2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
45 #include <asm/processor.h>
47 #include <asm/uaccess.h>
48 #include <asm/pgtable.h>
51 #include <asm/msidef.h>
54 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
55 #include "coalesced_mmio.h"
58 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
59 #include <linux/pci.h>
60 #include <linux/interrupt.h>
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
67 static int msi2intx
= 1;
68 module_param(msi2intx
, bool, 0);
70 DEFINE_SPINLOCK(kvm_lock
);
73 static cpumask_var_t cpus_hardware_enabled
;
75 struct kmem_cache
*kvm_vcpu_cache
;
76 EXPORT_SYMBOL_GPL(kvm_vcpu_cache
);
78 static __read_mostly
struct preempt_ops kvm_preempt_ops
;
80 struct dentry
*kvm_debugfs_dir
;
82 static long kvm_vcpu_ioctl(struct file
*file
, unsigned int ioctl
,
85 static bool kvm_rebooting
;
87 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
90 static void assigned_device_msi_dispatch(struct kvm_assigned_dev_kernel
*dev
)
93 struct kvm_vcpu
*vcpu
;
94 struct kvm_ioapic
*ioapic
= ioapic_irqchip(dev
->kvm
);
95 int dest_id
= (dev
->guest_msi
.address_lo
& MSI_ADDR_DEST_ID_MASK
)
96 >> MSI_ADDR_DEST_ID_SHIFT
;
97 int vector
= (dev
->guest_msi
.data
& MSI_DATA_VECTOR_MASK
)
98 >> MSI_DATA_VECTOR_SHIFT
;
99 int dest_mode
= test_bit(MSI_ADDR_DEST_MODE_SHIFT
,
100 (unsigned long *)&dev
->guest_msi
.address_lo
);
101 int trig_mode
= test_bit(MSI_DATA_TRIGGER_SHIFT
,
102 (unsigned long *)&dev
->guest_msi
.data
);
103 int delivery_mode
= test_bit(MSI_DATA_DELIVERY_MODE_SHIFT
,
104 (unsigned long *)&dev
->guest_msi
.data
);
109 deliver_bitmask
= kvm_ioapic_get_delivery_bitmask(ioapic
,
111 /* IOAPIC delivery mode value is the same as MSI here */
112 switch (delivery_mode
) {
113 case IOAPIC_LOWEST_PRIORITY
:
114 vcpu
= kvm_get_lowest_prio_vcpu(ioapic
->kvm
, vector
,
117 kvm_apic_set_irq(vcpu
, vector
, trig_mode
);
119 printk(KERN_INFO
"kvm: null lowest priority vcpu!\n");
122 for (vcpu_id
= 0; deliver_bitmask
!= 0; vcpu_id
++) {
123 if (!(deliver_bitmask
& (1 << vcpu_id
)))
125 deliver_bitmask
&= ~(1 << vcpu_id
);
126 vcpu
= ioapic
->kvm
->vcpus
[vcpu_id
];
128 kvm_apic_set_irq(vcpu
, vector
, trig_mode
);
132 printk(KERN_INFO
"kvm: unsupported MSI delivery mode\n");
136 static void assigned_device_msi_dispatch(struct kvm_assigned_dev_kernel
*dev
) {}
139 static struct kvm_assigned_dev_kernel
*kvm_find_assigned_dev(struct list_head
*head
,
142 struct list_head
*ptr
;
143 struct kvm_assigned_dev_kernel
*match
;
145 list_for_each(ptr
, head
) {
146 match
= list_entry(ptr
, struct kvm_assigned_dev_kernel
, list
);
147 if (match
->assigned_dev_id
== assigned_dev_id
)
153 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct
*work
)
155 struct kvm_assigned_dev_kernel
*assigned_dev
;
157 assigned_dev
= container_of(work
, struct kvm_assigned_dev_kernel
,
160 /* This is taken to safely inject irq inside the guest. When
161 * the interrupt injection (or the ioapic code) uses a
162 * finer-grained lock, update this
164 mutex_lock(&assigned_dev
->kvm
->lock
);
165 if (assigned_dev
->irq_requested_type
& KVM_ASSIGNED_DEV_GUEST_INTX
)
166 kvm_set_irq(assigned_dev
->kvm
,
167 assigned_dev
->irq_source_id
,
168 assigned_dev
->guest_irq
, 1);
169 else if (assigned_dev
->irq_requested_type
&
170 KVM_ASSIGNED_DEV_GUEST_MSI
) {
171 assigned_device_msi_dispatch(assigned_dev
);
172 enable_irq(assigned_dev
->host_irq
);
173 assigned_dev
->host_irq_disabled
= false;
175 mutex_unlock(&assigned_dev
->kvm
->lock
);
176 kvm_put_kvm(assigned_dev
->kvm
);
179 static irqreturn_t
kvm_assigned_dev_intr(int irq
, void *dev_id
)
181 struct kvm_assigned_dev_kernel
*assigned_dev
=
182 (struct kvm_assigned_dev_kernel
*) dev_id
;
184 kvm_get_kvm(assigned_dev
->kvm
);
186 schedule_work(&assigned_dev
->interrupt_work
);
188 disable_irq_nosync(irq
);
189 assigned_dev
->host_irq_disabled
= true;
194 /* Ack the irq line for an assigned device */
195 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier
*kian
)
197 struct kvm_assigned_dev_kernel
*dev
;
202 dev
= container_of(kian
, struct kvm_assigned_dev_kernel
,
205 kvm_set_irq(dev
->kvm
, dev
->irq_source_id
, dev
->guest_irq
, 0);
207 /* The guest irq may be shared so this ack may be
208 * from another device.
210 if (dev
->host_irq_disabled
) {
211 enable_irq(dev
->host_irq
);
212 dev
->host_irq_disabled
= false;
216 static void kvm_free_assigned_irq(struct kvm
*kvm
,
217 struct kvm_assigned_dev_kernel
*assigned_dev
)
219 if (!irqchip_in_kernel(kvm
))
222 kvm_unregister_irq_ack_notifier(&assigned_dev
->ack_notifier
);
224 if (assigned_dev
->irq_source_id
!= -1)
225 kvm_free_irq_source_id(kvm
, assigned_dev
->irq_source_id
);
226 assigned_dev
->irq_source_id
= -1;
228 if (!assigned_dev
->irq_requested_type
)
231 if (cancel_work_sync(&assigned_dev
->interrupt_work
))
232 /* We had pending work. That means we will have to take
233 * care of kvm_put_kvm.
237 free_irq(assigned_dev
->host_irq
, (void *)assigned_dev
);
239 if (assigned_dev
->irq_requested_type
& KVM_ASSIGNED_DEV_HOST_MSI
)
240 pci_disable_msi(assigned_dev
->dev
);
242 assigned_dev
->irq_requested_type
= 0;
246 static void kvm_free_assigned_device(struct kvm
*kvm
,
247 struct kvm_assigned_dev_kernel
250 kvm_free_assigned_irq(kvm
, assigned_dev
);
252 pci_reset_function(assigned_dev
->dev
);
254 pci_release_regions(assigned_dev
->dev
);
255 pci_disable_device(assigned_dev
->dev
);
256 pci_dev_put(assigned_dev
->dev
);
258 list_del(&assigned_dev
->list
);
262 void kvm_free_all_assigned_devices(struct kvm
*kvm
)
264 struct list_head
*ptr
, *ptr2
;
265 struct kvm_assigned_dev_kernel
*assigned_dev
;
267 list_for_each_safe(ptr
, ptr2
, &kvm
->arch
.assigned_dev_head
) {
268 assigned_dev
= list_entry(ptr
,
269 struct kvm_assigned_dev_kernel
,
272 kvm_free_assigned_device(kvm
, assigned_dev
);
276 static int assigned_device_update_intx(struct kvm
*kvm
,
277 struct kvm_assigned_dev_kernel
*adev
,
278 struct kvm_assigned_irq
*airq
)
280 adev
->guest_irq
= airq
->guest_irq
;
281 adev
->ack_notifier
.gsi
= airq
->guest_irq
;
283 if (adev
->irq_requested_type
& KVM_ASSIGNED_DEV_HOST_INTX
)
286 if (irqchip_in_kernel(kvm
)) {
288 adev
->irq_requested_type
& KVM_ASSIGNED_DEV_HOST_MSI
) {
289 free_irq(adev
->host_irq
, (void *)kvm
);
290 pci_disable_msi(adev
->dev
);
293 if (!capable(CAP_SYS_RAWIO
))
297 adev
->host_irq
= airq
->host_irq
;
299 adev
->host_irq
= adev
->dev
->irq
;
301 /* Even though this is PCI, we don't want to use shared
302 * interrupts. Sharing host devices with guest-assigned devices
303 * on the same interrupt line is not a happy situation: there
304 * are going to be long delays in accepting, acking, etc.
306 if (request_irq(adev
->host_irq
, kvm_assigned_dev_intr
,
307 0, "kvm_assigned_intx_device", (void *)adev
))
311 adev
->irq_requested_type
= KVM_ASSIGNED_DEV_GUEST_INTX
|
312 KVM_ASSIGNED_DEV_HOST_INTX
;
317 static int assigned_device_update_msi(struct kvm
*kvm
,
318 struct kvm_assigned_dev_kernel
*adev
,
319 struct kvm_assigned_irq
*airq
)
323 if (airq
->flags
& KVM_DEV_IRQ_ASSIGN_ENABLE_MSI
) {
324 /* x86 don't care upper address of guest msi message addr */
325 adev
->irq_requested_type
|= KVM_ASSIGNED_DEV_GUEST_MSI
;
326 adev
->irq_requested_type
&= ~KVM_ASSIGNED_DEV_GUEST_INTX
;
327 adev
->guest_msi
.address_lo
= airq
->guest_msi
.addr_lo
;
328 adev
->guest_msi
.data
= airq
->guest_msi
.data
;
329 adev
->ack_notifier
.gsi
= -1;
330 } else if (msi2intx
) {
331 adev
->irq_requested_type
|= KVM_ASSIGNED_DEV_GUEST_INTX
;
332 adev
->irq_requested_type
&= ~KVM_ASSIGNED_DEV_GUEST_MSI
;
333 adev
->guest_irq
= airq
->guest_irq
;
334 adev
->ack_notifier
.gsi
= airq
->guest_irq
;
337 if (adev
->irq_requested_type
& KVM_ASSIGNED_DEV_HOST_MSI
)
340 if (irqchip_in_kernel(kvm
)) {
342 if (adev
->irq_requested_type
&
343 KVM_ASSIGNED_DEV_HOST_INTX
)
344 free_irq(adev
->host_irq
, (void *)adev
);
346 r
= pci_enable_msi(adev
->dev
);
351 adev
->host_irq
= adev
->dev
->irq
;
352 if (request_irq(adev
->host_irq
, kvm_assigned_dev_intr
, 0,
353 "kvm_assigned_msi_device", (void *)adev
))
358 adev
->irq_requested_type
= KVM_ASSIGNED_DEV_GUEST_MSI
;
360 adev
->irq_requested_type
|= KVM_ASSIGNED_DEV_HOST_MSI
;
365 static int kvm_vm_ioctl_assign_irq(struct kvm
*kvm
,
366 struct kvm_assigned_irq
370 struct kvm_assigned_dev_kernel
*match
;
372 mutex_lock(&kvm
->lock
);
374 match
= kvm_find_assigned_dev(&kvm
->arch
.assigned_dev_head
,
375 assigned_irq
->assigned_dev_id
);
377 mutex_unlock(&kvm
->lock
);
381 if (!match
->irq_requested_type
) {
382 INIT_WORK(&match
->interrupt_work
,
383 kvm_assigned_dev_interrupt_work_handler
);
384 if (irqchip_in_kernel(kvm
)) {
385 /* Register ack nofitier */
386 match
->ack_notifier
.gsi
= -1;
387 match
->ack_notifier
.irq_acked
=
388 kvm_assigned_dev_ack_irq
;
389 kvm_register_irq_ack_notifier(kvm
,
390 &match
->ack_notifier
);
392 /* Request IRQ source ID */
393 r
= kvm_request_irq_source_id(kvm
);
397 match
->irq_source_id
= r
;
400 /* Determine host device irq type, we can know the
401 * result from dev->msi_enabled */
403 pci_enable_msi(match
->dev
);
409 (assigned_irq
->flags
& KVM_DEV_IRQ_ASSIGN_ENABLE_MSI
)) ||
410 (msi2intx
&& match
->dev
->msi_enabled
)) {
412 r
= assigned_device_update_msi(kvm
, match
, assigned_irq
);
414 printk(KERN_WARNING
"kvm: failed to enable "
421 } else if (assigned_irq
->host_irq
== 0 && match
->dev
->irq
== 0) {
422 /* Host device IRQ 0 means don't support INTx */
425 "kvm: wait device to enable MSI!\n");
429 "kvm: failed to enable MSI device!\n");
434 /* Non-sharing INTx mode */
435 r
= assigned_device_update_intx(kvm
, match
, assigned_irq
);
437 printk(KERN_WARNING
"kvm: failed to enable "
443 mutex_unlock(&kvm
->lock
);
446 mutex_unlock(&kvm
->lock
);
447 kvm_free_assigned_device(kvm
, match
);
451 static int kvm_vm_ioctl_assign_device(struct kvm
*kvm
,
452 struct kvm_assigned_pci_dev
*assigned_dev
)
455 struct kvm_assigned_dev_kernel
*match
;
458 mutex_lock(&kvm
->lock
);
460 match
= kvm_find_assigned_dev(&kvm
->arch
.assigned_dev_head
,
461 assigned_dev
->assigned_dev_id
);
463 /* device already assigned */
468 match
= kzalloc(sizeof(struct kvm_assigned_dev_kernel
), GFP_KERNEL
);
470 printk(KERN_INFO
"%s: Couldn't allocate memory\n",
475 dev
= pci_get_bus_and_slot(assigned_dev
->busnr
,
476 assigned_dev
->devfn
);
478 printk(KERN_INFO
"%s: host device not found\n", __func__
);
482 if (pci_enable_device(dev
)) {
483 printk(KERN_INFO
"%s: Could not enable PCI device\n", __func__
);
487 r
= pci_request_regions(dev
, "kvm_assigned_device");
489 printk(KERN_INFO
"%s: Could not get access to device regions\n",
494 pci_reset_function(dev
);
496 match
->assigned_dev_id
= assigned_dev
->assigned_dev_id
;
497 match
->host_busnr
= assigned_dev
->busnr
;
498 match
->host_devfn
= assigned_dev
->devfn
;
499 match
->flags
= assigned_dev
->flags
;
501 match
->irq_source_id
= -1;
504 list_add(&match
->list
, &kvm
->arch
.assigned_dev_head
);
506 if (assigned_dev
->flags
& KVM_DEV_ASSIGN_ENABLE_IOMMU
) {
507 if (!kvm
->arch
.iommu_domain
) {
508 r
= kvm_iommu_map_guest(kvm
);
512 r
= kvm_assign_device(kvm
, match
);
518 mutex_unlock(&kvm
->lock
);
521 list_del(&match
->list
);
522 pci_release_regions(dev
);
524 pci_disable_device(dev
);
529 mutex_unlock(&kvm
->lock
);
534 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
535 static int kvm_vm_ioctl_deassign_device(struct kvm
*kvm
,
536 struct kvm_assigned_pci_dev
*assigned_dev
)
539 struct kvm_assigned_dev_kernel
*match
;
541 mutex_lock(&kvm
->lock
);
543 match
= kvm_find_assigned_dev(&kvm
->arch
.assigned_dev_head
,
544 assigned_dev
->assigned_dev_id
);
546 printk(KERN_INFO
"%s: device hasn't been assigned before, "
547 "so cannot be deassigned\n", __func__
);
552 if (assigned_dev
->flags
& KVM_DEV_ASSIGN_ENABLE_IOMMU
)
553 kvm_deassign_device(kvm
, match
);
555 kvm_free_assigned_device(kvm
, match
);
558 mutex_unlock(&kvm
->lock
);
563 static inline int valid_vcpu(int n
)
565 return likely(n
>= 0 && n
< KVM_MAX_VCPUS
);
568 inline int kvm_is_mmio_pfn(pfn_t pfn
)
571 return PageReserved(pfn_to_page(pfn
));
577 * Switches to specified vcpu, until a matching vcpu_put()
579 void vcpu_load(struct kvm_vcpu
*vcpu
)
583 mutex_lock(&vcpu
->mutex
);
585 preempt_notifier_register(&vcpu
->preempt_notifier
);
586 kvm_arch_vcpu_load(vcpu
, cpu
);
590 void vcpu_put(struct kvm_vcpu
*vcpu
)
593 kvm_arch_vcpu_put(vcpu
);
594 preempt_notifier_unregister(&vcpu
->preempt_notifier
);
596 mutex_unlock(&vcpu
->mutex
);
599 static void ack_flush(void *_completed
)
603 static bool make_all_cpus_request(struct kvm
*kvm
, unsigned int req
)
608 struct kvm_vcpu
*vcpu
;
610 if (alloc_cpumask_var(&cpus
, GFP_ATOMIC
))
614 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
615 vcpu
= kvm
->vcpus
[i
];
618 if (test_and_set_bit(req
, &vcpu
->requests
))
621 if (cpus
!= NULL
&& cpu
!= -1 && cpu
!= me
)
622 cpumask_set_cpu(cpu
, cpus
);
624 if (unlikely(cpus
== NULL
))
625 smp_call_function_many(cpu_online_mask
, ack_flush
, NULL
, 1);
626 else if (!cpumask_empty(cpus
))
627 smp_call_function_many(cpus
, ack_flush
, NULL
, 1);
631 free_cpumask_var(cpus
);
635 void kvm_flush_remote_tlbs(struct kvm
*kvm
)
637 if (make_all_cpus_request(kvm
, KVM_REQ_TLB_FLUSH
))
638 ++kvm
->stat
.remote_tlb_flush
;
641 void kvm_reload_remote_mmus(struct kvm
*kvm
)
643 make_all_cpus_request(kvm
, KVM_REQ_MMU_RELOAD
);
646 int kvm_vcpu_init(struct kvm_vcpu
*vcpu
, struct kvm
*kvm
, unsigned id
)
651 mutex_init(&vcpu
->mutex
);
655 init_waitqueue_head(&vcpu
->wq
);
657 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
662 vcpu
->run
= page_address(page
);
664 r
= kvm_arch_vcpu_init(vcpu
);
670 free_page((unsigned long)vcpu
->run
);
674 EXPORT_SYMBOL_GPL(kvm_vcpu_init
);
676 void kvm_vcpu_uninit(struct kvm_vcpu
*vcpu
)
678 kvm_arch_vcpu_uninit(vcpu
);
679 free_page((unsigned long)vcpu
->run
);
681 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit
);
683 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
684 static inline struct kvm
*mmu_notifier_to_kvm(struct mmu_notifier
*mn
)
686 return container_of(mn
, struct kvm
, mmu_notifier
);
689 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier
*mn
,
690 struct mm_struct
*mm
,
691 unsigned long address
)
693 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
697 * When ->invalidate_page runs, the linux pte has been zapped
698 * already but the page is still allocated until
699 * ->invalidate_page returns. So if we increase the sequence
700 * here the kvm page fault will notice if the spte can't be
701 * established because the page is going to be freed. If
702 * instead the kvm page fault establishes the spte before
703 * ->invalidate_page runs, kvm_unmap_hva will release it
706 * The sequence increase only need to be seen at spin_unlock
707 * time, and not at spin_lock time.
709 * Increasing the sequence after the spin_unlock would be
710 * unsafe because the kvm page fault could then establish the
711 * pte after kvm_unmap_hva returned, without noticing the page
712 * is going to be freed.
714 spin_lock(&kvm
->mmu_lock
);
715 kvm
->mmu_notifier_seq
++;
716 need_tlb_flush
= kvm_unmap_hva(kvm
, address
);
717 spin_unlock(&kvm
->mmu_lock
);
719 /* we've to flush the tlb before the pages can be freed */
721 kvm_flush_remote_tlbs(kvm
);
725 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier
*mn
,
726 struct mm_struct
*mm
,
730 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
731 int need_tlb_flush
= 0;
733 spin_lock(&kvm
->mmu_lock
);
735 * The count increase must become visible at unlock time as no
736 * spte can be established without taking the mmu_lock and
737 * count is also read inside the mmu_lock critical section.
739 kvm
->mmu_notifier_count
++;
740 for (; start
< end
; start
+= PAGE_SIZE
)
741 need_tlb_flush
|= kvm_unmap_hva(kvm
, start
);
742 spin_unlock(&kvm
->mmu_lock
);
744 /* we've to flush the tlb before the pages can be freed */
746 kvm_flush_remote_tlbs(kvm
);
749 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier
*mn
,
750 struct mm_struct
*mm
,
754 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
756 spin_lock(&kvm
->mmu_lock
);
758 * This sequence increase will notify the kvm page fault that
759 * the page that is going to be mapped in the spte could have
762 kvm
->mmu_notifier_seq
++;
764 * The above sequence increase must be visible before the
765 * below count decrease but both values are read by the kvm
766 * page fault under mmu_lock spinlock so we don't need to add
767 * a smb_wmb() here in between the two.
769 kvm
->mmu_notifier_count
--;
770 spin_unlock(&kvm
->mmu_lock
);
772 BUG_ON(kvm
->mmu_notifier_count
< 0);
775 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier
*mn
,
776 struct mm_struct
*mm
,
777 unsigned long address
)
779 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
782 spin_lock(&kvm
->mmu_lock
);
783 young
= kvm_age_hva(kvm
, address
);
784 spin_unlock(&kvm
->mmu_lock
);
787 kvm_flush_remote_tlbs(kvm
);
792 static const struct mmu_notifier_ops kvm_mmu_notifier_ops
= {
793 .invalidate_page
= kvm_mmu_notifier_invalidate_page
,
794 .invalidate_range_start
= kvm_mmu_notifier_invalidate_range_start
,
795 .invalidate_range_end
= kvm_mmu_notifier_invalidate_range_end
,
796 .clear_flush_young
= kvm_mmu_notifier_clear_flush_young
,
798 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
800 static struct kvm
*kvm_create_vm(void)
802 struct kvm
*kvm
= kvm_arch_create_vm();
803 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
810 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
811 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
814 return ERR_PTR(-ENOMEM
);
816 kvm
->coalesced_mmio_ring
=
817 (struct kvm_coalesced_mmio_ring
*)page_address(page
);
820 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
823 kvm
->mmu_notifier
.ops
= &kvm_mmu_notifier_ops
;
824 err
= mmu_notifier_register(&kvm
->mmu_notifier
, current
->mm
);
826 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
835 kvm
->mm
= current
->mm
;
836 atomic_inc(&kvm
->mm
->mm_count
);
837 spin_lock_init(&kvm
->mmu_lock
);
838 kvm_io_bus_init(&kvm
->pio_bus
);
839 mutex_init(&kvm
->lock
);
840 kvm_io_bus_init(&kvm
->mmio_bus
);
841 init_rwsem(&kvm
->slots_lock
);
842 atomic_set(&kvm
->users_count
, 1);
843 spin_lock(&kvm_lock
);
844 list_add(&kvm
->vm_list
, &vm_list
);
845 spin_unlock(&kvm_lock
);
846 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
847 kvm_coalesced_mmio_init(kvm
);
854 * Free any memory in @free but not in @dont.
856 static void kvm_free_physmem_slot(struct kvm_memory_slot
*free
,
857 struct kvm_memory_slot
*dont
)
859 if (!dont
|| free
->rmap
!= dont
->rmap
)
862 if (!dont
|| free
->dirty_bitmap
!= dont
->dirty_bitmap
)
863 vfree(free
->dirty_bitmap
);
865 if (!dont
|| free
->lpage_info
!= dont
->lpage_info
)
866 vfree(free
->lpage_info
);
869 free
->dirty_bitmap
= NULL
;
871 free
->lpage_info
= NULL
;
874 void kvm_free_physmem(struct kvm
*kvm
)
878 for (i
= 0; i
< kvm
->nmemslots
; ++i
)
879 kvm_free_physmem_slot(&kvm
->memslots
[i
], NULL
);
882 static void kvm_destroy_vm(struct kvm
*kvm
)
884 struct mm_struct
*mm
= kvm
->mm
;
886 spin_lock(&kvm_lock
);
887 list_del(&kvm
->vm_list
);
888 spin_unlock(&kvm_lock
);
889 kvm_io_bus_destroy(&kvm
->pio_bus
);
890 kvm_io_bus_destroy(&kvm
->mmio_bus
);
891 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
892 if (kvm
->coalesced_mmio_ring
!= NULL
)
893 free_page((unsigned long)kvm
->coalesced_mmio_ring
);
895 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
896 mmu_notifier_unregister(&kvm
->mmu_notifier
, kvm
->mm
);
898 kvm_arch_destroy_vm(kvm
);
902 void kvm_get_kvm(struct kvm
*kvm
)
904 atomic_inc(&kvm
->users_count
);
906 EXPORT_SYMBOL_GPL(kvm_get_kvm
);
908 void kvm_put_kvm(struct kvm
*kvm
)
910 if (atomic_dec_and_test(&kvm
->users_count
))
913 EXPORT_SYMBOL_GPL(kvm_put_kvm
);
916 static int kvm_vm_release(struct inode
*inode
, struct file
*filp
)
918 struct kvm
*kvm
= filp
->private_data
;
925 * Allocate some memory and give it an address in the guest physical address
928 * Discontiguous memory is allowed, mostly for framebuffers.
930 * Must be called holding mmap_sem for write.
932 int __kvm_set_memory_region(struct kvm
*kvm
,
933 struct kvm_userspace_memory_region
*mem
,
938 unsigned long npages
;
940 struct kvm_memory_slot
*memslot
;
941 struct kvm_memory_slot old
, new;
944 /* General sanity checks */
945 if (mem
->memory_size
& (PAGE_SIZE
- 1))
947 if (mem
->guest_phys_addr
& (PAGE_SIZE
- 1))
949 if (user_alloc
&& (mem
->userspace_addr
& (PAGE_SIZE
- 1)))
951 if (mem
->slot
>= KVM_MEMORY_SLOTS
+ KVM_PRIVATE_MEM_SLOTS
)
953 if (mem
->guest_phys_addr
+ mem
->memory_size
< mem
->guest_phys_addr
)
956 memslot
= &kvm
->memslots
[mem
->slot
];
957 base_gfn
= mem
->guest_phys_addr
>> PAGE_SHIFT
;
958 npages
= mem
->memory_size
>> PAGE_SHIFT
;
961 mem
->flags
&= ~KVM_MEM_LOG_DIRTY_PAGES
;
963 new = old
= *memslot
;
965 new.base_gfn
= base_gfn
;
967 new.flags
= mem
->flags
;
969 /* Disallow changing a memory slot's size. */
971 if (npages
&& old
.npages
&& npages
!= old
.npages
)
974 /* Check for overlaps */
976 for (i
= 0; i
< KVM_MEMORY_SLOTS
; ++i
) {
977 struct kvm_memory_slot
*s
= &kvm
->memslots
[i
];
981 if (!((base_gfn
+ npages
<= s
->base_gfn
) ||
982 (base_gfn
>= s
->base_gfn
+ s
->npages
)))
986 /* Free page dirty bitmap if unneeded */
987 if (!(new.flags
& KVM_MEM_LOG_DIRTY_PAGES
))
988 new.dirty_bitmap
= NULL
;
992 /* Allocate if a slot is being created */
994 if (npages
&& !new.rmap
) {
995 new.rmap
= vmalloc(npages
* sizeof(struct page
*));
1000 memset(new.rmap
, 0, npages
* sizeof(*new.rmap
));
1002 new.user_alloc
= user_alloc
;
1004 * hva_to_rmmap() serialzies with the mmu_lock and to be
1005 * safe it has to ignore memslots with !user_alloc &&
1009 new.userspace_addr
= mem
->userspace_addr
;
1011 new.userspace_addr
= 0;
1013 if (npages
&& !new.lpage_info
) {
1014 int largepages
= npages
/ KVM_PAGES_PER_HPAGE
;
1015 if (npages
% KVM_PAGES_PER_HPAGE
)
1017 if (base_gfn
% KVM_PAGES_PER_HPAGE
)
1020 new.lpage_info
= vmalloc(largepages
* sizeof(*new.lpage_info
));
1022 if (!new.lpage_info
)
1025 memset(new.lpage_info
, 0, largepages
* sizeof(*new.lpage_info
));
1027 if (base_gfn
% KVM_PAGES_PER_HPAGE
)
1028 new.lpage_info
[0].write_count
= 1;
1029 if ((base_gfn
+npages
) % KVM_PAGES_PER_HPAGE
)
1030 new.lpage_info
[largepages
-1].write_count
= 1;
1033 /* Allocate page dirty bitmap if needed */
1034 if ((new.flags
& KVM_MEM_LOG_DIRTY_PAGES
) && !new.dirty_bitmap
) {
1035 unsigned dirty_bytes
= ALIGN(npages
, BITS_PER_LONG
) / 8;
1037 new.dirty_bitmap
= vmalloc(dirty_bytes
);
1038 if (!new.dirty_bitmap
)
1040 memset(new.dirty_bitmap
, 0, dirty_bytes
);
1042 #endif /* not defined CONFIG_S390 */
1045 kvm_arch_flush_shadow(kvm
);
1047 spin_lock(&kvm
->mmu_lock
);
1048 if (mem
->slot
>= kvm
->nmemslots
)
1049 kvm
->nmemslots
= mem
->slot
+ 1;
1052 spin_unlock(&kvm
->mmu_lock
);
1054 r
= kvm_arch_set_memory_region(kvm
, mem
, old
, user_alloc
);
1056 spin_lock(&kvm
->mmu_lock
);
1058 spin_unlock(&kvm
->mmu_lock
);
1062 kvm_free_physmem_slot(&old
, npages
? &new : NULL
);
1063 /* Slot deletion case: we have to update the current slot */
1067 /* map the pages in iommu page table */
1068 r
= kvm_iommu_map_pages(kvm
, base_gfn
, npages
);
1075 kvm_free_physmem_slot(&new, &old
);
1080 EXPORT_SYMBOL_GPL(__kvm_set_memory_region
);
1082 int kvm_set_memory_region(struct kvm
*kvm
,
1083 struct kvm_userspace_memory_region
*mem
,
1088 down_write(&kvm
->slots_lock
);
1089 r
= __kvm_set_memory_region(kvm
, mem
, user_alloc
);
1090 up_write(&kvm
->slots_lock
);
1093 EXPORT_SYMBOL_GPL(kvm_set_memory_region
);
1095 int kvm_vm_ioctl_set_memory_region(struct kvm
*kvm
,
1097 kvm_userspace_memory_region
*mem
,
1100 if (mem
->slot
>= KVM_MEMORY_SLOTS
)
1102 return kvm_set_memory_region(kvm
, mem
, user_alloc
);
1105 int kvm_get_dirty_log(struct kvm
*kvm
,
1106 struct kvm_dirty_log
*log
, int *is_dirty
)
1108 struct kvm_memory_slot
*memslot
;
1111 unsigned long any
= 0;
1114 if (log
->slot
>= KVM_MEMORY_SLOTS
)
1117 memslot
= &kvm
->memslots
[log
->slot
];
1119 if (!memslot
->dirty_bitmap
)
1122 n
= ALIGN(memslot
->npages
, BITS_PER_LONG
) / 8;
1124 for (i
= 0; !any
&& i
< n
/sizeof(long); ++i
)
1125 any
= memslot
->dirty_bitmap
[i
];
1128 if (copy_to_user(log
->dirty_bitmap
, memslot
->dirty_bitmap
, n
))
1139 int is_error_page(struct page
*page
)
1141 return page
== bad_page
;
1143 EXPORT_SYMBOL_GPL(is_error_page
);
1145 int is_error_pfn(pfn_t pfn
)
1147 return pfn
== bad_pfn
;
1149 EXPORT_SYMBOL_GPL(is_error_pfn
);
1151 static inline unsigned long bad_hva(void)
1156 int kvm_is_error_hva(unsigned long addr
)
1158 return addr
== bad_hva();
1160 EXPORT_SYMBOL_GPL(kvm_is_error_hva
);
1162 struct kvm_memory_slot
*gfn_to_memslot_unaliased(struct kvm
*kvm
, gfn_t gfn
)
1166 for (i
= 0; i
< kvm
->nmemslots
; ++i
) {
1167 struct kvm_memory_slot
*memslot
= &kvm
->memslots
[i
];
1169 if (gfn
>= memslot
->base_gfn
1170 && gfn
< memslot
->base_gfn
+ memslot
->npages
)
1175 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased
);
1177 struct kvm_memory_slot
*gfn_to_memslot(struct kvm
*kvm
, gfn_t gfn
)
1179 gfn
= unalias_gfn(kvm
, gfn
);
1180 return gfn_to_memslot_unaliased(kvm
, gfn
);
1183 int kvm_is_visible_gfn(struct kvm
*kvm
, gfn_t gfn
)
1187 gfn
= unalias_gfn(kvm
, gfn
);
1188 for (i
= 0; i
< KVM_MEMORY_SLOTS
; ++i
) {
1189 struct kvm_memory_slot
*memslot
= &kvm
->memslots
[i
];
1191 if (gfn
>= memslot
->base_gfn
1192 && gfn
< memslot
->base_gfn
+ memslot
->npages
)
1197 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn
);
1199 unsigned long gfn_to_hva(struct kvm
*kvm
, gfn_t gfn
)
1201 struct kvm_memory_slot
*slot
;
1203 gfn
= unalias_gfn(kvm
, gfn
);
1204 slot
= gfn_to_memslot_unaliased(kvm
, gfn
);
1207 return (slot
->userspace_addr
+ (gfn
- slot
->base_gfn
) * PAGE_SIZE
);
1209 EXPORT_SYMBOL_GPL(gfn_to_hva
);
1211 pfn_t
gfn_to_pfn(struct kvm
*kvm
, gfn_t gfn
)
1213 struct page
*page
[1];
1220 addr
= gfn_to_hva(kvm
, gfn
);
1221 if (kvm_is_error_hva(addr
)) {
1223 return page_to_pfn(bad_page
);
1226 npages
= get_user_pages_fast(addr
, 1, 1, page
);
1228 if (unlikely(npages
!= 1)) {
1229 struct vm_area_struct
*vma
;
1231 down_read(¤t
->mm
->mmap_sem
);
1232 vma
= find_vma(current
->mm
, addr
);
1234 if (vma
== NULL
|| addr
< vma
->vm_start
||
1235 !(vma
->vm_flags
& VM_PFNMAP
)) {
1236 up_read(¤t
->mm
->mmap_sem
);
1238 return page_to_pfn(bad_page
);
1241 pfn
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
1242 up_read(¤t
->mm
->mmap_sem
);
1243 BUG_ON(!kvm_is_mmio_pfn(pfn
));
1245 pfn
= page_to_pfn(page
[0]);
1250 EXPORT_SYMBOL_GPL(gfn_to_pfn
);
1252 struct page
*gfn_to_page(struct kvm
*kvm
, gfn_t gfn
)
1256 pfn
= gfn_to_pfn(kvm
, gfn
);
1257 if (!kvm_is_mmio_pfn(pfn
))
1258 return pfn_to_page(pfn
);
1260 WARN_ON(kvm_is_mmio_pfn(pfn
));
1266 EXPORT_SYMBOL_GPL(gfn_to_page
);
1268 void kvm_release_page_clean(struct page
*page
)
1270 kvm_release_pfn_clean(page_to_pfn(page
));
1272 EXPORT_SYMBOL_GPL(kvm_release_page_clean
);
1274 void kvm_release_pfn_clean(pfn_t pfn
)
1276 if (!kvm_is_mmio_pfn(pfn
))
1277 put_page(pfn_to_page(pfn
));
1279 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean
);
1281 void kvm_release_page_dirty(struct page
*page
)
1283 kvm_release_pfn_dirty(page_to_pfn(page
));
1285 EXPORT_SYMBOL_GPL(kvm_release_page_dirty
);
1287 void kvm_release_pfn_dirty(pfn_t pfn
)
1289 kvm_set_pfn_dirty(pfn
);
1290 kvm_release_pfn_clean(pfn
);
1292 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty
);
1294 void kvm_set_page_dirty(struct page
*page
)
1296 kvm_set_pfn_dirty(page_to_pfn(page
));
1298 EXPORT_SYMBOL_GPL(kvm_set_page_dirty
);
1300 void kvm_set_pfn_dirty(pfn_t pfn
)
1302 if (!kvm_is_mmio_pfn(pfn
)) {
1303 struct page
*page
= pfn_to_page(pfn
);
1304 if (!PageReserved(page
))
1308 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty
);
1310 void kvm_set_pfn_accessed(pfn_t pfn
)
1312 if (!kvm_is_mmio_pfn(pfn
))
1313 mark_page_accessed(pfn_to_page(pfn
));
1315 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed
);
1317 void kvm_get_pfn(pfn_t pfn
)
1319 if (!kvm_is_mmio_pfn(pfn
))
1320 get_page(pfn_to_page(pfn
));
1322 EXPORT_SYMBOL_GPL(kvm_get_pfn
);
1324 static int next_segment(unsigned long len
, int offset
)
1326 if (len
> PAGE_SIZE
- offset
)
1327 return PAGE_SIZE
- offset
;
1332 int kvm_read_guest_page(struct kvm
*kvm
, gfn_t gfn
, void *data
, int offset
,
1338 addr
= gfn_to_hva(kvm
, gfn
);
1339 if (kvm_is_error_hva(addr
))
1341 r
= copy_from_user(data
, (void __user
*)addr
+ offset
, len
);
1346 EXPORT_SYMBOL_GPL(kvm_read_guest_page
);
1348 int kvm_read_guest(struct kvm
*kvm
, gpa_t gpa
, void *data
, unsigned long len
)
1350 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1352 int offset
= offset_in_page(gpa
);
1355 while ((seg
= next_segment(len
, offset
)) != 0) {
1356 ret
= kvm_read_guest_page(kvm
, gfn
, data
, offset
, seg
);
1366 EXPORT_SYMBOL_GPL(kvm_read_guest
);
1368 int kvm_read_guest_atomic(struct kvm
*kvm
, gpa_t gpa
, void *data
,
1373 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1374 int offset
= offset_in_page(gpa
);
1376 addr
= gfn_to_hva(kvm
, gfn
);
1377 if (kvm_is_error_hva(addr
))
1379 pagefault_disable();
1380 r
= __copy_from_user_inatomic(data
, (void __user
*)addr
+ offset
, len
);
1386 EXPORT_SYMBOL(kvm_read_guest_atomic
);
1388 int kvm_write_guest_page(struct kvm
*kvm
, gfn_t gfn
, const void *data
,
1389 int offset
, int len
)
1394 addr
= gfn_to_hva(kvm
, gfn
);
1395 if (kvm_is_error_hva(addr
))
1397 r
= copy_to_user((void __user
*)addr
+ offset
, data
, len
);
1400 mark_page_dirty(kvm
, gfn
);
1403 EXPORT_SYMBOL_GPL(kvm_write_guest_page
);
1405 int kvm_write_guest(struct kvm
*kvm
, gpa_t gpa
, const void *data
,
1408 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1410 int offset
= offset_in_page(gpa
);
1413 while ((seg
= next_segment(len
, offset
)) != 0) {
1414 ret
= kvm_write_guest_page(kvm
, gfn
, data
, offset
, seg
);
1425 int kvm_clear_guest_page(struct kvm
*kvm
, gfn_t gfn
, int offset
, int len
)
1427 return kvm_write_guest_page(kvm
, gfn
, empty_zero_page
, offset
, len
);
1429 EXPORT_SYMBOL_GPL(kvm_clear_guest_page
);
1431 int kvm_clear_guest(struct kvm
*kvm
, gpa_t gpa
, unsigned long len
)
1433 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1435 int offset
= offset_in_page(gpa
);
1438 while ((seg
= next_segment(len
, offset
)) != 0) {
1439 ret
= kvm_clear_guest_page(kvm
, gfn
, offset
, seg
);
1448 EXPORT_SYMBOL_GPL(kvm_clear_guest
);
1450 void mark_page_dirty(struct kvm
*kvm
, gfn_t gfn
)
1452 struct kvm_memory_slot
*memslot
;
1454 gfn
= unalias_gfn(kvm
, gfn
);
1455 memslot
= gfn_to_memslot_unaliased(kvm
, gfn
);
1456 if (memslot
&& memslot
->dirty_bitmap
) {
1457 unsigned long rel_gfn
= gfn
- memslot
->base_gfn
;
1460 if (!test_bit(rel_gfn
, memslot
->dirty_bitmap
))
1461 set_bit(rel_gfn
, memslot
->dirty_bitmap
);
1466 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1468 void kvm_vcpu_block(struct kvm_vcpu
*vcpu
)
1473 prepare_to_wait(&vcpu
->wq
, &wait
, TASK_INTERRUPTIBLE
);
1475 if (kvm_cpu_has_interrupt(vcpu
) ||
1476 kvm_cpu_has_pending_timer(vcpu
) ||
1477 kvm_arch_vcpu_runnable(vcpu
)) {
1478 set_bit(KVM_REQ_UNHALT
, &vcpu
->requests
);
1481 if (signal_pending(current
))
1489 finish_wait(&vcpu
->wq
, &wait
);
1492 void kvm_resched(struct kvm_vcpu
*vcpu
)
1494 if (!need_resched())
1498 EXPORT_SYMBOL_GPL(kvm_resched
);
1500 static int kvm_vcpu_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1502 struct kvm_vcpu
*vcpu
= vma
->vm_file
->private_data
;
1505 if (vmf
->pgoff
== 0)
1506 page
= virt_to_page(vcpu
->run
);
1508 else if (vmf
->pgoff
== KVM_PIO_PAGE_OFFSET
)
1509 page
= virt_to_page(vcpu
->arch
.pio_data
);
1511 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1512 else if (vmf
->pgoff
== KVM_COALESCED_MMIO_PAGE_OFFSET
)
1513 page
= virt_to_page(vcpu
->kvm
->coalesced_mmio_ring
);
1516 return VM_FAULT_SIGBUS
;
1522 static struct vm_operations_struct kvm_vcpu_vm_ops
= {
1523 .fault
= kvm_vcpu_fault
,
1526 static int kvm_vcpu_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1528 vma
->vm_ops
= &kvm_vcpu_vm_ops
;
1532 static int kvm_vcpu_release(struct inode
*inode
, struct file
*filp
)
1534 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1536 kvm_put_kvm(vcpu
->kvm
);
1540 static struct file_operations kvm_vcpu_fops
= {
1541 .release
= kvm_vcpu_release
,
1542 .unlocked_ioctl
= kvm_vcpu_ioctl
,
1543 .compat_ioctl
= kvm_vcpu_ioctl
,
1544 .mmap
= kvm_vcpu_mmap
,
1548 * Allocates an inode for the vcpu.
1550 static int create_vcpu_fd(struct kvm_vcpu
*vcpu
)
1552 int fd
= anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops
, vcpu
, 0);
1554 kvm_put_kvm(vcpu
->kvm
);
1559 * Creates some virtual cpus. Good luck creating more than one.
1561 static int kvm_vm_ioctl_create_vcpu(struct kvm
*kvm
, int n
)
1564 struct kvm_vcpu
*vcpu
;
1569 vcpu
= kvm_arch_vcpu_create(kvm
, n
);
1571 return PTR_ERR(vcpu
);
1573 preempt_notifier_init(&vcpu
->preempt_notifier
, &kvm_preempt_ops
);
1575 r
= kvm_arch_vcpu_setup(vcpu
);
1579 mutex_lock(&kvm
->lock
);
1580 if (kvm
->vcpus
[n
]) {
1584 kvm
->vcpus
[n
] = vcpu
;
1585 mutex_unlock(&kvm
->lock
);
1587 /* Now it's all set up, let userspace reach it */
1589 r
= create_vcpu_fd(vcpu
);
1595 mutex_lock(&kvm
->lock
);
1596 kvm
->vcpus
[n
] = NULL
;
1598 mutex_unlock(&kvm
->lock
);
1599 kvm_arch_vcpu_destroy(vcpu
);
1603 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu
*vcpu
, sigset_t
*sigset
)
1606 sigdelsetmask(sigset
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
1607 vcpu
->sigset_active
= 1;
1608 vcpu
->sigset
= *sigset
;
1610 vcpu
->sigset_active
= 0;
1614 static long kvm_vcpu_ioctl(struct file
*filp
,
1615 unsigned int ioctl
, unsigned long arg
)
1617 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1618 void __user
*argp
= (void __user
*)arg
;
1620 struct kvm_fpu
*fpu
= NULL
;
1621 struct kvm_sregs
*kvm_sregs
= NULL
;
1623 if (vcpu
->kvm
->mm
!= current
->mm
)
1630 r
= kvm_arch_vcpu_ioctl_run(vcpu
, vcpu
->run
);
1632 case KVM_GET_REGS
: {
1633 struct kvm_regs
*kvm_regs
;
1636 kvm_regs
= kzalloc(sizeof(struct kvm_regs
), GFP_KERNEL
);
1639 r
= kvm_arch_vcpu_ioctl_get_regs(vcpu
, kvm_regs
);
1643 if (copy_to_user(argp
, kvm_regs
, sizeof(struct kvm_regs
)))
1650 case KVM_SET_REGS
: {
1651 struct kvm_regs
*kvm_regs
;
1654 kvm_regs
= kzalloc(sizeof(struct kvm_regs
), GFP_KERNEL
);
1658 if (copy_from_user(kvm_regs
, argp
, sizeof(struct kvm_regs
)))
1660 r
= kvm_arch_vcpu_ioctl_set_regs(vcpu
, kvm_regs
);
1668 case KVM_GET_SREGS
: {
1669 kvm_sregs
= kzalloc(sizeof(struct kvm_sregs
), GFP_KERNEL
);
1673 r
= kvm_arch_vcpu_ioctl_get_sregs(vcpu
, kvm_sregs
);
1677 if (copy_to_user(argp
, kvm_sregs
, sizeof(struct kvm_sregs
)))
1682 case KVM_SET_SREGS
: {
1683 kvm_sregs
= kmalloc(sizeof(struct kvm_sregs
), GFP_KERNEL
);
1688 if (copy_from_user(kvm_sregs
, argp
, sizeof(struct kvm_sregs
)))
1690 r
= kvm_arch_vcpu_ioctl_set_sregs(vcpu
, kvm_sregs
);
1696 case KVM_GET_MP_STATE
: {
1697 struct kvm_mp_state mp_state
;
1699 r
= kvm_arch_vcpu_ioctl_get_mpstate(vcpu
, &mp_state
);
1703 if (copy_to_user(argp
, &mp_state
, sizeof mp_state
))
1708 case KVM_SET_MP_STATE
: {
1709 struct kvm_mp_state mp_state
;
1712 if (copy_from_user(&mp_state
, argp
, sizeof mp_state
))
1714 r
= kvm_arch_vcpu_ioctl_set_mpstate(vcpu
, &mp_state
);
1720 case KVM_TRANSLATE
: {
1721 struct kvm_translation tr
;
1724 if (copy_from_user(&tr
, argp
, sizeof tr
))
1726 r
= kvm_arch_vcpu_ioctl_translate(vcpu
, &tr
);
1730 if (copy_to_user(argp
, &tr
, sizeof tr
))
1735 case KVM_DEBUG_GUEST
: {
1736 struct kvm_debug_guest dbg
;
1739 if (copy_from_user(&dbg
, argp
, sizeof dbg
))
1741 r
= kvm_arch_vcpu_ioctl_debug_guest(vcpu
, &dbg
);
1747 case KVM_SET_SIGNAL_MASK
: {
1748 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
1749 struct kvm_signal_mask kvm_sigmask
;
1750 sigset_t sigset
, *p
;
1755 if (copy_from_user(&kvm_sigmask
, argp
,
1756 sizeof kvm_sigmask
))
1759 if (kvm_sigmask
.len
!= sizeof sigset
)
1762 if (copy_from_user(&sigset
, sigmask_arg
->sigset
,
1767 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, &sigset
);
1771 fpu
= kzalloc(sizeof(struct kvm_fpu
), GFP_KERNEL
);
1775 r
= kvm_arch_vcpu_ioctl_get_fpu(vcpu
, fpu
);
1779 if (copy_to_user(argp
, fpu
, sizeof(struct kvm_fpu
)))
1785 fpu
= kmalloc(sizeof(struct kvm_fpu
), GFP_KERNEL
);
1790 if (copy_from_user(fpu
, argp
, sizeof(struct kvm_fpu
)))
1792 r
= kvm_arch_vcpu_ioctl_set_fpu(vcpu
, fpu
);
1799 r
= kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
1807 static long kvm_vm_ioctl(struct file
*filp
,
1808 unsigned int ioctl
, unsigned long arg
)
1810 struct kvm
*kvm
= filp
->private_data
;
1811 void __user
*argp
= (void __user
*)arg
;
1814 if (kvm
->mm
!= current
->mm
)
1817 case KVM_CREATE_VCPU
:
1818 r
= kvm_vm_ioctl_create_vcpu(kvm
, arg
);
1822 case KVM_SET_USER_MEMORY_REGION
: {
1823 struct kvm_userspace_memory_region kvm_userspace_mem
;
1826 if (copy_from_user(&kvm_userspace_mem
, argp
,
1827 sizeof kvm_userspace_mem
))
1830 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
, 1);
1835 case KVM_GET_DIRTY_LOG
: {
1836 struct kvm_dirty_log log
;
1839 if (copy_from_user(&log
, argp
, sizeof log
))
1841 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
1846 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1847 case KVM_REGISTER_COALESCED_MMIO
: {
1848 struct kvm_coalesced_mmio_zone zone
;
1850 if (copy_from_user(&zone
, argp
, sizeof zone
))
1853 r
= kvm_vm_ioctl_register_coalesced_mmio(kvm
, &zone
);
1859 case KVM_UNREGISTER_COALESCED_MMIO
: {
1860 struct kvm_coalesced_mmio_zone zone
;
1862 if (copy_from_user(&zone
, argp
, sizeof zone
))
1865 r
= kvm_vm_ioctl_unregister_coalesced_mmio(kvm
, &zone
);
1872 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
1873 case KVM_ASSIGN_PCI_DEVICE
: {
1874 struct kvm_assigned_pci_dev assigned_dev
;
1877 if (copy_from_user(&assigned_dev
, argp
, sizeof assigned_dev
))
1879 r
= kvm_vm_ioctl_assign_device(kvm
, &assigned_dev
);
1884 case KVM_ASSIGN_IRQ
: {
1885 struct kvm_assigned_irq assigned_irq
;
1888 if (copy_from_user(&assigned_irq
, argp
, sizeof assigned_irq
))
1890 r
= kvm_vm_ioctl_assign_irq(kvm
, &assigned_irq
);
1896 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
1897 case KVM_DEASSIGN_PCI_DEVICE
: {
1898 struct kvm_assigned_pci_dev assigned_dev
;
1901 if (copy_from_user(&assigned_dev
, argp
, sizeof assigned_dev
))
1903 r
= kvm_vm_ioctl_deassign_device(kvm
, &assigned_dev
);
1910 r
= kvm_arch_vm_ioctl(filp
, ioctl
, arg
);
1916 static int kvm_vm_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1918 struct page
*page
[1];
1921 gfn_t gfn
= vmf
->pgoff
;
1922 struct kvm
*kvm
= vma
->vm_file
->private_data
;
1924 addr
= gfn_to_hva(kvm
, gfn
);
1925 if (kvm_is_error_hva(addr
))
1926 return VM_FAULT_SIGBUS
;
1928 npages
= get_user_pages(current
, current
->mm
, addr
, 1, 1, 0, page
,
1930 if (unlikely(npages
!= 1))
1931 return VM_FAULT_SIGBUS
;
1933 vmf
->page
= page
[0];
1937 static struct vm_operations_struct kvm_vm_vm_ops
= {
1938 .fault
= kvm_vm_fault
,
1941 static int kvm_vm_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1943 vma
->vm_ops
= &kvm_vm_vm_ops
;
1947 static struct file_operations kvm_vm_fops
= {
1948 .release
= kvm_vm_release
,
1949 .unlocked_ioctl
= kvm_vm_ioctl
,
1950 .compat_ioctl
= kvm_vm_ioctl
,
1951 .mmap
= kvm_vm_mmap
,
1954 static int kvm_dev_ioctl_create_vm(void)
1959 kvm
= kvm_create_vm();
1961 return PTR_ERR(kvm
);
1962 fd
= anon_inode_getfd("kvm-vm", &kvm_vm_fops
, kvm
, 0);
1969 static long kvm_dev_ioctl_check_extension_generic(long arg
)
1972 case KVM_CAP_USER_MEMORY
:
1973 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS
:
1978 return kvm_dev_ioctl_check_extension(arg
);
1981 static long kvm_dev_ioctl(struct file
*filp
,
1982 unsigned int ioctl
, unsigned long arg
)
1987 case KVM_GET_API_VERSION
:
1991 r
= KVM_API_VERSION
;
1997 r
= kvm_dev_ioctl_create_vm();
1999 case KVM_CHECK_EXTENSION
:
2000 r
= kvm_dev_ioctl_check_extension_generic(arg
);
2002 case KVM_GET_VCPU_MMAP_SIZE
:
2006 r
= PAGE_SIZE
; /* struct kvm_run */
2008 r
+= PAGE_SIZE
; /* pio data page */
2010 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2011 r
+= PAGE_SIZE
; /* coalesced mmio ring page */
2014 case KVM_TRACE_ENABLE
:
2015 case KVM_TRACE_PAUSE
:
2016 case KVM_TRACE_DISABLE
:
2017 r
= kvm_trace_ioctl(ioctl
, arg
);
2020 return kvm_arch_dev_ioctl(filp
, ioctl
, arg
);
2026 static struct file_operations kvm_chardev_ops
= {
2027 .unlocked_ioctl
= kvm_dev_ioctl
,
2028 .compat_ioctl
= kvm_dev_ioctl
,
2031 static struct miscdevice kvm_dev
= {
2037 static void hardware_enable(void *junk
)
2039 int cpu
= raw_smp_processor_id();
2041 if (cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
2043 cpumask_set_cpu(cpu
, cpus_hardware_enabled
);
2044 kvm_arch_hardware_enable(NULL
);
2047 static void hardware_disable(void *junk
)
2049 int cpu
= raw_smp_processor_id();
2051 if (!cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
2053 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
2054 kvm_arch_hardware_disable(NULL
);
2057 static int kvm_cpu_hotplug(struct notifier_block
*notifier
, unsigned long val
,
2062 val
&= ~CPU_TASKS_FROZEN
;
2065 printk(KERN_INFO
"kvm: disabling virtualization on CPU%d\n",
2067 hardware_disable(NULL
);
2069 case CPU_UP_CANCELED
:
2070 printk(KERN_INFO
"kvm: disabling virtualization on CPU%d\n",
2072 smp_call_function_single(cpu
, hardware_disable
, NULL
, 1);
2075 printk(KERN_INFO
"kvm: enabling virtualization on CPU%d\n",
2077 smp_call_function_single(cpu
, hardware_enable
, NULL
, 1);
2084 asmlinkage
void kvm_handle_fault_on_reboot(void)
2087 /* spin while reset goes on */
2090 /* Fault while not rebooting. We want the trace. */
2093 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot
);
2095 static int kvm_reboot(struct notifier_block
*notifier
, unsigned long val
,
2098 if (val
== SYS_RESTART
) {
2100 * Some (well, at least mine) BIOSes hang on reboot if
2103 printk(KERN_INFO
"kvm: exiting hardware virtualization\n");
2104 kvm_rebooting
= true;
2105 on_each_cpu(hardware_disable
, NULL
, 1);
2110 static struct notifier_block kvm_reboot_notifier
= {
2111 .notifier_call
= kvm_reboot
,
2115 void kvm_io_bus_init(struct kvm_io_bus
*bus
)
2117 memset(bus
, 0, sizeof(*bus
));
2120 void kvm_io_bus_destroy(struct kvm_io_bus
*bus
)
2124 for (i
= 0; i
< bus
->dev_count
; i
++) {
2125 struct kvm_io_device
*pos
= bus
->devs
[i
];
2127 kvm_iodevice_destructor(pos
);
2131 struct kvm_io_device
*kvm_io_bus_find_dev(struct kvm_io_bus
*bus
,
2132 gpa_t addr
, int len
, int is_write
)
2136 for (i
= 0; i
< bus
->dev_count
; i
++) {
2137 struct kvm_io_device
*pos
= bus
->devs
[i
];
2139 if (pos
->in_range(pos
, addr
, len
, is_write
))
2146 void kvm_io_bus_register_dev(struct kvm_io_bus
*bus
, struct kvm_io_device
*dev
)
2148 BUG_ON(bus
->dev_count
> (NR_IOBUS_DEVS
-1));
2150 bus
->devs
[bus
->dev_count
++] = dev
;
2153 static struct notifier_block kvm_cpu_notifier
= {
2154 .notifier_call
= kvm_cpu_hotplug
,
2155 .priority
= 20, /* must be > scheduler priority */
2158 static int vm_stat_get(void *_offset
, u64
*val
)
2160 unsigned offset
= (long)_offset
;
2164 spin_lock(&kvm_lock
);
2165 list_for_each_entry(kvm
, &vm_list
, vm_list
)
2166 *val
+= *(u32
*)((void *)kvm
+ offset
);
2167 spin_unlock(&kvm_lock
);
2171 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops
, vm_stat_get
, NULL
, "%llu\n");
2173 static int vcpu_stat_get(void *_offset
, u64
*val
)
2175 unsigned offset
= (long)_offset
;
2177 struct kvm_vcpu
*vcpu
;
2181 spin_lock(&kvm_lock
);
2182 list_for_each_entry(kvm
, &vm_list
, vm_list
)
2183 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
2184 vcpu
= kvm
->vcpus
[i
];
2186 *val
+= *(u32
*)((void *)vcpu
+ offset
);
2188 spin_unlock(&kvm_lock
);
2192 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops
, vcpu_stat_get
, NULL
, "%llu\n");
2194 static struct file_operations
*stat_fops
[] = {
2195 [KVM_STAT_VCPU
] = &vcpu_stat_fops
,
2196 [KVM_STAT_VM
] = &vm_stat_fops
,
2199 static void kvm_init_debug(void)
2201 struct kvm_stats_debugfs_item
*p
;
2203 kvm_debugfs_dir
= debugfs_create_dir("kvm", NULL
);
2204 for (p
= debugfs_entries
; p
->name
; ++p
)
2205 p
->dentry
= debugfs_create_file(p
->name
, 0444, kvm_debugfs_dir
,
2206 (void *)(long)p
->offset
,
2207 stat_fops
[p
->kind
]);
2210 static void kvm_exit_debug(void)
2212 struct kvm_stats_debugfs_item
*p
;
2214 for (p
= debugfs_entries
; p
->name
; ++p
)
2215 debugfs_remove(p
->dentry
);
2216 debugfs_remove(kvm_debugfs_dir
);
2219 static int kvm_suspend(struct sys_device
*dev
, pm_message_t state
)
2221 hardware_disable(NULL
);
2225 static int kvm_resume(struct sys_device
*dev
)
2227 hardware_enable(NULL
);
2231 static struct sysdev_class kvm_sysdev_class
= {
2233 .suspend
= kvm_suspend
,
2234 .resume
= kvm_resume
,
2237 static struct sys_device kvm_sysdev
= {
2239 .cls
= &kvm_sysdev_class
,
2242 struct page
*bad_page
;
2246 struct kvm_vcpu
*preempt_notifier_to_vcpu(struct preempt_notifier
*pn
)
2248 return container_of(pn
, struct kvm_vcpu
, preempt_notifier
);
2251 static void kvm_sched_in(struct preempt_notifier
*pn
, int cpu
)
2253 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
2255 kvm_arch_vcpu_load(vcpu
, cpu
);
2258 static void kvm_sched_out(struct preempt_notifier
*pn
,
2259 struct task_struct
*next
)
2261 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
2263 kvm_arch_vcpu_put(vcpu
);
2266 int kvm_init(void *opaque
, unsigned int vcpu_size
,
2267 struct module
*module
)
2274 r
= kvm_arch_init(opaque
);
2278 bad_page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
2280 if (bad_page
== NULL
) {
2285 bad_pfn
= page_to_pfn(bad_page
);
2287 if (!alloc_cpumask_var(&cpus_hardware_enabled
, GFP_KERNEL
)) {
2292 r
= kvm_arch_hardware_setup();
2296 for_each_online_cpu(cpu
) {
2297 smp_call_function_single(cpu
,
2298 kvm_arch_check_processor_compat
,
2304 on_each_cpu(hardware_enable
, NULL
, 1);
2305 r
= register_cpu_notifier(&kvm_cpu_notifier
);
2308 register_reboot_notifier(&kvm_reboot_notifier
);
2310 r
= sysdev_class_register(&kvm_sysdev_class
);
2314 r
= sysdev_register(&kvm_sysdev
);
2318 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2319 kvm_vcpu_cache
= kmem_cache_create("kvm_vcpu", vcpu_size
,
2320 __alignof__(struct kvm_vcpu
),
2322 if (!kvm_vcpu_cache
) {
2327 kvm_chardev_ops
.owner
= module
;
2328 kvm_vm_fops
.owner
= module
;
2329 kvm_vcpu_fops
.owner
= module
;
2331 r
= misc_register(&kvm_dev
);
2333 printk(KERN_ERR
"kvm: misc device register failed\n");
2337 kvm_preempt_ops
.sched_in
= kvm_sched_in
;
2338 kvm_preempt_ops
.sched_out
= kvm_sched_out
;
2346 kmem_cache_destroy(kvm_vcpu_cache
);
2348 sysdev_unregister(&kvm_sysdev
);
2350 sysdev_class_unregister(&kvm_sysdev_class
);
2352 unregister_reboot_notifier(&kvm_reboot_notifier
);
2353 unregister_cpu_notifier(&kvm_cpu_notifier
);
2355 on_each_cpu(hardware_disable
, NULL
, 1);
2357 kvm_arch_hardware_unsetup();
2359 free_cpumask_var(cpus_hardware_enabled
);
2361 __free_page(bad_page
);
2368 EXPORT_SYMBOL_GPL(kvm_init
);
2372 kvm_trace_cleanup();
2373 misc_deregister(&kvm_dev
);
2374 kmem_cache_destroy(kvm_vcpu_cache
);
2375 sysdev_unregister(&kvm_sysdev
);
2376 sysdev_class_unregister(&kvm_sysdev_class
);
2377 unregister_reboot_notifier(&kvm_reboot_notifier
);
2378 unregister_cpu_notifier(&kvm_cpu_notifier
);
2379 on_each_cpu(hardware_disable
, NULL
, 1);
2380 kvm_arch_hardware_unsetup();
2383 free_cpumask_var(cpus_hardware_enabled
);
2384 __free_page(bad_page
);
2386 EXPORT_SYMBOL_GPL(kvm_exit
);