1 /* bnx2x_init.h: Broadcom Everest network driver.
3 * Copyright (c) 2007-2009 Broadcom Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
20 #define INIT_EMULATION 0x1
23 #define INIT_HARDWARE 0x7
25 #define TSTORM_INTMEM_ADDR TSEM_REG_FAST_MEMORY
26 #define CSTORM_INTMEM_ADDR CSEM_REG_FAST_MEMORY
27 #define XSTORM_INTMEM_ADDR XSEM_REG_FAST_MEMORY
28 #define USTORM_INTMEM_ADDR USEM_REG_FAST_MEMORY
29 /* RAM0 size in bytes */
30 #define STORM_INTMEM_SIZE_E1 0x5800
31 #define STORM_INTMEM_SIZE_E1H 0x10000
32 #define STORM_INTMEM_SIZE(bp) ((CHIP_IS_E1H(bp) ? STORM_INTMEM_SIZE_E1H : \
33 STORM_INTMEM_SIZE_E1) / 4)
36 /* Init operation types and structures */
37 /* Common for both E1 and E1H */
38 #define OP_RD 0x1 /* read single register */
39 #define OP_WR 0x2 /* write single register */
40 #define OP_IW 0x3 /* write single register using mailbox */
41 #define OP_SW 0x4 /* copy a string to the device */
42 #define OP_SI 0x5 /* copy a string using mailbox */
43 #define OP_ZR 0x6 /* clear memory */
44 #define OP_ZP 0x7 /* unzip then copy with DMAE */
45 #define OP_WR_64 0x8 /* write 64 bit pattern */
46 #define OP_WB 0x9 /* copy a string using DMAE */
48 /* Operation specific for E1 */
49 #define OP_RD_E1 0xa /* read single register */
50 #define OP_WR_E1 0xb /* write single register */
51 #define OP_IW_E1 0xc /* write single register using mailbox */
52 #define OP_SW_E1 0xd /* copy a string to the device */
53 #define OP_SI_E1 0xe /* copy a string using mailbox */
54 #define OP_ZR_E1 0xf /* clear memory */
55 #define OP_ZP_E1 0x10 /* unzip then copy with DMAE */
56 #define OP_WR_64_E1 0x11 /* write 64 bit pattern on E1 */
57 #define OP_WB_E1 0x12 /* copy a string using DMAE */
59 /* Operation specific for E1H */
60 #define OP_RD_E1H 0x13 /* read single register */
61 #define OP_WR_E1H 0x14 /* write single register */
62 #define OP_IW_E1H 0x15 /* write single register using mailbox */
63 #define OP_SW_E1H 0x16 /* copy a string to the device */
64 #define OP_SI_E1H 0x17 /* copy a string using mailbox */
65 #define OP_ZR_E1H 0x18 /* clear memory */
66 #define OP_ZP_E1H 0x19 /* unzip then copy with DMAE */
67 #define OP_WR_64_E1H 0x1a /* write 64 bit pattern on E1H */
68 #define OP_WB_E1H 0x1b /* copy a string using DMAE */
70 /* FPGA and EMUL specific operations */
71 #define OP_WR_EMUL_E1H 0x1c /* write single register on E1H Emul */
72 #define OP_WR_EMUL 0x1d /* write single register on Emulation */
73 #define OP_WR_FPGA 0x1e /* write single register on FPGA */
74 #define OP_WR_ASIC 0x1f /* write single register on ASIC */
95 struct op_string_write
{
98 #ifdef __LITTLE_ENDIAN
101 #else /* __BIG_ENDIAN */
115 struct op_write write
;
116 struct op_string_write str_wr
;
121 #include "bnx2x_init_values.h"
123 static void bnx2x_reg_wr_ind(struct bnx2x
*bp
, u32 addr
, u32 val
);
124 static int bnx2x_gunzip(struct bnx2x
*bp
, u8
*zbuf
, int len
);
126 static void bnx2x_init_str_wr(struct bnx2x
*bp
, u32 addr
, const u32
*data
,
131 for (i
= 0; i
< len
; i
++) {
132 REG_WR(bp
, addr
+ i
*4, data
[i
]);
134 touch_softlockup_watchdog();
140 static void bnx2x_init_ind_wr(struct bnx2x
*bp
, u32 addr
, const u32
*data
,
145 for (i
= 0; i
< len
; i
++) {
146 REG_WR_IND(bp
, addr
+ i
*4, data
[i
]);
148 touch_softlockup_watchdog();
154 static void bnx2x_write_big_buf(struct bnx2x
*bp
, u32 addr
, u32 len
)
158 if (bp
->dmae_ready
) {
159 while (len
> DMAE_LEN32_WR_MAX
) {
160 bnx2x_write_dmae(bp
, bp
->gunzip_mapping
+ offset
,
161 addr
+ offset
, DMAE_LEN32_WR_MAX
);
162 offset
+= DMAE_LEN32_WR_MAX
* 4;
163 len
-= DMAE_LEN32_WR_MAX
;
165 bnx2x_write_dmae(bp
, bp
->gunzip_mapping
+ offset
,
168 bnx2x_init_str_wr(bp
, addr
, bp
->gunzip_buf
, len
);
171 static void bnx2x_init_fill(struct bnx2x
*bp
, u32 addr
, int fill
, u32 len
)
173 u32 buf_len
= (((len
* 4) > FW_BUF_SIZE
) ? FW_BUF_SIZE
: (len
* 4));
174 u32 buf_len32
= buf_len
/ 4;
177 memset(bp
->gunzip_buf
, fill
, buf_len
);
179 for (i
= 0; i
< len
; i
+= buf_len32
) {
180 u32 cur_len
= min(buf_len32
, len
- i
);
182 bnx2x_write_big_buf(bp
, addr
+ i
* 4, cur_len
);
186 static void bnx2x_init_wr_64(struct bnx2x
*bp
, u32 addr
, const u32
*data
,
189 u32 buf_len32
= FW_BUF_SIZE
/ 4;
194 /* 64 bit value is in a blob: first low DWORD, then high DWORD */
195 data64
= HILO_U64((*(data
+ 1)), (*data
));
196 len64
= min((u32
)(FW_BUF_SIZE
/8), len64
);
197 for (i
= 0; i
< len64
; i
++) {
198 u64
*pdata
= ((u64
*)(bp
->gunzip_buf
)) + i
;
203 for (i
= 0; i
< len
; i
+= buf_len32
) {
204 u32 cur_len
= min(buf_len32
, len
- i
);
206 bnx2x_write_big_buf(bp
, addr
+ i
* 4, cur_len
);
210 /*********************************************************
211 There are different blobs for each PRAM section.
212 In addition, each blob write operation is divided into a few operations
213 in order to decrease the amount of phys. contiguous buffer needed.
214 Thus, when we select a blob the address may be with some offset
215 from the beginning of PRAM section.
216 The same holds for the INT_TABLE sections.
217 **********************************************************/
218 #define IF_IS_INT_TABLE_ADDR(base, addr) \
219 if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
221 #define IF_IS_PRAM_ADDR(base, addr) \
222 if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
224 static const u32
*bnx2x_sel_blob(u32 addr
, const u32
*data
, int is_e1
)
226 IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE
, addr
)
227 data
= is_e1
? tsem_int_table_data_e1
:
228 tsem_int_table_data_e1h
;
230 IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE
, addr
)
231 data
= is_e1
? csem_int_table_data_e1
:
232 csem_int_table_data_e1h
;
234 IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE
, addr
)
235 data
= is_e1
? usem_int_table_data_e1
:
236 usem_int_table_data_e1h
;
238 IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE
, addr
)
239 data
= is_e1
? xsem_int_table_data_e1
:
240 xsem_int_table_data_e1h
;
242 IF_IS_PRAM_ADDR(TSEM_REG_PRAM
, addr
)
243 data
= is_e1
? tsem_pram_data_e1
: tsem_pram_data_e1h
;
245 IF_IS_PRAM_ADDR(CSEM_REG_PRAM
, addr
)
246 data
= is_e1
? csem_pram_data_e1
: csem_pram_data_e1h
;
248 IF_IS_PRAM_ADDR(USEM_REG_PRAM
, addr
)
249 data
= is_e1
? usem_pram_data_e1
: usem_pram_data_e1h
;
251 IF_IS_PRAM_ADDR(XSEM_REG_PRAM
, addr
)
252 data
= is_e1
? xsem_pram_data_e1
: xsem_pram_data_e1h
;
257 static void bnx2x_init_wr_wb(struct bnx2x
*bp
, u32 addr
, const u32
*data
,
258 u32 len
, int gunzip
, int is_e1
, u32 blob_off
)
262 data
= bnx2x_sel_blob(addr
, data
, is_e1
) + blob_off
;
270 temp
= kmalloc(len
, GFP_KERNEL
);
271 size
= (len
/ 4) + ((len
% 4) ? 1 : 0);
272 for (i
= 0; i
< size
; i
++)
273 temp
[i
] = swab32(data
[i
]);
276 rc
= bnx2x_gunzip(bp
, (u8
*)data
, len
);
278 BNX2X_ERR("gunzip failed ! rc %d\n", rc
);
284 len
= bp
->gunzip_outlen
;
287 for (i
= 0; i
< len
; i
++)
288 ((u32
*)bp
->gunzip_buf
)[i
] =
289 swab32(((u32
*)bp
->gunzip_buf
)[i
]);
292 if ((len
* 4) > FW_BUF_SIZE
) {
293 BNX2X_ERR("LARGE DMAE OPERATION ! "
294 "addr 0x%x len 0x%x\n", addr
, len
*4);
297 memcpy(bp
->gunzip_buf
, data
, len
* 4);
300 if (bp
->dmae_ready
) {
301 while (len
> DMAE_LEN32_WR_MAX
) {
302 bnx2x_write_dmae(bp
, bp
->gunzip_mapping
+ offset
,
303 addr
+ offset
, DMAE_LEN32_WR_MAX
);
304 offset
+= DMAE_LEN32_WR_MAX
* 4;
305 len
-= DMAE_LEN32_WR_MAX
;
307 bnx2x_write_dmae(bp
, bp
->gunzip_mapping
+ offset
,
310 bnx2x_init_ind_wr(bp
, addr
, bp
->gunzip_buf
, len
);
313 static void bnx2x_init_block(struct bnx2x
*bp
, u32 op_start
, u32 op_end
)
315 int is_e1
= CHIP_IS_E1(bp
);
316 int is_e1h
= CHIP_IS_E1H(bp
);
317 int is_emul_e1h
= (CHIP_REV_IS_EMUL(bp
) && is_e1h
);
320 u32 op_type
, addr
, len
;
321 const u32
*data
, *data_base
;
323 if (CHIP_REV_IS_FPGA(bp
))
325 else if (CHIP_REV_IS_EMUL(bp
))
331 data_base
= init_data_e1
;
332 else /* CHIP_IS_E1H(bp) */
333 data_base
= init_data_e1h
;
335 for (i
= op_start
; i
< op_end
; i
++) {
337 op
= (union init_op
*)&(init_ops
[i
]);
339 op_type
= op
->str_wr
.op
;
340 addr
= op
->str_wr
.offset
;
341 len
= op
->str_wr
.data_len
;
342 data
= data_base
+ op
->str_wr
.data_off
;
344 /* careful! it must be in order */
345 if (unlikely(op_type
> OP_WB
)) {
348 if (op_type
<= OP_WB_E1
) {
350 op_type
-= (OP_RD_E1
- OP_RD
);
353 } else if (op_type
<= OP_WB_E1H
) {
355 op_type
-= (OP_RD_E1H
- OP_RD
);
358 /* HW/EMUL specific */
359 if (op_type
== hw_wr
)
362 /* EMUL on E1H is special */
363 if ((op_type
== OP_WR_EMUL_E1H
) && is_emul_e1h
)
372 REG_WR(bp
, addr
, op
->write
.val
);
375 bnx2x_init_str_wr(bp
, addr
, data
, len
);
378 bnx2x_init_wr_wb(bp
, addr
, data
, len
, 0, is_e1
, 0);
381 bnx2x_init_ind_wr(bp
, addr
, data
, len
);
384 bnx2x_init_fill(bp
, addr
, 0, op
->zero
.len
);
387 bnx2x_init_wr_wb(bp
, addr
, data
, len
, 1, is_e1
,
388 op
->str_wr
.data_off
);
391 bnx2x_init_wr_64(bp
, addr
, data
, len
);
394 /* happens whenever an op is of a diff HW */
396 DP(NETIF_MSG_HW
, "skipping init operation "
397 "index %d[%d:%d]: type %d addr 0x%x "
399 i
, op_start
, op_end
, op_type
, addr
, len
, len
);
407 /****************************************************************************
409 ****************************************************************************/
411 * This code configures the PCI read/write arbiter
412 * which implements a weighted round robin
413 * between the virtual queues in the chip.
415 * The values were derived for each PCI max payload and max request size.
416 * since max payload and max request size are only known at run time,
417 * this is done as a separate init stage.
425 /* configuration for one arbiter queue */
432 /* derived configuration for each read queue for each max request size */
433 static const struct arb_line read_arb_data
[NUM_RD_Q
][MAX_RD_ORD
+ 1] = {
434 /* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
435 { {4, 8, 4}, {4, 8, 4}, {4, 8, 4}, {4, 8, 4} },
436 { {4, 3, 3}, {4, 3, 3}, {4, 3, 3}, {4, 3, 3} },
437 { {8, 3, 6}, {16, 3, 11}, {16, 3, 11}, {16, 3, 11} },
438 { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
439 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
440 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
441 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
442 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
443 /* 10 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
444 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
445 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
446 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
447 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
448 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
449 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
450 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
451 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
452 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
453 /* 20 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
454 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
455 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
456 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
457 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
458 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
459 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
460 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
461 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
462 { {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
465 /* derived configuration for each write queue for each max request size */
466 static const struct arb_line write_arb_data
[NUM_WR_Q
][MAX_WR_ORD
+ 1] = {
467 /* 1 */ { {4, 6, 3}, {4, 6, 3}, {4, 6, 3} },
468 { {4, 2, 3}, {4, 2, 3}, {4, 2, 3} },
469 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
470 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
471 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
472 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
473 { {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
474 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
475 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
476 /* 10 */{ {8, 9, 6}, {16, 9, 11}, {32, 9, 21} },
477 { {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
478 { {8, 9, 6}, {16, 9, 11}, {16, 9, 11} },
479 { {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
482 /* register addresses for read queues */
483 static const struct arb_line read_arb_addr
[NUM_RD_Q
-1] = {
484 /* 1 */ {PXP2_REG_RQ_BW_RD_L0
, PXP2_REG_RQ_BW_RD_ADD0
,
485 PXP2_REG_RQ_BW_RD_UBOUND0
},
486 {PXP2_REG_PSWRQ_BW_L1
, PXP2_REG_PSWRQ_BW_ADD1
,
487 PXP2_REG_PSWRQ_BW_UB1
},
488 {PXP2_REG_PSWRQ_BW_L2
, PXP2_REG_PSWRQ_BW_ADD2
,
489 PXP2_REG_PSWRQ_BW_UB2
},
490 {PXP2_REG_PSWRQ_BW_L3
, PXP2_REG_PSWRQ_BW_ADD3
,
491 PXP2_REG_PSWRQ_BW_UB3
},
492 {PXP2_REG_RQ_BW_RD_L4
, PXP2_REG_RQ_BW_RD_ADD4
,
493 PXP2_REG_RQ_BW_RD_UBOUND4
},
494 {PXP2_REG_RQ_BW_RD_L5
, PXP2_REG_RQ_BW_RD_ADD5
,
495 PXP2_REG_RQ_BW_RD_UBOUND5
},
496 {PXP2_REG_PSWRQ_BW_L6
, PXP2_REG_PSWRQ_BW_ADD6
,
497 PXP2_REG_PSWRQ_BW_UB6
},
498 {PXP2_REG_PSWRQ_BW_L7
, PXP2_REG_PSWRQ_BW_ADD7
,
499 PXP2_REG_PSWRQ_BW_UB7
},
500 {PXP2_REG_PSWRQ_BW_L8
, PXP2_REG_PSWRQ_BW_ADD8
,
501 PXP2_REG_PSWRQ_BW_UB8
},
502 /* 10 */{PXP2_REG_PSWRQ_BW_L9
, PXP2_REG_PSWRQ_BW_ADD9
,
503 PXP2_REG_PSWRQ_BW_UB9
},
504 {PXP2_REG_PSWRQ_BW_L10
, PXP2_REG_PSWRQ_BW_ADD10
,
505 PXP2_REG_PSWRQ_BW_UB10
},
506 {PXP2_REG_PSWRQ_BW_L11
, PXP2_REG_PSWRQ_BW_ADD11
,
507 PXP2_REG_PSWRQ_BW_UB11
},
508 {PXP2_REG_RQ_BW_RD_L12
, PXP2_REG_RQ_BW_RD_ADD12
,
509 PXP2_REG_RQ_BW_RD_UBOUND12
},
510 {PXP2_REG_RQ_BW_RD_L13
, PXP2_REG_RQ_BW_RD_ADD13
,
511 PXP2_REG_RQ_BW_RD_UBOUND13
},
512 {PXP2_REG_RQ_BW_RD_L14
, PXP2_REG_RQ_BW_RD_ADD14
,
513 PXP2_REG_RQ_BW_RD_UBOUND14
},
514 {PXP2_REG_RQ_BW_RD_L15
, PXP2_REG_RQ_BW_RD_ADD15
,
515 PXP2_REG_RQ_BW_RD_UBOUND15
},
516 {PXP2_REG_RQ_BW_RD_L16
, PXP2_REG_RQ_BW_RD_ADD16
,
517 PXP2_REG_RQ_BW_RD_UBOUND16
},
518 {PXP2_REG_RQ_BW_RD_L17
, PXP2_REG_RQ_BW_RD_ADD17
,
519 PXP2_REG_RQ_BW_RD_UBOUND17
},
520 {PXP2_REG_RQ_BW_RD_L18
, PXP2_REG_RQ_BW_RD_ADD18
,
521 PXP2_REG_RQ_BW_RD_UBOUND18
},
522 /* 20 */{PXP2_REG_RQ_BW_RD_L19
, PXP2_REG_RQ_BW_RD_ADD19
,
523 PXP2_REG_RQ_BW_RD_UBOUND19
},
524 {PXP2_REG_RQ_BW_RD_L20
, PXP2_REG_RQ_BW_RD_ADD20
,
525 PXP2_REG_RQ_BW_RD_UBOUND20
},
526 {PXP2_REG_RQ_BW_RD_L22
, PXP2_REG_RQ_BW_RD_ADD22
,
527 PXP2_REG_RQ_BW_RD_UBOUND22
},
528 {PXP2_REG_RQ_BW_RD_L23
, PXP2_REG_RQ_BW_RD_ADD23
,
529 PXP2_REG_RQ_BW_RD_UBOUND23
},
530 {PXP2_REG_RQ_BW_RD_L24
, PXP2_REG_RQ_BW_RD_ADD24
,
531 PXP2_REG_RQ_BW_RD_UBOUND24
},
532 {PXP2_REG_RQ_BW_RD_L25
, PXP2_REG_RQ_BW_RD_ADD25
,
533 PXP2_REG_RQ_BW_RD_UBOUND25
},
534 {PXP2_REG_RQ_BW_RD_L26
, PXP2_REG_RQ_BW_RD_ADD26
,
535 PXP2_REG_RQ_BW_RD_UBOUND26
},
536 {PXP2_REG_RQ_BW_RD_L27
, PXP2_REG_RQ_BW_RD_ADD27
,
537 PXP2_REG_RQ_BW_RD_UBOUND27
},
538 {PXP2_REG_PSWRQ_BW_L28
, PXP2_REG_PSWRQ_BW_ADD28
,
539 PXP2_REG_PSWRQ_BW_UB28
}
542 /* register addresses for write queues */
543 static const struct arb_line write_arb_addr
[NUM_WR_Q
-1] = {
544 /* 1 */ {PXP2_REG_PSWRQ_BW_L1
, PXP2_REG_PSWRQ_BW_ADD1
,
545 PXP2_REG_PSWRQ_BW_UB1
},
546 {PXP2_REG_PSWRQ_BW_L2
, PXP2_REG_PSWRQ_BW_ADD2
,
547 PXP2_REG_PSWRQ_BW_UB2
},
548 {PXP2_REG_PSWRQ_BW_L3
, PXP2_REG_PSWRQ_BW_ADD3
,
549 PXP2_REG_PSWRQ_BW_UB3
},
550 {PXP2_REG_PSWRQ_BW_L6
, PXP2_REG_PSWRQ_BW_ADD6
,
551 PXP2_REG_PSWRQ_BW_UB6
},
552 {PXP2_REG_PSWRQ_BW_L7
, PXP2_REG_PSWRQ_BW_ADD7
,
553 PXP2_REG_PSWRQ_BW_UB7
},
554 {PXP2_REG_PSWRQ_BW_L8
, PXP2_REG_PSWRQ_BW_ADD8
,
555 PXP2_REG_PSWRQ_BW_UB8
},
556 {PXP2_REG_PSWRQ_BW_L9
, PXP2_REG_PSWRQ_BW_ADD9
,
557 PXP2_REG_PSWRQ_BW_UB9
},
558 {PXP2_REG_PSWRQ_BW_L10
, PXP2_REG_PSWRQ_BW_ADD10
,
559 PXP2_REG_PSWRQ_BW_UB10
},
560 {PXP2_REG_PSWRQ_BW_L11
, PXP2_REG_PSWRQ_BW_ADD11
,
561 PXP2_REG_PSWRQ_BW_UB11
},
562 /* 10 */{PXP2_REG_PSWRQ_BW_L28
, PXP2_REG_PSWRQ_BW_ADD28
,
563 PXP2_REG_PSWRQ_BW_UB28
},
564 {PXP2_REG_RQ_BW_WR_L29
, PXP2_REG_RQ_BW_WR_ADD29
,
565 PXP2_REG_RQ_BW_WR_UBOUND29
},
566 {PXP2_REG_RQ_BW_WR_L30
, PXP2_REG_RQ_BW_WR_ADD30
,
567 PXP2_REG_RQ_BW_WR_UBOUND30
}
570 static void bnx2x_init_pxp(struct bnx2x
*bp
)
573 int r_order
, w_order
;
576 pci_read_config_word(bp
->pdev
,
577 bp
->pcie_cap
+ PCI_EXP_DEVCTL
, &devctl
);
578 DP(NETIF_MSG_HW
, "read 0x%x from devctl\n", devctl
);
579 w_order
= ((devctl
& PCI_EXP_DEVCTL_PAYLOAD
) >> 5);
581 r_order
= ((devctl
& PCI_EXP_DEVCTL_READRQ
) >> 12);
583 DP(NETIF_MSG_HW
, "force read order to %d\n", bp
->mrrs
);
587 if (r_order
> MAX_RD_ORD
) {
588 DP(NETIF_MSG_HW
, "read order of %d order adjusted to %d\n",
589 r_order
, MAX_RD_ORD
);
590 r_order
= MAX_RD_ORD
;
592 if (w_order
> MAX_WR_ORD
) {
593 DP(NETIF_MSG_HW
, "write order of %d order adjusted to %d\n",
594 w_order
, MAX_WR_ORD
);
595 w_order
= MAX_WR_ORD
;
597 if (CHIP_REV_IS_FPGA(bp
)) {
598 DP(NETIF_MSG_HW
, "write order adjusted to 1 for FPGA\n");
601 DP(NETIF_MSG_HW
, "read order %d write order %d\n", r_order
, w_order
);
603 for (i
= 0; i
< NUM_RD_Q
-1; i
++) {
604 REG_WR(bp
, read_arb_addr
[i
].l
, read_arb_data
[i
][r_order
].l
);
605 REG_WR(bp
, read_arb_addr
[i
].add
,
606 read_arb_data
[i
][r_order
].add
);
607 REG_WR(bp
, read_arb_addr
[i
].ubound
,
608 read_arb_data
[i
][r_order
].ubound
);
611 for (i
= 0; i
< NUM_WR_Q
-1; i
++) {
612 if ((write_arb_addr
[i
].l
== PXP2_REG_RQ_BW_WR_L29
) ||
613 (write_arb_addr
[i
].l
== PXP2_REG_RQ_BW_WR_L30
)) {
615 REG_WR(bp
, write_arb_addr
[i
].l
,
616 write_arb_data
[i
][w_order
].l
);
618 REG_WR(bp
, write_arb_addr
[i
].add
,
619 write_arb_data
[i
][w_order
].add
);
621 REG_WR(bp
, write_arb_addr
[i
].ubound
,
622 write_arb_data
[i
][w_order
].ubound
);
625 val
= REG_RD(bp
, write_arb_addr
[i
].l
);
626 REG_WR(bp
, write_arb_addr
[i
].l
,
627 val
| (write_arb_data
[i
][w_order
].l
<< 10));
629 val
= REG_RD(bp
, write_arb_addr
[i
].add
);
630 REG_WR(bp
, write_arb_addr
[i
].add
,
631 val
| (write_arb_data
[i
][w_order
].add
<< 10));
633 val
= REG_RD(bp
, write_arb_addr
[i
].ubound
);
634 REG_WR(bp
, write_arb_addr
[i
].ubound
,
635 val
| (write_arb_data
[i
][w_order
].ubound
<< 7));
639 val
= write_arb_data
[NUM_WR_Q
-1][w_order
].add
;
640 val
+= write_arb_data
[NUM_WR_Q
-1][w_order
].ubound
<< 10;
641 val
+= write_arb_data
[NUM_WR_Q
-1][w_order
].l
<< 17;
642 REG_WR(bp
, PXP2_REG_PSWRQ_BW_RD
, val
);
644 val
= read_arb_data
[NUM_RD_Q
-1][r_order
].add
;
645 val
+= read_arb_data
[NUM_RD_Q
-1][r_order
].ubound
<< 10;
646 val
+= read_arb_data
[NUM_RD_Q
-1][r_order
].l
<< 17;
647 REG_WR(bp
, PXP2_REG_PSWRQ_BW_WR
, val
);
649 REG_WR(bp
, PXP2_REG_RQ_WR_MBS0
, w_order
);
650 REG_WR(bp
, PXP2_REG_RQ_WR_MBS1
, w_order
);
651 REG_WR(bp
, PXP2_REG_RQ_RD_MBS0
, r_order
);
652 REG_WR(bp
, PXP2_REG_RQ_RD_MBS1
, r_order
);
654 if (r_order
== MAX_RD_ORD
)
655 REG_WR(bp
, PXP2_REG_RQ_PDR_LIMIT
, 0xe00);
657 REG_WR(bp
, PXP2_REG_WR_USDMDP_TH
, (0x18 << w_order
));
659 if (CHIP_IS_E1H(bp
)) {
660 val
= ((w_order
== 0) ? 2 : 3);
661 REG_WR(bp
, PXP2_REG_WR_HC_MPS
, val
);
662 REG_WR(bp
, PXP2_REG_WR_USDM_MPS
, val
);
663 REG_WR(bp
, PXP2_REG_WR_CSDM_MPS
, val
);
664 REG_WR(bp
, PXP2_REG_WR_TSDM_MPS
, val
);
665 REG_WR(bp
, PXP2_REG_WR_XSDM_MPS
, val
);
666 REG_WR(bp
, PXP2_REG_WR_QM_MPS
, val
);
667 REG_WR(bp
, PXP2_REG_WR_TM_MPS
, val
);
668 REG_WR(bp
, PXP2_REG_WR_SRC_MPS
, val
);
669 REG_WR(bp
, PXP2_REG_WR_DBG_MPS
, val
);
670 REG_WR(bp
, PXP2_REG_WR_DMAE_MPS
, 2); /* DMAE is special */
671 REG_WR(bp
, PXP2_REG_WR_CDU_MPS
, val
);
676 /****************************************************************************
678 ****************************************************************************/
680 #define CDU_REGION_NUMBER_XCM_AG 2
681 #define CDU_REGION_NUMBER_UCM_AG 4
684 * String-to-compress [31:8] = CID (all 24 bits)
685 * String-to-compress [7:4] = Region
686 * String-to-compress [3:0] = Type
688 #define CDU_VALID_DATA(_cid, _region, _type) \
689 (((_cid) << 8) | (((_region) & 0xf) << 4) | (((_type) & 0xf)))
690 #define CDU_CRC8(_cid, _region, _type) \
691 calc_crc8(CDU_VALID_DATA(_cid, _region, _type), 0xff)
692 #define CDU_RSRVD_VALUE_TYPE_A(_cid, _region, _type) \
693 (0x80 | (CDU_CRC8(_cid, _region, _type) & 0x7f))
694 #define CDU_RSRVD_VALUE_TYPE_B(_crc, _type) \
695 (0x80 | ((_type) & 0xf << 3) | (CDU_CRC8(_cid, _region, _type) & 0x7))
696 #define CDU_RSRVD_INVALIDATE_CONTEXT_VALUE(_val) ((_val) & ~0x80)
698 /*****************************************************************************
700 * Calculates crc 8 on a word value: polynomial 0-1-2-8
701 * Code was translated from Verilog.
702 ****************************************************************************/
703 static u8
calc_crc8(u32 data
, u8 crc
)
711 /* split the data into 31 bits */
712 for (i
= 0; i
< 32; i
++) {
717 /* split the crc into 8 bits */
718 for (i
= 0; i
< 8; i
++) {
723 NewCRC
[0] = D
[31] ^ D
[30] ^ D
[28] ^ D
[23] ^ D
[21] ^ D
[19] ^ D
[18] ^
724 D
[16] ^ D
[14] ^ D
[12] ^ D
[8] ^ D
[7] ^ D
[6] ^ D
[0] ^ C
[4] ^
726 NewCRC
[1] = D
[30] ^ D
[29] ^ D
[28] ^ D
[24] ^ D
[23] ^ D
[22] ^ D
[21] ^
727 D
[20] ^ D
[18] ^ D
[17] ^ D
[16] ^ D
[15] ^ D
[14] ^ D
[13] ^
728 D
[12] ^ D
[9] ^ D
[6] ^ D
[1] ^ D
[0] ^ C
[0] ^ C
[4] ^ C
[5] ^ C
[6];
729 NewCRC
[2] = D
[29] ^ D
[28] ^ D
[25] ^ D
[24] ^ D
[22] ^ D
[17] ^ D
[15] ^
730 D
[13] ^ D
[12] ^ D
[10] ^ D
[8] ^ D
[6] ^ D
[2] ^ D
[1] ^ D
[0] ^
731 C
[0] ^ C
[1] ^ C
[4] ^ C
[5];
732 NewCRC
[3] = D
[30] ^ D
[29] ^ D
[26] ^ D
[25] ^ D
[23] ^ D
[18] ^ D
[16] ^
733 D
[14] ^ D
[13] ^ D
[11] ^ D
[9] ^ D
[7] ^ D
[3] ^ D
[2] ^ D
[1] ^
734 C
[1] ^ C
[2] ^ C
[5] ^ C
[6];
735 NewCRC
[4] = D
[31] ^ D
[30] ^ D
[27] ^ D
[26] ^ D
[24] ^ D
[19] ^ D
[17] ^
736 D
[15] ^ D
[14] ^ D
[12] ^ D
[10] ^ D
[8] ^ D
[4] ^ D
[3] ^ D
[2] ^
737 C
[0] ^ C
[2] ^ C
[3] ^ C
[6] ^ C
[7];
738 NewCRC
[5] = D
[31] ^ D
[28] ^ D
[27] ^ D
[25] ^ D
[20] ^ D
[18] ^ D
[16] ^
739 D
[15] ^ D
[13] ^ D
[11] ^ D
[9] ^ D
[5] ^ D
[4] ^ D
[3] ^ C
[1] ^
741 NewCRC
[6] = D
[29] ^ D
[28] ^ D
[26] ^ D
[21] ^ D
[19] ^ D
[17] ^ D
[16] ^
742 D
[14] ^ D
[12] ^ D
[10] ^ D
[6] ^ D
[5] ^ D
[4] ^ C
[2] ^ C
[4] ^
744 NewCRC
[7] = D
[30] ^ D
[29] ^ D
[27] ^ D
[22] ^ D
[20] ^ D
[18] ^ D
[17] ^
745 D
[15] ^ D
[13] ^ D
[11] ^ D
[7] ^ D
[6] ^ D
[5] ^ C
[3] ^ C
[5] ^
749 for (i
= 0; i
< 8; i
++)
750 crc_res
|= (NewCRC
[i
] << i
);
755 /* registers addresses are not in order
756 so these arrays help simplify the code */
757 static const int cm_start
[E1H_FUNC_MAX
][9] = {
758 {MISC_FUNC0_START
, TCM_FUNC0_START
, UCM_FUNC0_START
, CCM_FUNC0_START
,
759 XCM_FUNC0_START
, TSEM_FUNC0_START
, USEM_FUNC0_START
, CSEM_FUNC0_START
,
761 {MISC_FUNC1_START
, TCM_FUNC1_START
, UCM_FUNC1_START
, CCM_FUNC1_START
,
762 XCM_FUNC1_START
, TSEM_FUNC1_START
, USEM_FUNC1_START
, CSEM_FUNC1_START
,
764 {MISC_FUNC2_START
, TCM_FUNC2_START
, UCM_FUNC2_START
, CCM_FUNC2_START
,
765 XCM_FUNC2_START
, TSEM_FUNC2_START
, USEM_FUNC2_START
, CSEM_FUNC2_START
,
767 {MISC_FUNC3_START
, TCM_FUNC3_START
, UCM_FUNC3_START
, CCM_FUNC3_START
,
768 XCM_FUNC3_START
, TSEM_FUNC3_START
, USEM_FUNC3_START
, CSEM_FUNC3_START
,
770 {MISC_FUNC4_START
, TCM_FUNC4_START
, UCM_FUNC4_START
, CCM_FUNC4_START
,
771 XCM_FUNC4_START
, TSEM_FUNC4_START
, USEM_FUNC4_START
, CSEM_FUNC4_START
,
773 {MISC_FUNC5_START
, TCM_FUNC5_START
, UCM_FUNC5_START
, CCM_FUNC5_START
,
774 XCM_FUNC5_START
, TSEM_FUNC5_START
, USEM_FUNC5_START
, CSEM_FUNC5_START
,
776 {MISC_FUNC6_START
, TCM_FUNC6_START
, UCM_FUNC6_START
, CCM_FUNC6_START
,
777 XCM_FUNC6_START
, TSEM_FUNC6_START
, USEM_FUNC6_START
, CSEM_FUNC6_START
,
779 {MISC_FUNC7_START
, TCM_FUNC7_START
, UCM_FUNC7_START
, CCM_FUNC7_START
,
780 XCM_FUNC7_START
, TSEM_FUNC7_START
, USEM_FUNC7_START
, CSEM_FUNC7_START
,
784 static const int cm_end
[E1H_FUNC_MAX
][9] = {
785 {MISC_FUNC0_END
, TCM_FUNC0_END
, UCM_FUNC0_END
, CCM_FUNC0_END
,
786 XCM_FUNC0_END
, TSEM_FUNC0_END
, USEM_FUNC0_END
, CSEM_FUNC0_END
,
788 {MISC_FUNC1_END
, TCM_FUNC1_END
, UCM_FUNC1_END
, CCM_FUNC1_END
,
789 XCM_FUNC1_END
, TSEM_FUNC1_END
, USEM_FUNC1_END
, CSEM_FUNC1_END
,
791 {MISC_FUNC2_END
, TCM_FUNC2_END
, UCM_FUNC2_END
, CCM_FUNC2_END
,
792 XCM_FUNC2_END
, TSEM_FUNC2_END
, USEM_FUNC2_END
, CSEM_FUNC2_END
,
794 {MISC_FUNC3_END
, TCM_FUNC3_END
, UCM_FUNC3_END
, CCM_FUNC3_END
,
795 XCM_FUNC3_END
, TSEM_FUNC3_END
, USEM_FUNC3_END
, CSEM_FUNC3_END
,
797 {MISC_FUNC4_END
, TCM_FUNC4_END
, UCM_FUNC4_END
, CCM_FUNC4_END
,
798 XCM_FUNC4_END
, TSEM_FUNC4_END
, USEM_FUNC4_END
, CSEM_FUNC4_END
,
800 {MISC_FUNC5_END
, TCM_FUNC5_END
, UCM_FUNC5_END
, CCM_FUNC5_END
,
801 XCM_FUNC5_END
, TSEM_FUNC5_END
, USEM_FUNC5_END
, CSEM_FUNC5_END
,
803 {MISC_FUNC6_END
, TCM_FUNC6_END
, UCM_FUNC6_END
, CCM_FUNC6_END
,
804 XCM_FUNC6_END
, TSEM_FUNC6_END
, USEM_FUNC6_END
, CSEM_FUNC6_END
,
806 {MISC_FUNC7_END
, TCM_FUNC7_END
, UCM_FUNC7_END
, CCM_FUNC7_END
,
807 XCM_FUNC7_END
, TSEM_FUNC7_END
, USEM_FUNC7_END
, CSEM_FUNC7_END
,
811 static const int hc_limits
[E1H_FUNC_MAX
][2] = {
812 {HC_FUNC0_START
, HC_FUNC0_END
},
813 {HC_FUNC1_START
, HC_FUNC1_END
},
814 {HC_FUNC2_START
, HC_FUNC2_END
},
815 {HC_FUNC3_START
, HC_FUNC3_END
},
816 {HC_FUNC4_START
, HC_FUNC4_END
},
817 {HC_FUNC5_START
, HC_FUNC5_END
},
818 {HC_FUNC6_START
, HC_FUNC6_END
},
819 {HC_FUNC7_START
, HC_FUNC7_END
}
822 #endif /* BNX2X_INIT_H */