2 * linux/mm/percpu.c - percpu memory allocator
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
7 * This file is released under the GPLv2.
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks in vmalloc area. Each
11 * chunk is consisted of num_possible_cpus() units and the first chunk
12 * is used for static percpu variables in the kernel image (special
13 * boot time alloc/init handling necessary as these areas need to be
14 * brought up before allocation services are running). Unit grows as
15 * necessary and all units grow or shrink in unison. When a chunk is
16 * filled up, another chunk is allocated. ie. in vmalloc area
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 * c1:u1, c1:u2 and c1:u3. Percpu access can be done by configuring
26 * percpu base registers pcpu_unit_size apart.
28 * There are usually many small percpu allocations many of them as
29 * small as 4 bytes. The allocator organizes chunks into lists
30 * according to free size and tries to allocate from the fullest one.
31 * Each chunk keeps the maximum contiguous area size hint which is
32 * guaranteed to be eqaul to or larger than the maximum contiguous
33 * area in the chunk. This helps the allocator not to iterate the
34 * chunk maps unnecessarily.
36 * Allocation state in each chunk is kept using an array of integers
37 * on chunk->map. A positive value in the map represents a free
38 * region and negative allocated. Allocation inside a chunk is done
39 * by scanning this map sequentially and serving the first matching
40 * entry. This is mostly copied from the percpu_modalloc() allocator.
41 * Chunks can be determined from the address using the index field
42 * in the page struct. The index field contains a pointer to the chunk.
44 * To use this allocator, arch code should do the followings.
46 * - define CONFIG_HAVE_DYNAMIC_PER_CPU_AREA
48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 * regular address to percpu pointer and back if they need to be
50 * different from the default
52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 * setup the first chunk containing the kernel static percpu area
56 #include <linux/bitmap.h>
57 #include <linux/bootmem.h>
58 #include <linux/list.h>
60 #include <linux/module.h>
61 #include <linux/mutex.h>
62 #include <linux/percpu.h>
63 #include <linux/pfn.h>
64 #include <linux/slab.h>
65 #include <linux/spinlock.h>
66 #include <linux/vmalloc.h>
67 #include <linux/workqueue.h>
69 #include <asm/cacheflush.h>
70 #include <asm/sections.h>
71 #include <asm/tlbflush.h>
73 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
74 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
76 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
77 #ifndef __addr_to_pcpu_ptr
78 #define __addr_to_pcpu_ptr(addr) \
79 (void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr \
80 + (unsigned long)__per_cpu_start)
82 #ifndef __pcpu_ptr_to_addr
83 #define __pcpu_ptr_to_addr(ptr) \
84 (void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr \
85 - (unsigned long)__per_cpu_start)
89 struct list_head list
; /* linked to pcpu_slot lists */
90 int free_size
; /* free bytes in the chunk */
91 int contig_hint
; /* max contiguous size hint */
92 struct vm_struct
*vm
; /* mapped vmalloc region */
93 int map_used
; /* # of map entries used */
94 int map_alloc
; /* # of map entries allocated */
95 int *map
; /* allocation map */
96 bool immutable
; /* no [de]population allowed */
97 struct page
**page
; /* points to page array */
98 struct page
*page_ar
[]; /* #cpus * UNIT_PAGES */
101 static int pcpu_unit_pages __read_mostly
;
102 static int pcpu_unit_size __read_mostly
;
103 static int pcpu_chunk_size __read_mostly
;
104 static int pcpu_nr_slots __read_mostly
;
105 static size_t pcpu_chunk_struct_size __read_mostly
;
107 /* the address of the first chunk which starts with the kernel static area */
108 void *pcpu_base_addr __read_mostly
;
109 EXPORT_SYMBOL_GPL(pcpu_base_addr
);
112 * The first chunk which always exists. Note that unlike other
113 * chunks, this one can be allocated and mapped in several different
114 * ways and thus often doesn't live in the vmalloc area.
116 static struct pcpu_chunk
*pcpu_first_chunk
;
119 * Optional reserved chunk. This chunk reserves part of the first
120 * chunk and serves it for reserved allocations. The amount of
121 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
122 * area doesn't exist, the following variables contain NULL and 0
125 static struct pcpu_chunk
*pcpu_reserved_chunk
;
126 static int pcpu_reserved_chunk_limit
;
129 * Synchronization rules.
131 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
132 * protects allocation/reclaim paths, chunks and chunk->page arrays.
133 * The latter is a spinlock and protects the index data structures -
134 * chunk slots, chunks and area maps in chunks.
136 * During allocation, pcpu_alloc_mutex is kept locked all the time and
137 * pcpu_lock is grabbed and released as necessary. All actual memory
138 * allocations are done using GFP_KERNEL with pcpu_lock released.
140 * Free path accesses and alters only the index data structures, so it
141 * can be safely called from atomic context. When memory needs to be
142 * returned to the system, free path schedules reclaim_work which
143 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
144 * reclaimed, release both locks and frees the chunks. Note that it's
145 * necessary to grab both locks to remove a chunk from circulation as
146 * allocation path might be referencing the chunk with only
147 * pcpu_alloc_mutex locked.
149 static DEFINE_MUTEX(pcpu_alloc_mutex
); /* protects whole alloc and reclaim */
150 static DEFINE_SPINLOCK(pcpu_lock
); /* protects index data structures */
152 static struct list_head
*pcpu_slot __read_mostly
; /* chunk list slots */
154 /* reclaim work to release fully free chunks, scheduled from free path */
155 static void pcpu_reclaim(struct work_struct
*work
);
156 static DECLARE_WORK(pcpu_reclaim_work
, pcpu_reclaim
);
158 static int __pcpu_size_to_slot(int size
)
160 int highbit
= fls(size
); /* size is in bytes */
161 return max(highbit
- PCPU_SLOT_BASE_SHIFT
+ 2, 1);
164 static int pcpu_size_to_slot(int size
)
166 if (size
== pcpu_unit_size
)
167 return pcpu_nr_slots
- 1;
168 return __pcpu_size_to_slot(size
);
171 static int pcpu_chunk_slot(const struct pcpu_chunk
*chunk
)
173 if (chunk
->free_size
< sizeof(int) || chunk
->contig_hint
< sizeof(int))
176 return pcpu_size_to_slot(chunk
->free_size
);
179 static int pcpu_page_idx(unsigned int cpu
, int page_idx
)
181 return cpu
* pcpu_unit_pages
+ page_idx
;
184 static struct page
**pcpu_chunk_pagep(struct pcpu_chunk
*chunk
,
185 unsigned int cpu
, int page_idx
)
187 return &chunk
->page
[pcpu_page_idx(cpu
, page_idx
)];
190 static unsigned long pcpu_chunk_addr(struct pcpu_chunk
*chunk
,
191 unsigned int cpu
, int page_idx
)
193 return (unsigned long)chunk
->vm
->addr
+
194 (pcpu_page_idx(cpu
, page_idx
) << PAGE_SHIFT
);
197 static bool pcpu_chunk_page_occupied(struct pcpu_chunk
*chunk
,
200 return *pcpu_chunk_pagep(chunk
, 0, page_idx
) != NULL
;
203 /* set the pointer to a chunk in a page struct */
204 static void pcpu_set_page_chunk(struct page
*page
, struct pcpu_chunk
*pcpu
)
206 page
->index
= (unsigned long)pcpu
;
209 /* obtain pointer to a chunk from a page struct */
210 static struct pcpu_chunk
*pcpu_get_page_chunk(struct page
*page
)
212 return (struct pcpu_chunk
*)page
->index
;
216 * pcpu_mem_alloc - allocate memory
217 * @size: bytes to allocate
219 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
220 * kzalloc() is used; otherwise, vmalloc() is used. The returned
221 * memory is always zeroed.
224 * Does GFP_KERNEL allocation.
227 * Pointer to the allocated area on success, NULL on failure.
229 static void *pcpu_mem_alloc(size_t size
)
231 if (size
<= PAGE_SIZE
)
232 return kzalloc(size
, GFP_KERNEL
);
234 void *ptr
= vmalloc(size
);
236 memset(ptr
, 0, size
);
242 * pcpu_mem_free - free memory
243 * @ptr: memory to free
244 * @size: size of the area
246 * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc().
248 static void pcpu_mem_free(void *ptr
, size_t size
)
250 if (size
<= PAGE_SIZE
)
257 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
258 * @chunk: chunk of interest
259 * @oslot: the previous slot it was on
261 * This function is called after an allocation or free changed @chunk.
262 * New slot according to the changed state is determined and @chunk is
263 * moved to the slot. Note that the reserved chunk is never put on
269 static void pcpu_chunk_relocate(struct pcpu_chunk
*chunk
, int oslot
)
271 int nslot
= pcpu_chunk_slot(chunk
);
273 if (chunk
!= pcpu_reserved_chunk
&& oslot
!= nslot
) {
275 list_move(&chunk
->list
, &pcpu_slot
[nslot
]);
277 list_move_tail(&chunk
->list
, &pcpu_slot
[nslot
]);
282 * pcpu_chunk_addr_search - determine chunk containing specified address
283 * @addr: address for which the chunk needs to be determined.
286 * The address of the found chunk.
288 static struct pcpu_chunk
*pcpu_chunk_addr_search(void *addr
)
290 void *first_start
= pcpu_first_chunk
->vm
->addr
;
292 /* is it in the first chunk? */
293 if (addr
>= first_start
&& addr
< first_start
+ pcpu_chunk_size
) {
294 /* is it in the reserved area? */
295 if (addr
< first_start
+ pcpu_reserved_chunk_limit
)
296 return pcpu_reserved_chunk
;
297 return pcpu_first_chunk
;
300 return pcpu_get_page_chunk(vmalloc_to_page(addr
));
304 * pcpu_extend_area_map - extend area map for allocation
305 * @chunk: target chunk
307 * Extend area map of @chunk so that it can accomodate an allocation.
308 * A single allocation can split an area into three areas, so this
309 * function makes sure that @chunk->map has at least two extra slots.
312 * pcpu_alloc_mutex, pcpu_lock. pcpu_lock is released and reacquired
313 * if area map is extended.
316 * 0 if noop, 1 if successfully extended, -errno on failure.
318 static int pcpu_extend_area_map(struct pcpu_chunk
*chunk
)
325 if (chunk
->map_alloc
>= chunk
->map_used
+ 2)
328 spin_unlock_irq(&pcpu_lock
);
330 new_alloc
= PCPU_DFL_MAP_ALLOC
;
331 while (new_alloc
< chunk
->map_used
+ 2)
334 new = pcpu_mem_alloc(new_alloc
* sizeof(new[0]));
336 spin_lock_irq(&pcpu_lock
);
341 * Acquire pcpu_lock and switch to new area map. Only free
342 * could have happened inbetween, so map_used couldn't have
345 spin_lock_irq(&pcpu_lock
);
346 BUG_ON(new_alloc
< chunk
->map_used
+ 2);
348 size
= chunk
->map_alloc
* sizeof(chunk
->map
[0]);
349 memcpy(new, chunk
->map
, size
);
352 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
353 * one of the first chunks and still using static map.
355 if (chunk
->map_alloc
>= PCPU_DFL_MAP_ALLOC
)
356 pcpu_mem_free(chunk
->map
, size
);
358 chunk
->map_alloc
= new_alloc
;
364 * pcpu_split_block - split a map block
365 * @chunk: chunk of interest
366 * @i: index of map block to split
367 * @head: head size in bytes (can be 0)
368 * @tail: tail size in bytes (can be 0)
370 * Split the @i'th map block into two or three blocks. If @head is
371 * non-zero, @head bytes block is inserted before block @i moving it
372 * to @i+1 and reducing its size by @head bytes.
374 * If @tail is non-zero, the target block, which can be @i or @i+1
375 * depending on @head, is reduced by @tail bytes and @tail byte block
376 * is inserted after the target block.
378 * @chunk->map must have enough free slots to accomodate the split.
383 static void pcpu_split_block(struct pcpu_chunk
*chunk
, int i
,
386 int nr_extra
= !!head
+ !!tail
;
388 BUG_ON(chunk
->map_alloc
< chunk
->map_used
+ nr_extra
);
390 /* insert new subblocks */
391 memmove(&chunk
->map
[i
+ nr_extra
], &chunk
->map
[i
],
392 sizeof(chunk
->map
[0]) * (chunk
->map_used
- i
));
393 chunk
->map_used
+= nr_extra
;
396 chunk
->map
[i
+ 1] = chunk
->map
[i
] - head
;
397 chunk
->map
[i
++] = head
;
400 chunk
->map
[i
++] -= tail
;
401 chunk
->map
[i
] = tail
;
406 * pcpu_alloc_area - allocate area from a pcpu_chunk
407 * @chunk: chunk of interest
408 * @size: wanted size in bytes
409 * @align: wanted align
411 * Try to allocate @size bytes area aligned at @align from @chunk.
412 * Note that this function only allocates the offset. It doesn't
413 * populate or map the area.
415 * @chunk->map must have at least two free slots.
421 * Allocated offset in @chunk on success, -1 if no matching area is
424 static int pcpu_alloc_area(struct pcpu_chunk
*chunk
, int size
, int align
)
426 int oslot
= pcpu_chunk_slot(chunk
);
430 for (i
= 0, off
= 0; i
< chunk
->map_used
; off
+= abs(chunk
->map
[i
++])) {
431 bool is_last
= i
+ 1 == chunk
->map_used
;
434 /* extra for alignment requirement */
435 head
= ALIGN(off
, align
) - off
;
436 BUG_ON(i
== 0 && head
!= 0);
438 if (chunk
->map
[i
] < 0)
440 if (chunk
->map
[i
] < head
+ size
) {
441 max_contig
= max(chunk
->map
[i
], max_contig
);
446 * If head is small or the previous block is free,
447 * merge'em. Note that 'small' is defined as smaller
448 * than sizeof(int), which is very small but isn't too
449 * uncommon for percpu allocations.
451 if (head
&& (head
< sizeof(int) || chunk
->map
[i
- 1] > 0)) {
452 if (chunk
->map
[i
- 1] > 0)
453 chunk
->map
[i
- 1] += head
;
455 chunk
->map
[i
- 1] -= head
;
456 chunk
->free_size
-= head
;
458 chunk
->map
[i
] -= head
;
463 /* if tail is small, just keep it around */
464 tail
= chunk
->map
[i
] - head
- size
;
465 if (tail
< sizeof(int))
468 /* split if warranted */
470 pcpu_split_block(chunk
, i
, head
, tail
);
474 max_contig
= max(chunk
->map
[i
- 1], max_contig
);
477 max_contig
= max(chunk
->map
[i
+ 1], max_contig
);
480 /* update hint and mark allocated */
482 chunk
->contig_hint
= max_contig
; /* fully scanned */
484 chunk
->contig_hint
= max(chunk
->contig_hint
,
487 chunk
->free_size
-= chunk
->map
[i
];
488 chunk
->map
[i
] = -chunk
->map
[i
];
490 pcpu_chunk_relocate(chunk
, oslot
);
494 chunk
->contig_hint
= max_contig
; /* fully scanned */
495 pcpu_chunk_relocate(chunk
, oslot
);
497 /* tell the upper layer that this chunk has no matching area */
502 * pcpu_free_area - free area to a pcpu_chunk
503 * @chunk: chunk of interest
504 * @freeme: offset of area to free
506 * Free area starting from @freeme to @chunk. Note that this function
507 * only modifies the allocation map. It doesn't depopulate or unmap
513 static void pcpu_free_area(struct pcpu_chunk
*chunk
, int freeme
)
515 int oslot
= pcpu_chunk_slot(chunk
);
518 for (i
= 0, off
= 0; i
< chunk
->map_used
; off
+= abs(chunk
->map
[i
++]))
521 BUG_ON(off
!= freeme
);
522 BUG_ON(chunk
->map
[i
] > 0);
524 chunk
->map
[i
] = -chunk
->map
[i
];
525 chunk
->free_size
+= chunk
->map
[i
];
527 /* merge with previous? */
528 if (i
> 0 && chunk
->map
[i
- 1] >= 0) {
529 chunk
->map
[i
- 1] += chunk
->map
[i
];
531 memmove(&chunk
->map
[i
], &chunk
->map
[i
+ 1],
532 (chunk
->map_used
- i
) * sizeof(chunk
->map
[0]));
535 /* merge with next? */
536 if (i
+ 1 < chunk
->map_used
&& chunk
->map
[i
+ 1] >= 0) {
537 chunk
->map
[i
] += chunk
->map
[i
+ 1];
539 memmove(&chunk
->map
[i
+ 1], &chunk
->map
[i
+ 2],
540 (chunk
->map_used
- (i
+ 1)) * sizeof(chunk
->map
[0]));
543 chunk
->contig_hint
= max(chunk
->map
[i
], chunk
->contig_hint
);
544 pcpu_chunk_relocate(chunk
, oslot
);
548 * pcpu_unmap - unmap pages out of a pcpu_chunk
549 * @chunk: chunk of interest
550 * @page_start: page index of the first page to unmap
551 * @page_end: page index of the last page to unmap + 1
552 * @flush_tlb: whether to flush tlb or not
554 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
555 * If @flush is true, vcache is flushed before unmapping and tlb
558 static void pcpu_unmap(struct pcpu_chunk
*chunk
, int page_start
, int page_end
,
561 unsigned int last
= num_possible_cpus() - 1;
564 /* unmap must not be done on immutable chunk */
565 WARN_ON(chunk
->immutable
);
568 * Each flushing trial can be very expensive, issue flush on
569 * the whole region at once rather than doing it for each cpu.
570 * This could be an overkill but is more scalable.
572 flush_cache_vunmap(pcpu_chunk_addr(chunk
, 0, page_start
),
573 pcpu_chunk_addr(chunk
, last
, page_end
));
575 for_each_possible_cpu(cpu
)
576 unmap_kernel_range_noflush(
577 pcpu_chunk_addr(chunk
, cpu
, page_start
),
578 (page_end
- page_start
) << PAGE_SHIFT
);
580 /* ditto as flush_cache_vunmap() */
582 flush_tlb_kernel_range(pcpu_chunk_addr(chunk
, 0, page_start
),
583 pcpu_chunk_addr(chunk
, last
, page_end
));
587 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
588 * @chunk: chunk to depopulate
589 * @off: offset to the area to depopulate
590 * @size: size of the area to depopulate in bytes
591 * @flush: whether to flush cache and tlb or not
593 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
594 * from @chunk. If @flush is true, vcache is flushed before unmapping
600 static void pcpu_depopulate_chunk(struct pcpu_chunk
*chunk
, int off
, int size
,
603 int page_start
= PFN_DOWN(off
);
604 int page_end
= PFN_UP(off
+ size
);
605 int unmap_start
= -1;
606 int uninitialized_var(unmap_end
);
610 for (i
= page_start
; i
< page_end
; i
++) {
611 for_each_possible_cpu(cpu
) {
612 struct page
**pagep
= pcpu_chunk_pagep(chunk
, cpu
, i
);
620 * If it's partial depopulation, it might get
621 * populated or depopulated again. Mark the
626 unmap_start
= unmap_start
< 0 ? i
: unmap_start
;
631 if (unmap_start
>= 0)
632 pcpu_unmap(chunk
, unmap_start
, unmap_end
, flush
);
636 * pcpu_map - map pages into a pcpu_chunk
637 * @chunk: chunk of interest
638 * @page_start: page index of the first page to map
639 * @page_end: page index of the last page to map + 1
641 * For each cpu, map pages [@page_start,@page_end) into @chunk.
642 * vcache is flushed afterwards.
644 static int pcpu_map(struct pcpu_chunk
*chunk
, int page_start
, int page_end
)
646 unsigned int last
= num_possible_cpus() - 1;
650 /* map must not be done on immutable chunk */
651 WARN_ON(chunk
->immutable
);
653 for_each_possible_cpu(cpu
) {
654 err
= map_kernel_range_noflush(
655 pcpu_chunk_addr(chunk
, cpu
, page_start
),
656 (page_end
- page_start
) << PAGE_SHIFT
,
658 pcpu_chunk_pagep(chunk
, cpu
, page_start
));
663 /* flush at once, please read comments in pcpu_unmap() */
664 flush_cache_vmap(pcpu_chunk_addr(chunk
, 0, page_start
),
665 pcpu_chunk_addr(chunk
, last
, page_end
));
670 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
671 * @chunk: chunk of interest
672 * @off: offset to the area to populate
673 * @size: size of the area to populate in bytes
675 * For each cpu, populate and map pages [@page_start,@page_end) into
676 * @chunk. The area is cleared on return.
679 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
681 static int pcpu_populate_chunk(struct pcpu_chunk
*chunk
, int off
, int size
)
683 const gfp_t alloc_mask
= GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_COLD
;
684 int page_start
= PFN_DOWN(off
);
685 int page_end
= PFN_UP(off
+ size
);
687 int uninitialized_var(map_end
);
691 for (i
= page_start
; i
< page_end
; i
++) {
692 if (pcpu_chunk_page_occupied(chunk
, i
)) {
693 if (map_start
>= 0) {
694 if (pcpu_map(chunk
, map_start
, map_end
))
701 map_start
= map_start
< 0 ? i
: map_start
;
704 for_each_possible_cpu(cpu
) {
705 struct page
**pagep
= pcpu_chunk_pagep(chunk
, cpu
, i
);
707 *pagep
= alloc_pages_node(cpu_to_node(cpu
),
711 pcpu_set_page_chunk(*pagep
, chunk
);
715 if (map_start
>= 0 && pcpu_map(chunk
, map_start
, map_end
))
718 for_each_possible_cpu(cpu
)
719 memset(chunk
->vm
->addr
+ cpu
* pcpu_unit_size
+ off
, 0,
724 /* likely under heavy memory pressure, give memory back */
725 pcpu_depopulate_chunk(chunk
, off
, size
, true);
729 static void free_pcpu_chunk(struct pcpu_chunk
*chunk
)
734 free_vm_area(chunk
->vm
);
735 pcpu_mem_free(chunk
->map
, chunk
->map_alloc
* sizeof(chunk
->map
[0]));
739 static struct pcpu_chunk
*alloc_pcpu_chunk(void)
741 struct pcpu_chunk
*chunk
;
743 chunk
= kzalloc(pcpu_chunk_struct_size
, GFP_KERNEL
);
747 chunk
->map
= pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC
* sizeof(chunk
->map
[0]));
748 chunk
->map_alloc
= PCPU_DFL_MAP_ALLOC
;
749 chunk
->map
[chunk
->map_used
++] = pcpu_unit_size
;
750 chunk
->page
= chunk
->page_ar
;
752 chunk
->vm
= get_vm_area(pcpu_chunk_size
, GFP_KERNEL
);
754 free_pcpu_chunk(chunk
);
758 INIT_LIST_HEAD(&chunk
->list
);
759 chunk
->free_size
= pcpu_unit_size
;
760 chunk
->contig_hint
= pcpu_unit_size
;
766 * pcpu_alloc - the percpu allocator
767 * @size: size of area to allocate in bytes
768 * @align: alignment of area (max PAGE_SIZE)
769 * @reserved: allocate from the reserved chunk if available
771 * Allocate percpu area of @size bytes aligned at @align.
774 * Does GFP_KERNEL allocation.
777 * Percpu pointer to the allocated area on success, NULL on failure.
779 static void *pcpu_alloc(size_t size
, size_t align
, bool reserved
)
781 struct pcpu_chunk
*chunk
;
784 if (unlikely(!size
|| size
> PCPU_MIN_UNIT_SIZE
|| align
> PAGE_SIZE
)) {
785 WARN(true, "illegal size (%zu) or align (%zu) for "
786 "percpu allocation\n", size
, align
);
790 mutex_lock(&pcpu_alloc_mutex
);
791 spin_lock_irq(&pcpu_lock
);
793 /* serve reserved allocations from the reserved chunk if available */
794 if (reserved
&& pcpu_reserved_chunk
) {
795 chunk
= pcpu_reserved_chunk
;
796 if (size
> chunk
->contig_hint
||
797 pcpu_extend_area_map(chunk
) < 0)
799 off
= pcpu_alloc_area(chunk
, size
, align
);
806 /* search through normal chunks */
807 for (slot
= pcpu_size_to_slot(size
); slot
< pcpu_nr_slots
; slot
++) {
808 list_for_each_entry(chunk
, &pcpu_slot
[slot
], list
) {
809 if (size
> chunk
->contig_hint
)
812 switch (pcpu_extend_area_map(chunk
)) {
816 goto restart
; /* pcpu_lock dropped, restart */
821 off
= pcpu_alloc_area(chunk
, size
, align
);
827 /* hmmm... no space left, create a new chunk */
828 spin_unlock_irq(&pcpu_lock
);
830 chunk
= alloc_pcpu_chunk();
832 goto fail_unlock_mutex
;
834 spin_lock_irq(&pcpu_lock
);
835 pcpu_chunk_relocate(chunk
, -1);
839 spin_unlock_irq(&pcpu_lock
);
841 /* populate, map and clear the area */
842 if (pcpu_populate_chunk(chunk
, off
, size
)) {
843 spin_lock_irq(&pcpu_lock
);
844 pcpu_free_area(chunk
, off
);
848 mutex_unlock(&pcpu_alloc_mutex
);
850 return __addr_to_pcpu_ptr(chunk
->vm
->addr
+ off
);
853 spin_unlock_irq(&pcpu_lock
);
855 mutex_unlock(&pcpu_alloc_mutex
);
860 * __alloc_percpu - allocate dynamic percpu area
861 * @size: size of area to allocate in bytes
862 * @align: alignment of area (max PAGE_SIZE)
864 * Allocate percpu area of @size bytes aligned at @align. Might
865 * sleep. Might trigger writeouts.
868 * Does GFP_KERNEL allocation.
871 * Percpu pointer to the allocated area on success, NULL on failure.
873 void *__alloc_percpu(size_t size
, size_t align
)
875 return pcpu_alloc(size
, align
, false);
877 EXPORT_SYMBOL_GPL(__alloc_percpu
);
880 * __alloc_reserved_percpu - allocate reserved percpu area
881 * @size: size of area to allocate in bytes
882 * @align: alignment of area (max PAGE_SIZE)
884 * Allocate percpu area of @size bytes aligned at @align from reserved
885 * percpu area if arch has set it up; otherwise, allocation is served
886 * from the same dynamic area. Might sleep. Might trigger writeouts.
889 * Does GFP_KERNEL allocation.
892 * Percpu pointer to the allocated area on success, NULL on failure.
894 void *__alloc_reserved_percpu(size_t size
, size_t align
)
896 return pcpu_alloc(size
, align
, true);
900 * pcpu_reclaim - reclaim fully free chunks, workqueue function
903 * Reclaim all fully free chunks except for the first one.
908 static void pcpu_reclaim(struct work_struct
*work
)
911 struct list_head
*head
= &pcpu_slot
[pcpu_nr_slots
- 1];
912 struct pcpu_chunk
*chunk
, *next
;
914 mutex_lock(&pcpu_alloc_mutex
);
915 spin_lock_irq(&pcpu_lock
);
917 list_for_each_entry_safe(chunk
, next
, head
, list
) {
918 WARN_ON(chunk
->immutable
);
920 /* spare the first one */
921 if (chunk
== list_first_entry(head
, struct pcpu_chunk
, list
))
924 list_move(&chunk
->list
, &todo
);
927 spin_unlock_irq(&pcpu_lock
);
928 mutex_unlock(&pcpu_alloc_mutex
);
930 list_for_each_entry_safe(chunk
, next
, &todo
, list
) {
931 pcpu_depopulate_chunk(chunk
, 0, pcpu_unit_size
, false);
932 free_pcpu_chunk(chunk
);
937 * free_percpu - free percpu area
938 * @ptr: pointer to area to free
940 * Free percpu area @ptr.
943 * Can be called from atomic context.
945 void free_percpu(void *ptr
)
947 void *addr
= __pcpu_ptr_to_addr(ptr
);
948 struct pcpu_chunk
*chunk
;
955 spin_lock_irqsave(&pcpu_lock
, flags
);
957 chunk
= pcpu_chunk_addr_search(addr
);
958 off
= addr
- chunk
->vm
->addr
;
960 pcpu_free_area(chunk
, off
);
962 /* if there are more than one fully free chunks, wake up grim reaper */
963 if (chunk
->free_size
== pcpu_unit_size
) {
964 struct pcpu_chunk
*pos
;
966 list_for_each_entry(pos
, &pcpu_slot
[pcpu_nr_slots
- 1], list
)
968 schedule_work(&pcpu_reclaim_work
);
973 spin_unlock_irqrestore(&pcpu_lock
, flags
);
975 EXPORT_SYMBOL_GPL(free_percpu
);
978 * pcpu_setup_first_chunk - initialize the first percpu chunk
979 * @get_page_fn: callback to fetch page pointer
980 * @static_size: the size of static percpu area in bytes
981 * @reserved_size: the size of reserved percpu area in bytes
982 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
983 * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto
984 * @base_addr: mapped address, NULL for auto
985 * @populate_pte_fn: callback to allocate pagetable, NULL if unnecessary
987 * Initialize the first percpu chunk which contains the kernel static
988 * perpcu area. This function is to be called from arch percpu area
989 * setup path. The first two parameters are mandatory. The rest are
992 * @get_page_fn() should return pointer to percpu page given cpu
993 * number and page number. It should at least return enough pages to
994 * cover the static area. The returned pages for static area should
995 * have been initialized with valid data. If @unit_size is specified,
996 * it can also return pages after the static area. NULL return
997 * indicates end of pages for the cpu. Note that @get_page_fn() must
998 * return the same number of pages for all cpus.
1000 * @reserved_size, if non-zero, specifies the amount of bytes to
1001 * reserve after the static area in the first chunk. This reserves
1002 * the first chunk such that it's available only through reserved
1003 * percpu allocation. This is primarily used to serve module percpu
1004 * static areas on architectures where the addressing model has
1005 * limited offset range for symbol relocations to guarantee module
1006 * percpu symbols fall inside the relocatable range.
1008 * @dyn_size, if non-negative, determines the number of bytes
1009 * available for dynamic allocation in the first chunk. Specifying
1010 * non-negative value makes percpu leave alone the area beyond
1011 * @static_size + @reserved_size + @dyn_size.
1013 * @unit_size, if non-negative, specifies unit size and must be
1014 * aligned to PAGE_SIZE and equal to or larger than @static_size +
1015 * @reserved_size + if non-negative, @dyn_size.
1017 * Non-null @base_addr means that the caller already allocated virtual
1018 * region for the first chunk and mapped it. percpu must not mess
1019 * with the chunk. Note that @base_addr with 0 @unit_size or non-NULL
1020 * @populate_pte_fn doesn't make any sense.
1022 * @populate_pte_fn is used to populate the pagetable. NULL means the
1023 * caller already populated the pagetable.
1025 * If the first chunk ends up with both reserved and dynamic areas, it
1026 * is served by two chunks - one to serve the core static and reserved
1027 * areas and the other for the dynamic area. They share the same vm
1028 * and page map but uses different area allocation map to stay away
1029 * from each other. The latter chunk is circulated in the chunk slots
1030 * and available for dynamic allocation like any other chunks.
1033 * The determined pcpu_unit_size which can be used to initialize
1036 size_t __init
pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn
,
1037 size_t static_size
, size_t reserved_size
,
1038 ssize_t dyn_size
, ssize_t unit_size
,
1040 pcpu_populate_pte_fn_t populate_pte_fn
)
1042 static struct vm_struct first_vm
;
1043 static int smap
[2], dmap
[2];
1044 size_t size_sum
= static_size
+ reserved_size
+
1045 (dyn_size
>= 0 ? dyn_size
: 0);
1046 struct pcpu_chunk
*schunk
, *dchunk
= NULL
;
1052 BUILD_BUG_ON(ARRAY_SIZE(smap
) >= PCPU_DFL_MAP_ALLOC
||
1053 ARRAY_SIZE(dmap
) >= PCPU_DFL_MAP_ALLOC
);
1054 BUG_ON(!static_size
);
1055 if (unit_size
>= 0) {
1056 BUG_ON(unit_size
< size_sum
);
1057 BUG_ON(unit_size
& ~PAGE_MASK
);
1058 BUG_ON(unit_size
< PCPU_MIN_UNIT_SIZE
);
1061 BUG_ON(base_addr
&& populate_pte_fn
);
1064 pcpu_unit_pages
= unit_size
>> PAGE_SHIFT
;
1066 pcpu_unit_pages
= max_t(int, PCPU_MIN_UNIT_SIZE
>> PAGE_SHIFT
,
1069 pcpu_unit_size
= pcpu_unit_pages
<< PAGE_SHIFT
;
1070 pcpu_chunk_size
= num_possible_cpus() * pcpu_unit_size
;
1071 pcpu_chunk_struct_size
= sizeof(struct pcpu_chunk
)
1072 + num_possible_cpus() * pcpu_unit_pages
* sizeof(struct page
*);
1075 dyn_size
= pcpu_unit_size
- static_size
- reserved_size
;
1078 * Allocate chunk slots. The additional last slot is for
1081 pcpu_nr_slots
= __pcpu_size_to_slot(pcpu_unit_size
) + 2;
1082 pcpu_slot
= alloc_bootmem(pcpu_nr_slots
* sizeof(pcpu_slot
[0]));
1083 for (i
= 0; i
< pcpu_nr_slots
; i
++)
1084 INIT_LIST_HEAD(&pcpu_slot
[i
]);
1087 * Initialize static chunk. If reserved_size is zero, the
1088 * static chunk covers static area + dynamic allocation area
1089 * in the first chunk. If reserved_size is not zero, it
1090 * covers static area + reserved area (mostly used for module
1091 * static percpu allocation).
1093 schunk
= alloc_bootmem(pcpu_chunk_struct_size
);
1094 INIT_LIST_HEAD(&schunk
->list
);
1095 schunk
->vm
= &first_vm
;
1097 schunk
->map_alloc
= ARRAY_SIZE(smap
);
1098 schunk
->page
= schunk
->page_ar
;
1100 if (reserved_size
) {
1101 schunk
->free_size
= reserved_size
;
1102 pcpu_reserved_chunk
= schunk
;
1103 pcpu_reserved_chunk_limit
= static_size
+ reserved_size
;
1105 schunk
->free_size
= dyn_size
;
1106 dyn_size
= 0; /* dynamic area covered */
1108 schunk
->contig_hint
= schunk
->free_size
;
1110 schunk
->map
[schunk
->map_used
++] = -static_size
;
1111 if (schunk
->free_size
)
1112 schunk
->map
[schunk
->map_used
++] = schunk
->free_size
;
1114 /* init dynamic chunk if necessary */
1116 dchunk
= alloc_bootmem(sizeof(struct pcpu_chunk
));
1117 INIT_LIST_HEAD(&dchunk
->list
);
1118 dchunk
->vm
= &first_vm
;
1120 dchunk
->map_alloc
= ARRAY_SIZE(dmap
);
1121 dchunk
->page
= schunk
->page_ar
; /* share page map with schunk */
1123 dchunk
->contig_hint
= dchunk
->free_size
= dyn_size
;
1124 dchunk
->map
[dchunk
->map_used
++] = -pcpu_reserved_chunk_limit
;
1125 dchunk
->map
[dchunk
->map_used
++] = dchunk
->free_size
;
1128 /* allocate vm address */
1129 first_vm
.flags
= VM_ALLOC
;
1130 first_vm
.size
= pcpu_chunk_size
;
1133 vm_area_register_early(&first_vm
, PAGE_SIZE
);
1136 * Pages already mapped. No need to remap into
1137 * vmalloc area. In this case the first chunks can't
1138 * be mapped or unmapped by percpu and are marked
1141 first_vm
.addr
= base_addr
;
1142 schunk
->immutable
= true;
1144 dchunk
->immutable
= true;
1149 for_each_possible_cpu(cpu
) {
1150 for (i
= 0; i
< pcpu_unit_pages
; i
++) {
1151 struct page
*page
= get_page_fn(cpu
, i
);
1155 *pcpu_chunk_pagep(schunk
, cpu
, i
) = page
;
1158 BUG_ON(i
< PFN_UP(static_size
));
1163 BUG_ON(nr_pages
!= i
);
1167 if (populate_pte_fn
) {
1168 for_each_possible_cpu(cpu
)
1169 for (i
= 0; i
< nr_pages
; i
++)
1170 populate_pte_fn(pcpu_chunk_addr(schunk
,
1173 err
= pcpu_map(schunk
, 0, nr_pages
);
1175 panic("failed to setup static percpu area, err=%d\n",
1179 /* link the first chunk in */
1180 pcpu_first_chunk
= dchunk
?: schunk
;
1181 pcpu_chunk_relocate(pcpu_first_chunk
, -1);
1184 pcpu_base_addr
= (void *)pcpu_chunk_addr(schunk
, 0, 0);
1185 return pcpu_unit_size
;
1189 * Embedding first chunk setup helper.
1191 static void *pcpue_ptr __initdata
;
1192 static size_t pcpue_size __initdata
;
1193 static size_t pcpue_unit_size __initdata
;
1195 static struct page
* __init
pcpue_get_page(unsigned int cpu
, int pageno
)
1197 size_t off
= (size_t)pageno
<< PAGE_SHIFT
;
1199 if (off
>= pcpue_size
)
1202 return virt_to_page(pcpue_ptr
+ cpu
* pcpue_unit_size
+ off
);
1206 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1207 * @static_size: the size of static percpu area in bytes
1208 * @reserved_size: the size of reserved percpu area in bytes
1209 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1210 * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto
1212 * This is a helper to ease setting up embedded first percpu chunk and
1213 * can be called where pcpu_setup_first_chunk() is expected.
1215 * If this function is used to setup the first chunk, it is allocated
1216 * as a contiguous area using bootmem allocator and used as-is without
1217 * being mapped into vmalloc area. This enables the first chunk to
1218 * piggy back on the linear physical mapping which often uses larger
1221 * When @dyn_size is positive, dynamic area might be larger than
1222 * specified to fill page alignment. Also, when @dyn_size is auto,
1223 * @dyn_size does not fill the whole first chunk but only what's
1224 * necessary for page alignment after static and reserved areas.
1226 * If the needed size is smaller than the minimum or specified unit
1227 * size, the leftover is returned to the bootmem allocator.
1230 * The determined pcpu_unit_size which can be used to initialize
1231 * percpu access on success, -errno on failure.
1233 ssize_t __init
pcpu_embed_first_chunk(size_t static_size
, size_t reserved_size
,
1234 ssize_t dyn_size
, ssize_t unit_size
)
1239 /* determine parameters and allocate */
1240 pcpue_size
= PFN_ALIGN(static_size
+ reserved_size
+
1241 (dyn_size
>= 0 ? dyn_size
: 0));
1243 dyn_size
= pcpue_size
- static_size
- reserved_size
;
1245 if (unit_size
>= 0) {
1246 BUG_ON(unit_size
< pcpue_size
);
1247 pcpue_unit_size
= unit_size
;
1249 pcpue_unit_size
= max_t(size_t, pcpue_size
, PCPU_MIN_UNIT_SIZE
);
1251 chunk_size
= pcpue_unit_size
* num_possible_cpus();
1253 pcpue_ptr
= __alloc_bootmem_nopanic(chunk_size
, PAGE_SIZE
,
1254 __pa(MAX_DMA_ADDRESS
));
1256 pr_warning("PERCPU: failed to allocate %zu bytes for "
1257 "embedding\n", chunk_size
);
1261 /* return the leftover and copy */
1262 for_each_possible_cpu(cpu
) {
1263 void *ptr
= pcpue_ptr
+ cpu
* pcpue_unit_size
;
1265 free_bootmem(__pa(ptr
+ pcpue_size
),
1266 pcpue_unit_size
- pcpue_size
);
1267 memcpy(ptr
, __per_cpu_load
, static_size
);
1270 /* we're ready, commit */
1271 pr_info("PERCPU: Embedded %zu pages at %p, static data %zu bytes\n",
1272 pcpue_size
>> PAGE_SHIFT
, pcpue_ptr
, static_size
);
1274 return pcpu_setup_first_chunk(pcpue_get_page
, static_size
,
1275 reserved_size
, dyn_size
,
1276 pcpue_unit_size
, pcpue_ptr
, NULL
);