x86: traps_xx: modify default_do_nmi
[linux-2.6/mini2440.git] / arch / x86 / kernel / traps_64.c
blob9b9245f81b9f89cadf62554d2418ad5dd5995053
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
9 /*
10 * 'Traps.c' handles hardware traps and faults after we have saved some
11 * state in 'entry.S'.
13 #include <linux/moduleparam.h>
14 #include <linux/interrupt.h>
15 #include <linux/kallsyms.h>
16 #include <linux/spinlock.h>
17 #include <linux/kprobes.h>
18 #include <linux/uaccess.h>
19 #include <linux/utsname.h>
20 #include <linux/kdebug.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/ptrace.h>
24 #include <linux/string.h>
25 #include <linux/unwind.h>
26 #include <linux/delay.h>
27 #include <linux/errno.h>
28 #include <linux/kexec.h>
29 #include <linux/sched.h>
30 #include <linux/timer.h>
31 #include <linux/init.h>
32 #include <linux/bug.h>
33 #include <linux/nmi.h>
34 #include <linux/mm.h>
36 #if defined(CONFIG_EDAC)
37 #include <linux/edac.h>
38 #endif
40 #include <asm/stacktrace.h>
41 #include <asm/processor.h>
42 #include <asm/debugreg.h>
43 #include <asm/atomic.h>
44 #include <asm/system.h>
45 #include <asm/unwind.h>
46 #include <asm/desc.h>
47 #include <asm/i387.h>
48 #include <asm/nmi.h>
49 #include <asm/smp.h>
50 #include <asm/io.h>
51 #include <asm/pgalloc.h>
52 #include <asm/proto.h>
53 #include <asm/pda.h>
55 #include <mach_traps.h>
57 asmlinkage void divide_error(void);
58 asmlinkage void debug(void);
59 asmlinkage void nmi(void);
60 asmlinkage void int3(void);
61 asmlinkage void overflow(void);
62 asmlinkage void bounds(void);
63 asmlinkage void invalid_op(void);
64 asmlinkage void device_not_available(void);
65 asmlinkage void double_fault(void);
66 asmlinkage void coprocessor_segment_overrun(void);
67 asmlinkage void invalid_TSS(void);
68 asmlinkage void segment_not_present(void);
69 asmlinkage void stack_segment(void);
70 asmlinkage void general_protection(void);
71 asmlinkage void page_fault(void);
72 asmlinkage void coprocessor_error(void);
73 asmlinkage void simd_coprocessor_error(void);
74 asmlinkage void alignment_check(void);
75 asmlinkage void spurious_interrupt_bug(void);
76 asmlinkage void machine_check(void);
78 int panic_on_unrecovered_nmi;
79 int kstack_depth_to_print = 12;
80 static unsigned int code_bytes = 64;
81 static int ignore_nmis;
82 static int die_counter;
84 static inline void conditional_sti(struct pt_regs *regs)
86 if (regs->flags & X86_EFLAGS_IF)
87 local_irq_enable();
90 static inline void preempt_conditional_sti(struct pt_regs *regs)
92 inc_preempt_count();
93 if (regs->flags & X86_EFLAGS_IF)
94 local_irq_enable();
97 static inline void preempt_conditional_cli(struct pt_regs *regs)
99 if (regs->flags & X86_EFLAGS_IF)
100 local_irq_disable();
101 /* Make sure to not schedule here because we could be running
102 on an exception stack. */
103 dec_preempt_count();
106 void printk_address(unsigned long address, int reliable)
108 #ifdef CONFIG_KALLSYMS
109 unsigned long offset = 0, symsize;
110 const char *symname;
111 char *modname;
112 char *delim = ":";
113 char namebuf[KSYM_NAME_LEN];
114 char reliab[4] = "";
116 symname = kallsyms_lookup(address, &symsize, &offset,
117 &modname, namebuf);
118 if (!symname) {
119 printk(" [<%016lx>]\n", address);
120 return;
122 if (!reliable)
123 strcpy(reliab, "? ");
125 if (!modname)
126 modname = delim = "";
127 printk(" [<%016lx>] %s%s%s%s%s+0x%lx/0x%lx\n",
128 address, reliab, delim, modname, delim, symname, offset, symsize);
129 #else
130 printk(" [<%016lx>]\n", address);
131 #endif
134 static unsigned long *in_exception_stack(unsigned cpu, unsigned long stack,
135 unsigned *usedp, char **idp)
137 static char ids[][8] = {
138 [DEBUG_STACK - 1] = "#DB",
139 [NMI_STACK - 1] = "NMI",
140 [DOUBLEFAULT_STACK - 1] = "#DF",
141 [STACKFAULT_STACK - 1] = "#SS",
142 [MCE_STACK - 1] = "#MC",
143 #if DEBUG_STKSZ > EXCEPTION_STKSZ
144 [N_EXCEPTION_STACKS ... N_EXCEPTION_STACKS + DEBUG_STKSZ / EXCEPTION_STKSZ - 2] = "#DB[?]"
145 #endif
147 unsigned k;
150 * Iterate over all exception stacks, and figure out whether
151 * 'stack' is in one of them:
153 for (k = 0; k < N_EXCEPTION_STACKS; k++) {
154 unsigned long end = per_cpu(orig_ist, cpu).ist[k];
156 * Is 'stack' above this exception frame's end?
157 * If yes then skip to the next frame.
159 if (stack >= end)
160 continue;
162 * Is 'stack' above this exception frame's start address?
163 * If yes then we found the right frame.
165 if (stack >= end - EXCEPTION_STKSZ) {
167 * Make sure we only iterate through an exception
168 * stack once. If it comes up for the second time
169 * then there's something wrong going on - just
170 * break out and return NULL:
172 if (*usedp & (1U << k))
173 break;
174 *usedp |= 1U << k;
175 *idp = ids[k];
176 return (unsigned long *)end;
179 * If this is a debug stack, and if it has a larger size than
180 * the usual exception stacks, then 'stack' might still
181 * be within the lower portion of the debug stack:
183 #if DEBUG_STKSZ > EXCEPTION_STKSZ
184 if (k == DEBUG_STACK - 1 && stack >= end - DEBUG_STKSZ) {
185 unsigned j = N_EXCEPTION_STACKS - 1;
188 * Black magic. A large debug stack is composed of
189 * multiple exception stack entries, which we
190 * iterate through now. Dont look:
192 do {
193 ++j;
194 end -= EXCEPTION_STKSZ;
195 ids[j][4] = '1' + (j - N_EXCEPTION_STACKS);
196 } while (stack < end - EXCEPTION_STKSZ);
197 if (*usedp & (1U << j))
198 break;
199 *usedp |= 1U << j;
200 *idp = ids[j];
201 return (unsigned long *)end;
203 #endif
205 return NULL;
209 * x86-64 can have up to three kernel stacks:
210 * process stack
211 * interrupt stack
212 * severe exception (double fault, nmi, stack fault, debug, mce) hardware stack
215 static inline int valid_stack_ptr(struct thread_info *tinfo,
216 void *p, unsigned int size, void *end)
218 void *t = tinfo;
219 if (end) {
220 if (p < end && p >= (end-THREAD_SIZE))
221 return 1;
222 else
223 return 0;
225 return p > t && p < t + THREAD_SIZE - size;
228 /* The form of the top of the frame on the stack */
229 struct stack_frame {
230 struct stack_frame *next_frame;
231 unsigned long return_address;
234 static inline unsigned long
235 print_context_stack(struct thread_info *tinfo,
236 unsigned long *stack, unsigned long bp,
237 const struct stacktrace_ops *ops, void *data,
238 unsigned long *end)
240 struct stack_frame *frame = (struct stack_frame *)bp;
242 while (valid_stack_ptr(tinfo, stack, sizeof(*stack), end)) {
243 unsigned long addr;
245 addr = *stack;
246 if (__kernel_text_address(addr)) {
247 if ((unsigned long) stack == bp + 8) {
248 ops->address(data, addr, 1);
249 frame = frame->next_frame;
250 bp = (unsigned long) frame;
251 } else {
252 ops->address(data, addr, bp == 0);
255 stack++;
257 return bp;
260 void dump_trace(struct task_struct *task, struct pt_regs *regs,
261 unsigned long *stack, unsigned long bp,
262 const struct stacktrace_ops *ops, void *data)
264 const unsigned cpu = get_cpu();
265 unsigned long *irqstack_end = (unsigned long*)cpu_pda(cpu)->irqstackptr;
266 unsigned used = 0;
267 struct thread_info *tinfo;
269 if (!task)
270 task = current;
271 tinfo = task_thread_info(task);
273 if (!stack) {
274 unsigned long dummy;
275 stack = &dummy;
276 if (task && task != current)
277 stack = (unsigned long *)task->thread.sp;
280 #ifdef CONFIG_FRAME_POINTER
281 if (!bp) {
282 if (task == current) {
283 /* Grab bp right from our regs */
284 asm("movq %%rbp, %0" : "=r" (bp) :);
285 } else {
286 /* bp is the last reg pushed by switch_to */
287 bp = *(unsigned long *) task->thread.sp;
290 #endif
293 * Print function call entries in all stacks, starting at the
294 * current stack address. If the stacks consist of nested
295 * exceptions
297 for (;;) {
298 char *id;
299 unsigned long *estack_end;
300 estack_end = in_exception_stack(cpu, (unsigned long)stack,
301 &used, &id);
303 if (estack_end) {
304 if (ops->stack(data, id) < 0)
305 break;
307 bp = print_context_stack(tinfo, stack, bp, ops,
308 data, estack_end);
309 ops->stack(data, "<EOE>");
311 * We link to the next stack via the
312 * second-to-last pointer (index -2 to end) in the
313 * exception stack:
315 stack = (unsigned long *) estack_end[-2];
316 continue;
318 if (irqstack_end) {
319 unsigned long *irqstack;
320 irqstack = irqstack_end -
321 (IRQSTACKSIZE - 64) / sizeof(*irqstack);
323 if (stack >= irqstack && stack < irqstack_end) {
324 if (ops->stack(data, "IRQ") < 0)
325 break;
326 bp = print_context_stack(tinfo, stack, bp,
327 ops, data, irqstack_end);
329 * We link to the next stack (which would be
330 * the process stack normally) the last
331 * pointer (index -1 to end) in the IRQ stack:
333 stack = (unsigned long *) (irqstack_end[-1]);
334 irqstack_end = NULL;
335 ops->stack(data, "EOI");
336 continue;
339 break;
343 * This handles the process stack:
345 bp = print_context_stack(tinfo, stack, bp, ops, data, NULL);
346 put_cpu();
348 EXPORT_SYMBOL(dump_trace);
350 static void
351 print_trace_warning_symbol(void *data, char *msg, unsigned long symbol)
353 print_symbol(msg, symbol);
354 printk("\n");
357 static void print_trace_warning(void *data, char *msg)
359 printk("%s\n", msg);
362 static int print_trace_stack(void *data, char *name)
364 printk(" <%s> ", name);
365 return 0;
368 static void print_trace_address(void *data, unsigned long addr, int reliable)
370 touch_nmi_watchdog();
371 printk_address(addr, reliable);
374 static const struct stacktrace_ops print_trace_ops = {
375 .warning = print_trace_warning,
376 .warning_symbol = print_trace_warning_symbol,
377 .stack = print_trace_stack,
378 .address = print_trace_address,
381 void show_trace(struct task_struct *task, struct pt_regs *regs,
382 unsigned long *stack, unsigned long bp)
384 printk("\nCall Trace:\n");
385 dump_trace(task, regs, stack, bp, &print_trace_ops, NULL);
386 printk("\n");
389 static void
390 _show_stack(struct task_struct *task, struct pt_regs *regs,
391 unsigned long *sp, unsigned long bp)
393 unsigned long *stack;
394 int i;
395 const int cpu = smp_processor_id();
396 unsigned long *irqstack_end = (unsigned long *) (cpu_pda(cpu)->irqstackptr);
397 unsigned long *irqstack = (unsigned long *) (cpu_pda(cpu)->irqstackptr - IRQSTACKSIZE);
399 // debugging aid: "show_stack(NULL, NULL);" prints the
400 // back trace for this cpu.
402 if (sp == NULL) {
403 if (task)
404 sp = (unsigned long *)task->thread.sp;
405 else
406 sp = (unsigned long *)&sp;
409 stack = sp;
410 for (i = 0; i < kstack_depth_to_print; i++) {
411 if (stack >= irqstack && stack <= irqstack_end) {
412 if (stack == irqstack_end) {
413 stack = (unsigned long *) (irqstack_end[-1]);
414 printk(" <EOI> ");
416 } else {
417 if (((long) stack & (THREAD_SIZE-1)) == 0)
418 break;
420 if (i && ((i % 4) == 0))
421 printk("\n");
422 printk(" %016lx", *stack++);
423 touch_nmi_watchdog();
425 show_trace(task, regs, sp, bp);
428 void show_stack(struct task_struct *task, unsigned long *sp)
430 _show_stack(task, NULL, sp, 0);
434 * The architecture-independent dump_stack generator
436 void dump_stack(void)
438 unsigned long stack;
439 unsigned long bp = 0;
441 #ifdef CONFIG_FRAME_POINTER
442 if (!bp)
443 asm("movq %%rbp, %0" : "=r" (bp):);
444 #endif
446 printk("Pid: %d, comm: %.20s %s %s %.*s\n",
447 current->pid, current->comm, print_tainted(),
448 init_utsname()->release,
449 (int)strcspn(init_utsname()->version, " "),
450 init_utsname()->version);
451 show_trace(NULL, NULL, &stack, bp);
454 EXPORT_SYMBOL(dump_stack);
456 void show_registers(struct pt_regs *regs)
458 int i;
459 unsigned long sp;
460 const int cpu = smp_processor_id();
461 struct task_struct *cur = cpu_pda(cpu)->pcurrent;
462 u8 *ip;
463 unsigned int code_prologue = code_bytes * 43 / 64;
464 unsigned int code_len = code_bytes;
466 sp = regs->sp;
467 ip = (u8 *) regs->ip - code_prologue;
468 printk("CPU %d ", cpu);
469 __show_regs(regs);
470 printk("Process %s (pid: %d, threadinfo %p, task %p)\n",
471 cur->comm, cur->pid, task_thread_info(cur), cur);
474 * When in-kernel, we also print out the stack and code at the
475 * time of the fault..
477 if (!user_mode(regs)) {
478 unsigned char c;
479 printk("Stack: ");
480 _show_stack(NULL, regs, (unsigned long *)sp, regs->bp);
481 printk("\n");
483 printk(KERN_EMERG "Code: ");
484 if (ip < (u8 *)PAGE_OFFSET || probe_kernel_address(ip, c)) {
485 /* try starting at RIP */
486 ip = (u8 *)regs->ip;
487 code_len = code_len - code_prologue + 1;
489 for (i = 0; i < code_len; i++, ip++) {
490 if (ip < (u8 *)PAGE_OFFSET ||
491 probe_kernel_address(ip, c)) {
492 printk(" Bad RIP value.");
493 break;
495 if (ip == (u8 *)regs->ip)
496 printk("<%02x> ", c);
497 else
498 printk("%02x ", c);
501 printk("\n");
504 int is_valid_bugaddr(unsigned long ip)
506 unsigned short ud2;
508 if (__copy_from_user(&ud2, (const void __user *) ip, sizeof(ud2)))
509 return 0;
511 return ud2 == 0x0b0f;
514 static raw_spinlock_t die_lock = __RAW_SPIN_LOCK_UNLOCKED;
515 static int die_owner = -1;
516 static unsigned int die_nest_count;
518 unsigned __kprobes long oops_begin(void)
520 int cpu;
521 unsigned long flags;
523 oops_enter();
525 /* racy, but better than risking deadlock. */
526 raw_local_irq_save(flags);
527 cpu = smp_processor_id();
528 if (!__raw_spin_trylock(&die_lock)) {
529 if (cpu == die_owner)
530 /* nested oops. should stop eventually */;
531 else
532 __raw_spin_lock(&die_lock);
534 die_nest_count++;
535 die_owner = cpu;
536 console_verbose();
537 bust_spinlocks(1);
538 return flags;
541 void __kprobes oops_end(unsigned long flags, struct pt_regs *regs, int signr)
543 die_owner = -1;
544 bust_spinlocks(0);
545 die_nest_count--;
546 if (!die_nest_count)
547 /* Nest count reaches zero, release the lock. */
548 __raw_spin_unlock(&die_lock);
549 raw_local_irq_restore(flags);
550 if (!regs) {
551 oops_exit();
552 return;
554 if (panic_on_oops)
555 panic("Fatal exception");
556 oops_exit();
557 do_exit(signr);
560 int __kprobes __die(const char *str, struct pt_regs *regs, long err)
562 printk(KERN_EMERG "%s: %04lx [%u] ", str, err & 0xffff, ++die_counter);
563 #ifdef CONFIG_PREEMPT
564 printk("PREEMPT ");
565 #endif
566 #ifdef CONFIG_SMP
567 printk("SMP ");
568 #endif
569 #ifdef CONFIG_DEBUG_PAGEALLOC
570 printk("DEBUG_PAGEALLOC");
571 #endif
572 printk("\n");
573 if (notify_die(DIE_OOPS, str, regs, err,
574 current->thread.trap_no, SIGSEGV) == NOTIFY_STOP)
575 return 1;
577 show_registers(regs);
578 add_taint(TAINT_DIE);
579 /* Executive summary in case the oops scrolled away */
580 printk(KERN_ALERT "RIP ");
581 printk_address(regs->ip, 1);
582 printk(" RSP <%016lx>\n", regs->sp);
583 if (kexec_should_crash(current))
584 crash_kexec(regs);
585 return 0;
588 void die(const char * str, struct pt_regs *regs, long err)
590 unsigned long flags = oops_begin();
592 if (!user_mode(regs))
593 report_bug(regs->ip, regs);
595 if (__die(str, regs, err))
596 regs = NULL;
597 oops_end(flags, regs, SIGSEGV);
600 notrace __kprobes void
601 die_nmi(char *str, struct pt_regs *regs, int do_panic)
603 unsigned long flags;
605 if (notify_die(DIE_NMIWATCHDOG, str, regs, 0, 2, SIGINT) == NOTIFY_STOP)
606 return;
608 flags = oops_begin();
610 * We are in trouble anyway, lets at least try
611 * to get a message out.
613 printk(KERN_EMERG "%s", str);
614 printk(" on CPU%d, ip %08lx, registers:\n",
615 smp_processor_id(), regs->ip);
616 show_registers(regs);
617 if (kexec_should_crash(current))
618 crash_kexec(regs);
619 if (do_panic || panic_on_oops)
620 panic("Non maskable interrupt");
621 oops_end(flags, NULL, SIGBUS);
622 nmi_exit();
623 local_irq_enable();
624 do_exit(SIGBUS);
627 static void __kprobes
628 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
629 long error_code, siginfo_t *info)
631 struct task_struct *tsk = current;
633 if (!user_mode(regs))
634 goto kernel_trap;
637 * We want error_code and trap_no set for userspace faults and
638 * kernelspace faults which result in die(), but not
639 * kernelspace faults which are fixed up. die() gives the
640 * process no chance to handle the signal and notice the
641 * kernel fault information, so that won't result in polluting
642 * the information about previously queued, but not yet
643 * delivered, faults. See also do_general_protection below.
645 tsk->thread.error_code = error_code;
646 tsk->thread.trap_no = trapnr;
648 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
649 printk_ratelimit()) {
650 printk(KERN_INFO
651 "%s[%d] trap %s ip:%lx sp:%lx error:%lx",
652 tsk->comm, tsk->pid, str,
653 regs->ip, regs->sp, error_code);
654 print_vma_addr(" in ", regs->ip);
655 printk("\n");
658 if (info)
659 force_sig_info(signr, info, tsk);
660 else
661 force_sig(signr, tsk);
662 return;
664 kernel_trap:
665 if (!fixup_exception(regs)) {
666 tsk->thread.error_code = error_code;
667 tsk->thread.trap_no = trapnr;
668 die(str, regs, error_code);
670 return;
673 #define DO_ERROR(trapnr, signr, str, name) \
674 asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
676 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
677 == NOTIFY_STOP) \
678 return; \
679 conditional_sti(regs); \
680 do_trap(trapnr, signr, str, regs, error_code, NULL); \
683 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
684 asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
686 siginfo_t info; \
687 info.si_signo = signr; \
688 info.si_errno = 0; \
689 info.si_code = sicode; \
690 info.si_addr = (void __user *)siaddr; \
691 trace_hardirqs_fixup(); \
692 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
693 == NOTIFY_STOP) \
694 return; \
695 conditional_sti(regs); \
696 do_trap(trapnr, signr, str, regs, error_code, &info); \
699 DO_ERROR_INFO(0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->ip)
700 DO_ERROR(4, SIGSEGV, "overflow", overflow)
701 DO_ERROR(5, SIGSEGV, "bounds", bounds)
702 DO_ERROR_INFO(6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->ip)
703 DO_ERROR(9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
704 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
705 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
706 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
708 /* Runs on IST stack */
709 asmlinkage void do_stack_segment(struct pt_regs *regs, long error_code)
711 if (notify_die(DIE_TRAP, "stack segment", regs, error_code,
712 12, SIGBUS) == NOTIFY_STOP)
713 return;
714 preempt_conditional_sti(regs);
715 do_trap(12, SIGBUS, "stack segment", regs, error_code, NULL);
716 preempt_conditional_cli(regs);
719 asmlinkage void do_double_fault(struct pt_regs * regs, long error_code)
721 static const char str[] = "double fault";
722 struct task_struct *tsk = current;
724 /* Return not checked because double check cannot be ignored */
725 notify_die(DIE_TRAP, str, regs, error_code, 8, SIGSEGV);
727 tsk->thread.error_code = error_code;
728 tsk->thread.trap_no = 8;
730 /* This is always a kernel trap and never fixable (and thus must
731 never return). */
732 for (;;)
733 die(str, regs, error_code);
736 asmlinkage void __kprobes
737 do_general_protection(struct pt_regs *regs, long error_code)
739 struct task_struct *tsk;
741 conditional_sti(regs);
743 tsk = current;
744 if (!user_mode(regs))
745 goto gp_in_kernel;
747 tsk->thread.error_code = error_code;
748 tsk->thread.trap_no = 13;
750 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
751 printk_ratelimit()) {
752 printk(KERN_INFO
753 "%s[%d] general protection ip:%lx sp:%lx error:%lx",
754 tsk->comm, tsk->pid,
755 regs->ip, regs->sp, error_code);
756 print_vma_addr(" in ", regs->ip);
757 printk("\n");
760 force_sig(SIGSEGV, tsk);
761 return;
763 gp_in_kernel:
764 if (fixup_exception(regs))
765 return;
767 tsk->thread.error_code = error_code;
768 tsk->thread.trap_no = 13;
769 if (notify_die(DIE_GPF, "general protection fault", regs,
770 error_code, 13, SIGSEGV) == NOTIFY_STOP)
771 return;
772 die("general protection fault", regs, error_code);
775 static notrace __kprobes void
776 mem_parity_error(unsigned char reason, struct pt_regs *regs)
778 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x.\n",
779 reason);
780 printk(KERN_EMERG "You have some hardware problem, likely on the PCI bus.\n");
782 #if defined(CONFIG_EDAC)
783 if (edac_handler_set()) {
784 edac_atomic_assert_error();
785 return;
787 #endif
789 if (panic_on_unrecovered_nmi)
790 panic("NMI: Not continuing");
792 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
794 /* Clear and disable the memory parity error line. */
795 reason = (reason & 0xf) | 4;
796 outb(reason, 0x61);
799 static notrace __kprobes void
800 io_check_error(unsigned char reason, struct pt_regs *regs)
802 printk("NMI: IOCK error (debug interrupt?)\n");
803 show_registers(regs);
805 /* Re-enable the IOCK line, wait for a few seconds */
806 reason = (reason & 0xf) | 8;
807 outb(reason, 0x61);
808 mdelay(2000);
809 reason &= ~8;
810 outb(reason, 0x61);
813 static notrace __kprobes void
814 unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
816 if (notify_die(DIE_NMIUNKNOWN, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
817 return;
818 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x.\n",
819 reason);
820 printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n");
822 if (panic_on_unrecovered_nmi)
823 panic("NMI: Not continuing");
825 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
828 /* Runs on IST stack. This code must keep interrupts off all the time.
829 Nested NMIs are prevented by the CPU. */
830 asmlinkage notrace __kprobes void default_do_nmi(struct pt_regs *regs)
832 unsigned char reason = 0;
833 int cpu;
835 cpu = smp_processor_id();
837 /* Only the BSP gets external NMIs from the system. */
838 if (!cpu)
839 reason = get_nmi_reason();
841 if (!(reason & 0xc0)) {
842 if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT)
843 == NOTIFY_STOP)
844 return;
846 * Ok, so this is none of the documented NMI sources,
847 * so it must be the NMI watchdog.
849 if (nmi_watchdog_tick(regs, reason))
850 return;
851 if (!do_nmi_callback(regs, cpu))
852 unknown_nmi_error(reason, regs);
854 return;
856 if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
857 return;
859 /* AK: following checks seem to be broken on modern chipsets. FIXME */
860 if (reason & 0x80)
861 mem_parity_error(reason, regs);
862 if (reason & 0x40)
863 io_check_error(reason, regs);
866 asmlinkage notrace __kprobes void
867 do_nmi(struct pt_regs *regs, long error_code)
869 nmi_enter();
871 add_pda(__nmi_count, 1);
873 if (!ignore_nmis)
874 default_do_nmi(regs);
876 nmi_exit();
879 void stop_nmi(void)
881 acpi_nmi_disable();
882 ignore_nmis++;
885 void restart_nmi(void)
887 ignore_nmis--;
888 acpi_nmi_enable();
891 /* runs on IST stack. */
892 asmlinkage void __kprobes do_int3(struct pt_regs *regs, long error_code)
894 trace_hardirqs_fixup();
896 if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
897 == NOTIFY_STOP)
898 return;
900 preempt_conditional_sti(regs);
901 do_trap(3, SIGTRAP, "int3", regs, error_code, NULL);
902 preempt_conditional_cli(regs);
905 /* Help handler running on IST stack to switch back to user stack
906 for scheduling or signal handling. The actual stack switch is done in
907 entry.S */
908 asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs)
910 struct pt_regs *regs = eregs;
911 /* Did already sync */
912 if (eregs == (struct pt_regs *)eregs->sp)
914 /* Exception from user space */
915 else if (user_mode(eregs))
916 regs = task_pt_regs(current);
917 /* Exception from kernel and interrupts are enabled. Move to
918 kernel process stack. */
919 else if (eregs->flags & X86_EFLAGS_IF)
920 regs = (struct pt_regs *)(eregs->sp -= sizeof(struct pt_regs));
921 if (eregs != regs)
922 *regs = *eregs;
923 return regs;
926 /* runs on IST stack. */
927 asmlinkage void __kprobes do_debug(struct pt_regs * regs,
928 unsigned long error_code)
930 unsigned long condition;
931 struct task_struct *tsk = current;
932 siginfo_t info;
934 trace_hardirqs_fixup();
936 get_debugreg(condition, 6);
939 * The processor cleared BTF, so don't mark that we need it set.
941 clear_tsk_thread_flag(tsk, TIF_DEBUGCTLMSR);
942 tsk->thread.debugctlmsr = 0;
944 if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
945 SIGTRAP) == NOTIFY_STOP)
946 return;
948 preempt_conditional_sti(regs);
950 /* Mask out spurious debug traps due to lazy DR7 setting */
951 if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
952 if (!tsk->thread.debugreg7)
953 goto clear_dr7;
956 tsk->thread.debugreg6 = condition;
959 * Single-stepping through TF: make sure we ignore any events in
960 * kernel space (but re-enable TF when returning to user mode).
962 if (condition & DR_STEP) {
963 if (!user_mode(regs))
964 goto clear_TF_reenable;
967 /* Ok, finally something we can handle */
968 tsk->thread.trap_no = 1;
969 tsk->thread.error_code = error_code;
970 info.si_signo = SIGTRAP;
971 info.si_errno = 0;
972 info.si_code = TRAP_BRKPT;
973 info.si_addr = user_mode(regs) ? (void __user *)regs->ip : NULL;
974 force_sig_info(SIGTRAP, &info, tsk);
976 clear_dr7:
977 set_debugreg(0, 7);
978 preempt_conditional_cli(regs);
979 return;
981 clear_TF_reenable:
982 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
983 regs->flags &= ~X86_EFLAGS_TF;
984 preempt_conditional_cli(regs);
985 return;
988 static int kernel_math_error(struct pt_regs *regs, const char *str, int trapnr)
990 if (fixup_exception(regs))
991 return 1;
993 notify_die(DIE_GPF, str, regs, 0, trapnr, SIGFPE);
994 /* Illegal floating point operation in the kernel */
995 current->thread.trap_no = trapnr;
996 die(str, regs, 0);
997 return 0;
1001 * Note that we play around with the 'TS' bit in an attempt to get
1002 * the correct behaviour even in the presence of the asynchronous
1003 * IRQ13 behaviour
1005 asmlinkage void do_coprocessor_error(struct pt_regs *regs)
1007 void __user *ip = (void __user *)(regs->ip);
1008 struct task_struct *task;
1009 siginfo_t info;
1010 unsigned short cwd, swd;
1012 conditional_sti(regs);
1013 if (!user_mode(regs) &&
1014 kernel_math_error(regs, "kernel x87 math error", 16))
1015 return;
1018 * Save the info for the exception handler and clear the error.
1020 task = current;
1021 save_init_fpu(task);
1022 task->thread.trap_no = 16;
1023 task->thread.error_code = 0;
1024 info.si_signo = SIGFPE;
1025 info.si_errno = 0;
1026 info.si_code = __SI_FAULT;
1027 info.si_addr = ip;
1029 * (~cwd & swd) will mask out exceptions that are not set to unmasked
1030 * status. 0x3f is the exception bits in these regs, 0x200 is the
1031 * C1 reg you need in case of a stack fault, 0x040 is the stack
1032 * fault bit. We should only be taking one exception at a time,
1033 * so if this combination doesn't produce any single exception,
1034 * then we have a bad program that isn't synchronizing its FPU usage
1035 * and it will suffer the consequences since we won't be able to
1036 * fully reproduce the context of the exception
1038 cwd = get_fpu_cwd(task);
1039 swd = get_fpu_swd(task);
1040 switch (swd & ~cwd & 0x3f) {
1041 case 0x000: /* No unmasked exception */
1042 default: /* Multiple exceptions */
1043 break;
1044 case 0x001: /* Invalid Op */
1046 * swd & 0x240 == 0x040: Stack Underflow
1047 * swd & 0x240 == 0x240: Stack Overflow
1048 * User must clear the SF bit (0x40) if set
1050 info.si_code = FPE_FLTINV;
1051 break;
1052 case 0x002: /* Denormalize */
1053 case 0x010: /* Underflow */
1054 info.si_code = FPE_FLTUND;
1055 break;
1056 case 0x004: /* Zero Divide */
1057 info.si_code = FPE_FLTDIV;
1058 break;
1059 case 0x008: /* Overflow */
1060 info.si_code = FPE_FLTOVF;
1061 break;
1062 case 0x020: /* Precision */
1063 info.si_code = FPE_FLTRES;
1064 break;
1066 force_sig_info(SIGFPE, &info, task);
1069 asmlinkage void bad_intr(void)
1071 printk("bad interrupt");
1074 asmlinkage void do_simd_coprocessor_error(struct pt_regs *regs)
1076 void __user *ip = (void __user *)(regs->ip);
1077 struct task_struct *task;
1078 siginfo_t info;
1079 unsigned short mxcsr;
1081 conditional_sti(regs);
1082 if (!user_mode(regs) &&
1083 kernel_math_error(regs, "kernel simd math error", 19))
1084 return;
1087 * Save the info for the exception handler and clear the error.
1089 task = current;
1090 save_init_fpu(task);
1091 task->thread.trap_no = 19;
1092 task->thread.error_code = 0;
1093 info.si_signo = SIGFPE;
1094 info.si_errno = 0;
1095 info.si_code = __SI_FAULT;
1096 info.si_addr = ip;
1098 * The SIMD FPU exceptions are handled a little differently, as there
1099 * is only a single status/control register. Thus, to determine which
1100 * unmasked exception was caught we must mask the exception mask bits
1101 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
1103 mxcsr = get_fpu_mxcsr(task);
1104 switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
1105 case 0x000:
1106 default:
1107 break;
1108 case 0x001: /* Invalid Op */
1109 info.si_code = FPE_FLTINV;
1110 break;
1111 case 0x002: /* Denormalize */
1112 case 0x010: /* Underflow */
1113 info.si_code = FPE_FLTUND;
1114 break;
1115 case 0x004: /* Zero Divide */
1116 info.si_code = FPE_FLTDIV;
1117 break;
1118 case 0x008: /* Overflow */
1119 info.si_code = FPE_FLTOVF;
1120 break;
1121 case 0x020: /* Precision */
1122 info.si_code = FPE_FLTRES;
1123 break;
1125 force_sig_info(SIGFPE, &info, task);
1128 asmlinkage void do_spurious_interrupt_bug(struct pt_regs * regs)
1132 asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void)
1136 asmlinkage void __attribute__((weak)) mce_threshold_interrupt(void)
1141 * 'math_state_restore()' saves the current math information in the
1142 * old math state array, and gets the new ones from the current task
1144 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
1145 * Don't touch unless you *really* know how it works.
1147 asmlinkage void math_state_restore(void)
1149 struct task_struct *me = current;
1151 if (!used_math()) {
1152 local_irq_enable();
1154 * does a slab alloc which can sleep
1156 if (init_fpu(me)) {
1158 * ran out of memory!
1160 do_group_exit(SIGKILL);
1161 return;
1163 local_irq_disable();
1166 clts(); /* Allow maths ops (or we recurse) */
1167 restore_fpu_checking(&me->thread.xstate->fxsave);
1168 task_thread_info(me)->status |= TS_USEDFPU;
1169 me->fpu_counter++;
1171 EXPORT_SYMBOL_GPL(math_state_restore);
1173 void __init trap_init(void)
1175 set_intr_gate(0, &divide_error);
1176 set_intr_gate_ist(1, &debug, DEBUG_STACK);
1177 set_intr_gate_ist(2, &nmi, NMI_STACK);
1178 set_system_gate_ist(3, &int3, DEBUG_STACK); /* int3 can be called from all */
1179 set_system_gate(4, &overflow); /* int4 can be called from all */
1180 set_intr_gate(5, &bounds);
1181 set_intr_gate(6, &invalid_op);
1182 set_intr_gate(7, &device_not_available);
1183 set_intr_gate_ist(8, &double_fault, DOUBLEFAULT_STACK);
1184 set_intr_gate(9, &coprocessor_segment_overrun);
1185 set_intr_gate(10, &invalid_TSS);
1186 set_intr_gate(11, &segment_not_present);
1187 set_intr_gate_ist(12, &stack_segment, STACKFAULT_STACK);
1188 set_intr_gate(13, &general_protection);
1189 set_intr_gate(14, &page_fault);
1190 set_intr_gate(15, &spurious_interrupt_bug);
1191 set_intr_gate(16, &coprocessor_error);
1192 set_intr_gate(17, &alignment_check);
1193 #ifdef CONFIG_X86_MCE
1194 set_intr_gate_ist(18, &machine_check, MCE_STACK);
1195 #endif
1196 set_intr_gate(19, &simd_coprocessor_error);
1198 #ifdef CONFIG_IA32_EMULATION
1199 set_system_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
1200 #endif
1202 * initialize the per thread extended state:
1204 init_thread_xstate();
1206 * Should be a barrier for any external CPU state:
1208 cpu_init();
1211 static int __init oops_setup(char *s)
1213 if (!s)
1214 return -EINVAL;
1215 if (!strcmp(s, "panic"))
1216 panic_on_oops = 1;
1217 return 0;
1219 early_param("oops", oops_setup);
1221 static int __init kstack_setup(char *s)
1223 if (!s)
1224 return -EINVAL;
1225 kstack_depth_to_print = simple_strtoul(s, NULL, 0);
1226 return 0;
1228 early_param("kstack", kstack_setup);
1230 static int __init code_bytes_setup(char *s)
1232 code_bytes = simple_strtoul(s, NULL, 0);
1233 if (code_bytes > 8192)
1234 code_bytes = 8192;
1236 return 1;
1238 __setup("code_bytes=", code_bytes_setup);