 /* Tell the scheduler that we are going deep-idle: */
611 sched_clock_idle_sleep_event();
612 acpi_cstate_enter(cx
);
613 /* Get end time (ticks) */
614 t2
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
615 if (pr
->flags
.bm_check
&& pr
->flags
.bm_control
) {
616 /* Enable bus master arbitration */
617 atomic_dec(&c3_cpu_count
);
618 acpi_set_register(ACPI_BITREG_ARB_DISABLE
, 0);
621 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
622 /* TSC halts in C3, so notify users */
623 if (tsc_halts_in_c(ACPI_STATE_C3
))
624 mark_tsc_unstable("TSC halts in C3");
626 /* Compute time (ticks) that we were actually asleep */
627 sleep_ticks
= ticks_elapsed(t1
, t2
);
628 /* Tell the scheduler how much we idled: */
629 sched_clock_idle_wakeup_event(sleep_ticks
*PM_TIMER_TICK_NS
);
631 /* Re-enable interrupts */
633 /* Do not account our idle-switching overhead: */
634 sleep_ticks
-= cx
->latency_ticks
+ C3_OVERHEAD
;
636 current_thread_info()->status
|= TS_POLLING
;
637 acpi_state_timer_broadcast(pr
, cx
, 0);
645 if ((cx
->type
!= ACPI_STATE_C1
) && (sleep_ticks
> 0))
646 cx
->time
+= sleep_ticks
;
648 next_state
= pr
->power
.state
;
650 #ifdef CONFIG_HOTPLUG_CPU
651 /* Don't do promotion/demotion */
652 if ((cx
->type
== ACPI_STATE_C1
) && (num_online_cpus() > 1) &&
653 !pr
->flags
.has_cst
&& !(acpi_gbl_FADT
.flags
& ACPI_FADT_C2_MP_SUPPORTED
)) {
662 * Track the number of longs (time asleep is greater than threshold)
663 * and promote when the count threshold is reached. Note that bus
664 * mastering activity may prevent promotions.
665 * Do not promote above max_cstate.
667 if (cx
->promotion
.state
&&
668 ((cx
->promotion
.state
- pr
->power
.states
) <= max_cstate
)) {
669 if (sleep_ticks
> cx
->promotion
.threshold
.ticks
&&
670 cx
->promotion
.state
->latency
<=
671 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY
)) {
672 cx
->promotion
.count
++;
673 cx
->demotion
.count
= 0;
674 if (cx
->promotion
.count
>=
675 cx
->promotion
.threshold
.count
) {
676 if (pr
->flags
.bm_check
) {
678 (pr
->power
.bm_activity
& cx
->
679 promotion
.threshold
.bm
)) {
685 next_state
= cx
->promotion
.state
;
695 * Track the number of shorts (time asleep is less than time threshold)
696 * and demote when the usage threshold is reached.
698 if (cx
->demotion
.state
) {
699 if (sleep_ticks
< cx
->demotion
.threshold
.ticks
) {
700 cx
->demotion
.count
++;
701 cx
->promotion
.count
= 0;
702 if (cx
->demotion
.count
>= cx
->demotion
.threshold
.count
) {
703 next_state
= cx
->demotion
.state
;
711 * Demote if current state exceeds max_cstate
712 * or if the latency of the current state is unacceptable
714 if ((pr
->power
.state
- pr
->power
.states
) > max_cstate
||
715 pr
->power
.state
->latency
>
716 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY
)) {
717 if (cx
->demotion
.state
)
718 next_state
= cx
->demotion
.state
;
724 * If we're going to start using a new Cx state we must clean up
725 * from the previous and prepare to use the new.
727 if (next_state
!= pr
->power
.state
)
728 acpi_processor_power_activate(pr
, next_state
);
731 static int acpi_processor_set_power_policy(struct acpi_processor
*pr
)
734 unsigned int state_is_set
= 0;
735 struct acpi_processor_cx
*lower
= NULL
;
736 struct acpi_processor_cx
*higher
= NULL
;
737 struct acpi_processor_cx
*cx
;
744 * This function sets the default Cx state policy (OS idle handler).
745 * Our scheme is to promote quickly to C2 but more conservatively
746 * to C3. We're favoring C2 for its characteristics of low latency
747 * (quick response), good power savings, and ability to allow bus
748 * mastering activity. Note that the Cx state policy is completely
749 * customizable and can be altered dynamically.
753 for (i
= 1; i
< ACPI_PROCESSOR_MAX_POWER
; i
++) {
754 cx
= &pr
->power
.states
[i
];
759 pr
->power
.state
= cx
;
768 for (i
= 1; i
< ACPI_PROCESSOR_MAX_POWER
; i
++) {
769 cx
= &pr
->power
.states
[i
];
774 cx
->demotion
.state
= lower
;
775 cx
->demotion
.threshold
.ticks
= cx
->latency_ticks
;
776 cx
->demotion
.threshold
.count
= 1;
777 if (cx
->type
== ACPI_STATE_C3
)
778 cx
->demotion
.threshold
.bm
= bm_history
;
785 for (i
= (ACPI_PROCESSOR_MAX_POWER
- 1); i
> 0; i
--) {
786 cx
= &pr
->power
.states
[i
];
791 cx
->promotion
.state
= higher
;
792 cx
->promotion
.threshold
.ticks
= cx
->latency_ticks
;
793 if (cx
->type
>= ACPI_STATE_C2
)
794 cx
->promotion
.threshold
.count
= 4;
796 cx
->promotion
.threshold
.count
= 10;
797 if (higher
->type
== ACPI_STATE_C3
)
798 cx
->promotion
.threshold
.bm
= bm_history
;
806 #endif /* !CONFIG_CPU_IDLE */
808 static int acpi_processor_get_power_info_fadt(struct acpi_processor
*pr
)
817 /* if info is obtained from pblk/fadt, type equals state */
818 pr
->power
.states
[ACPI_STATE_C2
].type
= ACPI_STATE_C2
;
819 pr
->power
.states
[ACPI_STATE_C3
].type
= ACPI_STATE_C3
;
821 #ifndef CONFIG_HOTPLUG_CPU
823 * Check for P_LVL2_UP flag before entering C2 and above on
826 if ((num_online_cpus() > 1) &&
827 !(acpi_gbl_FADT
.flags
& ACPI_FADT_C2_MP_SUPPORTED
))
831 /* determine C2 and C3 address from pblk */
832 pr
->power
.states
[ACPI_STATE_C2
].address
= pr
->pblk
+ 4;
833 pr
->power
.states
[ACPI_STATE_C3
].address
= pr
->pblk
+ 5;
835 /* determine latencies from FADT */
836 pr
->power
.states
[ACPI_STATE_C2
].latency
= acpi_gbl_FADT
.C2latency
;
837 pr
->power
.states
[ACPI_STATE_C3
].latency
= acpi_gbl_FADT
.C3latency
;
839 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
840 "lvl2[0x%08x] lvl3[0x%08x]\n",
841 pr
->power
.states
[ACPI_STATE_C2
].address
,
842 pr
->power
.states
[ACPI_STATE_C3
].address
));
847 static int acpi_processor_get_power_info_default(struct acpi_processor
*pr
)
849 if (!pr
->power
.states
[ACPI_STATE_C1
].valid
) {
850 /* set the first C-State to C1 */
851 /* all processors need to support C1 */
852 pr
->power
.states
[ACPI_STATE_C1
].type
= ACPI_STATE_C1
;
853 pr
->power
.states
[ACPI_STATE_C1
].valid
= 1;
854 pr
->power
.states
[ACPI_STATE_C1
].entry_method
= ACPI_CSTATE_HALT
;
856 /* the C0 state only exists as a filler in our array */
857 pr
->power
.states
[ACPI_STATE_C0
].valid
= 1;
861 static int acpi_processor_get_power_info_cst(struct acpi_processor
*pr
)
863 acpi_status status
= 0;
867 struct acpi_buffer buffer
= { ACPI_ALLOCATE_BUFFER
, NULL
};
868 union acpi_object
*cst
;
876 status
= acpi_evaluate_object(pr
->handle
, "_CST", NULL
, &buffer
);
877 if (ACPI_FAILURE(status
)) {
878 ACPI_DEBUG_PRINT((ACPI_DB_INFO
, "No _CST, giving up\n"));
882 cst
= buffer
.pointer
;
884 /* There must be at least 2 elements */
885 if (!cst
|| (cst
->type
!= ACPI_TYPE_PACKAGE
) || cst
->package
.count
< 2) {
886 printk(KERN_ERR PREFIX
"not enough elements in _CST\n");
891 count
= cst
->package
.elements
[0].integer
.value
;
893 /* Validate number of power states. */
894 if (count
< 1 || count
!= cst
->package
.count
- 1) {
895 printk(KERN_ERR PREFIX
"count given by _CST is not valid\n");
900 /* Tell driver that at least _CST is supported. */
901 pr
->flags
.has_cst
= 1;
903 for (i
= 1; i
<= count
; i
++) {
904 union acpi_object
*element
;
905 union acpi_object
*obj
;
906 struct acpi_power_register
*reg
;
907 struct acpi_processor_cx cx
;
909 memset(&cx
, 0, sizeof(cx
));
911 element
= &(cst
->package
.elements
[i
]);
912 if (element
->type
!= ACPI_TYPE_PACKAGE
)
915 if (element
->package
.count
!= 4)
918 obj
= &(element
->package
.elements
[0]);
920 if (obj
->type
!= ACPI_TYPE_BUFFER
)
923 reg
= (struct acpi_power_register
*)obj
->buffer
.pointer
;
925 if (reg
->space_id
!= ACPI_ADR_SPACE_SYSTEM_IO
&&
926 (reg
->space_id
!= ACPI_ADR_SPACE_FIXED_HARDWARE
))
929 /* There should be an easy way to extract an integer... */
930 obj
= &(element
->package
.elements
[1]);
931 if (obj
->type
!= ACPI_TYPE_INTEGER
)
934 cx
.type
= obj
->integer
.value
;
936 * Some buggy BIOSes won't list C1 in _CST -
937 * Let acpi_processor_get_power_info_default() handle them later
939 if (i
== 1 && cx
.type
!= ACPI_STATE_C1
)
942 cx
.address
= reg
->address
;
943 cx
.index
= current_count
+ 1;
945 cx
.entry_method
= ACPI_CSTATE_SYSTEMIO
;
946 if (reg
->space_id
== ACPI_ADR_SPACE_FIXED_HARDWARE
) {
947 if (acpi_processor_ffh_cstate_probe
948 (pr
->id
, &cx
, reg
) == 0) {
949 cx
.entry_method
= ACPI_CSTATE_FFH
;
950 } else if (cx
.type
== ACPI_STATE_C1
) {
952 * C1 is a special case where FIXED_HARDWARE
953 * can be handled in non-MWAIT way as well.
954 * In that case, save this _CST entry info.
955 * Otherwise, ignore this info and continue.
957 cx
.entry_method
= ACPI_CSTATE_HALT
;
958 snprintf(cx
.desc
, ACPI_CX_DESC_LEN
, "ACPI HLT");
962 if (cx
.type
== ACPI_STATE_C1
&&
963 (idle_halt
|| idle_nomwait
)) {
965 * In most cases the C1 space_id obtained from
966 * _CST object is FIXED_HARDWARE access mode.
967 * But when the option of idle=halt is added,
968 * the entry_method type should be changed from
969 * CSTATE_FFH to CSTATE_HALT.
970 * When the option of idle=nomwait is added,
971 * the C1 entry_method type should be
974 cx
.entry_method
= ACPI_CSTATE_HALT
;
975 snprintf(cx
.desc
, ACPI_CX_DESC_LEN
, "ACPI HLT");
978 snprintf(cx
.desc
, ACPI_CX_DESC_LEN
, "ACPI IOPORT 0x%x",
982 if (cx
.type
== ACPI_STATE_C1
) {
986 obj
= &(element
->package
.elements
[2]);
987 if (obj
->type
!= ACPI_TYPE_INTEGER
)
990 cx
.latency
= obj
->integer
.value
;
992 obj
= &(element
->package
.elements
[3]);
993 if (obj
->type
!= ACPI_TYPE_INTEGER
)
996 cx
.power
= obj
->integer
.value
;
999 memcpy(&(pr
->power
.states
[current_count
]), &cx
, sizeof(cx
));
1002 * We support total ACPI_PROCESSOR_MAX_POWER - 1
1003 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
1005 if (current_count
>= (ACPI_PROCESSOR_MAX_POWER
- 1)) {
1007 "Limiting number of power states to max (%d)\n",
1008 ACPI_PROCESSOR_MAX_POWER
);
1010 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1015 ACPI_DEBUG_PRINT((ACPI_DB_INFO
, "Found %d power states\n",
1018 /* Validate number of power states discovered */
1019 if (current_count
< 2)
1023 kfree(buffer
.pointer
);
1028 static void acpi_processor_power_verify_c2(struct acpi_processor_cx
*cx
)
1035 * C2 latency must be less than or equal to 100
1038 else if (cx
->latency
> ACPI_PROCESSOR_MAX_C2_LATENCY
) {
1039 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
1040 "latency too large [%d]\n", cx
->latency
));
1045 * Otherwise we've met all of our C2 requirements.
1046 * Normalize the C2 latency to expidite policy
1050 #ifndef CONFIG_CPU_IDLE
1051 cx
->latency_ticks
= US_TO_PM_TIMER_TICKS(cx
->latency
);
1053 cx
->latency_ticks
= cx
->latency
;
1059 static void acpi_processor_power_verify_c3(struct acpi_processor
*pr
,
1060 struct acpi_processor_cx
*cx
)
1062 static int bm_check_flag
;
1069 * C3 latency must be less than or equal to 1000
1072 else if (cx
->latency
> ACPI_PROCESSOR_MAX_C3_LATENCY
) {
1073 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
1074 "latency too large [%d]\n", cx
->latency
));
1079 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
1080 * DMA transfers are used by any ISA device to avoid livelock.
1081 * Note that we could disable Type-F DMA (as recommended by
1082 * the erratum), but this is known to disrupt certain ISA
1083 * devices thus we take the conservative approach.
1085 else if (errata
.piix4
.fdma
) {
1086 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
1087 "C3 not supported on PIIX4 with Type-F DMA\n"));
1091 /* All the logic here assumes flags.bm_check is same across all CPUs */
1092 if (!bm_check_flag
) {
1093 /* Determine whether bm_check is needed based on CPU */
1094 acpi_processor_power_init_bm_check(&(pr
->flags
), pr
->id
);
1095 bm_check_flag
= pr
->flags
.bm_check
;
1097 pr
->flags
.bm_check
= bm_check_flag
;
1100 if (pr
->flags
.bm_check
) {
1101 if (!pr
->flags
.bm_control
) {
1102 if (pr
->flags
.has_cst
!= 1) {
1103 /* bus mastering control is necessary */
1104 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
1105 "C3 support requires BM control\n"));
1108 /* Here we enter C3 without bus mastering */
1109 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
1110 "C3 support without BM control\n"));
1115 * WBINVD should be set in fadt, for C3 state to be
1116 * supported on when bm_check is not required.
1118 if (!(acpi_gbl_FADT
.flags
& ACPI_FADT_WBINVD
)) {
1119 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
1120 "Cache invalidation should work properly"
1121 " for C3 to be enabled on SMP systems\n"));
1124 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD
, 0);
1128 * Otherwise we've met all of our C3 requirements.
1129 * Normalize the C3 latency to expidite policy. Enable
1130 * checking of bus mastering status (bm_check) so we can
1131 * use this in our C3 policy
1135 #ifndef CONFIG_CPU_IDLE
1136 cx
->latency_ticks
= US_TO_PM_TIMER_TICKS(cx
->latency
);
1138 cx
->latency_ticks
= cx
->latency
;
1144 static int acpi_processor_power_verify(struct acpi_processor
*pr
)
1147 unsigned int working
= 0;
1149 pr
->power
.timer_broadcast_on_state
= INT_MAX
;
1151 for (i
= 1; i
< ACPI_PROCESSOR_MAX_POWER
; i
++) {
1152 struct acpi_processor_cx
*cx
= &pr
->power
.states
[i
];
1160 acpi_processor_power_verify_c2(cx
);
1162 acpi_timer_check_state(i
, pr
, cx
);
1166 acpi_processor_power_verify_c3(pr
, cx
);
1168 acpi_timer_check_state(i
, pr
, cx
);
1176 acpi_propagate_timer_broadcast(pr
);
1181 static int acpi_processor_get_power_info(struct acpi_processor
*pr
)
1187 /* NOTE: the idle thread may not be running while calling
1190 /* Zero initialize all the C-states info. */
1191 memset(pr
->power
.states
, 0, sizeof(pr
->power
.states
));
1193 result
= acpi_processor_get_power_info_cst(pr
);
1194 if (result
== -ENODEV
)
1195 result
= acpi_processor_get_power_info_fadt(pr
);
1200 acpi_processor_get_power_info_default(pr
);
1202 pr
->power
.count
= acpi_processor_power_verify(pr
);
1204 #ifndef CONFIG_CPU_IDLE
1206 * Set Default Policy
1207 * ------------------
1208 * Now that we know which states are supported, set the default
1209 * policy. Note that this policy can be changed dynamically
1210 * (e.g. encourage deeper sleeps to conserve battery life when
1213 result
= acpi_processor_set_power_policy(pr
);
1219 * if one state of type C2 or C3 is available, mark this
1220 * CPU as being "idle manageable"
1222 for (i
= 1; i
< ACPI_PROCESSOR_MAX_POWER
; i
++) {
1223 if (pr
->power
.states
[i
].valid
) {
1224 pr
->power
.count
= i
;
1225 if (pr
->power
.states
[i
].type
>= ACPI_STATE_C2
)
1226 pr
->flags
.power
= 1;
1233 static int acpi_processor_power_seq_show(struct seq_file
*seq
, void *offset
)
1235 struct acpi_processor
*pr
= seq
->private;
1242 seq_printf(seq
, "active state: C%zd\n"
1244 "bus master activity: %08x\n"
1245 "maximum allowed latency: %d usec\n",
1246 pr
->power
.state
? pr
->power
.state
- pr
->power
.states
: 0,
1247 max_cstate
, (unsigned)pr
->power
.bm_activity
,
1248 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY
));
1250 seq_puts(seq
, "states:\n");
1252 for (i
= 1; i
<= pr
->power
.count
; i
++) {
1253 seq_printf(seq
, " %cC%d: ",
1254 (&pr
->power
.states
[i
] ==
1255 pr
->power
.state
? '*' : ' '), i
);
1257 if (!pr
->power
.states
[i
].valid
) {
1258 seq_puts(seq
, "<not supported>\n");
1262 switch (pr
->power
.states
[i
].type
) {
1264 seq_printf(seq
, "type[C1] ");
1267 seq_printf(seq
, "type[C2] ");
1270 seq_printf(seq
, "type[C3] ");
1273 seq_printf(seq
, "type[--] ");
1277 if (pr
->power
.states
[i
].promotion
.state
)
1278 seq_printf(seq
, "promotion[C%zd] ",
1279 (pr
->power
.states
[i
].promotion
.state
-
1282 seq_puts(seq
, "promotion[--] ");
1284 if (pr
->power
.states
[i
].demotion
.state
)
1285 seq_printf(seq
, "demotion[C%zd] ",
1286 (pr
->power
.states
[i
].demotion
.state
-
1289 seq_puts(seq
, "demotion[--] ");
1291 seq_printf(seq
, "latency[%03d] usage[%08d] duration[%020llu]\n",
1292 pr
->power
.states
[i
].latency
,
1293 pr
->power
.states
[i
].usage
,
1294 (unsigned long long)pr
->power
.states
[i
].time
);
1301 static int acpi_processor_power_open_fs(struct inode
*inode
, struct file
*file
)
1303 return single_open(file
, acpi_processor_power_seq_show
,
1307 static const struct file_operations acpi_processor_power_fops
= {
1308 .owner
= THIS_MODULE
,
1309 .open
= acpi_processor_power_open_fs
,
1311 .llseek
= seq_lseek
,
1312 .release
= single_release
,
1315 #ifndef CONFIG_CPU_IDLE
1317 int acpi_processor_cst_has_changed(struct acpi_processor
*pr
)
1321 if (boot_option_idle_override
)
1331 if (!pr
->flags
.power_setup_done
)
1335 * Fall back to the default idle loop, when pm_idle_save had
1339 pm_idle
= pm_idle_save
;
1340 /* Relies on interrupts forcing exit from idle. */
1341 synchronize_sched();
1344 pr
->flags
.power
= 0;
1345 result
= acpi_processor_get_power_info(pr
);
1346 if ((pr
->flags
.power
== 1) && (pr
->flags
.power_setup_done
))
1347 pm_idle
= acpi_processor_idle
;
1353 static void smp_callback(void *v
)
1355 /* we already woke the CPU up, nothing more to do */
1359 * This function gets called when a part of the kernel has a new latency
1360 * requirement. This means we need to get all processors out of their C-state,
1361 * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1362 * wakes them all right up.
1364 static int acpi_processor_latency_notify(struct notifier_block
*b
,
1365 unsigned long l
, void *v
)
1367 smp_call_function(smp_callback
, NULL
, 1);
1371 static struct notifier_block acpi_processor_latency_notifier
= {
1372 .notifier_call
= acpi_processor_latency_notify
,
1377 #else /* CONFIG_CPU_IDLE */
1380 * acpi_idle_bm_check - checks if bus master activity was detected
1382 static int acpi_idle_bm_check(void)
1386 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS
, &bm_status
);
1388 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS
, 1);
1390 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
1391 * the true state of bus mastering activity; forcing us to
1392 * manually check the BMIDEA bit of each IDE channel.
1394 else if (errata
.piix4
.bmisx
) {
1395 if ((inb_p(errata
.piix4
.bmisx
+ 0x02) & 0x01)
1396 || (inb_p(errata
.piix4
.bmisx
+ 0x0A) & 0x01))
1403 * acpi_idle_update_bm_rld - updates the BM_RLD bit depending on target state
1404 * @pr: the processor
1405 * @target: the new target state
1407 static inline void acpi_idle_update_bm_rld(struct acpi_processor
*pr
,
1408 struct acpi_processor_cx
*target
)
1410 if (pr
->flags
.bm_rld_set
&& target
->type
!= ACPI_STATE_C3
) {
1411 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD
, 0);
1412 pr
->flags
.bm_rld_set
= 0;
1415 if (!pr
->flags
.bm_rld_set
&& target
->type
== ACPI_STATE_C3
) {
1416 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD
, 1);
1417 pr
->flags
.bm_rld_set
= 1;
1422 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
1425 * Caller disables interrupt before call and enables interrupt after return.
1427 static inline void acpi_idle_do_entry(struct acpi_processor_cx
*cx
)
1429 /* Don't trace irqs off for idle */
1430 stop_critical_timings();
1431 if (cx
->entry_method
== ACPI_CSTATE_FFH
) {
1432 /* Call into architectural FFH based C-state */
1433 acpi_processor_ffh_cstate_enter(cx
);
1434 } else if (cx
->entry_method
== ACPI_CSTATE_HALT
) {
1438 /* IO port based C-state */
1440 /* Dummy wait op - must do something useless after P_LVL2 read
1441 because chipsets cannot guarantee that STPCLK# signal
1442 gets asserted in time to freeze execution properly. */
1443 unused
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
1445 start_critical_timings();
1449 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
1450 * @dev: the target CPU
1451 * @state: the state data
1453 * This is equivalent to the HALT instruction.
1455 static int acpi_idle_enter_c1(struct cpuidle_device
*dev
,
1456 struct cpuidle_state
*state
)
1459 struct acpi_processor
*pr
;
1460 struct acpi_processor_cx
*cx
= cpuidle_get_statedata(state
);
1462 pr
= __get_cpu_var(processors
);
1467 local_irq_disable();
1469 /* Do not access any ACPI IO ports in suspend path */
1470 if (acpi_idle_suspend
) {
1476 if (pr
->flags
.bm_check
)
1477 acpi_idle_update_bm_rld(pr
, cx
);
1479 t1
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
1480 acpi_idle_do_entry(cx
);
1481 t2
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
1486 return ticks_elapsed_in_us(t1
, t2
);
1490 * acpi_idle_enter_simple - enters an ACPI state without BM handling
1491 * @dev: the target CPU
1492 * @state: the state data
1494 static int acpi_idle_enter_simple(struct cpuidle_device
*dev
,
1495 struct cpuidle_state
*state
)
1497 struct acpi_processor
*pr
;
1498 struct acpi_processor_cx
*cx
= cpuidle_get_statedata(state
);
1500 int sleep_ticks
= 0;
1502 pr
= __get_cpu_var(processors
);
1507 if (acpi_idle_suspend
)
1508 return(acpi_idle_enter_c1(dev
, state
));
1510 local_irq_disable();
1511 current_thread_info()->status
&= ~TS_POLLING
;
1513 * TS_POLLING-cleared state must be visible before we test
1518 if (unlikely(need_resched())) {
1519 current_thread_info()->status
|= TS_POLLING
;
1525 * Must be done before busmaster disable as we might need to
1528 acpi_state_timer_broadcast(pr
, cx
, 1);
1530 if (pr
->flags
.bm_check
)
1531 acpi_idle_update_bm_rld(pr
, cx
);
1533 if (cx
->type
== ACPI_STATE_C3
)
1534 ACPI_FLUSH_CPU_CACHE();
1536 t1
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
1537 /* Tell the scheduler that we are going deep-idle: */
1538 sched_clock_idle_sleep_event();
1539 acpi_idle_do_entry(cx
);
1540 t2
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
1542 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
1543 /* TSC could halt in idle, so notify users */
1544 if (tsc_halts_in_c(cx
->type
))
1545 mark_tsc_unstable("TSC halts in idle");;
1547 sleep_ticks
= ticks_elapsed(t1
, t2
);
1549 /* Tell the scheduler how much we idled: */
1550 sched_clock_idle_wakeup_event(sleep_ticks
*PM_TIMER_TICK_NS
);
1553 current_thread_info()->status
|= TS_POLLING
;
1557 acpi_state_timer_broadcast(pr
, cx
, 0);
1558 cx
->time
+= sleep_ticks
;
1559 return ticks_elapsed_in_us(t1
, t2
);
1562 static int c3_cpu_count
;
1563 static DEFINE_SPINLOCK(c3_lock
);
1566 * acpi_idle_enter_bm - enters C3 with proper BM handling
1567 * @dev: the target CPU
1568 * @state: the state data
1570 * If BM is detected, the deepest non-C3 idle state is entered instead.
1572 static int acpi_idle_enter_bm(struct cpuidle_device
*dev
,
1573 struct cpuidle_state
*state
)
1575 struct acpi_processor
*pr
;
1576 struct acpi_processor_cx
*cx
= cpuidle_get_statedata(state
);
1578 int sleep_ticks
= 0;
1580 pr
= __get_cpu_var(processors
);
1585 if (acpi_idle_suspend
)
1586 return(acpi_idle_enter_c1(dev
, state
));
1588 if (acpi_idle_bm_check()) {
1589 if (dev
->safe_state
) {
1590 return dev
->safe_state
->enter(dev
, dev
->safe_state
);
1592 local_irq_disable();
1599 local_irq_disable();
1600 current_thread_info()->status
&= ~TS_POLLING
;
1602 * TS_POLLING-cleared state must be visible before we test
1607 if (unlikely(need_resched())) {
1608 current_thread_info()->status
|= TS_POLLING
;
1613 acpi_unlazy_tlb(smp_processor_id());
1615 /* Tell the scheduler that we are going deep-idle: */
1616 sched_clock_idle_sleep_event();
1618 * Must be done before busmaster disable as we might need to
1621 acpi_state_timer_broadcast(pr
, cx
, 1);
1623 acpi_idle_update_bm_rld(pr
, cx
);
1626 * disable bus master
1627 * bm_check implies we need ARB_DIS
1628 * !bm_check implies we need cache flush
1629 * bm_control implies whether we can do ARB_DIS
1631 * That leaves a case where bm_check is set and bm_control is
1632 * not set. In that case we cannot do much, we enter C3
1633 * without doing anything.
1635 if (pr
->flags
.bm_check
&& pr
->flags
.bm_control
) {
1636 spin_lock(&c3_lock
);
1638 /* Disable bus master arbitration when all CPUs are in C3 */
1639 if (c3_cpu_count
== num_online_cpus())
1640 acpi_set_register(ACPI_BITREG_ARB_DISABLE
, 1);
1641 spin_unlock(&c3_lock
);
1642 } else if (!pr
->flags
.bm_check
) {
1643 ACPI_FLUSH_CPU_CACHE();
1646 t1
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
1647 acpi_idle_do_entry(cx
);
1648 t2
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
1650 /* Re-enable bus master arbitration */
1651 if (pr
->flags
.bm_check
&& pr
->flags
.bm_control
) {
1652 spin_lock(&c3_lock
);
1653 acpi_set_register(ACPI_BITREG_ARB_DISABLE
, 0);
1655 spin_unlock(&c3_lock
);
1658 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
1659 /* TSC could halt in idle, so notify users */
1660 if (tsc_halts_in_c(ACPI_STATE_C3
))
1661 mark_tsc_unstable("TSC halts in idle");
1663 sleep_ticks
= ticks_elapsed(t1
, t2
);
1664 /* Tell the scheduler how much we idled: */
1665 sched_clock_idle_wakeup_event(sleep_ticks
*PM_TIMER_TICK_NS
);
1668 current_thread_info()->status
|= TS_POLLING
;
1672 acpi_state_timer_broadcast(pr
, cx
, 0);
1673 cx
->time
+= sleep_ticks
;
1674 return ticks_elapsed_in_us(t1
, t2
);
1677 struct cpuidle_driver acpi_idle_driver
= {
1678 .name
= "acpi_idle",
1679 .owner
= THIS_MODULE
,
1683 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1684 * @pr: the ACPI processor
1686 static int acpi_processor_setup_cpuidle(struct acpi_processor
*pr
)
1688 int i
, count
= CPUIDLE_DRIVER_STATE_START
;
1689 struct acpi_processor_cx
*cx
;
1690 struct cpuidle_state
*state
;
1691 struct cpuidle_device
*dev
= &pr
->power
.dev
;
1693 if (!pr
->flags
.power_setup_done
)
1696 if (pr
->flags
.power
== 0) {
1701 for (i
= 0; i
< CPUIDLE_STATE_MAX
; i
++) {
1702 dev
->states
[i
].name
[0] = '\0';
1703 dev
->states
[i
].desc
[0] = '\0';
1706 for (i
= 1; i
< ACPI_PROCESSOR_MAX_POWER
&& i
<= max_cstate
; i
++) {
1707 cx
= &pr
->power
.states
[i
];
1708 state
= &dev
->states
[count
];
1713 #ifdef CONFIG_HOTPLUG_CPU
1714 if ((cx
->type
!= ACPI_STATE_C1
) && (num_online_cpus() > 1) &&
1715 !pr
->flags
.has_cst
&&
1716 !(acpi_gbl_FADT
.flags
& ACPI_FADT_C2_MP_SUPPORTED
))
1719 cpuidle_set_statedata(state
, cx
);
1721 snprintf(state
->name
, CPUIDLE_NAME_LEN
, "C%d", i
);
1722 strncpy(state
->desc
, cx
->desc
, CPUIDLE_DESC_LEN
);
1723 state
->exit_latency
= cx
->latency
;
1724 state
->target_residency
= cx
->latency
* latency_factor
;
1725 state
->power_usage
= cx
->power
;
1730 state
->flags
|= CPUIDLE_FLAG_SHALLOW
;
1731 if (cx
->entry_method
== ACPI_CSTATE_FFH
)
1732 state
->flags
|= CPUIDLE_FLAG_TIME_VALID
;
1734 state
->enter
= acpi_idle_enter_c1
;
1735 dev
->safe_state
= state
;
1739 state
->flags
|= CPUIDLE_FLAG_BALANCED
;
1740 state
->flags
|= CPUIDLE_FLAG_TIME_VALID
;
1741 state
->enter
= acpi_idle_enter_simple
;
1742 dev
->safe_state
= state
;
1746 state
->flags
|= CPUIDLE_FLAG_DEEP
;
1747 state
->flags
|= CPUIDLE_FLAG_TIME_VALID
;
1748 state
->flags
|= CPUIDLE_FLAG_CHECK_BM
;
1749 state
->enter
= pr
->flags
.bm_check
?
1750 acpi_idle_enter_bm
:
1751 acpi_idle_enter_simple
;
1756 if (count
== CPUIDLE_STATE_MAX
)
1760 dev
->state_count
= count
;
1768 int acpi_processor_cst_has_changed(struct acpi_processor
*pr
)
1772 if (boot_option_idle_override
)
1782 if (!pr
->flags
.power_setup_done
)
1785 cpuidle_pause_and_lock();
1786 cpuidle_disable_device(&pr
->power
.dev
);
1787 acpi_processor_get_power_info(pr
);
1788 if (pr
->flags
.power
) {
1789 acpi_processor_setup_cpuidle(pr
);
1790 ret
= cpuidle_enable_device(&pr
->power
.dev
);
1792 cpuidle_resume_and_unlock();
1797 #endif /* CONFIG_CPU_IDLE */
1799 int __cpuinit
acpi_processor_power_init(struct acpi_processor
*pr
,
1800 struct acpi_device
*device
)
1802 acpi_status status
= 0;
1803 static int first_run
;
1804 struct proc_dir_entry
*entry
= NULL
;
1807 if (boot_option_idle_override
)
1813 * When the boot option of "idle=halt" is added, halt
1814 * is used for CPU IDLE.
1815 * In such case C2/C3 is meaningless. So the max_cstate
1820 dmi_check_system(processor_power_dmi_table
);
1821 max_cstate
= acpi_processor_cstate_check(max_cstate
);
1822 if (max_cstate
< ACPI_C_STATES_MAX
)
1824 "ACPI: processor limited to max C-state %d\n",
1827 #if !defined(CONFIG_CPU_IDLE) && defined(CONFIG_SMP)
1828 pm_qos_add_notifier(PM_QOS_CPU_DMA_LATENCY
,
1829 &acpi_processor_latency_notifier
);
1836 if (acpi_gbl_FADT
.cst_control
&& !nocst
) {
1838 acpi_os_write_port(acpi_gbl_FADT
.smi_command
, acpi_gbl_FADT
.cst_control
, 8);
1839 if (ACPI_FAILURE(status
)) {
1840 ACPI_EXCEPTION((AE_INFO
, status
,
1841 "Notifying BIOS of _CST ability failed"));
1845 acpi_processor_get_power_info(pr
);
1846 pr
->flags
.power_setup_done
= 1;
1849 * Install the idle handler if processor power management is supported.
1850 * Note that we use previously set idle handler will be used on
1851 * platforms that only support C1.
1853 if (pr
->flags
.power
) {
1854 #ifdef CONFIG_CPU_IDLE
1855 acpi_processor_setup_cpuidle(pr
);
1856 if (cpuidle_register_device(&pr
->power
.dev
))
1860 printk(KERN_INFO PREFIX
"CPU%d (power states:", pr
->id
);
1861 for (i
= 1; i
<= pr
->power
.count
; i
++)
1862 if (pr
->power
.states
[i
].valid
)
1863 printk(" C%d[C%d]", i
,
1864 pr
->power
.states
[i
].type
);
1867 #ifndef CONFIG_CPU_IDLE
1869 pm_idle_save
= pm_idle
;
1870 pm_idle
= acpi_processor_idle
;
1876 entry
= proc_create_data(ACPI_PROCESSOR_FILE_POWER
,
1877 S_IRUGO
, acpi_device_dir(device
),
1878 &acpi_processor_power_fops
,
1879 acpi_driver_data(device
));
1885 int acpi_processor_power_exit(struct acpi_processor
*pr
,
1886 struct acpi_device
*device
)
1888 if (boot_option_idle_override
)
1891 #ifdef CONFIG_CPU_IDLE
1892 cpuidle_unregister_device(&pr
->power
.dev
);
1894 pr
->flags
.power_setup_done
= 0;
1896 if (acpi_device_dir(device
))
1897 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER
,
1898 acpi_device_dir(device
));
1900 #ifndef CONFIG_CPU_IDLE
1902 /* Unregister the idle handler when processor #0 is removed. */
1905 pm_idle
= pm_idle_save
;
1908 * We are about to unload the current idle thread pm callback
1909 * (pm_idle), Wait for all processors to update cached/local
1910 * copies of pm_idle before proceeding.
1914 pm_qos_remove_notifier(PM_QOS_CPU_DMA_LATENCY
,
1915 &acpi_processor_latency_notifier
);