2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/smp_lock.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mpage.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/version.h>
35 #include "transaction.h"
36 #include "btrfs_inode.h"
38 #include "print-tree.h"
44 /* simple helper to fault in pages and copy. This should go away
45 * and be replaced with calls into generic code.
47 static noinline
int btrfs_copy_from_user(loff_t pos
, int num_pages
,
49 struct page
**prepared_pages
,
50 const char __user
*buf
)
54 int offset
= pos
& (PAGE_CACHE_SIZE
- 1);
56 for (i
= 0; i
< num_pages
&& write_bytes
> 0; i
++, offset
= 0) {
57 size_t count
= min_t(size_t,
58 PAGE_CACHE_SIZE
- offset
, write_bytes
);
59 struct page
*page
= prepared_pages
[i
];
60 fault_in_pages_readable(buf
, count
);
62 /* Copy data from userspace to the current page */
64 page_fault
= __copy_from_user(page_address(page
) + offset
,
66 /* Flush processor's dcache for this page */
67 flush_dcache_page(page
);
75 return page_fault
? -EFAULT
: 0;
79 * unlocks pages after btrfs_file_write is done with them
81 static noinline
void btrfs_drop_pages(struct page
**pages
, size_t num_pages
)
84 for (i
= 0; i
< num_pages
; i
++) {
87 /* page checked is some magic around finding pages that
88 * have been modified without going through btrfs_set_page_dirty
91 ClearPageChecked(pages
[i
]);
92 unlock_page(pages
[i
]);
93 mark_page_accessed(pages
[i
]);
94 page_cache_release(pages
[i
]);
99 * after copy_from_user, pages need to be dirtied and we need to make
100 * sure holes are created between the current EOF and the start of
101 * any next extents (if required).
103 * this also makes the decision about creating an inline extent vs
104 * doing real data extents, marking pages dirty and delalloc as required.
106 static noinline
int dirty_and_release_pages(struct btrfs_trans_handle
*trans
,
107 struct btrfs_root
*root
,
116 struct inode
*inode
= fdentry(file
)->d_inode
;
117 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
121 u64 end_of_last_block
;
122 u64 end_pos
= pos
+ write_bytes
;
123 loff_t isize
= i_size_read(inode
);
125 start_pos
= pos
& ~((u64
)root
->sectorsize
- 1);
126 num_bytes
= (write_bytes
+ pos
- start_pos
+
127 root
->sectorsize
- 1) & ~((u64
)root
->sectorsize
- 1);
129 end_of_last_block
= start_pos
+ num_bytes
- 1;
131 lock_extent(io_tree
, start_pos
, end_of_last_block
, GFP_NOFS
);
132 trans
= btrfs_join_transaction(root
, 1);
137 btrfs_set_trans_block_group(trans
, inode
);
140 set_extent_uptodate(io_tree
, start_pos
, end_of_last_block
, GFP_NOFS
);
142 /* check for reserved extents on each page, we don't want
143 * to reset the delalloc bit on things that already have
146 btrfs_set_extent_delalloc(inode
, start_pos
, end_of_last_block
);
147 for (i
= 0; i
< num_pages
; i
++) {
148 struct page
*p
= pages
[i
];
153 if (end_pos
> isize
) {
154 i_size_write(inode
, end_pos
);
155 btrfs_update_inode(trans
, root
, inode
);
157 err
= btrfs_end_transaction(trans
, root
);
159 unlock_extent(io_tree
, start_pos
, end_of_last_block
, GFP_NOFS
);
164 * this drops all the extents in the cache that intersect the range
165 * [start, end]. Existing extents are split as required.
167 int btrfs_drop_extent_cache(struct inode
*inode
, u64 start
, u64 end
,
170 struct extent_map
*em
;
171 struct extent_map
*split
= NULL
;
172 struct extent_map
*split2
= NULL
;
173 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
174 u64 len
= end
- start
+ 1;
180 WARN_ON(end
< start
);
181 if (end
== (u64
)-1) {
187 split
= alloc_extent_map(GFP_NOFS
);
189 split2
= alloc_extent_map(GFP_NOFS
);
191 spin_lock(&em_tree
->lock
);
192 em
= lookup_extent_mapping(em_tree
, start
, len
);
194 spin_unlock(&em_tree
->lock
);
198 if (skip_pinned
&& test_bit(EXTENT_FLAG_PINNED
, &em
->flags
)) {
199 spin_unlock(&em_tree
->lock
);
200 if (em
->start
<= start
&&
201 (!testend
|| em
->start
+ em
->len
>= start
+ len
)) {
205 if (start
< em
->start
) {
206 len
= em
->start
- start
;
208 len
= start
+ len
- (em
->start
+ em
->len
);
209 start
= em
->start
+ em
->len
;
214 compressed
= test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
215 clear_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
216 remove_extent_mapping(em_tree
, em
);
218 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
220 split
->start
= em
->start
;
221 split
->len
= start
- em
->start
;
222 split
->orig_start
= em
->orig_start
;
223 split
->block_start
= em
->block_start
;
226 split
->block_len
= em
->block_len
;
228 split
->block_len
= split
->len
;
230 split
->bdev
= em
->bdev
;
231 split
->flags
= flags
;
232 ret
= add_extent_mapping(em_tree
, split
);
234 free_extent_map(split
);
238 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
239 testend
&& em
->start
+ em
->len
> start
+ len
) {
240 u64 diff
= start
+ len
- em
->start
;
242 split
->start
= start
+ len
;
243 split
->len
= em
->start
+ em
->len
- (start
+ len
);
244 split
->bdev
= em
->bdev
;
245 split
->flags
= flags
;
248 split
->block_len
= em
->block_len
;
249 split
->block_start
= em
->block_start
;
250 split
->orig_start
= em
->orig_start
;
252 split
->block_len
= split
->len
;
253 split
->block_start
= em
->block_start
+ diff
;
254 split
->orig_start
= split
->start
;
257 ret
= add_extent_mapping(em_tree
, split
);
259 free_extent_map(split
);
262 spin_unlock(&em_tree
->lock
);
266 /* once for the tree*/
270 free_extent_map(split
);
272 free_extent_map(split2
);
276 int btrfs_check_file(struct btrfs_root
*root
, struct inode
*inode
)
280 struct btrfs_path
*path
;
281 struct btrfs_key found_key
;
282 struct extent_buffer
*leaf
;
283 struct btrfs_file_extent_item
*extent
;
292 path
= btrfs_alloc_path();
293 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, inode
->i_ino
,
296 nritems
= btrfs_header_nritems(path
->nodes
[0]);
297 if (path
->slots
[0] >= nritems
) {
298 ret
= btrfs_next_leaf(root
, path
);
301 nritems
= btrfs_header_nritems(path
->nodes
[0]);
303 slot
= path
->slots
[0];
304 leaf
= path
->nodes
[0];
305 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
306 if (found_key
.objectid
!= inode
->i_ino
)
308 if (found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
311 if (found_key
.offset
< last_offset
) {
313 btrfs_print_leaf(root
, leaf
);
314 printk(KERN_ERR
"inode %lu found offset %llu "
315 "expected %llu\n", inode
->i_ino
,
316 (unsigned long long)found_key
.offset
,
317 (unsigned long long)last_offset
);
321 extent
= btrfs_item_ptr(leaf
, slot
,
322 struct btrfs_file_extent_item
);
323 found_type
= btrfs_file_extent_type(leaf
, extent
);
324 if (found_type
== BTRFS_FILE_EXTENT_REG
) {
325 extent_end
= found_key
.offset
+
326 btrfs_file_extent_num_bytes(leaf
, extent
);
327 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
328 struct btrfs_item
*item
;
329 item
= btrfs_item_nr(leaf
, slot
);
330 extent_end
= found_key
.offset
+
331 btrfs_file_extent_inline_len(leaf
, extent
);
332 extent_end
= (extent_end
+ root
->sectorsize
- 1) &
333 ~((u64
)root
->sectorsize
- 1);
335 last_offset
= extent_end
;
338 if (0 && last_offset
< inode
->i_size
) {
340 btrfs_print_leaf(root
, leaf
);
341 printk(KERN_ERR
"inode %lu found offset %llu size %llu\n",
342 inode
->i_ino
, (unsigned long long)last_offset
,
343 (unsigned long long)inode
->i_size
);
348 btrfs_free_path(path
);
354 * this is very complex, but the basic idea is to drop all extents
355 * in the range start - end. hint_block is filled in with a block number
356 * that would be a good hint to the block allocator for this file.
358 * If an extent intersects the range but is not entirely inside the range
359 * it is either truncated or split. Anything entirely inside the range
360 * is deleted from the tree.
362 * inline_limit is used to tell this code which offsets in the file to keep
363 * if they contain inline extents.
365 noinline
int btrfs_drop_extents(struct btrfs_trans_handle
*trans
,
366 struct btrfs_root
*root
, struct inode
*inode
,
367 u64 start
, u64 end
, u64 inline_limit
, u64
*hint_byte
)
370 u64 locked_end
= end
;
371 u64 search_start
= start
;
378 u16 other_encoding
= 0;
381 struct extent_buffer
*leaf
;
382 struct btrfs_file_extent_item
*extent
;
383 struct btrfs_path
*path
;
384 struct btrfs_key key
;
385 struct btrfs_file_extent_item old
;
396 btrfs_drop_extent_cache(inode
, start
, end
- 1, 0);
398 path
= btrfs_alloc_path();
403 btrfs_release_path(root
, path
);
404 ret
= btrfs_lookup_file_extent(trans
, root
, path
, inode
->i_ino
,
409 if (path
->slots
[0] == 0) {
426 leaf
= path
->nodes
[0];
427 slot
= path
->slots
[0];
429 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
430 if (btrfs_key_type(&key
) == BTRFS_EXTENT_DATA_KEY
&&
434 if (btrfs_key_type(&key
) > BTRFS_EXTENT_DATA_KEY
||
435 key
.objectid
!= inode
->i_ino
) {
439 search_start
= max(key
.offset
, start
);
442 if (btrfs_key_type(&key
) == BTRFS_EXTENT_DATA_KEY
) {
443 extent
= btrfs_item_ptr(leaf
, slot
,
444 struct btrfs_file_extent_item
);
445 found_type
= btrfs_file_extent_type(leaf
, extent
);
446 compression
= btrfs_file_extent_compression(leaf
,
448 encryption
= btrfs_file_extent_encryption(leaf
,
450 other_encoding
= btrfs_file_extent_other_encoding(leaf
,
452 if (found_type
== BTRFS_FILE_EXTENT_REG
||
453 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
455 btrfs_file_extent_disk_bytenr(leaf
,
458 *hint_byte
= extent_end
;
460 extent_end
= key
.offset
+
461 btrfs_file_extent_num_bytes(leaf
, extent
);
462 ram_bytes
= btrfs_file_extent_ram_bytes(leaf
,
465 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
467 extent_end
= key
.offset
+
468 btrfs_file_extent_inline_len(leaf
, extent
);
471 extent_end
= search_start
;
474 /* we found nothing we can drop */
475 if ((!found_extent
&& !found_inline
) ||
476 search_start
>= extent_end
) {
479 nritems
= btrfs_header_nritems(leaf
);
480 if (slot
>= nritems
- 1) {
481 nextret
= btrfs_next_leaf(root
, path
);
491 if (end
<= extent_end
&& start
>= key
.offset
&& found_inline
)
492 *hint_byte
= EXTENT_MAP_INLINE
;
495 read_extent_buffer(leaf
, &old
, (unsigned long)extent
,
497 root_gen
= btrfs_header_generation(leaf
);
498 root_owner
= btrfs_header_owner(leaf
);
499 leaf_start
= leaf
->start
;
502 if (end
< extent_end
&& end
>= key
.offset
) {
504 if (found_inline
&& start
<= key
.offset
)
508 if (bookend
&& found_extent
) {
509 if (locked_end
< extent_end
) {
510 ret
= try_lock_extent(&BTRFS_I(inode
)->io_tree
,
511 locked_end
, extent_end
- 1,
514 btrfs_release_path(root
, path
);
515 lock_extent(&BTRFS_I(inode
)->io_tree
,
516 locked_end
, extent_end
- 1,
518 locked_end
= extent_end
;
521 locked_end
= extent_end
;
523 orig_parent
= path
->nodes
[0]->start
;
524 disk_bytenr
= le64_to_cpu(old
.disk_bytenr
);
525 if (disk_bytenr
!= 0) {
526 ret
= btrfs_inc_extent_ref(trans
, root
,
528 le64_to_cpu(old
.disk_num_bytes
),
529 orig_parent
, root
->root_key
.objectid
,
530 trans
->transid
, inode
->i_ino
);
536 u64 mask
= root
->sectorsize
- 1;
537 search_start
= (extent_end
+ mask
) & ~mask
;
539 search_start
= extent_end
;
541 /* truncate existing extent */
542 if (start
> key
.offset
) {
546 WARN_ON(start
& (root
->sectorsize
- 1));
548 new_num
= start
- key
.offset
;
549 old_num
= btrfs_file_extent_num_bytes(leaf
,
552 btrfs_file_extent_disk_bytenr(leaf
,
554 if (btrfs_file_extent_disk_bytenr(leaf
,
556 inode_sub_bytes(inode
, old_num
-
559 btrfs_set_file_extent_num_bytes(leaf
,
561 btrfs_mark_buffer_dirty(leaf
);
562 } else if (key
.offset
< inline_limit
&&
563 (end
> extent_end
) &&
564 (inline_limit
< extent_end
)) {
566 new_size
= btrfs_file_extent_calc_inline_size(
567 inline_limit
- key
.offset
);
568 inode_sub_bytes(inode
, extent_end
-
570 btrfs_set_file_extent_ram_bytes(leaf
, extent
,
572 if (!compression
&& !encryption
) {
573 btrfs_truncate_item(trans
, root
, path
,
578 /* delete the entire extent */
581 inode_sub_bytes(inode
, extent_end
-
583 ret
= btrfs_del_item(trans
, root
, path
);
584 /* TODO update progress marker and return */
587 btrfs_release_path(root
, path
);
588 /* the extent will be freed later */
590 if (bookend
&& found_inline
&& start
<= key
.offset
) {
592 new_size
= btrfs_file_extent_calc_inline_size(
594 inode_sub_bytes(inode
, end
- key
.offset
);
595 btrfs_set_file_extent_ram_bytes(leaf
, extent
,
597 if (!compression
&& !encryption
)
598 ret
= btrfs_truncate_item(trans
, root
, path
,
602 /* create bookend, splitting the extent in two */
603 if (bookend
&& found_extent
) {
604 struct btrfs_key ins
;
605 ins
.objectid
= inode
->i_ino
;
607 btrfs_set_key_type(&ins
, BTRFS_EXTENT_DATA_KEY
);
609 btrfs_release_path(root
, path
);
610 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
,
614 leaf
= path
->nodes
[0];
615 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
616 struct btrfs_file_extent_item
);
617 write_extent_buffer(leaf
, &old
,
618 (unsigned long)extent
, sizeof(old
));
620 btrfs_set_file_extent_compression(leaf
, extent
,
622 btrfs_set_file_extent_encryption(leaf
, extent
,
624 btrfs_set_file_extent_other_encoding(leaf
, extent
,
626 btrfs_set_file_extent_offset(leaf
, extent
,
627 le64_to_cpu(old
.offset
) + end
- key
.offset
);
628 WARN_ON(le64_to_cpu(old
.num_bytes
) <
630 btrfs_set_file_extent_num_bytes(leaf
, extent
,
634 * set the ram bytes to the size of the full extent
635 * before splitting. This is a worst case flag,
636 * but its the best we can do because we don't know
637 * how splitting affects compression
639 btrfs_set_file_extent_ram_bytes(leaf
, extent
,
641 btrfs_set_file_extent_type(leaf
, extent
, found_type
);
643 btrfs_mark_buffer_dirty(path
->nodes
[0]);
645 if (disk_bytenr
!= 0) {
646 ret
= btrfs_update_extent_ref(trans
, root
,
647 disk_bytenr
, orig_parent
,
649 root
->root_key
.objectid
,
650 trans
->transid
, ins
.objectid
);
654 btrfs_release_path(root
, path
);
655 if (disk_bytenr
!= 0)
656 inode_add_bytes(inode
, extent_end
- end
);
659 if (found_extent
&& !keep
) {
660 u64 old_disk_bytenr
= le64_to_cpu(old
.disk_bytenr
);
662 if (old_disk_bytenr
!= 0) {
663 inode_sub_bytes(inode
,
664 le64_to_cpu(old
.num_bytes
));
665 ret
= btrfs_free_extent(trans
, root
,
667 le64_to_cpu(old
.disk_num_bytes
),
668 leaf_start
, root_owner
,
669 root_gen
, key
.objectid
, 0);
671 *hint_byte
= old_disk_bytenr
;
675 if (search_start
>= end
) {
681 btrfs_free_path(path
);
682 if (locked_end
> end
) {
683 unlock_extent(&BTRFS_I(inode
)->io_tree
, end
, locked_end
- 1,
686 btrfs_check_file(root
, inode
);
690 static int extent_mergeable(struct extent_buffer
*leaf
, int slot
,
691 u64 objectid
, u64 bytenr
, u64
*start
, u64
*end
)
693 struct btrfs_file_extent_item
*fi
;
694 struct btrfs_key key
;
697 if (slot
< 0 || slot
>= btrfs_header_nritems(leaf
))
700 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
701 if (key
.objectid
!= objectid
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
704 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
705 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
||
706 btrfs_file_extent_disk_bytenr(leaf
, fi
) != bytenr
||
707 btrfs_file_extent_compression(leaf
, fi
) ||
708 btrfs_file_extent_encryption(leaf
, fi
) ||
709 btrfs_file_extent_other_encoding(leaf
, fi
))
712 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
713 if ((*start
&& *start
!= key
.offset
) || (*end
&& *end
!= extent_end
))
722 * Mark extent in the range start - end as written.
724 * This changes extent type from 'pre-allocated' to 'regular'. If only
725 * part of extent is marked as written, the extent will be split into
728 int btrfs_mark_extent_written(struct btrfs_trans_handle
*trans
,
729 struct btrfs_root
*root
,
730 struct inode
*inode
, u64 start
, u64 end
)
732 struct extent_buffer
*leaf
;
733 struct btrfs_path
*path
;
734 struct btrfs_file_extent_item
*fi
;
735 struct btrfs_key key
;
743 u64 locked_end
= end
;
749 btrfs_drop_extent_cache(inode
, start
, end
- 1, 0);
751 path
= btrfs_alloc_path();
754 key
.objectid
= inode
->i_ino
;
755 key
.type
= BTRFS_EXTENT_DATA_KEY
;
759 key
.offset
= split
- 1;
761 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
762 if (ret
> 0 && path
->slots
[0] > 0)
765 leaf
= path
->nodes
[0];
766 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
767 BUG_ON(key
.objectid
!= inode
->i_ino
||
768 key
.type
!= BTRFS_EXTENT_DATA_KEY
);
769 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
770 struct btrfs_file_extent_item
);
771 extent_type
= btrfs_file_extent_type(leaf
, fi
);
772 BUG_ON(extent_type
!= BTRFS_FILE_EXTENT_PREALLOC
);
773 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
774 BUG_ON(key
.offset
> start
|| extent_end
< end
);
776 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
777 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
778 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
780 if (key
.offset
== start
)
783 if (key
.offset
== start
&& extent_end
== end
) {
786 u64 leaf_owner
= btrfs_header_owner(leaf
);
787 u64 leaf_gen
= btrfs_header_generation(leaf
);
790 if (extent_mergeable(leaf
, path
->slots
[0] + 1, inode
->i_ino
,
791 bytenr
, &other_start
, &other_end
)) {
792 extent_end
= other_end
;
793 del_slot
= path
->slots
[0] + 1;
795 ret
= btrfs_free_extent(trans
, root
, bytenr
, num_bytes
,
796 leaf
->start
, leaf_owner
,
797 leaf_gen
, inode
->i_ino
, 0);
802 if (extent_mergeable(leaf
, path
->slots
[0] - 1, inode
->i_ino
,
803 bytenr
, &other_start
, &other_end
)) {
804 key
.offset
= other_start
;
805 del_slot
= path
->slots
[0];
807 ret
= btrfs_free_extent(trans
, root
, bytenr
, num_bytes
,
808 leaf
->start
, leaf_owner
,
809 leaf_gen
, inode
->i_ino
, 0);
814 btrfs_set_file_extent_type(leaf
, fi
,
815 BTRFS_FILE_EXTENT_REG
);
819 fi
= btrfs_item_ptr(leaf
, del_slot
- 1,
820 struct btrfs_file_extent_item
);
821 btrfs_set_file_extent_type(leaf
, fi
, BTRFS_FILE_EXTENT_REG
);
822 btrfs_set_file_extent_num_bytes(leaf
, fi
,
823 extent_end
- key
.offset
);
824 btrfs_mark_buffer_dirty(leaf
);
826 ret
= btrfs_del_items(trans
, root
, path
, del_slot
, del_nr
);
829 } else if (split
== start
) {
830 if (locked_end
< extent_end
) {
831 ret
= try_lock_extent(&BTRFS_I(inode
)->io_tree
,
832 locked_end
, extent_end
- 1, GFP_NOFS
);
834 btrfs_release_path(root
, path
);
835 lock_extent(&BTRFS_I(inode
)->io_tree
,
836 locked_end
, extent_end
- 1, GFP_NOFS
);
837 locked_end
= extent_end
;
840 locked_end
= extent_end
;
842 btrfs_set_file_extent_num_bytes(leaf
, fi
, split
- key
.offset
);
843 extent_offset
+= split
- key
.offset
;
845 BUG_ON(key
.offset
!= start
);
846 btrfs_set_file_extent_offset(leaf
, fi
, extent_offset
+
848 btrfs_set_file_extent_num_bytes(leaf
, fi
, extent_end
- split
);
850 btrfs_set_item_key_safe(trans
, root
, path
, &key
);
854 if (extent_end
== end
) {
856 extent_type
= BTRFS_FILE_EXTENT_REG
;
858 if (extent_end
== end
&& split
== start
) {
861 if (extent_mergeable(leaf
, path
->slots
[0] + 1, inode
->i_ino
,
862 bytenr
, &other_start
, &other_end
)) {
864 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
865 struct btrfs_file_extent_item
);
867 btrfs_set_item_key_safe(trans
, root
, path
, &key
);
868 btrfs_set_file_extent_offset(leaf
, fi
, extent_offset
);
869 btrfs_set_file_extent_num_bytes(leaf
, fi
,
874 if (extent_end
== end
&& split
== end
) {
877 if (extent_mergeable(leaf
, path
->slots
[0] - 1 , inode
->i_ino
,
878 bytenr
, &other_start
, &other_end
)) {
880 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
881 struct btrfs_file_extent_item
);
882 btrfs_set_file_extent_num_bytes(leaf
, fi
, extent_end
-
888 btrfs_mark_buffer_dirty(leaf
);
890 orig_parent
= leaf
->start
;
891 ret
= btrfs_inc_extent_ref(trans
, root
, bytenr
, num_bytes
,
892 orig_parent
, root
->root_key
.objectid
,
893 trans
->transid
, inode
->i_ino
);
895 btrfs_release_path(root
, path
);
898 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, sizeof(*fi
));
901 leaf
= path
->nodes
[0];
902 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
903 struct btrfs_file_extent_item
);
904 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
905 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
906 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, bytenr
);
907 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, num_bytes
);
908 btrfs_set_file_extent_offset(leaf
, fi
, extent_offset
);
909 btrfs_set_file_extent_num_bytes(leaf
, fi
, extent_end
- key
.offset
);
910 btrfs_set_file_extent_ram_bytes(leaf
, fi
, num_bytes
);
911 btrfs_set_file_extent_compression(leaf
, fi
, 0);
912 btrfs_set_file_extent_encryption(leaf
, fi
, 0);
913 btrfs_set_file_extent_other_encoding(leaf
, fi
, 0);
915 if (orig_parent
!= leaf
->start
) {
916 ret
= btrfs_update_extent_ref(trans
, root
, bytenr
,
917 orig_parent
, leaf
->start
,
918 root
->root_key
.objectid
,
919 trans
->transid
, inode
->i_ino
);
923 btrfs_mark_buffer_dirty(leaf
);
924 btrfs_release_path(root
, path
);
925 if (split_end
&& split
== start
) {
929 if (locked_end
> end
) {
930 unlock_extent(&BTRFS_I(inode
)->io_tree
, end
, locked_end
- 1,
933 btrfs_free_path(path
);
938 * this gets pages into the page cache and locks them down, it also properly
939 * waits for data=ordered extents to finish before allowing the pages to be
942 static noinline
int prepare_pages(struct btrfs_root
*root
, struct file
*file
,
943 struct page
**pages
, size_t num_pages
,
944 loff_t pos
, unsigned long first_index
,
945 unsigned long last_index
, size_t write_bytes
)
948 unsigned long index
= pos
>> PAGE_CACHE_SHIFT
;
949 struct inode
*inode
= fdentry(file
)->d_inode
;
954 start_pos
= pos
& ~((u64
)root
->sectorsize
- 1);
955 last_pos
= ((u64
)index
+ num_pages
) << PAGE_CACHE_SHIFT
;
957 if (start_pos
> inode
->i_size
) {
958 err
= btrfs_cont_expand(inode
, start_pos
);
963 memset(pages
, 0, num_pages
* sizeof(struct page
*));
965 for (i
= 0; i
< num_pages
; i
++) {
966 pages
[i
] = grab_cache_page(inode
->i_mapping
, index
+ i
);
971 wait_on_page_writeback(pages
[i
]);
973 if (start_pos
< inode
->i_size
) {
974 struct btrfs_ordered_extent
*ordered
;
975 lock_extent(&BTRFS_I(inode
)->io_tree
,
976 start_pos
, last_pos
- 1, GFP_NOFS
);
977 ordered
= btrfs_lookup_first_ordered_extent(inode
,
980 ordered
->file_offset
+ ordered
->len
> start_pos
&&
981 ordered
->file_offset
< last_pos
) {
982 btrfs_put_ordered_extent(ordered
);
983 unlock_extent(&BTRFS_I(inode
)->io_tree
,
984 start_pos
, last_pos
- 1, GFP_NOFS
);
985 for (i
= 0; i
< num_pages
; i
++) {
986 unlock_page(pages
[i
]);
987 page_cache_release(pages
[i
]);
989 btrfs_wait_ordered_range(inode
, start_pos
,
990 last_pos
- start_pos
);
994 btrfs_put_ordered_extent(ordered
);
996 clear_extent_bits(&BTRFS_I(inode
)->io_tree
, start_pos
,
997 last_pos
- 1, EXTENT_DIRTY
| EXTENT_DELALLOC
,
999 unlock_extent(&BTRFS_I(inode
)->io_tree
,
1000 start_pos
, last_pos
- 1, GFP_NOFS
);
1002 for (i
= 0; i
< num_pages
; i
++) {
1003 clear_page_dirty_for_io(pages
[i
]);
1004 set_page_extent_mapped(pages
[i
]);
1005 WARN_ON(!PageLocked(pages
[i
]));
1010 static ssize_t
btrfs_file_write(struct file
*file
, const char __user
*buf
,
1011 size_t count
, loff_t
*ppos
)
1015 ssize_t num_written
= 0;
1018 struct inode
*inode
= fdentry(file
)->d_inode
;
1019 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1020 struct page
**pages
= NULL
;
1022 struct page
*pinned
[2];
1023 unsigned long first_index
;
1024 unsigned long last_index
;
1027 will_write
= ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
) ||
1028 (file
->f_flags
& O_DIRECT
));
1030 nrptrs
= min((count
+ PAGE_CACHE_SIZE
- 1) / PAGE_CACHE_SIZE
,
1031 PAGE_CACHE_SIZE
/ (sizeof(struct page
*)));
1038 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
1039 current
->backing_dev_info
= inode
->i_mapping
->backing_dev_info
;
1040 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
1046 err
= file_remove_suid(file
);
1049 file_update_time(file
);
1051 pages
= kmalloc(nrptrs
* sizeof(struct page
*), GFP_KERNEL
);
1053 mutex_lock(&inode
->i_mutex
);
1054 BTRFS_I(inode
)->sequence
++;
1055 first_index
= pos
>> PAGE_CACHE_SHIFT
;
1056 last_index
= (pos
+ count
) >> PAGE_CACHE_SHIFT
;
1059 * there are lots of better ways to do this, but this code
1060 * makes sure the first and last page in the file range are
1061 * up to date and ready for cow
1063 if ((pos
& (PAGE_CACHE_SIZE
- 1))) {
1064 pinned
[0] = grab_cache_page(inode
->i_mapping
, first_index
);
1065 if (!PageUptodate(pinned
[0])) {
1066 ret
= btrfs_readpage(NULL
, pinned
[0]);
1068 wait_on_page_locked(pinned
[0]);
1070 unlock_page(pinned
[0]);
1073 if ((pos
+ count
) & (PAGE_CACHE_SIZE
- 1)) {
1074 pinned
[1] = grab_cache_page(inode
->i_mapping
, last_index
);
1075 if (!PageUptodate(pinned
[1])) {
1076 ret
= btrfs_readpage(NULL
, pinned
[1]);
1078 wait_on_page_locked(pinned
[1]);
1080 unlock_page(pinned
[1]);
1085 size_t offset
= pos
& (PAGE_CACHE_SIZE
- 1);
1086 size_t write_bytes
= min(count
, nrptrs
*
1087 (size_t)PAGE_CACHE_SIZE
-
1089 size_t num_pages
= (write_bytes
+ PAGE_CACHE_SIZE
- 1) >>
1092 WARN_ON(num_pages
> nrptrs
);
1093 memset(pages
, 0, sizeof(struct page
*) * nrptrs
);
1095 ret
= btrfs_check_free_space(root
, write_bytes
, 0);
1099 ret
= prepare_pages(root
, file
, pages
, num_pages
,
1100 pos
, first_index
, last_index
,
1105 ret
= btrfs_copy_from_user(pos
, num_pages
,
1106 write_bytes
, pages
, buf
);
1108 btrfs_drop_pages(pages
, num_pages
);
1112 ret
= dirty_and_release_pages(NULL
, root
, file
, pages
,
1113 num_pages
, pos
, write_bytes
);
1114 btrfs_drop_pages(pages
, num_pages
);
1119 btrfs_fdatawrite_range(inode
->i_mapping
, pos
,
1120 pos
+ write_bytes
- 1,
1123 balance_dirty_pages_ratelimited_nr(inode
->i_mapping
,
1126 (root
->leafsize
>> PAGE_CACHE_SHIFT
) + 1)
1127 btrfs_btree_balance_dirty(root
, 1);
1128 btrfs_throttle(root
);
1132 count
-= write_bytes
;
1134 num_written
+= write_bytes
;
1139 mutex_unlock(&inode
->i_mutex
);
1144 page_cache_release(pinned
[0]);
1146 page_cache_release(pinned
[1]);
1149 if (num_written
> 0 && will_write
) {
1150 struct btrfs_trans_handle
*trans
;
1152 err
= btrfs_wait_ordered_range(inode
, start_pos
, num_written
);
1156 if ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
)) {
1157 trans
= btrfs_start_transaction(root
, 1);
1158 ret
= btrfs_log_dentry_safe(trans
, root
,
1161 btrfs_sync_log(trans
, root
);
1162 btrfs_end_transaction(trans
, root
);
1164 btrfs_commit_transaction(trans
, root
);
1167 if (file
->f_flags
& O_DIRECT
) {
1168 invalidate_mapping_pages(inode
->i_mapping
,
1169 start_pos
>> PAGE_CACHE_SHIFT
,
1170 (start_pos
+ num_written
- 1) >> PAGE_CACHE_SHIFT
);
1173 current
->backing_dev_info
= NULL
;
1174 return num_written
? num_written
: err
;
1177 int btrfs_release_file(struct inode
*inode
, struct file
*filp
)
1179 if (filp
->private_data
)
1180 btrfs_ioctl_trans_end(filp
);
1185 * fsync call for both files and directories. This logs the inode into
1186 * the tree log instead of forcing full commits whenever possible.
1188 * It needs to call filemap_fdatawait so that all ordered extent updates are
1189 * in the metadata btree are up to date for copying to the log.
1191 * It drops the inode mutex before doing the tree log commit. This is an
1192 * important optimization for directories because holding the mutex prevents
1193 * new operations on the dir while we write to disk.
1195 int btrfs_sync_file(struct file
*file
, struct dentry
*dentry
, int datasync
)
1197 struct inode
*inode
= dentry
->d_inode
;
1198 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1200 struct btrfs_trans_handle
*trans
;
1203 * check the transaction that last modified this inode
1204 * and see if its already been committed
1206 if (!BTRFS_I(inode
)->last_trans
)
1209 mutex_lock(&root
->fs_info
->trans_mutex
);
1210 if (BTRFS_I(inode
)->last_trans
<=
1211 root
->fs_info
->last_trans_committed
) {
1212 BTRFS_I(inode
)->last_trans
= 0;
1213 mutex_unlock(&root
->fs_info
->trans_mutex
);
1216 mutex_unlock(&root
->fs_info
->trans_mutex
);
1218 root
->fs_info
->tree_log_batch
++;
1219 filemap_fdatawrite(inode
->i_mapping
);
1220 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
1221 root
->fs_info
->tree_log_batch
++;
1224 * ok we haven't committed the transaction yet, lets do a commit
1226 if (file
->private_data
)
1227 btrfs_ioctl_trans_end(file
);
1229 trans
= btrfs_start_transaction(root
, 1);
1235 ret
= btrfs_log_dentry_safe(trans
, root
, file
->f_dentry
);
1239 /* we've logged all the items and now have a consistent
1240 * version of the file in the log. It is possible that
1241 * someone will come in and modify the file, but that's
1242 * fine because the log is consistent on disk, and we
1243 * have references to all of the file's extents
1245 * It is possible that someone will come in and log the
1246 * file again, but that will end up using the synchronization
1247 * inside btrfs_sync_log to keep things safe.
1249 mutex_unlock(&file
->f_dentry
->d_inode
->i_mutex
);
1252 ret
= btrfs_commit_transaction(trans
, root
);
1254 btrfs_sync_log(trans
, root
);
1255 ret
= btrfs_end_transaction(trans
, root
);
1257 mutex_lock(&file
->f_dentry
->d_inode
->i_mutex
);
1259 return ret
> 0 ? EIO
: ret
;
1262 static struct vm_operations_struct btrfs_file_vm_ops
= {
1263 .fault
= filemap_fault
,
1264 .page_mkwrite
= btrfs_page_mkwrite
,
1267 static int btrfs_file_mmap(struct file
*filp
, struct vm_area_struct
*vma
)
1269 vma
->vm_ops
= &btrfs_file_vm_ops
;
1270 file_accessed(filp
);
1274 struct file_operations btrfs_file_operations
= {
1275 .llseek
= generic_file_llseek
,
1276 .read
= do_sync_read
,
1277 .aio_read
= generic_file_aio_read
,
1278 .splice_read
= generic_file_splice_read
,
1279 .write
= btrfs_file_write
,
1280 .mmap
= btrfs_file_mmap
,
1281 .open
= generic_file_open
,
1282 .release
= btrfs_release_file
,
1283 .fsync
= btrfs_sync_file
,
1284 .unlocked_ioctl
= btrfs_ioctl
,
1285 #ifdef CONFIG_COMPAT
1286 .compat_ioctl
= btrfs_ioctl
,