4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
35 #include <linux/swapops.h>
36 #include <linux/page_cgroup.h>
38 static DEFINE_SPINLOCK(swap_lock
);
39 static unsigned int nr_swapfiles
;
41 long total_swap_pages
;
42 static int swap_overflow
;
43 static int least_priority
;
45 static const char Bad_file
[] = "Bad swap file entry ";
46 static const char Unused_file
[] = "Unused swap file entry ";
47 static const char Bad_offset
[] = "Bad swap offset entry ";
48 static const char Unused_offset
[] = "Unused swap offset entry ";
50 static struct swap_list_t swap_list
= {-1, -1};
52 static struct swap_info_struct swap_info
[MAX_SWAPFILES
];
54 static DEFINE_MUTEX(swapon_mutex
);
56 /* For reference count accounting in swap_map */
57 /* enum for swap_map[] handling. internal use only */
59 SWAP_MAP
= 0, /* ops for reference from swap users */
60 SWAP_CACHE
, /* ops for reference from swap cache */
63 static inline int swap_count(unsigned short ent
)
65 return ent
& SWAP_COUNT_MASK
;
68 static inline bool swap_has_cache(unsigned short ent
)
70 return !!(ent
& SWAP_HAS_CACHE
);
73 static inline unsigned short encode_swapmap(int count
, bool has_cache
)
75 unsigned short ret
= count
;
78 return SWAP_HAS_CACHE
| ret
;
82 /* returnes 1 if swap entry is freed */
84 __try_to_reclaim_swap(struct swap_info_struct
*si
, unsigned long offset
)
86 int type
= si
- swap_info
;
87 swp_entry_t entry
= swp_entry(type
, offset
);
91 page
= find_get_page(&swapper_space
, entry
.val
);
95 * This function is called from scan_swap_map() and it's called
96 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
97 * We have to use trylock for avoiding deadlock. This is a special
98 * case and you should use try_to_free_swap() with explicit lock_page()
99 * in usual operations.
101 if (trylock_page(page
)) {
102 ret
= try_to_free_swap(page
);
105 page_cache_release(page
);
110 * We need this because the bdev->unplug_fn can sleep and we cannot
111 * hold swap_lock while calling the unplug_fn. And swap_lock
112 * cannot be turned into a mutex.
114 static DECLARE_RWSEM(swap_unplug_sem
);
116 void swap_unplug_io_fn(struct backing_dev_info
*unused_bdi
, struct page
*page
)
120 down_read(&swap_unplug_sem
);
121 entry
.val
= page_private(page
);
122 if (PageSwapCache(page
)) {
123 struct block_device
*bdev
= swap_info
[swp_type(entry
)].bdev
;
124 struct backing_dev_info
*bdi
;
127 * If the page is removed from swapcache from under us (with a
128 * racy try_to_unuse/swapoff) we need an additional reference
129 * count to avoid reading garbage from page_private(page) above.
130 * If the WARN_ON triggers during a swapoff it maybe the race
131 * condition and it's harmless. However if it triggers without
132 * swapoff it signals a problem.
134 WARN_ON(page_count(page
) <= 1);
136 bdi
= bdev
->bd_inode
->i_mapping
->backing_dev_info
;
137 blk_run_backing_dev(bdi
, page
);
139 up_read(&swap_unplug_sem
);
143 * swapon tell device that all the old swap contents can be discarded,
144 * to allow the swap device to optimize its wear-levelling.
146 static int discard_swap(struct swap_info_struct
*si
)
148 struct swap_extent
*se
;
151 list_for_each_entry(se
, &si
->extent_list
, list
) {
152 sector_t start_block
= se
->start_block
<< (PAGE_SHIFT
- 9);
153 sector_t nr_blocks
= (sector_t
)se
->nr_pages
<< (PAGE_SHIFT
- 9);
155 if (se
->start_page
== 0) {
156 /* Do not discard the swap header page! */
157 start_block
+= 1 << (PAGE_SHIFT
- 9);
158 nr_blocks
-= 1 << (PAGE_SHIFT
- 9);
163 err
= blkdev_issue_discard(si
->bdev
, start_block
,
164 nr_blocks
, GFP_KERNEL
,
171 return err
; /* That will often be -EOPNOTSUPP */
175 * swap allocation tell device that a cluster of swap can now be discarded,
176 * to allow the swap device to optimize its wear-levelling.
178 static void discard_swap_cluster(struct swap_info_struct
*si
,
179 pgoff_t start_page
, pgoff_t nr_pages
)
181 struct swap_extent
*se
= si
->curr_swap_extent
;
182 int found_extent
= 0;
185 struct list_head
*lh
;
187 if (se
->start_page
<= start_page
&&
188 start_page
< se
->start_page
+ se
->nr_pages
) {
189 pgoff_t offset
= start_page
- se
->start_page
;
190 sector_t start_block
= se
->start_block
+ offset
;
191 sector_t nr_blocks
= se
->nr_pages
- offset
;
193 if (nr_blocks
> nr_pages
)
194 nr_blocks
= nr_pages
;
195 start_page
+= nr_blocks
;
196 nr_pages
-= nr_blocks
;
199 si
->curr_swap_extent
= se
;
201 start_block
<<= PAGE_SHIFT
- 9;
202 nr_blocks
<<= PAGE_SHIFT
- 9;
203 if (blkdev_issue_discard(si
->bdev
, start_block
,
210 if (lh
== &si
->extent_list
)
212 se
= list_entry(lh
, struct swap_extent
, list
);
216 static int wait_for_discard(void *word
)
222 #define SWAPFILE_CLUSTER 256
223 #define LATENCY_LIMIT 256
225 static inline unsigned long scan_swap_map(struct swap_info_struct
*si
,
228 unsigned long offset
;
229 unsigned long scan_base
;
230 unsigned long last_in_cluster
= 0;
231 int latency_ration
= LATENCY_LIMIT
;
232 int found_free_cluster
= 0;
235 * We try to cluster swap pages by allocating them sequentially
236 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
237 * way, however, we resort to first-free allocation, starting
238 * a new cluster. This prevents us from scattering swap pages
239 * all over the entire swap partition, so that we reduce
240 * overall disk seek times between swap pages. -- sct
241 * But we do now try to find an empty cluster. -Andrea
242 * And we let swap pages go all over an SSD partition. Hugh
245 si
->flags
+= SWP_SCANNING
;
246 scan_base
= offset
= si
->cluster_next
;
248 if (unlikely(!si
->cluster_nr
--)) {
249 if (si
->pages
- si
->inuse_pages
< SWAPFILE_CLUSTER
) {
250 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
253 if (si
->flags
& SWP_DISCARDABLE
) {
255 * Start range check on racing allocations, in case
256 * they overlap the cluster we eventually decide on
257 * (we scan without swap_lock to allow preemption).
258 * It's hardly conceivable that cluster_nr could be
259 * wrapped during our scan, but don't depend on it.
261 if (si
->lowest_alloc
)
263 si
->lowest_alloc
= si
->max
;
264 si
->highest_alloc
= 0;
266 spin_unlock(&swap_lock
);
269 * If seek is expensive, start searching for new cluster from
270 * start of partition, to minimize the span of allocated swap.
271 * But if seek is cheap, search from our current position, so
272 * that swap is allocated from all over the partition: if the
273 * Flash Translation Layer only remaps within limited zones,
274 * we don't want to wear out the first zone too quickly.
276 if (!(si
->flags
& SWP_SOLIDSTATE
))
277 scan_base
= offset
= si
->lowest_bit
;
278 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
280 /* Locate the first empty (unaligned) cluster */
281 for (; last_in_cluster
<= si
->highest_bit
; offset
++) {
282 if (si
->swap_map
[offset
])
283 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
284 else if (offset
== last_in_cluster
) {
285 spin_lock(&swap_lock
);
286 offset
-= SWAPFILE_CLUSTER
- 1;
287 si
->cluster_next
= offset
;
288 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
289 found_free_cluster
= 1;
292 if (unlikely(--latency_ration
< 0)) {
294 latency_ration
= LATENCY_LIMIT
;
298 offset
= si
->lowest_bit
;
299 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
301 /* Locate the first empty (unaligned) cluster */
302 for (; last_in_cluster
< scan_base
; offset
++) {
303 if (si
->swap_map
[offset
])
304 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
305 else if (offset
== last_in_cluster
) {
306 spin_lock(&swap_lock
);
307 offset
-= SWAPFILE_CLUSTER
- 1;
308 si
->cluster_next
= offset
;
309 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
310 found_free_cluster
= 1;
313 if (unlikely(--latency_ration
< 0)) {
315 latency_ration
= LATENCY_LIMIT
;
320 spin_lock(&swap_lock
);
321 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
322 si
->lowest_alloc
= 0;
326 if (!(si
->flags
& SWP_WRITEOK
))
328 if (!si
->highest_bit
)
330 if (offset
> si
->highest_bit
)
331 scan_base
= offset
= si
->lowest_bit
;
333 /* reuse swap entry of cache-only swap if not busy. */
334 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
336 spin_unlock(&swap_lock
);
337 swap_was_freed
= __try_to_reclaim_swap(si
, offset
);
338 spin_lock(&swap_lock
);
339 /* entry was freed successfully, try to use this again */
342 goto scan
; /* check next one */
345 if (si
->swap_map
[offset
])
348 if (offset
== si
->lowest_bit
)
350 if (offset
== si
->highest_bit
)
353 if (si
->inuse_pages
== si
->pages
) {
354 si
->lowest_bit
= si
->max
;
357 if (cache
== SWAP_CACHE
) /* at usual swap-out via vmscan.c */
358 si
->swap_map
[offset
] = encode_swapmap(0, true);
359 else /* at suspend */
360 si
->swap_map
[offset
] = encode_swapmap(1, false);
361 si
->cluster_next
= offset
+ 1;
362 si
->flags
-= SWP_SCANNING
;
364 if (si
->lowest_alloc
) {
366 * Only set when SWP_DISCARDABLE, and there's a scan
367 * for a free cluster in progress or just completed.
369 if (found_free_cluster
) {
371 * To optimize wear-levelling, discard the
372 * old data of the cluster, taking care not to
373 * discard any of its pages that have already
374 * been allocated by racing tasks (offset has
375 * already stepped over any at the beginning).
377 if (offset
< si
->highest_alloc
&&
378 si
->lowest_alloc
<= last_in_cluster
)
379 last_in_cluster
= si
->lowest_alloc
- 1;
380 si
->flags
|= SWP_DISCARDING
;
381 spin_unlock(&swap_lock
);
383 if (offset
< last_in_cluster
)
384 discard_swap_cluster(si
, offset
,
385 last_in_cluster
- offset
+ 1);
387 spin_lock(&swap_lock
);
388 si
->lowest_alloc
= 0;
389 si
->flags
&= ~SWP_DISCARDING
;
391 smp_mb(); /* wake_up_bit advises this */
392 wake_up_bit(&si
->flags
, ilog2(SWP_DISCARDING
));
394 } else if (si
->flags
& SWP_DISCARDING
) {
396 * Delay using pages allocated by racing tasks
397 * until the whole discard has been issued. We
398 * could defer that delay until swap_writepage,
399 * but it's easier to keep this self-contained.
401 spin_unlock(&swap_lock
);
402 wait_on_bit(&si
->flags
, ilog2(SWP_DISCARDING
),
403 wait_for_discard
, TASK_UNINTERRUPTIBLE
);
404 spin_lock(&swap_lock
);
407 * Note pages allocated by racing tasks while
408 * scan for a free cluster is in progress, so
409 * that its final discard can exclude them.
411 if (offset
< si
->lowest_alloc
)
412 si
->lowest_alloc
= offset
;
413 if (offset
> si
->highest_alloc
)
414 si
->highest_alloc
= offset
;
420 spin_unlock(&swap_lock
);
421 while (++offset
<= si
->highest_bit
) {
422 if (!si
->swap_map
[offset
]) {
423 spin_lock(&swap_lock
);
426 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
427 spin_lock(&swap_lock
);
430 if (unlikely(--latency_ration
< 0)) {
432 latency_ration
= LATENCY_LIMIT
;
435 offset
= si
->lowest_bit
;
436 while (++offset
< scan_base
) {
437 if (!si
->swap_map
[offset
]) {
438 spin_lock(&swap_lock
);
441 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
442 spin_lock(&swap_lock
);
445 if (unlikely(--latency_ration
< 0)) {
447 latency_ration
= LATENCY_LIMIT
;
450 spin_lock(&swap_lock
);
453 si
->flags
-= SWP_SCANNING
;
457 swp_entry_t
get_swap_page(void)
459 struct swap_info_struct
*si
;
464 spin_lock(&swap_lock
);
465 if (nr_swap_pages
<= 0)
469 for (type
= swap_list
.next
; type
>= 0 && wrapped
< 2; type
= next
) {
470 si
= swap_info
+ type
;
473 (!wrapped
&& si
->prio
!= swap_info
[next
].prio
)) {
474 next
= swap_list
.head
;
478 if (!si
->highest_bit
)
480 if (!(si
->flags
& SWP_WRITEOK
))
483 swap_list
.next
= next
;
484 /* This is called for allocating swap entry for cache */
485 offset
= scan_swap_map(si
, SWAP_CACHE
);
487 spin_unlock(&swap_lock
);
488 return swp_entry(type
, offset
);
490 next
= swap_list
.next
;
495 spin_unlock(&swap_lock
);
496 return (swp_entry_t
) {0};
499 /* The only caller of this function is now susupend routine */
500 swp_entry_t
get_swap_page_of_type(int type
)
502 struct swap_info_struct
*si
;
505 spin_lock(&swap_lock
);
506 si
= swap_info
+ type
;
507 if (si
->flags
& SWP_WRITEOK
) {
509 /* This is called for allocating swap entry, not cache */
510 offset
= scan_swap_map(si
, SWAP_MAP
);
512 spin_unlock(&swap_lock
);
513 return swp_entry(type
, offset
);
517 spin_unlock(&swap_lock
);
518 return (swp_entry_t
) {0};
521 static struct swap_info_struct
* swap_info_get(swp_entry_t entry
)
523 struct swap_info_struct
* p
;
524 unsigned long offset
, type
;
528 type
= swp_type(entry
);
529 if (type
>= nr_swapfiles
)
531 p
= & swap_info
[type
];
532 if (!(p
->flags
& SWP_USED
))
534 offset
= swp_offset(entry
);
535 if (offset
>= p
->max
)
537 if (!p
->swap_map
[offset
])
539 spin_lock(&swap_lock
);
543 printk(KERN_ERR
"swap_free: %s%08lx\n", Unused_offset
, entry
.val
);
546 printk(KERN_ERR
"swap_free: %s%08lx\n", Bad_offset
, entry
.val
);
549 printk(KERN_ERR
"swap_free: %s%08lx\n", Unused_file
, entry
.val
);
552 printk(KERN_ERR
"swap_free: %s%08lx\n", Bad_file
, entry
.val
);
557 static int swap_entry_free(struct swap_info_struct
*p
,
558 swp_entry_t ent
, int cache
)
560 unsigned long offset
= swp_offset(ent
);
561 int count
= swap_count(p
->swap_map
[offset
]);
564 has_cache
= swap_has_cache(p
->swap_map
[offset
]);
566 if (cache
== SWAP_MAP
) { /* dropping usage count of swap */
567 if (count
< SWAP_MAP_MAX
) {
569 p
->swap_map
[offset
] = encode_swapmap(count
, has_cache
);
571 } else { /* dropping swap cache flag */
572 VM_BUG_ON(!has_cache
);
573 p
->swap_map
[offset
] = encode_swapmap(count
, false);
577 count
= p
->swap_map
[offset
];
578 /* free if no reference */
580 if (offset
< p
->lowest_bit
)
581 p
->lowest_bit
= offset
;
582 if (offset
> p
->highest_bit
)
583 p
->highest_bit
= offset
;
584 if (p
->prio
> swap_info
[swap_list
.next
].prio
)
585 swap_list
.next
= p
- swap_info
;
589 if (!swap_count(count
))
590 mem_cgroup_uncharge_swap(ent
);
595 * Caller has made sure that the swapdevice corresponding to entry
596 * is still around or has not been recycled.
598 void swap_free(swp_entry_t entry
)
600 struct swap_info_struct
* p
;
602 p
= swap_info_get(entry
);
604 swap_entry_free(p
, entry
, SWAP_MAP
);
605 spin_unlock(&swap_lock
);
610 * Called after dropping swapcache to decrease refcnt to swap entries.
612 void swapcache_free(swp_entry_t entry
, struct page
*page
)
614 struct swap_info_struct
*p
;
617 p
= swap_info_get(entry
);
619 ret
= swap_entry_free(p
, entry
, SWAP_CACHE
);
623 swapout
= true; /* the end of swap out */
625 swapout
= false; /* no more swap users! */
626 mem_cgroup_uncharge_swapcache(page
, entry
, swapout
);
628 spin_unlock(&swap_lock
);
634 * How many references to page are currently swapped out?
636 static inline int page_swapcount(struct page
*page
)
639 struct swap_info_struct
*p
;
642 entry
.val
= page_private(page
);
643 p
= swap_info_get(entry
);
645 count
= swap_count(p
->swap_map
[swp_offset(entry
)]);
646 spin_unlock(&swap_lock
);
652 * We can write to an anon page without COW if there are no other references
653 * to it. And as a side-effect, free up its swap: because the old content
654 * on disk will never be read, and seeking back there to write new content
655 * later would only waste time away from clustering.
657 int reuse_swap_page(struct page
*page
)
661 VM_BUG_ON(!PageLocked(page
));
662 count
= page_mapcount(page
);
663 if (count
<= 1 && PageSwapCache(page
)) {
664 count
+= page_swapcount(page
);
665 if (count
== 1 && !PageWriteback(page
)) {
666 delete_from_swap_cache(page
);
674 * If swap is getting full, or if there are no more mappings of this page,
675 * then try_to_free_swap is called to free its swap space.
677 int try_to_free_swap(struct page
*page
)
679 VM_BUG_ON(!PageLocked(page
));
681 if (!PageSwapCache(page
))
683 if (PageWriteback(page
))
685 if (page_swapcount(page
))
688 delete_from_swap_cache(page
);
694 * Free the swap entry like above, but also try to
695 * free the page cache entry if it is the last user.
697 int free_swap_and_cache(swp_entry_t entry
)
699 struct swap_info_struct
*p
;
700 struct page
*page
= NULL
;
702 if (is_migration_entry(entry
))
705 p
= swap_info_get(entry
);
707 if (swap_entry_free(p
, entry
, SWAP_MAP
) == SWAP_HAS_CACHE
) {
708 page
= find_get_page(&swapper_space
, entry
.val
);
709 if (page
&& !trylock_page(page
)) {
710 page_cache_release(page
);
714 spin_unlock(&swap_lock
);
718 * Not mapped elsewhere, or swap space full? Free it!
719 * Also recheck PageSwapCache now page is locked (above).
721 if (PageSwapCache(page
) && !PageWriteback(page
) &&
722 (!page_mapped(page
) || vm_swap_full())) {
723 delete_from_swap_cache(page
);
727 page_cache_release(page
);
732 #ifdef CONFIG_HIBERNATION
734 * Find the swap type that corresponds to given device (if any).
736 * @offset - number of the PAGE_SIZE-sized block of the device, starting
737 * from 0, in which the swap header is expected to be located.
739 * This is needed for the suspend to disk (aka swsusp).
741 int swap_type_of(dev_t device
, sector_t offset
, struct block_device
**bdev_p
)
743 struct block_device
*bdev
= NULL
;
747 bdev
= bdget(device
);
749 spin_lock(&swap_lock
);
750 for (i
= 0; i
< nr_swapfiles
; i
++) {
751 struct swap_info_struct
*sis
= swap_info
+ i
;
753 if (!(sis
->flags
& SWP_WRITEOK
))
758 *bdev_p
= bdgrab(sis
->bdev
);
760 spin_unlock(&swap_lock
);
763 if (bdev
== sis
->bdev
) {
764 struct swap_extent
*se
;
766 se
= list_entry(sis
->extent_list
.next
,
767 struct swap_extent
, list
);
768 if (se
->start_block
== offset
) {
770 *bdev_p
= bdgrab(sis
->bdev
);
772 spin_unlock(&swap_lock
);
778 spin_unlock(&swap_lock
);
786 * Return either the total number of swap pages of given type, or the number
787 * of free pages of that type (depending on @free)
789 * This is needed for software suspend
791 unsigned int count_swap_pages(int type
, int free
)
795 if (type
< nr_swapfiles
) {
796 spin_lock(&swap_lock
);
797 if (swap_info
[type
].flags
& SWP_WRITEOK
) {
798 n
= swap_info
[type
].pages
;
800 n
-= swap_info
[type
].inuse_pages
;
802 spin_unlock(&swap_lock
);
809 * No need to decide whether this PTE shares the swap entry with others,
810 * just let do_wp_page work it out if a write is requested later - to
811 * force COW, vm_page_prot omits write permission from any private vma.
813 static int unuse_pte(struct vm_area_struct
*vma
, pmd_t
*pmd
,
814 unsigned long addr
, swp_entry_t entry
, struct page
*page
)
816 struct mem_cgroup
*ptr
= NULL
;
821 if (mem_cgroup_try_charge_swapin(vma
->vm_mm
, page
, GFP_KERNEL
, &ptr
)) {
826 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
827 if (unlikely(!pte_same(*pte
, swp_entry_to_pte(entry
)))) {
829 mem_cgroup_cancel_charge_swapin(ptr
);
834 inc_mm_counter(vma
->vm_mm
, anon_rss
);
836 set_pte_at(vma
->vm_mm
, addr
, pte
,
837 pte_mkold(mk_pte(page
, vma
->vm_page_prot
)));
838 page_add_anon_rmap(page
, vma
, addr
);
839 mem_cgroup_commit_charge_swapin(page
, ptr
);
842 * Move the page to the active list so it is not
843 * immediately swapped out again after swapon.
847 pte_unmap_unlock(pte
, ptl
);
852 static int unuse_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
853 unsigned long addr
, unsigned long end
,
854 swp_entry_t entry
, struct page
*page
)
856 pte_t swp_pte
= swp_entry_to_pte(entry
);
861 * We don't actually need pte lock while scanning for swp_pte: since
862 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
863 * page table while we're scanning; though it could get zapped, and on
864 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
865 * of unmatched parts which look like swp_pte, so unuse_pte must
866 * recheck under pte lock. Scanning without pte lock lets it be
867 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
869 pte
= pte_offset_map(pmd
, addr
);
872 * swapoff spends a _lot_ of time in this loop!
873 * Test inline before going to call unuse_pte.
875 if (unlikely(pte_same(*pte
, swp_pte
))) {
877 ret
= unuse_pte(vma
, pmd
, addr
, entry
, page
);
880 pte
= pte_offset_map(pmd
, addr
);
882 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
888 static inline int unuse_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
889 unsigned long addr
, unsigned long end
,
890 swp_entry_t entry
, struct page
*page
)
896 pmd
= pmd_offset(pud
, addr
);
898 next
= pmd_addr_end(addr
, end
);
899 if (pmd_none_or_clear_bad(pmd
))
901 ret
= unuse_pte_range(vma
, pmd
, addr
, next
, entry
, page
);
904 } while (pmd
++, addr
= next
, addr
!= end
);
908 static inline int unuse_pud_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
909 unsigned long addr
, unsigned long end
,
910 swp_entry_t entry
, struct page
*page
)
916 pud
= pud_offset(pgd
, addr
);
918 next
= pud_addr_end(addr
, end
);
919 if (pud_none_or_clear_bad(pud
))
921 ret
= unuse_pmd_range(vma
, pud
, addr
, next
, entry
, page
);
924 } while (pud
++, addr
= next
, addr
!= end
);
928 static int unuse_vma(struct vm_area_struct
*vma
,
929 swp_entry_t entry
, struct page
*page
)
932 unsigned long addr
, end
, next
;
936 addr
= page_address_in_vma(page
, vma
);
940 end
= addr
+ PAGE_SIZE
;
942 addr
= vma
->vm_start
;
946 pgd
= pgd_offset(vma
->vm_mm
, addr
);
948 next
= pgd_addr_end(addr
, end
);
949 if (pgd_none_or_clear_bad(pgd
))
951 ret
= unuse_pud_range(vma
, pgd
, addr
, next
, entry
, page
);
954 } while (pgd
++, addr
= next
, addr
!= end
);
958 static int unuse_mm(struct mm_struct
*mm
,
959 swp_entry_t entry
, struct page
*page
)
961 struct vm_area_struct
*vma
;
964 if (!down_read_trylock(&mm
->mmap_sem
)) {
966 * Activate page so shrink_inactive_list is unlikely to unmap
967 * its ptes while lock is dropped, so swapoff can make progress.
971 down_read(&mm
->mmap_sem
);
974 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
975 if (vma
->anon_vma
&& (ret
= unuse_vma(vma
, entry
, page
)))
978 up_read(&mm
->mmap_sem
);
979 return (ret
< 0)? ret
: 0;
983 * Scan swap_map from current position to next entry still in use.
984 * Recycle to start on reaching the end, returning 0 when empty.
986 static unsigned int find_next_to_unuse(struct swap_info_struct
*si
,
989 unsigned int max
= si
->max
;
990 unsigned int i
= prev
;
994 * No need for swap_lock here: we're just looking
995 * for whether an entry is in use, not modifying it; false
996 * hits are okay, and sys_swapoff() has already prevented new
997 * allocations from this area (while holding swap_lock).
1006 * No entries in use at top of swap_map,
1007 * loop back to start and recheck there.
1013 count
= si
->swap_map
[i
];
1014 if (count
&& swap_count(count
) != SWAP_MAP_BAD
)
1021 * We completely avoid races by reading each swap page in advance,
1022 * and then search for the process using it. All the necessary
1023 * page table adjustments can then be made atomically.
1025 static int try_to_unuse(unsigned int type
)
1027 struct swap_info_struct
* si
= &swap_info
[type
];
1028 struct mm_struct
*start_mm
;
1029 unsigned short *swap_map
;
1030 unsigned short swcount
;
1035 int reset_overflow
= 0;
1039 * When searching mms for an entry, a good strategy is to
1040 * start at the first mm we freed the previous entry from
1041 * (though actually we don't notice whether we or coincidence
1042 * freed the entry). Initialize this start_mm with a hold.
1044 * A simpler strategy would be to start at the last mm we
1045 * freed the previous entry from; but that would take less
1046 * advantage of mmlist ordering, which clusters forked mms
1047 * together, child after parent. If we race with dup_mmap(), we
1048 * prefer to resolve parent before child, lest we miss entries
1049 * duplicated after we scanned child: using last mm would invert
1050 * that. Though it's only a serious concern when an overflowed
1051 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
1053 start_mm
= &init_mm
;
1054 atomic_inc(&init_mm
.mm_users
);
1057 * Keep on scanning until all entries have gone. Usually,
1058 * one pass through swap_map is enough, but not necessarily:
1059 * there are races when an instance of an entry might be missed.
1061 while ((i
= find_next_to_unuse(si
, i
)) != 0) {
1062 if (signal_pending(current
)) {
1068 * Get a page for the entry, using the existing swap
1069 * cache page if there is one. Otherwise, get a clean
1070 * page and read the swap into it.
1072 swap_map
= &si
->swap_map
[i
];
1073 entry
= swp_entry(type
, i
);
1074 page
= read_swap_cache_async(entry
,
1075 GFP_HIGHUSER_MOVABLE
, NULL
, 0);
1078 * Either swap_duplicate() failed because entry
1079 * has been freed independently, and will not be
1080 * reused since sys_swapoff() already disabled
1081 * allocation from here, or alloc_page() failed.
1090 * Don't hold on to start_mm if it looks like exiting.
1092 if (atomic_read(&start_mm
->mm_users
) == 1) {
1094 start_mm
= &init_mm
;
1095 atomic_inc(&init_mm
.mm_users
);
1099 * Wait for and lock page. When do_swap_page races with
1100 * try_to_unuse, do_swap_page can handle the fault much
1101 * faster than try_to_unuse can locate the entry. This
1102 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1103 * defer to do_swap_page in such a case - in some tests,
1104 * do_swap_page and try_to_unuse repeatedly compete.
1106 wait_on_page_locked(page
);
1107 wait_on_page_writeback(page
);
1109 wait_on_page_writeback(page
);
1112 * Remove all references to entry.
1113 * Whenever we reach init_mm, there's no address space
1114 * to search, but use it as a reminder to search shmem.
1117 swcount
= *swap_map
;
1118 if (swap_count(swcount
)) {
1119 if (start_mm
== &init_mm
)
1120 shmem
= shmem_unuse(entry
, page
);
1122 retval
= unuse_mm(start_mm
, entry
, page
);
1124 if (swap_count(*swap_map
)) {
1125 int set_start_mm
= (*swap_map
>= swcount
);
1126 struct list_head
*p
= &start_mm
->mmlist
;
1127 struct mm_struct
*new_start_mm
= start_mm
;
1128 struct mm_struct
*prev_mm
= start_mm
;
1129 struct mm_struct
*mm
;
1131 atomic_inc(&new_start_mm
->mm_users
);
1132 atomic_inc(&prev_mm
->mm_users
);
1133 spin_lock(&mmlist_lock
);
1134 while (swap_count(*swap_map
) && !retval
&& !shmem
&&
1135 (p
= p
->next
) != &start_mm
->mmlist
) {
1136 mm
= list_entry(p
, struct mm_struct
, mmlist
);
1137 if (!atomic_inc_not_zero(&mm
->mm_users
))
1139 spin_unlock(&mmlist_lock
);
1145 swcount
= *swap_map
;
1146 if (!swap_count(swcount
)) /* any usage ? */
1148 else if (mm
== &init_mm
) {
1150 shmem
= shmem_unuse(entry
, page
);
1152 retval
= unuse_mm(mm
, entry
, page
);
1155 swap_count(*swap_map
) < swcount
) {
1156 mmput(new_start_mm
);
1157 atomic_inc(&mm
->mm_users
);
1161 spin_lock(&mmlist_lock
);
1163 spin_unlock(&mmlist_lock
);
1166 start_mm
= new_start_mm
;
1169 /* page has already been unlocked and released */
1177 page_cache_release(page
);
1182 * How could swap count reach 0x7ffe ?
1183 * There's no way to repeat a swap page within an mm
1184 * (except in shmem, where it's the shared object which takes
1185 * the reference count)?
1186 * We believe SWAP_MAP_MAX cannot occur.(if occur, unsigned
1187 * short is too small....)
1188 * If that's wrong, then we should worry more about
1189 * exit_mmap() and do_munmap() cases described above:
1190 * we might be resetting SWAP_MAP_MAX too early here.
1191 * We know "Undead"s can happen, they're okay, so don't
1192 * report them; but do report if we reset SWAP_MAP_MAX.
1194 /* We might release the lock_page() in unuse_mm(). */
1195 if (!PageSwapCache(page
) || page_private(page
) != entry
.val
)
1198 if (swap_count(*swap_map
) == SWAP_MAP_MAX
) {
1199 spin_lock(&swap_lock
);
1200 *swap_map
= encode_swapmap(0, true);
1201 spin_unlock(&swap_lock
);
1206 * If a reference remains (rare), we would like to leave
1207 * the page in the swap cache; but try_to_unmap could
1208 * then re-duplicate the entry once we drop page lock,
1209 * so we might loop indefinitely; also, that page could
1210 * not be swapped out to other storage meanwhile. So:
1211 * delete from cache even if there's another reference,
1212 * after ensuring that the data has been saved to disk -
1213 * since if the reference remains (rarer), it will be
1214 * read from disk into another page. Splitting into two
1215 * pages would be incorrect if swap supported "shared
1216 * private" pages, but they are handled by tmpfs files.
1218 if (swap_count(*swap_map
) &&
1219 PageDirty(page
) && PageSwapCache(page
)) {
1220 struct writeback_control wbc
= {
1221 .sync_mode
= WB_SYNC_NONE
,
1224 swap_writepage(page
, &wbc
);
1226 wait_on_page_writeback(page
);
1230 * It is conceivable that a racing task removed this page from
1231 * swap cache just before we acquired the page lock at the top,
1232 * or while we dropped it in unuse_mm(). The page might even
1233 * be back in swap cache on another swap area: that we must not
1234 * delete, since it may not have been written out to swap yet.
1236 if (PageSwapCache(page
) &&
1237 likely(page_private(page
) == entry
.val
))
1238 delete_from_swap_cache(page
);
1241 * So we could skip searching mms once swap count went
1242 * to 1, we did not mark any present ptes as dirty: must
1243 * mark page dirty so shrink_page_list will preserve it.
1248 page_cache_release(page
);
1251 * Make sure that we aren't completely killing
1252 * interactive performance.
1258 if (reset_overflow
) {
1259 printk(KERN_WARNING
"swapoff: cleared swap entry overflow\n");
1266 * After a successful try_to_unuse, if no swap is now in use, we know
1267 * we can empty the mmlist. swap_lock must be held on entry and exit.
1268 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1269 * added to the mmlist just after page_duplicate - before would be racy.
1271 static void drain_mmlist(void)
1273 struct list_head
*p
, *next
;
1276 for (i
= 0; i
< nr_swapfiles
; i
++)
1277 if (swap_info
[i
].inuse_pages
)
1279 spin_lock(&mmlist_lock
);
1280 list_for_each_safe(p
, next
, &init_mm
.mmlist
)
1282 spin_unlock(&mmlist_lock
);
1286 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1287 * corresponds to page offset `offset'.
1289 sector_t
map_swap_page(struct swap_info_struct
*sis
, pgoff_t offset
)
1291 struct swap_extent
*se
= sis
->curr_swap_extent
;
1292 struct swap_extent
*start_se
= se
;
1295 struct list_head
*lh
;
1297 if (se
->start_page
<= offset
&&
1298 offset
< (se
->start_page
+ se
->nr_pages
)) {
1299 return se
->start_block
+ (offset
- se
->start_page
);
1302 if (lh
== &sis
->extent_list
)
1304 se
= list_entry(lh
, struct swap_extent
, list
);
1305 sis
->curr_swap_extent
= se
;
1306 BUG_ON(se
== start_se
); /* It *must* be present */
1310 #ifdef CONFIG_HIBERNATION
1312 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1313 * corresponding to given index in swap_info (swap type).
1315 sector_t
swapdev_block(int swap_type
, pgoff_t offset
)
1317 struct swap_info_struct
*sis
;
1319 if (swap_type
>= nr_swapfiles
)
1322 sis
= swap_info
+ swap_type
;
1323 return (sis
->flags
& SWP_WRITEOK
) ? map_swap_page(sis
, offset
) : 0;
1325 #endif /* CONFIG_HIBERNATION */
1328 * Free all of a swapdev's extent information
1330 static void destroy_swap_extents(struct swap_info_struct
*sis
)
1332 while (!list_empty(&sis
->extent_list
)) {
1333 struct swap_extent
*se
;
1335 se
= list_entry(sis
->extent_list
.next
,
1336 struct swap_extent
, list
);
1337 list_del(&se
->list
);
1343 * Add a block range (and the corresponding page range) into this swapdev's
1344 * extent list. The extent list is kept sorted in page order.
1346 * This function rather assumes that it is called in ascending page order.
1349 add_swap_extent(struct swap_info_struct
*sis
, unsigned long start_page
,
1350 unsigned long nr_pages
, sector_t start_block
)
1352 struct swap_extent
*se
;
1353 struct swap_extent
*new_se
;
1354 struct list_head
*lh
;
1356 lh
= sis
->extent_list
.prev
; /* The highest page extent */
1357 if (lh
!= &sis
->extent_list
) {
1358 se
= list_entry(lh
, struct swap_extent
, list
);
1359 BUG_ON(se
->start_page
+ se
->nr_pages
!= start_page
);
1360 if (se
->start_block
+ se
->nr_pages
== start_block
) {
1362 se
->nr_pages
+= nr_pages
;
1368 * No merge. Insert a new extent, preserving ordering.
1370 new_se
= kmalloc(sizeof(*se
), GFP_KERNEL
);
1373 new_se
->start_page
= start_page
;
1374 new_se
->nr_pages
= nr_pages
;
1375 new_se
->start_block
= start_block
;
1377 list_add_tail(&new_se
->list
, &sis
->extent_list
);
1382 * A `swap extent' is a simple thing which maps a contiguous range of pages
1383 * onto a contiguous range of disk blocks. An ordered list of swap extents
1384 * is built at swapon time and is then used at swap_writepage/swap_readpage
1385 * time for locating where on disk a page belongs.
1387 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1388 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1389 * swap files identically.
1391 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1392 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1393 * swapfiles are handled *identically* after swapon time.
1395 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1396 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1397 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1398 * requirements, they are simply tossed out - we will never use those blocks
1401 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1402 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1403 * which will scribble on the fs.
1405 * The amount of disk space which a single swap extent represents varies.
1406 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1407 * extents in the list. To avoid much list walking, we cache the previous
1408 * search location in `curr_swap_extent', and start new searches from there.
1409 * This is extremely effective. The average number of iterations in
1410 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1412 static int setup_swap_extents(struct swap_info_struct
*sis
, sector_t
*span
)
1414 struct inode
*inode
;
1415 unsigned blocks_per_page
;
1416 unsigned long page_no
;
1418 sector_t probe_block
;
1419 sector_t last_block
;
1420 sector_t lowest_block
= -1;
1421 sector_t highest_block
= 0;
1425 inode
= sis
->swap_file
->f_mapping
->host
;
1426 if (S_ISBLK(inode
->i_mode
)) {
1427 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
1432 blkbits
= inode
->i_blkbits
;
1433 blocks_per_page
= PAGE_SIZE
>> blkbits
;
1436 * Map all the blocks into the extent list. This code doesn't try
1441 last_block
= i_size_read(inode
) >> blkbits
;
1442 while ((probe_block
+ blocks_per_page
) <= last_block
&&
1443 page_no
< sis
->max
) {
1444 unsigned block_in_page
;
1445 sector_t first_block
;
1447 first_block
= bmap(inode
, probe_block
);
1448 if (first_block
== 0)
1452 * It must be PAGE_SIZE aligned on-disk
1454 if (first_block
& (blocks_per_page
- 1)) {
1459 for (block_in_page
= 1; block_in_page
< blocks_per_page
;
1463 block
= bmap(inode
, probe_block
+ block_in_page
);
1466 if (block
!= first_block
+ block_in_page
) {
1473 first_block
>>= (PAGE_SHIFT
- blkbits
);
1474 if (page_no
) { /* exclude the header page */
1475 if (first_block
< lowest_block
)
1476 lowest_block
= first_block
;
1477 if (first_block
> highest_block
)
1478 highest_block
= first_block
;
1482 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1484 ret
= add_swap_extent(sis
, page_no
, 1, first_block
);
1489 probe_block
+= blocks_per_page
;
1494 *span
= 1 + highest_block
- lowest_block
;
1496 page_no
= 1; /* force Empty message */
1498 sis
->pages
= page_no
- 1;
1499 sis
->highest_bit
= page_no
- 1;
1501 sis
->curr_swap_extent
= list_entry(sis
->extent_list
.prev
,
1502 struct swap_extent
, list
);
1505 printk(KERN_ERR
"swapon: swapfile has holes\n");
1511 SYSCALL_DEFINE1(swapoff
, const char __user
*, specialfile
)
1513 struct swap_info_struct
* p
= NULL
;
1514 unsigned short *swap_map
;
1515 struct file
*swap_file
, *victim
;
1516 struct address_space
*mapping
;
1517 struct inode
*inode
;
1522 if (!capable(CAP_SYS_ADMIN
))
1525 pathname
= getname(specialfile
);
1526 err
= PTR_ERR(pathname
);
1527 if (IS_ERR(pathname
))
1530 victim
= filp_open(pathname
, O_RDWR
|O_LARGEFILE
, 0);
1532 err
= PTR_ERR(victim
);
1536 mapping
= victim
->f_mapping
;
1538 spin_lock(&swap_lock
);
1539 for (type
= swap_list
.head
; type
>= 0; type
= swap_info
[type
].next
) {
1540 p
= swap_info
+ type
;
1541 if (p
->flags
& SWP_WRITEOK
) {
1542 if (p
->swap_file
->f_mapping
== mapping
)
1549 spin_unlock(&swap_lock
);
1552 if (!security_vm_enough_memory(p
->pages
))
1553 vm_unacct_memory(p
->pages
);
1556 spin_unlock(&swap_lock
);
1560 swap_list
.head
= p
->next
;
1562 swap_info
[prev
].next
= p
->next
;
1564 if (type
== swap_list
.next
) {
1565 /* just pick something that's safe... */
1566 swap_list
.next
= swap_list
.head
;
1569 for (i
= p
->next
; i
>= 0; i
= swap_info
[i
].next
)
1570 swap_info
[i
].prio
= p
->prio
--;
1573 nr_swap_pages
-= p
->pages
;
1574 total_swap_pages
-= p
->pages
;
1575 p
->flags
&= ~SWP_WRITEOK
;
1576 spin_unlock(&swap_lock
);
1578 current
->flags
|= PF_OOM_ORIGIN
;
1579 err
= try_to_unuse(type
);
1580 current
->flags
&= ~PF_OOM_ORIGIN
;
1583 /* re-insert swap space back into swap_list */
1584 spin_lock(&swap_lock
);
1586 p
->prio
= --least_priority
;
1588 for (i
= swap_list
.head
; i
>= 0; i
= swap_info
[i
].next
) {
1589 if (p
->prio
>= swap_info
[i
].prio
)
1595 swap_list
.head
= swap_list
.next
= p
- swap_info
;
1597 swap_info
[prev
].next
= p
- swap_info
;
1598 nr_swap_pages
+= p
->pages
;
1599 total_swap_pages
+= p
->pages
;
1600 p
->flags
|= SWP_WRITEOK
;
1601 spin_unlock(&swap_lock
);
1605 /* wait for any unplug function to finish */
1606 down_write(&swap_unplug_sem
);
1607 up_write(&swap_unplug_sem
);
1609 destroy_swap_extents(p
);
1610 mutex_lock(&swapon_mutex
);
1611 spin_lock(&swap_lock
);
1614 /* wait for anyone still in scan_swap_map */
1615 p
->highest_bit
= 0; /* cuts scans short */
1616 while (p
->flags
>= SWP_SCANNING
) {
1617 spin_unlock(&swap_lock
);
1618 schedule_timeout_uninterruptible(1);
1619 spin_lock(&swap_lock
);
1622 swap_file
= p
->swap_file
;
1623 p
->swap_file
= NULL
;
1625 swap_map
= p
->swap_map
;
1628 spin_unlock(&swap_lock
);
1629 mutex_unlock(&swapon_mutex
);
1631 /* Destroy swap account informatin */
1632 swap_cgroup_swapoff(type
);
1634 inode
= mapping
->host
;
1635 if (S_ISBLK(inode
->i_mode
)) {
1636 struct block_device
*bdev
= I_BDEV(inode
);
1637 set_blocksize(bdev
, p
->old_block_size
);
1640 mutex_lock(&inode
->i_mutex
);
1641 inode
->i_flags
&= ~S_SWAPFILE
;
1642 mutex_unlock(&inode
->i_mutex
);
1644 filp_close(swap_file
, NULL
);
1648 filp_close(victim
, NULL
);
1653 #ifdef CONFIG_PROC_FS
1655 static void *swap_start(struct seq_file
*swap
, loff_t
*pos
)
1657 struct swap_info_struct
*ptr
= swap_info
;
1661 mutex_lock(&swapon_mutex
);
1664 return SEQ_START_TOKEN
;
1666 for (i
= 0; i
< nr_swapfiles
; i
++, ptr
++) {
1667 if (!(ptr
->flags
& SWP_USED
) || !ptr
->swap_map
)
1676 static void *swap_next(struct seq_file
*swap
, void *v
, loff_t
*pos
)
1678 struct swap_info_struct
*ptr
;
1679 struct swap_info_struct
*endptr
= swap_info
+ nr_swapfiles
;
1681 if (v
== SEQ_START_TOKEN
)
1688 for (; ptr
< endptr
; ptr
++) {
1689 if (!(ptr
->flags
& SWP_USED
) || !ptr
->swap_map
)
1698 static void swap_stop(struct seq_file
*swap
, void *v
)
1700 mutex_unlock(&swapon_mutex
);
1703 static int swap_show(struct seq_file
*swap
, void *v
)
1705 struct swap_info_struct
*ptr
= v
;
1709 if (ptr
== SEQ_START_TOKEN
) {
1710 seq_puts(swap
,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1714 file
= ptr
->swap_file
;
1715 len
= seq_path(swap
, &file
->f_path
, " \t\n\\");
1716 seq_printf(swap
, "%*s%s\t%u\t%u\t%d\n",
1717 len
< 40 ? 40 - len
: 1, " ",
1718 S_ISBLK(file
->f_path
.dentry
->d_inode
->i_mode
) ?
1719 "partition" : "file\t",
1720 ptr
->pages
<< (PAGE_SHIFT
- 10),
1721 ptr
->inuse_pages
<< (PAGE_SHIFT
- 10),
1726 static const struct seq_operations swaps_op
= {
1727 .start
= swap_start
,
1733 static int swaps_open(struct inode
*inode
, struct file
*file
)
1735 return seq_open(file
, &swaps_op
);
1738 static const struct file_operations proc_swaps_operations
= {
1741 .llseek
= seq_lseek
,
1742 .release
= seq_release
,
1745 static int __init
procswaps_init(void)
1747 proc_create("swaps", 0, NULL
, &proc_swaps_operations
);
1750 __initcall(procswaps_init
);
1751 #endif /* CONFIG_PROC_FS */
1753 #ifdef MAX_SWAPFILES_CHECK
1754 static int __init
max_swapfiles_check(void)
1756 MAX_SWAPFILES_CHECK();
1759 late_initcall(max_swapfiles_check
);
1763 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1765 * The swapon system call
1767 SYSCALL_DEFINE2(swapon
, const char __user
*, specialfile
, int, swap_flags
)
1769 struct swap_info_struct
* p
;
1771 struct block_device
*bdev
= NULL
;
1772 struct file
*swap_file
= NULL
;
1773 struct address_space
*mapping
;
1777 union swap_header
*swap_header
= NULL
;
1778 unsigned int nr_good_pages
= 0;
1781 unsigned long maxpages
= 1;
1782 unsigned long swapfilepages
;
1783 unsigned short *swap_map
= NULL
;
1784 struct page
*page
= NULL
;
1785 struct inode
*inode
= NULL
;
1788 if (!capable(CAP_SYS_ADMIN
))
1790 spin_lock(&swap_lock
);
1792 for (type
= 0 ; type
< nr_swapfiles
; type
++,p
++)
1793 if (!(p
->flags
& SWP_USED
))
1796 if (type
>= MAX_SWAPFILES
) {
1797 spin_unlock(&swap_lock
);
1800 if (type
>= nr_swapfiles
)
1801 nr_swapfiles
= type
+1;
1802 memset(p
, 0, sizeof(*p
));
1803 INIT_LIST_HEAD(&p
->extent_list
);
1804 p
->flags
= SWP_USED
;
1806 spin_unlock(&swap_lock
);
1807 name
= getname(specialfile
);
1808 error
= PTR_ERR(name
);
1813 swap_file
= filp_open(name
, O_RDWR
|O_LARGEFILE
, 0);
1814 error
= PTR_ERR(swap_file
);
1815 if (IS_ERR(swap_file
)) {
1820 p
->swap_file
= swap_file
;
1821 mapping
= swap_file
->f_mapping
;
1822 inode
= mapping
->host
;
1825 for (i
= 0; i
< nr_swapfiles
; i
++) {
1826 struct swap_info_struct
*q
= &swap_info
[i
];
1828 if (i
== type
|| !q
->swap_file
)
1830 if (mapping
== q
->swap_file
->f_mapping
)
1835 if (S_ISBLK(inode
->i_mode
)) {
1836 bdev
= I_BDEV(inode
);
1837 error
= bd_claim(bdev
, sys_swapon
);
1843 p
->old_block_size
= block_size(bdev
);
1844 error
= set_blocksize(bdev
, PAGE_SIZE
);
1848 } else if (S_ISREG(inode
->i_mode
)) {
1849 p
->bdev
= inode
->i_sb
->s_bdev
;
1850 mutex_lock(&inode
->i_mutex
);
1852 if (IS_SWAPFILE(inode
)) {
1860 swapfilepages
= i_size_read(inode
) >> PAGE_SHIFT
;
1863 * Read the swap header.
1865 if (!mapping
->a_ops
->readpage
) {
1869 page
= read_mapping_page(mapping
, 0, swap_file
);
1871 error
= PTR_ERR(page
);
1874 swap_header
= kmap(page
);
1876 if (memcmp("SWAPSPACE2", swap_header
->magic
.magic
, 10)) {
1877 printk(KERN_ERR
"Unable to find swap-space signature\n");
1882 /* swap partition endianess hack... */
1883 if (swab32(swap_header
->info
.version
) == 1) {
1884 swab32s(&swap_header
->info
.version
);
1885 swab32s(&swap_header
->info
.last_page
);
1886 swab32s(&swap_header
->info
.nr_badpages
);
1887 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++)
1888 swab32s(&swap_header
->info
.badpages
[i
]);
1890 /* Check the swap header's sub-version */
1891 if (swap_header
->info
.version
!= 1) {
1893 "Unable to handle swap header version %d\n",
1894 swap_header
->info
.version
);
1900 p
->cluster_next
= 1;
1903 * Find out how many pages are allowed for a single swap
1904 * device. There are two limiting factors: 1) the number of
1905 * bits for the swap offset in the swp_entry_t type and
1906 * 2) the number of bits in the a swap pte as defined by
1907 * the different architectures. In order to find the
1908 * largest possible bit mask a swap entry with swap type 0
1909 * and swap offset ~0UL is created, encoded to a swap pte,
1910 * decoded to a swp_entry_t again and finally the swap
1911 * offset is extracted. This will mask all the bits from
1912 * the initial ~0UL mask that can't be encoded in either
1913 * the swp_entry_t or the architecture definition of a
1916 maxpages
= swp_offset(pte_to_swp_entry(
1917 swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
1918 if (maxpages
> swap_header
->info
.last_page
)
1919 maxpages
= swap_header
->info
.last_page
;
1920 p
->highest_bit
= maxpages
- 1;
1925 if (swapfilepages
&& maxpages
> swapfilepages
) {
1927 "Swap area shorter than signature indicates\n");
1930 if (swap_header
->info
.nr_badpages
&& S_ISREG(inode
->i_mode
))
1932 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
1935 /* OK, set up the swap map and apply the bad block list */
1936 swap_map
= vmalloc(maxpages
* sizeof(short));
1942 memset(swap_map
, 0, maxpages
* sizeof(short));
1943 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++) {
1944 int page_nr
= swap_header
->info
.badpages
[i
];
1945 if (page_nr
<= 0 || page_nr
>= swap_header
->info
.last_page
) {
1949 swap_map
[page_nr
] = SWAP_MAP_BAD
;
1952 error
= swap_cgroup_swapon(type
, maxpages
);
1956 nr_good_pages
= swap_header
->info
.last_page
-
1957 swap_header
->info
.nr_badpages
-
1958 1 /* header page */;
1960 if (nr_good_pages
) {
1961 swap_map
[0] = SWAP_MAP_BAD
;
1963 p
->pages
= nr_good_pages
;
1964 nr_extents
= setup_swap_extents(p
, &span
);
1965 if (nr_extents
< 0) {
1969 nr_good_pages
= p
->pages
;
1971 if (!nr_good_pages
) {
1972 printk(KERN_WARNING
"Empty swap-file\n");
1977 if (blk_queue_nonrot(bdev_get_queue(p
->bdev
))) {
1978 p
->flags
|= SWP_SOLIDSTATE
;
1979 p
->cluster_next
= 1 + (random32() % p
->highest_bit
);
1981 if (discard_swap(p
) == 0)
1982 p
->flags
|= SWP_DISCARDABLE
;
1984 mutex_lock(&swapon_mutex
);
1985 spin_lock(&swap_lock
);
1986 if (swap_flags
& SWAP_FLAG_PREFER
)
1988 (swap_flags
& SWAP_FLAG_PRIO_MASK
) >> SWAP_FLAG_PRIO_SHIFT
;
1990 p
->prio
= --least_priority
;
1991 p
->swap_map
= swap_map
;
1992 p
->flags
|= SWP_WRITEOK
;
1993 nr_swap_pages
+= nr_good_pages
;
1994 total_swap_pages
+= nr_good_pages
;
1996 printk(KERN_INFO
"Adding %uk swap on %s. "
1997 "Priority:%d extents:%d across:%lluk %s%s\n",
1998 nr_good_pages
<<(PAGE_SHIFT
-10), name
, p
->prio
,
1999 nr_extents
, (unsigned long long)span
<<(PAGE_SHIFT
-10),
2000 (p
->flags
& SWP_SOLIDSTATE
) ? "SS" : "",
2001 (p
->flags
& SWP_DISCARDABLE
) ? "D" : "");
2003 /* insert swap space into swap_list: */
2005 for (i
= swap_list
.head
; i
>= 0; i
= swap_info
[i
].next
) {
2006 if (p
->prio
>= swap_info
[i
].prio
) {
2013 swap_list
.head
= swap_list
.next
= p
- swap_info
;
2015 swap_info
[prev
].next
= p
- swap_info
;
2017 spin_unlock(&swap_lock
);
2018 mutex_unlock(&swapon_mutex
);
2023 set_blocksize(bdev
, p
->old_block_size
);
2026 destroy_swap_extents(p
);
2027 swap_cgroup_swapoff(type
);
2029 spin_lock(&swap_lock
);
2030 p
->swap_file
= NULL
;
2032 spin_unlock(&swap_lock
);
2035 filp_close(swap_file
, NULL
);
2037 if (page
&& !IS_ERR(page
)) {
2039 page_cache_release(page
);
2045 inode
->i_flags
|= S_SWAPFILE
;
2046 mutex_unlock(&inode
->i_mutex
);
2051 void si_swapinfo(struct sysinfo
*val
)
2054 unsigned long nr_to_be_unused
= 0;
2056 spin_lock(&swap_lock
);
2057 for (i
= 0; i
< nr_swapfiles
; i
++) {
2058 if (!(swap_info
[i
].flags
& SWP_USED
) ||
2059 (swap_info
[i
].flags
& SWP_WRITEOK
))
2061 nr_to_be_unused
+= swap_info
[i
].inuse_pages
;
2063 val
->freeswap
= nr_swap_pages
+ nr_to_be_unused
;
2064 val
->totalswap
= total_swap_pages
+ nr_to_be_unused
;
2065 spin_unlock(&swap_lock
);
2069 * Verify that a swap entry is valid and increment its swap map count.
2071 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
2072 * "permanent", but will be reclaimed by the next swapoff.
2073 * Returns error code in following case.
2075 * - swp_entry is invalid -> EINVAL
2076 * - swp_entry is migration entry -> EINVAL
2077 * - swap-cache reference is requested but there is already one. -> EEXIST
2078 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2080 static int __swap_duplicate(swp_entry_t entry
, bool cache
)
2082 struct swap_info_struct
* p
;
2083 unsigned long offset
, type
;
2084 int result
= -EINVAL
;
2088 if (is_migration_entry(entry
))
2091 type
= swp_type(entry
);
2092 if (type
>= nr_swapfiles
)
2094 p
= type
+ swap_info
;
2095 offset
= swp_offset(entry
);
2097 spin_lock(&swap_lock
);
2099 if (unlikely(offset
>= p
->max
))
2102 count
= swap_count(p
->swap_map
[offset
]);
2103 has_cache
= swap_has_cache(p
->swap_map
[offset
]);
2105 if (cache
== SWAP_CACHE
) { /* called for swapcache/swapin-readahead */
2107 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2108 if (!has_cache
&& count
) {
2109 p
->swap_map
[offset
] = encode_swapmap(count
, true);
2111 } else if (has_cache
) /* someone added cache */
2113 else if (!count
) /* no users */
2116 } else if (count
|| has_cache
) {
2117 if (count
< SWAP_MAP_MAX
- 1) {
2118 p
->swap_map
[offset
] = encode_swapmap(count
+ 1,
2121 } else if (count
<= SWAP_MAP_MAX
) {
2122 if (swap_overflow
++ < 5)
2124 "swap_dup: swap entry overflow\n");
2125 p
->swap_map
[offset
] = encode_swapmap(SWAP_MAP_MAX
,
2130 result
= -ENOENT
; /* unused swap entry */
2132 spin_unlock(&swap_lock
);
2137 printk(KERN_ERR
"swap_dup: %s%08lx\n", Bad_file
, entry
.val
);
2141 * increase reference count of swap entry by 1.
2143 void swap_duplicate(swp_entry_t entry
)
2145 __swap_duplicate(entry
, SWAP_MAP
);
2149 * @entry: swap entry for which we allocate swap cache.
2151 * Called when allocating swap cache for exising swap entry,
2152 * This can return error codes. Returns 0 at success.
2153 * -EBUSY means there is a swap cache.
2154 * Note: return code is different from swap_duplicate().
2156 int swapcache_prepare(swp_entry_t entry
)
2158 return __swap_duplicate(entry
, SWAP_CACHE
);
2162 struct swap_info_struct
*
2163 get_swap_info_struct(unsigned type
)
2165 return &swap_info
[type
];
2169 * swap_lock prevents swap_map being freed. Don't grab an extra
2170 * reference on the swaphandle, it doesn't matter if it becomes unused.
2172 int valid_swaphandles(swp_entry_t entry
, unsigned long *offset
)
2174 struct swap_info_struct
*si
;
2175 int our_page_cluster
= page_cluster
;
2176 pgoff_t target
, toff
;
2180 if (!our_page_cluster
) /* no readahead */
2183 si
= &swap_info
[swp_type(entry
)];
2184 target
= swp_offset(entry
);
2185 base
= (target
>> our_page_cluster
) << our_page_cluster
;
2186 end
= base
+ (1 << our_page_cluster
);
2187 if (!base
) /* first page is swap header */
2190 spin_lock(&swap_lock
);
2191 if (end
> si
->max
) /* don't go beyond end of map */
2194 /* Count contiguous allocated slots above our target */
2195 for (toff
= target
; ++toff
< end
; nr_pages
++) {
2196 /* Don't read in free or bad pages */
2197 if (!si
->swap_map
[toff
])
2199 if (swap_count(si
->swap_map
[toff
]) == SWAP_MAP_BAD
)
2202 /* Count contiguous allocated slots below our target */
2203 for (toff
= target
; --toff
>= base
; nr_pages
++) {
2204 /* Don't read in free or bad pages */
2205 if (!si
->swap_map
[toff
])
2207 if (swap_count(si
->swap_map
[toff
]) == SWAP_MAP_BAD
)
2210 spin_unlock(&swap_lock
);
2213 * Indicate starting offset, and return number of pages to get:
2214 * if only 1, say 0, since there's then no readahead to be done.
2217 return nr_pages
? ++nr_pages
: 0;