2 * Simple NUMA memory policy for the Linux kernel.
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
57 fix mmap readahead to honour policy and enable policy for any page cache
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
62 handle mremap for shared memory (currently ignored for the policy)
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 could replace all the switch()es with a mempolicy_ops structure.
69 #include <linux/mempolicy.h>
71 #include <linux/highmem.h>
72 #include <linux/hugetlb.h>
73 #include <linux/kernel.h>
74 #include <linux/sched.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/gfp.h>
79 #include <linux/slab.h>
80 #include <linux/string.h>
81 #include <linux/module.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/mempolicy.h>
86 #include <linux/swap.h>
87 #include <linux/seq_file.h>
88 #include <linux/proc_fs.h>
89 #include <linux/migrate.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
93 #include <asm/tlbflush.h>
94 #include <asm/uaccess.h>
97 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
98 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
99 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */
101 static struct kmem_cache
*policy_cache
;
102 static struct kmem_cache
*sn_cache
;
104 #define PDprintk(fmt...)
106 /* Highest zone. An specific allocation for a zone below that is not
108 enum zone_type policy_zone
= ZONE_DMA
;
110 struct mempolicy default_policy
= {
111 .refcnt
= ATOMIC_INIT(1), /* never free it */
112 .policy
= MPOL_DEFAULT
,
115 /* Do sanity checking on a policy */
116 static int mpol_check_policy(int mode
, nodemask_t
*nodes
)
118 int empty
= nodes_empty(*nodes
);
126 case MPOL_INTERLEAVE
:
127 /* Preferred will only use the first bit, but allow
133 return nodes_subset(*nodes
, node_online_map
) ? 0 : -EINVAL
;
136 /* Generate a custom zonelist for the BIND policy. */
137 static struct zonelist
*bind_zonelist(nodemask_t
*nodes
)
143 max
= 1 + MAX_NR_ZONES
* nodes_weight(*nodes
);
144 max
++; /* space for zlcache_ptr (see mmzone.h) */
145 zl
= kmalloc(sizeof(struct zone
*) * max
, GFP_KERNEL
);
148 zl
->zlcache_ptr
= NULL
;
150 /* First put in the highest zones from all nodes, then all the next
151 lower zones etc. Avoid empty zones because the memory allocator
152 doesn't like them. If you implement node hot removal you
156 for_each_node_mask(nd
, *nodes
) {
157 struct zone
*z
= &NODE_DATA(nd
)->node_zones
[k
];
158 if (z
->present_pages
> 0)
159 zl
->zones
[num
++] = z
;
165 zl
->zones
[num
] = NULL
;
169 /* Create a new policy */
170 static struct mempolicy
*mpol_new(int mode
, nodemask_t
*nodes
)
172 struct mempolicy
*policy
;
174 PDprintk("setting mode %d nodes[0] %lx\n", mode
, nodes_addr(*nodes
)[0]);
175 if (mode
== MPOL_DEFAULT
)
177 policy
= kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
179 return ERR_PTR(-ENOMEM
);
180 atomic_set(&policy
->refcnt
, 1);
182 case MPOL_INTERLEAVE
:
183 policy
->v
.nodes
= *nodes
;
184 if (nodes_weight(*nodes
) == 0) {
185 kmem_cache_free(policy_cache
, policy
);
186 return ERR_PTR(-EINVAL
);
190 policy
->v
.preferred_node
= first_node(*nodes
);
191 if (policy
->v
.preferred_node
>= MAX_NUMNODES
)
192 policy
->v
.preferred_node
= -1;
195 policy
->v
.zonelist
= bind_zonelist(nodes
);
196 if (policy
->v
.zonelist
== NULL
) {
197 kmem_cache_free(policy_cache
, policy
);
198 return ERR_PTR(-ENOMEM
);
202 policy
->policy
= mode
;
203 policy
->cpuset_mems_allowed
= cpuset_mems_allowed(current
);
207 static void gather_stats(struct page
*, void *, int pte_dirty
);
208 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
209 unsigned long flags
);
211 /* Scan through pages checking if pages follow certain conditions. */
212 static int check_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
213 unsigned long addr
, unsigned long end
,
214 const nodemask_t
*nodes
, unsigned long flags
,
221 orig_pte
= pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
226 if (!pte_present(*pte
))
228 page
= vm_normal_page(vma
, addr
, *pte
);
232 * The check for PageReserved here is important to avoid
233 * handling zero pages and other pages that may have been
234 * marked special by the system.
236 * If the PageReserved would not be checked here then f.e.
237 * the location of the zero page could have an influence
238 * on MPOL_MF_STRICT, zero pages would be counted for
239 * the per node stats, and there would be useless attempts
240 * to put zero pages on the migration list.
242 if (PageReserved(page
))
244 nid
= page_to_nid(page
);
245 if (node_isset(nid
, *nodes
) == !!(flags
& MPOL_MF_INVERT
))
248 if (flags
& MPOL_MF_STATS
)
249 gather_stats(page
, private, pte_dirty(*pte
));
250 else if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
))
251 migrate_page_add(page
, private, flags
);
254 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
255 pte_unmap_unlock(orig_pte
, ptl
);
259 static inline int check_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
260 unsigned long addr
, unsigned long end
,
261 const nodemask_t
*nodes
, unsigned long flags
,
267 pmd
= pmd_offset(pud
, addr
);
269 next
= pmd_addr_end(addr
, end
);
270 if (pmd_none_or_clear_bad(pmd
))
272 if (check_pte_range(vma
, pmd
, addr
, next
, nodes
,
275 } while (pmd
++, addr
= next
, addr
!= end
);
279 static inline int check_pud_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
280 unsigned long addr
, unsigned long end
,
281 const nodemask_t
*nodes
, unsigned long flags
,
287 pud
= pud_offset(pgd
, addr
);
289 next
= pud_addr_end(addr
, end
);
290 if (pud_none_or_clear_bad(pud
))
292 if (check_pmd_range(vma
, pud
, addr
, next
, nodes
,
295 } while (pud
++, addr
= next
, addr
!= end
);
299 static inline int check_pgd_range(struct vm_area_struct
*vma
,
300 unsigned long addr
, unsigned long end
,
301 const nodemask_t
*nodes
, unsigned long flags
,
307 pgd
= pgd_offset(vma
->vm_mm
, addr
);
309 next
= pgd_addr_end(addr
, end
);
310 if (pgd_none_or_clear_bad(pgd
))
312 if (check_pud_range(vma
, pgd
, addr
, next
, nodes
,
315 } while (pgd
++, addr
= next
, addr
!= end
);
319 /* Check if a vma is migratable */
320 static inline int vma_migratable(struct vm_area_struct
*vma
)
322 if (vma
->vm_flags
& (
323 VM_LOCKED
|VM_IO
|VM_HUGETLB
|VM_PFNMAP
|VM_RESERVED
))
329 * Check if all pages in a range are on a set of nodes.
330 * If pagelist != NULL then isolate pages from the LRU and
331 * put them on the pagelist.
333 static struct vm_area_struct
*
334 check_range(struct mm_struct
*mm
, unsigned long start
, unsigned long end
,
335 const nodemask_t
*nodes
, unsigned long flags
, void *private)
338 struct vm_area_struct
*first
, *vma
, *prev
;
340 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) {
342 err
= migrate_prep();
347 first
= find_vma(mm
, start
);
349 return ERR_PTR(-EFAULT
);
351 for (vma
= first
; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
) {
352 if (!(flags
& MPOL_MF_DISCONTIG_OK
)) {
353 if (!vma
->vm_next
&& vma
->vm_end
< end
)
354 return ERR_PTR(-EFAULT
);
355 if (prev
&& prev
->vm_end
< vma
->vm_start
)
356 return ERR_PTR(-EFAULT
);
358 if (!is_vm_hugetlb_page(vma
) &&
359 ((flags
& MPOL_MF_STRICT
) ||
360 ((flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) &&
361 vma_migratable(vma
)))) {
362 unsigned long endvma
= vma
->vm_end
;
366 if (vma
->vm_start
> start
)
367 start
= vma
->vm_start
;
368 err
= check_pgd_range(vma
, start
, endvma
, nodes
,
371 first
= ERR_PTR(err
);
380 /* Apply policy to a single VMA */
381 static int policy_vma(struct vm_area_struct
*vma
, struct mempolicy
*new)
384 struct mempolicy
*old
= vma
->vm_policy
;
386 PDprintk("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
387 vma
->vm_start
, vma
->vm_end
, vma
->vm_pgoff
,
388 vma
->vm_ops
, vma
->vm_file
,
389 vma
->vm_ops
? vma
->vm_ops
->set_policy
: NULL
);
391 if (vma
->vm_ops
&& vma
->vm_ops
->set_policy
)
392 err
= vma
->vm_ops
->set_policy(vma
, new);
395 vma
->vm_policy
= new;
401 /* Step 2: apply policy to a range and do splits. */
402 static int mbind_range(struct vm_area_struct
*vma
, unsigned long start
,
403 unsigned long end
, struct mempolicy
*new)
405 struct vm_area_struct
*next
;
409 for (; vma
&& vma
->vm_start
< end
; vma
= next
) {
411 if (vma
->vm_start
< start
)
412 err
= split_vma(vma
->vm_mm
, vma
, start
, 1);
413 if (!err
&& vma
->vm_end
> end
)
414 err
= split_vma(vma
->vm_mm
, vma
, end
, 0);
416 err
= policy_vma(vma
, new);
423 static int contextualize_policy(int mode
, nodemask_t
*nodes
)
428 cpuset_update_task_memory_state();
429 if (!cpuset_nodes_subset_current_mems_allowed(*nodes
))
431 return mpol_check_policy(mode
, nodes
);
436 * Update task->flags PF_MEMPOLICY bit: set iff non-default
437 * mempolicy. Allows more rapid checking of this (combined perhaps
438 * with other PF_* flag bits) on memory allocation hot code paths.
440 * If called from outside this file, the task 'p' should -only- be
441 * a newly forked child not yet visible on the task list, because
442 * manipulating the task flags of a visible task is not safe.
444 * The above limitation is why this routine has the funny name
445 * mpol_fix_fork_child_flag().
447 * It is also safe to call this with a task pointer of current,
448 * which the static wrapper mpol_set_task_struct_flag() does,
449 * for use within this file.
452 void mpol_fix_fork_child_flag(struct task_struct
*p
)
455 p
->flags
|= PF_MEMPOLICY
;
457 p
->flags
&= ~PF_MEMPOLICY
;
460 static void mpol_set_task_struct_flag(void)
462 mpol_fix_fork_child_flag(current
);
465 /* Set the process memory policy */
466 long do_set_mempolicy(int mode
, nodemask_t
*nodes
)
468 struct mempolicy
*new;
470 if (contextualize_policy(mode
, nodes
))
472 new = mpol_new(mode
, nodes
);
475 mpol_free(current
->mempolicy
);
476 current
->mempolicy
= new;
477 mpol_set_task_struct_flag();
478 if (new && new->policy
== MPOL_INTERLEAVE
)
479 current
->il_next
= first_node(new->v
.nodes
);
483 /* Fill a zone bitmap for a policy */
484 static void get_zonemask(struct mempolicy
*p
, nodemask_t
*nodes
)
491 for (i
= 0; p
->v
.zonelist
->zones
[i
]; i
++)
492 node_set(zone_to_nid(p
->v
.zonelist
->zones
[i
]),
497 case MPOL_INTERLEAVE
:
501 /* or use current node instead of online map? */
502 if (p
->v
.preferred_node
< 0)
503 *nodes
= node_online_map
;
505 node_set(p
->v
.preferred_node
, *nodes
);
512 static int lookup_node(struct mm_struct
*mm
, unsigned long addr
)
517 err
= get_user_pages(current
, mm
, addr
& PAGE_MASK
, 1, 0, 0, &p
, NULL
);
519 err
= page_to_nid(p
);
525 /* Retrieve NUMA policy */
526 long do_get_mempolicy(int *policy
, nodemask_t
*nmask
,
527 unsigned long addr
, unsigned long flags
)
530 struct mm_struct
*mm
= current
->mm
;
531 struct vm_area_struct
*vma
= NULL
;
532 struct mempolicy
*pol
= current
->mempolicy
;
534 cpuset_update_task_memory_state();
535 if (flags
& ~(unsigned long)(MPOL_F_NODE
|MPOL_F_ADDR
))
537 if (flags
& MPOL_F_ADDR
) {
538 down_read(&mm
->mmap_sem
);
539 vma
= find_vma_intersection(mm
, addr
, addr
+1);
541 up_read(&mm
->mmap_sem
);
544 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
)
545 pol
= vma
->vm_ops
->get_policy(vma
, addr
);
547 pol
= vma
->vm_policy
;
552 pol
= &default_policy
;
554 if (flags
& MPOL_F_NODE
) {
555 if (flags
& MPOL_F_ADDR
) {
556 err
= lookup_node(mm
, addr
);
560 } else if (pol
== current
->mempolicy
&&
561 pol
->policy
== MPOL_INTERLEAVE
) {
562 *policy
= current
->il_next
;
568 *policy
= pol
->policy
;
571 up_read(¤t
->mm
->mmap_sem
);
577 get_zonemask(pol
, nmask
);
581 up_read(¤t
->mm
->mmap_sem
);
585 #ifdef CONFIG_MIGRATION
589 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
593 * Avoid migrating a page that is shared with others.
595 if ((flags
& MPOL_MF_MOVE_ALL
) || page_mapcount(page
) == 1)
596 isolate_lru_page(page
, pagelist
);
599 static struct page
*new_node_page(struct page
*page
, unsigned long node
, int **x
)
601 return alloc_pages_node(node
, GFP_HIGHUSER
, 0);
605 * Migrate pages from one node to a target node.
606 * Returns error or the number of pages not migrated.
608 int migrate_to_node(struct mm_struct
*mm
, int source
, int dest
, int flags
)
615 node_set(source
, nmask
);
617 check_range(mm
, mm
->mmap
->vm_start
, TASK_SIZE
, &nmask
,
618 flags
| MPOL_MF_DISCONTIG_OK
, &pagelist
);
620 if (!list_empty(&pagelist
))
621 err
= migrate_pages(&pagelist
, new_node_page
, dest
);
627 * Move pages between the two nodesets so as to preserve the physical
628 * layout as much as possible.
630 * Returns the number of page that could not be moved.
632 int do_migrate_pages(struct mm_struct
*mm
,
633 const nodemask_t
*from_nodes
, const nodemask_t
*to_nodes
, int flags
)
640 down_read(&mm
->mmap_sem
);
642 err
= migrate_vmas(mm
, from_nodes
, to_nodes
, flags
);
647 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
648 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
649 * bit in 'tmp', and return that <source, dest> pair for migration.
650 * The pair of nodemasks 'to' and 'from' define the map.
652 * If no pair of bits is found that way, fallback to picking some
653 * pair of 'source' and 'dest' bits that are not the same. If the
654 * 'source' and 'dest' bits are the same, this represents a node
655 * that will be migrating to itself, so no pages need move.
657 * If no bits are left in 'tmp', or if all remaining bits left
658 * in 'tmp' correspond to the same bit in 'to', return false
659 * (nothing left to migrate).
661 * This lets us pick a pair of nodes to migrate between, such that
662 * if possible the dest node is not already occupied by some other
663 * source node, minimizing the risk of overloading the memory on a
664 * node that would happen if we migrated incoming memory to a node
665 * before migrating outgoing memory source that same node.
667 * A single scan of tmp is sufficient. As we go, we remember the
668 * most recent <s, d> pair that moved (s != d). If we find a pair
669 * that not only moved, but what's better, moved to an empty slot
670 * (d is not set in tmp), then we break out then, with that pair.
671 * Otherwise when we finish scannng from_tmp, we at least have the
672 * most recent <s, d> pair that moved. If we get all the way through
673 * the scan of tmp without finding any node that moved, much less
674 * moved to an empty node, then there is nothing left worth migrating.
678 while (!nodes_empty(tmp
)) {
683 for_each_node_mask(s
, tmp
) {
684 d
= node_remap(s
, *from_nodes
, *to_nodes
);
688 source
= s
; /* Node moved. Memorize */
691 /* dest not in remaining from nodes? */
692 if (!node_isset(dest
, tmp
))
698 node_clear(source
, tmp
);
699 err
= migrate_to_node(mm
, source
, dest
, flags
);
706 up_read(&mm
->mmap_sem
);
713 static struct page
*new_vma_page(struct page
*page
, unsigned long private, int **x
)
715 struct vm_area_struct
*vma
= (struct vm_area_struct
*)private;
717 return alloc_page_vma(GFP_HIGHUSER
, vma
, page_address_in_vma(page
, vma
));
721 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
726 int do_migrate_pages(struct mm_struct
*mm
,
727 const nodemask_t
*from_nodes
, const nodemask_t
*to_nodes
, int flags
)
732 static struct page
*new_vma_page(struct page
*page
, unsigned long private, int **x
)
738 long do_mbind(unsigned long start
, unsigned long len
,
739 unsigned long mode
, nodemask_t
*nmask
, unsigned long flags
)
741 struct vm_area_struct
*vma
;
742 struct mm_struct
*mm
= current
->mm
;
743 struct mempolicy
*new;
748 if ((flags
& ~(unsigned long)(MPOL_MF_STRICT
|
749 MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
))
752 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
755 if (start
& ~PAGE_MASK
)
758 if (mode
== MPOL_DEFAULT
)
759 flags
&= ~MPOL_MF_STRICT
;
761 len
= (len
+ PAGE_SIZE
- 1) & PAGE_MASK
;
769 if (mpol_check_policy(mode
, nmask
))
772 new = mpol_new(mode
, nmask
);
777 * If we are using the default policy then operation
778 * on discontinuous address spaces is okay after all
781 flags
|= MPOL_MF_DISCONTIG_OK
;
783 PDprintk("mbind %lx-%lx mode:%ld nodes:%lx\n",start
,start
+len
,
784 mode
,nodes_addr(nodes
)[0]);
786 down_write(&mm
->mmap_sem
);
787 vma
= check_range(mm
, start
, end
, nmask
,
788 flags
| MPOL_MF_INVERT
, &pagelist
);
794 err
= mbind_range(vma
, start
, end
, new);
796 if (!list_empty(&pagelist
))
797 nr_failed
= migrate_pages(&pagelist
, new_vma_page
,
800 if (!err
&& nr_failed
&& (flags
& MPOL_MF_STRICT
))
804 up_write(&mm
->mmap_sem
);
810 * User space interface with variable sized bitmaps for nodelists.
813 /* Copy a node mask from user space. */
814 static int get_nodes(nodemask_t
*nodes
, const unsigned long __user
*nmask
,
815 unsigned long maxnode
)
818 unsigned long nlongs
;
819 unsigned long endmask
;
823 if (maxnode
== 0 || !nmask
)
825 if (maxnode
> PAGE_SIZE
*BITS_PER_BYTE
)
828 nlongs
= BITS_TO_LONGS(maxnode
);
829 if ((maxnode
% BITS_PER_LONG
) == 0)
832 endmask
= (1UL << (maxnode
% BITS_PER_LONG
)) - 1;
834 /* When the user specified more nodes than supported just check
835 if the non supported part is all zero. */
836 if (nlongs
> BITS_TO_LONGS(MAX_NUMNODES
)) {
837 if (nlongs
> PAGE_SIZE
/sizeof(long))
839 for (k
= BITS_TO_LONGS(MAX_NUMNODES
); k
< nlongs
; k
++) {
841 if (get_user(t
, nmask
+ k
))
843 if (k
== nlongs
- 1) {
849 nlongs
= BITS_TO_LONGS(MAX_NUMNODES
);
853 if (copy_from_user(nodes_addr(*nodes
), nmask
, nlongs
*sizeof(unsigned long)))
855 nodes_addr(*nodes
)[nlongs
-1] &= endmask
;
859 /* Copy a kernel node mask to user space */
860 static int copy_nodes_to_user(unsigned long __user
*mask
, unsigned long maxnode
,
863 unsigned long copy
= ALIGN(maxnode
-1, 64) / 8;
864 const int nbytes
= BITS_TO_LONGS(MAX_NUMNODES
) * sizeof(long);
867 if (copy
> PAGE_SIZE
)
869 if (clear_user((char __user
*)mask
+ nbytes
, copy
- nbytes
))
873 return copy_to_user(mask
, nodes_addr(*nodes
), copy
) ? -EFAULT
: 0;
876 asmlinkage
long sys_mbind(unsigned long start
, unsigned long len
,
878 unsigned long __user
*nmask
, unsigned long maxnode
,
884 err
= get_nodes(&nodes
, nmask
, maxnode
);
887 return do_mbind(start
, len
, mode
, &nodes
, flags
);
890 /* Set the process memory policy */
891 asmlinkage
long sys_set_mempolicy(int mode
, unsigned long __user
*nmask
,
892 unsigned long maxnode
)
897 if (mode
< 0 || mode
> MPOL_MAX
)
899 err
= get_nodes(&nodes
, nmask
, maxnode
);
902 return do_set_mempolicy(mode
, &nodes
);
905 asmlinkage
long sys_migrate_pages(pid_t pid
, unsigned long maxnode
,
906 const unsigned long __user
*old_nodes
,
907 const unsigned long __user
*new_nodes
)
909 struct mm_struct
*mm
;
910 struct task_struct
*task
;
913 nodemask_t task_nodes
;
916 err
= get_nodes(&old
, old_nodes
, maxnode
);
920 err
= get_nodes(&new, new_nodes
, maxnode
);
924 /* Find the mm_struct */
925 read_lock(&tasklist_lock
);
926 task
= pid
? find_task_by_pid(pid
) : current
;
928 read_unlock(&tasklist_lock
);
931 mm
= get_task_mm(task
);
932 read_unlock(&tasklist_lock
);
938 * Check if this process has the right to modify the specified
939 * process. The right exists if the process has administrative
940 * capabilities, superuser privileges or the same
941 * userid as the target process.
943 if ((current
->euid
!= task
->suid
) && (current
->euid
!= task
->uid
) &&
944 (current
->uid
!= task
->suid
) && (current
->uid
!= task
->uid
) &&
945 !capable(CAP_SYS_NICE
)) {
950 task_nodes
= cpuset_mems_allowed(task
);
951 /* Is the user allowed to access the target nodes? */
952 if (!nodes_subset(new, task_nodes
) && !capable(CAP_SYS_NICE
)) {
957 err
= security_task_movememory(task
);
961 err
= do_migrate_pages(mm
, &old
, &new,
962 capable(CAP_SYS_NICE
) ? MPOL_MF_MOVE_ALL
: MPOL_MF_MOVE
);
969 /* Retrieve NUMA policy */
970 asmlinkage
long sys_get_mempolicy(int __user
*policy
,
971 unsigned long __user
*nmask
,
972 unsigned long maxnode
,
973 unsigned long addr
, unsigned long flags
)
978 if (nmask
!= NULL
&& maxnode
< MAX_NUMNODES
)
981 err
= do_get_mempolicy(&pval
, &nodes
, addr
, flags
);
986 if (policy
&& put_user(pval
, policy
))
990 err
= copy_nodes_to_user(nmask
, maxnode
, &nodes
);
997 asmlinkage
long compat_sys_get_mempolicy(int __user
*policy
,
998 compat_ulong_t __user
*nmask
,
999 compat_ulong_t maxnode
,
1000 compat_ulong_t addr
, compat_ulong_t flags
)
1003 unsigned long __user
*nm
= NULL
;
1004 unsigned long nr_bits
, alloc_size
;
1005 DECLARE_BITMAP(bm
, MAX_NUMNODES
);
1007 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1008 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1011 nm
= compat_alloc_user_space(alloc_size
);
1013 err
= sys_get_mempolicy(policy
, nm
, nr_bits
+1, addr
, flags
);
1015 if (!err
&& nmask
) {
1016 err
= copy_from_user(bm
, nm
, alloc_size
);
1017 /* ensure entire bitmap is zeroed */
1018 err
|= clear_user(nmask
, ALIGN(maxnode
-1, 8) / 8);
1019 err
|= compat_put_bitmap(nmask
, bm
, nr_bits
);
1025 asmlinkage
long compat_sys_set_mempolicy(int mode
, compat_ulong_t __user
*nmask
,
1026 compat_ulong_t maxnode
)
1029 unsigned long __user
*nm
= NULL
;
1030 unsigned long nr_bits
, alloc_size
;
1031 DECLARE_BITMAP(bm
, MAX_NUMNODES
);
1033 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1034 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1037 err
= compat_get_bitmap(bm
, nmask
, nr_bits
);
1038 nm
= compat_alloc_user_space(alloc_size
);
1039 err
|= copy_to_user(nm
, bm
, alloc_size
);
1045 return sys_set_mempolicy(mode
, nm
, nr_bits
+1);
1048 asmlinkage
long compat_sys_mbind(compat_ulong_t start
, compat_ulong_t len
,
1049 compat_ulong_t mode
, compat_ulong_t __user
*nmask
,
1050 compat_ulong_t maxnode
, compat_ulong_t flags
)
1053 unsigned long __user
*nm
= NULL
;
1054 unsigned long nr_bits
, alloc_size
;
1057 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1058 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1061 err
= compat_get_bitmap(nodes_addr(bm
), nmask
, nr_bits
);
1062 nm
= compat_alloc_user_space(alloc_size
);
1063 err
|= copy_to_user(nm
, nodes_addr(bm
), alloc_size
);
1069 return sys_mbind(start
, len
, mode
, nm
, nr_bits
+1, flags
);
1074 /* Return effective policy for a VMA */
1075 static struct mempolicy
* get_vma_policy(struct task_struct
*task
,
1076 struct vm_area_struct
*vma
, unsigned long addr
)
1078 struct mempolicy
*pol
= task
->mempolicy
;
1081 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
)
1082 pol
= vma
->vm_ops
->get_policy(vma
, addr
);
1083 else if (vma
->vm_policy
&&
1084 vma
->vm_policy
->policy
!= MPOL_DEFAULT
)
1085 pol
= vma
->vm_policy
;
1088 pol
= &default_policy
;
1092 /* Return a zonelist representing a mempolicy */
1093 static struct zonelist
*zonelist_policy(gfp_t gfp
, struct mempolicy
*policy
)
1097 switch (policy
->policy
) {
1098 case MPOL_PREFERRED
:
1099 nd
= policy
->v
.preferred_node
;
1101 nd
= numa_node_id();
1104 /* Lower zones don't get a policy applied */
1105 /* Careful: current->mems_allowed might have moved */
1106 if (gfp_zone(gfp
) >= policy_zone
)
1107 if (cpuset_zonelist_valid_mems_allowed(policy
->v
.zonelist
))
1108 return policy
->v
.zonelist
;
1110 case MPOL_INTERLEAVE
: /* should not happen */
1112 nd
= numa_node_id();
1118 return NODE_DATA(nd
)->node_zonelists
+ gfp_zone(gfp
);
1121 /* Do dynamic interleaving for a process */
1122 static unsigned interleave_nodes(struct mempolicy
*policy
)
1125 struct task_struct
*me
= current
;
1128 next
= next_node(nid
, policy
->v
.nodes
);
1129 if (next
>= MAX_NUMNODES
)
1130 next
= first_node(policy
->v
.nodes
);
1136 * Depending on the memory policy provide a node from which to allocate the
1139 unsigned slab_node(struct mempolicy
*policy
)
1141 int pol
= policy
? policy
->policy
: MPOL_DEFAULT
;
1144 case MPOL_INTERLEAVE
:
1145 return interleave_nodes(policy
);
1149 * Follow bind policy behavior and start allocation at the
1152 return zone_to_nid(policy
->v
.zonelist
->zones
[0]);
1154 case MPOL_PREFERRED
:
1155 if (policy
->v
.preferred_node
>= 0)
1156 return policy
->v
.preferred_node
;
1160 return numa_node_id();
1164 /* Do static interleaving for a VMA with known offset. */
1165 static unsigned offset_il_node(struct mempolicy
*pol
,
1166 struct vm_area_struct
*vma
, unsigned long off
)
1168 unsigned nnodes
= nodes_weight(pol
->v
.nodes
);
1169 unsigned target
= (unsigned)off
% nnodes
;
1175 nid
= next_node(nid
, pol
->v
.nodes
);
1177 } while (c
<= target
);
1181 /* Determine a node number for interleave */
1182 static inline unsigned interleave_nid(struct mempolicy
*pol
,
1183 struct vm_area_struct
*vma
, unsigned long addr
, int shift
)
1189 * for small pages, there is no difference between
1190 * shift and PAGE_SHIFT, so the bit-shift is safe.
1191 * for huge pages, since vm_pgoff is in units of small
1192 * pages, we need to shift off the always 0 bits to get
1195 BUG_ON(shift
< PAGE_SHIFT
);
1196 off
= vma
->vm_pgoff
>> (shift
- PAGE_SHIFT
);
1197 off
+= (addr
- vma
->vm_start
) >> shift
;
1198 return offset_il_node(pol
, vma
, off
);
1200 return interleave_nodes(pol
);
1203 #ifdef CONFIG_HUGETLBFS
1204 /* Return a zonelist suitable for a huge page allocation. */
1205 struct zonelist
*huge_zonelist(struct vm_area_struct
*vma
, unsigned long addr
)
1207 struct mempolicy
*pol
= get_vma_policy(current
, vma
, addr
);
1209 if (pol
->policy
== MPOL_INTERLEAVE
) {
1212 nid
= interleave_nid(pol
, vma
, addr
, HPAGE_SHIFT
);
1213 return NODE_DATA(nid
)->node_zonelists
+ gfp_zone(GFP_HIGHUSER
);
1215 return zonelist_policy(GFP_HIGHUSER
, pol
);
1219 /* Allocate a page in interleaved policy.
1220 Own path because it needs to do special accounting. */
1221 static struct page
*alloc_page_interleave(gfp_t gfp
, unsigned order
,
1224 struct zonelist
*zl
;
1227 zl
= NODE_DATA(nid
)->node_zonelists
+ gfp_zone(gfp
);
1228 page
= __alloc_pages(gfp
, order
, zl
);
1229 if (page
&& page_zone(page
) == zl
->zones
[0])
1230 inc_zone_page_state(page
, NUMA_INTERLEAVE_HIT
);
1235 * alloc_page_vma - Allocate a page for a VMA.
1238 * %GFP_USER user allocation.
1239 * %GFP_KERNEL kernel allocations,
1240 * %GFP_HIGHMEM highmem/user allocations,
1241 * %GFP_FS allocation should not call back into a file system.
1242 * %GFP_ATOMIC don't sleep.
1244 * @vma: Pointer to VMA or NULL if not available.
1245 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1247 * This function allocates a page from the kernel page pool and applies
1248 * a NUMA policy associated with the VMA or the current process.
1249 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1250 * mm_struct of the VMA to prevent it from going away. Should be used for
1251 * all allocations for pages that will be mapped into
1252 * user space. Returns NULL when no page can be allocated.
1254 * Should be called with the mm_sem of the vma hold.
1257 alloc_page_vma(gfp_t gfp
, struct vm_area_struct
*vma
, unsigned long addr
)
1259 struct mempolicy
*pol
= get_vma_policy(current
, vma
, addr
);
1261 cpuset_update_task_memory_state();
1263 if (unlikely(pol
->policy
== MPOL_INTERLEAVE
)) {
1266 nid
= interleave_nid(pol
, vma
, addr
, PAGE_SHIFT
);
1267 return alloc_page_interleave(gfp
, 0, nid
);
1269 return __alloc_pages(gfp
, 0, zonelist_policy(gfp
, pol
));
1273 * alloc_pages_current - Allocate pages.
1276 * %GFP_USER user allocation,
1277 * %GFP_KERNEL kernel allocation,
1278 * %GFP_HIGHMEM highmem allocation,
1279 * %GFP_FS don't call back into a file system.
1280 * %GFP_ATOMIC don't sleep.
1281 * @order: Power of two of allocation size in pages. 0 is a single page.
1283 * Allocate a page from the kernel page pool. When not in
1284 * interrupt context and apply the current process NUMA policy.
1285 * Returns NULL when no page can be allocated.
1287 * Don't call cpuset_update_task_memory_state() unless
1288 * 1) it's ok to take cpuset_sem (can WAIT), and
1289 * 2) allocating for current task (not interrupt).
1291 struct page
*alloc_pages_current(gfp_t gfp
, unsigned order
)
1293 struct mempolicy
*pol
= current
->mempolicy
;
1295 if ((gfp
& __GFP_WAIT
) && !in_interrupt())
1296 cpuset_update_task_memory_state();
1297 if (!pol
|| in_interrupt() || (gfp
& __GFP_THISNODE
))
1298 pol
= &default_policy
;
1299 if (pol
->policy
== MPOL_INTERLEAVE
)
1300 return alloc_page_interleave(gfp
, order
, interleave_nodes(pol
));
1301 return __alloc_pages(gfp
, order
, zonelist_policy(gfp
, pol
));
1303 EXPORT_SYMBOL(alloc_pages_current
);
1306 * If mpol_copy() sees current->cpuset == cpuset_being_rebound, then it
1307 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1308 * with the mems_allowed returned by cpuset_mems_allowed(). This
1309 * keeps mempolicies cpuset relative after its cpuset moves. See
1310 * further kernel/cpuset.c update_nodemask().
1312 void *cpuset_being_rebound
;
1314 /* Slow path of a mempolicy copy */
1315 struct mempolicy
*__mpol_copy(struct mempolicy
*old
)
1317 struct mempolicy
*new = kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
1320 return ERR_PTR(-ENOMEM
);
1321 if (current_cpuset_is_being_rebound()) {
1322 nodemask_t mems
= cpuset_mems_allowed(current
);
1323 mpol_rebind_policy(old
, &mems
);
1326 atomic_set(&new->refcnt
, 1);
1327 if (new->policy
== MPOL_BIND
) {
1328 int sz
= ksize(old
->v
.zonelist
);
1329 new->v
.zonelist
= kmemdup(old
->v
.zonelist
, sz
, GFP_KERNEL
);
1330 if (!new->v
.zonelist
) {
1331 kmem_cache_free(policy_cache
, new);
1332 return ERR_PTR(-ENOMEM
);
1338 /* Slow path of a mempolicy comparison */
1339 int __mpol_equal(struct mempolicy
*a
, struct mempolicy
*b
)
1343 if (a
->policy
!= b
->policy
)
1345 switch (a
->policy
) {
1348 case MPOL_INTERLEAVE
:
1349 return nodes_equal(a
->v
.nodes
, b
->v
.nodes
);
1350 case MPOL_PREFERRED
:
1351 return a
->v
.preferred_node
== b
->v
.preferred_node
;
1354 for (i
= 0; a
->v
.zonelist
->zones
[i
]; i
++)
1355 if (a
->v
.zonelist
->zones
[i
] != b
->v
.zonelist
->zones
[i
])
1357 return b
->v
.zonelist
->zones
[i
] == NULL
;
1365 /* Slow path of a mpol destructor. */
1366 void __mpol_free(struct mempolicy
*p
)
1368 if (!atomic_dec_and_test(&p
->refcnt
))
1370 if (p
->policy
== MPOL_BIND
)
1371 kfree(p
->v
.zonelist
);
1372 p
->policy
= MPOL_DEFAULT
;
1373 kmem_cache_free(policy_cache
, p
);
1377 * Shared memory backing store policy support.
1379 * Remember policies even when nobody has shared memory mapped.
1380 * The policies are kept in Red-Black tree linked from the inode.
1381 * They are protected by the sp->lock spinlock, which should be held
1382 * for any accesses to the tree.
1385 /* lookup first element intersecting start-end */
1386 /* Caller holds sp->lock */
1387 static struct sp_node
*
1388 sp_lookup(struct shared_policy
*sp
, unsigned long start
, unsigned long end
)
1390 struct rb_node
*n
= sp
->root
.rb_node
;
1393 struct sp_node
*p
= rb_entry(n
, struct sp_node
, nd
);
1395 if (start
>= p
->end
)
1397 else if (end
<= p
->start
)
1405 struct sp_node
*w
= NULL
;
1406 struct rb_node
*prev
= rb_prev(n
);
1409 w
= rb_entry(prev
, struct sp_node
, nd
);
1410 if (w
->end
<= start
)
1414 return rb_entry(n
, struct sp_node
, nd
);
1417 /* Insert a new shared policy into the list. */
1418 /* Caller holds sp->lock */
1419 static void sp_insert(struct shared_policy
*sp
, struct sp_node
*new)
1421 struct rb_node
**p
= &sp
->root
.rb_node
;
1422 struct rb_node
*parent
= NULL
;
1427 nd
= rb_entry(parent
, struct sp_node
, nd
);
1428 if (new->start
< nd
->start
)
1430 else if (new->end
> nd
->end
)
1431 p
= &(*p
)->rb_right
;
1435 rb_link_node(&new->nd
, parent
, p
);
1436 rb_insert_color(&new->nd
, &sp
->root
);
1437 PDprintk("inserting %lx-%lx: %d\n", new->start
, new->end
,
1438 new->policy
? new->policy
->policy
: 0);
1441 /* Find shared policy intersecting idx */
1443 mpol_shared_policy_lookup(struct shared_policy
*sp
, unsigned long idx
)
1445 struct mempolicy
*pol
= NULL
;
1448 if (!sp
->root
.rb_node
)
1450 spin_lock(&sp
->lock
);
1451 sn
= sp_lookup(sp
, idx
, idx
+1);
1453 mpol_get(sn
->policy
);
1456 spin_unlock(&sp
->lock
);
1460 static void sp_delete(struct shared_policy
*sp
, struct sp_node
*n
)
1462 PDprintk("deleting %lx-l%x\n", n
->start
, n
->end
);
1463 rb_erase(&n
->nd
, &sp
->root
);
1464 mpol_free(n
->policy
);
1465 kmem_cache_free(sn_cache
, n
);
1469 sp_alloc(unsigned long start
, unsigned long end
, struct mempolicy
*pol
)
1471 struct sp_node
*n
= kmem_cache_alloc(sn_cache
, GFP_KERNEL
);
1482 /* Replace a policy range. */
1483 static int shared_policy_replace(struct shared_policy
*sp
, unsigned long start
,
1484 unsigned long end
, struct sp_node
*new)
1486 struct sp_node
*n
, *new2
= NULL
;
1489 spin_lock(&sp
->lock
);
1490 n
= sp_lookup(sp
, start
, end
);
1491 /* Take care of old policies in the same range. */
1492 while (n
&& n
->start
< end
) {
1493 struct rb_node
*next
= rb_next(&n
->nd
);
1494 if (n
->start
>= start
) {
1500 /* Old policy spanning whole new range. */
1503 spin_unlock(&sp
->lock
);
1504 new2
= sp_alloc(end
, n
->end
, n
->policy
);
1510 sp_insert(sp
, new2
);
1518 n
= rb_entry(next
, struct sp_node
, nd
);
1522 spin_unlock(&sp
->lock
);
1524 mpol_free(new2
->policy
);
1525 kmem_cache_free(sn_cache
, new2
);
1530 void mpol_shared_policy_init(struct shared_policy
*info
, int policy
,
1531 nodemask_t
*policy_nodes
)
1533 info
->root
= RB_ROOT
;
1534 spin_lock_init(&info
->lock
);
1536 if (policy
!= MPOL_DEFAULT
) {
1537 struct mempolicy
*newpol
;
1539 /* Falls back to MPOL_DEFAULT on any error */
1540 newpol
= mpol_new(policy
, policy_nodes
);
1541 if (!IS_ERR(newpol
)) {
1542 /* Create pseudo-vma that contains just the policy */
1543 struct vm_area_struct pvma
;
1545 memset(&pvma
, 0, sizeof(struct vm_area_struct
));
1546 /* Policy covers entire file */
1547 pvma
.vm_end
= TASK_SIZE
;
1548 mpol_set_shared_policy(info
, &pvma
, newpol
);
1554 int mpol_set_shared_policy(struct shared_policy
*info
,
1555 struct vm_area_struct
*vma
, struct mempolicy
*npol
)
1558 struct sp_node
*new = NULL
;
1559 unsigned long sz
= vma_pages(vma
);
1561 PDprintk("set_shared_policy %lx sz %lu %d %lx\n",
1563 sz
, npol
? npol
->policy
: -1,
1564 npol
? nodes_addr(npol
->v
.nodes
)[0] : -1);
1567 new = sp_alloc(vma
->vm_pgoff
, vma
->vm_pgoff
+ sz
, npol
);
1571 err
= shared_policy_replace(info
, vma
->vm_pgoff
, vma
->vm_pgoff
+sz
, new);
1573 kmem_cache_free(sn_cache
, new);
1577 /* Free a backing policy store on inode delete. */
1578 void mpol_free_shared_policy(struct shared_policy
*p
)
1581 struct rb_node
*next
;
1583 if (!p
->root
.rb_node
)
1585 spin_lock(&p
->lock
);
1586 next
= rb_first(&p
->root
);
1588 n
= rb_entry(next
, struct sp_node
, nd
);
1589 next
= rb_next(&n
->nd
);
1590 rb_erase(&n
->nd
, &p
->root
);
1591 mpol_free(n
->policy
);
1592 kmem_cache_free(sn_cache
, n
);
1594 spin_unlock(&p
->lock
);
1597 /* assumes fs == KERNEL_DS */
1598 void __init
numa_policy_init(void)
1600 policy_cache
= kmem_cache_create("numa_policy",
1601 sizeof(struct mempolicy
),
1602 0, SLAB_PANIC
, NULL
, NULL
);
1604 sn_cache
= kmem_cache_create("shared_policy_node",
1605 sizeof(struct sp_node
),
1606 0, SLAB_PANIC
, NULL
, NULL
);
1608 /* Set interleaving policy for system init. This way not all
1609 the data structures allocated at system boot end up in node zero. */
1611 if (do_set_mempolicy(MPOL_INTERLEAVE
, &node_online_map
))
1612 printk("numa_policy_init: interleaving failed\n");
1615 /* Reset policy of current process to default */
1616 void numa_default_policy(void)
1618 do_set_mempolicy(MPOL_DEFAULT
, NULL
);
1621 /* Migrate a policy to a different set of nodes */
1622 void mpol_rebind_policy(struct mempolicy
*pol
, const nodemask_t
*newmask
)
1624 nodemask_t
*mpolmask
;
1629 mpolmask
= &pol
->cpuset_mems_allowed
;
1630 if (nodes_equal(*mpolmask
, *newmask
))
1633 switch (pol
->policy
) {
1636 case MPOL_INTERLEAVE
:
1637 nodes_remap(tmp
, pol
->v
.nodes
, *mpolmask
, *newmask
);
1639 *mpolmask
= *newmask
;
1640 current
->il_next
= node_remap(current
->il_next
,
1641 *mpolmask
, *newmask
);
1643 case MPOL_PREFERRED
:
1644 pol
->v
.preferred_node
= node_remap(pol
->v
.preferred_node
,
1645 *mpolmask
, *newmask
);
1646 *mpolmask
= *newmask
;
1651 struct zonelist
*zonelist
;
1654 for (z
= pol
->v
.zonelist
->zones
; *z
; z
++)
1655 node_set(zone_to_nid(*z
), nodes
);
1656 nodes_remap(tmp
, nodes
, *mpolmask
, *newmask
);
1659 zonelist
= bind_zonelist(&nodes
);
1661 /* If no mem, then zonelist is NULL and we keep old zonelist.
1662 * If that old zonelist has no remaining mems_allowed nodes,
1663 * then zonelist_policy() will "FALL THROUGH" to MPOL_DEFAULT.
1667 /* Good - got mem - substitute new zonelist */
1668 kfree(pol
->v
.zonelist
);
1669 pol
->v
.zonelist
= zonelist
;
1671 *mpolmask
= *newmask
;
1681 * Wrapper for mpol_rebind_policy() that just requires task
1682 * pointer, and updates task mempolicy.
1685 void mpol_rebind_task(struct task_struct
*tsk
, const nodemask_t
*new)
1687 mpol_rebind_policy(tsk
->mempolicy
, new);
1691 * Rebind each vma in mm to new nodemask.
1693 * Call holding a reference to mm. Takes mm->mmap_sem during call.
1696 void mpol_rebind_mm(struct mm_struct
*mm
, nodemask_t
*new)
1698 struct vm_area_struct
*vma
;
1700 down_write(&mm
->mmap_sem
);
1701 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
)
1702 mpol_rebind_policy(vma
->vm_policy
, new);
1703 up_write(&mm
->mmap_sem
);
1707 * Display pages allocated per node and memory policy via /proc.
1710 static const char * const policy_types
[] =
1711 { "default", "prefer", "bind", "interleave" };
1714 * Convert a mempolicy into a string.
1715 * Returns the number of characters in buffer (if positive)
1716 * or an error (negative)
1718 static inline int mpol_to_str(char *buffer
, int maxlen
, struct mempolicy
*pol
)
1723 int mode
= pol
? pol
->policy
: MPOL_DEFAULT
;
1730 case MPOL_PREFERRED
:
1732 node_set(pol
->v
.preferred_node
, nodes
);
1736 get_zonemask(pol
, &nodes
);
1739 case MPOL_INTERLEAVE
:
1740 nodes
= pol
->v
.nodes
;
1748 l
= strlen(policy_types
[mode
]);
1749 if (buffer
+ maxlen
< p
+ l
+ 1)
1752 strcpy(p
, policy_types
[mode
]);
1755 if (!nodes_empty(nodes
)) {
1756 if (buffer
+ maxlen
< p
+ 2)
1759 p
+= nodelist_scnprintf(p
, buffer
+ maxlen
- p
, nodes
);
1765 unsigned long pages
;
1767 unsigned long active
;
1768 unsigned long writeback
;
1769 unsigned long mapcount_max
;
1770 unsigned long dirty
;
1771 unsigned long swapcache
;
1772 unsigned long node
[MAX_NUMNODES
];
1775 static void gather_stats(struct page
*page
, void *private, int pte_dirty
)
1777 struct numa_maps
*md
= private;
1778 int count
= page_mapcount(page
);
1781 if (pte_dirty
|| PageDirty(page
))
1784 if (PageSwapCache(page
))
1787 if (PageActive(page
))
1790 if (PageWriteback(page
))
1796 if (count
> md
->mapcount_max
)
1797 md
->mapcount_max
= count
;
1799 md
->node
[page_to_nid(page
)]++;
1802 #ifdef CONFIG_HUGETLB_PAGE
1803 static void check_huge_range(struct vm_area_struct
*vma
,
1804 unsigned long start
, unsigned long end
,
1805 struct numa_maps
*md
)
1810 for (addr
= start
; addr
< end
; addr
+= HPAGE_SIZE
) {
1811 pte_t
*ptep
= huge_pte_offset(vma
->vm_mm
, addr
& HPAGE_MASK
);
1821 page
= pte_page(pte
);
1825 gather_stats(page
, md
, pte_dirty(*ptep
));
1829 static inline void check_huge_range(struct vm_area_struct
*vma
,
1830 unsigned long start
, unsigned long end
,
1831 struct numa_maps
*md
)
1836 int show_numa_map(struct seq_file
*m
, void *v
)
1838 struct proc_maps_private
*priv
= m
->private;
1839 struct vm_area_struct
*vma
= v
;
1840 struct numa_maps
*md
;
1841 struct file
*file
= vma
->vm_file
;
1842 struct mm_struct
*mm
= vma
->vm_mm
;
1849 md
= kzalloc(sizeof(struct numa_maps
), GFP_KERNEL
);
1853 mpol_to_str(buffer
, sizeof(buffer
),
1854 get_vma_policy(priv
->task
, vma
, vma
->vm_start
));
1856 seq_printf(m
, "%08lx %s", vma
->vm_start
, buffer
);
1859 seq_printf(m
, " file=");
1860 seq_path(m
, file
->f_path
.mnt
, file
->f_path
.dentry
, "\n\t= ");
1861 } else if (vma
->vm_start
<= mm
->brk
&& vma
->vm_end
>= mm
->start_brk
) {
1862 seq_printf(m
, " heap");
1863 } else if (vma
->vm_start
<= mm
->start_stack
&&
1864 vma
->vm_end
>= mm
->start_stack
) {
1865 seq_printf(m
, " stack");
1868 if (is_vm_hugetlb_page(vma
)) {
1869 check_huge_range(vma
, vma
->vm_start
, vma
->vm_end
, md
);
1870 seq_printf(m
, " huge");
1872 check_pgd_range(vma
, vma
->vm_start
, vma
->vm_end
,
1873 &node_online_map
, MPOL_MF_STATS
, md
);
1880 seq_printf(m
," anon=%lu",md
->anon
);
1883 seq_printf(m
," dirty=%lu",md
->dirty
);
1885 if (md
->pages
!= md
->anon
&& md
->pages
!= md
->dirty
)
1886 seq_printf(m
, " mapped=%lu", md
->pages
);
1888 if (md
->mapcount_max
> 1)
1889 seq_printf(m
, " mapmax=%lu", md
->mapcount_max
);
1892 seq_printf(m
," swapcache=%lu", md
->swapcache
);
1894 if (md
->active
< md
->pages
&& !is_vm_hugetlb_page(vma
))
1895 seq_printf(m
," active=%lu", md
->active
);
1898 seq_printf(m
," writeback=%lu", md
->writeback
);
1900 for_each_online_node(n
)
1902 seq_printf(m
, " N%d=%lu", n
, md
->node
[n
]);
1907 if (m
->count
< m
->size
)
1908 m
->version
= (vma
!= priv
->tail_vma
) ? vma
->vm_start
: 0;