4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
11 #include <linux/vmalloc.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/slab.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/debugobjects.h>
21 #include <linux/kallsyms.h>
22 #include <linux/list.h>
23 #include <linux/rbtree.h>
24 #include <linux/radix-tree.h>
25 #include <linux/rcupdate.h>
27 #include <asm/atomic.h>
28 #include <asm/uaccess.h>
29 #include <asm/tlbflush.h>
32 /*** Page table manipulation functions ***/
34 static void vunmap_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
)
38 pte
= pte_offset_kernel(pmd
, addr
);
40 pte_t ptent
= ptep_get_and_clear(&init_mm
, addr
, pte
);
41 WARN_ON(!pte_none(ptent
) && !pte_present(ptent
));
42 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
45 static void vunmap_pmd_range(pud_t
*pud
, unsigned long addr
, unsigned long end
)
50 pmd
= pmd_offset(pud
, addr
);
52 next
= pmd_addr_end(addr
, end
);
53 if (pmd_none_or_clear_bad(pmd
))
55 vunmap_pte_range(pmd
, addr
, next
);
56 } while (pmd
++, addr
= next
, addr
!= end
);
59 static void vunmap_pud_range(pgd_t
*pgd
, unsigned long addr
, unsigned long end
)
64 pud
= pud_offset(pgd
, addr
);
66 next
= pud_addr_end(addr
, end
);
67 if (pud_none_or_clear_bad(pud
))
69 vunmap_pmd_range(pud
, addr
, next
);
70 } while (pud
++, addr
= next
, addr
!= end
);
73 static void vunmap_page_range(unsigned long addr
, unsigned long end
)
79 pgd
= pgd_offset_k(addr
);
81 next
= pgd_addr_end(addr
, end
);
82 if (pgd_none_or_clear_bad(pgd
))
84 vunmap_pud_range(pgd
, addr
, next
);
85 } while (pgd
++, addr
= next
, addr
!= end
);
88 static int vmap_pte_range(pmd_t
*pmd
, unsigned long addr
,
89 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
94 * nr is a running index into the array which helps higher level
95 * callers keep track of where we're up to.
98 pte
= pte_alloc_kernel(pmd
, addr
);
102 struct page
*page
= pages
[*nr
];
104 if (WARN_ON(!pte_none(*pte
)))
108 set_pte_at(&init_mm
, addr
, pte
, mk_pte(page
, prot
));
110 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
114 static int vmap_pmd_range(pud_t
*pud
, unsigned long addr
,
115 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
120 pmd
= pmd_alloc(&init_mm
, pud
, addr
);
124 next
= pmd_addr_end(addr
, end
);
125 if (vmap_pte_range(pmd
, addr
, next
, prot
, pages
, nr
))
127 } while (pmd
++, addr
= next
, addr
!= end
);
131 static int vmap_pud_range(pgd_t
*pgd
, unsigned long addr
,
132 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
137 pud
= pud_alloc(&init_mm
, pgd
, addr
);
141 next
= pud_addr_end(addr
, end
);
142 if (vmap_pmd_range(pud
, addr
, next
, prot
, pages
, nr
))
144 } while (pud
++, addr
= next
, addr
!= end
);
149 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
150 * will have pfns corresponding to the "pages" array.
152 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
154 static int vmap_page_range(unsigned long addr
, unsigned long end
,
155 pgprot_t prot
, struct page
**pages
)
163 pgd
= pgd_offset_k(addr
);
165 next
= pgd_addr_end(addr
, end
);
166 err
= vmap_pud_range(pgd
, addr
, next
, prot
, pages
, &nr
);
169 } while (pgd
++, addr
= next
, addr
!= end
);
170 flush_cache_vmap(addr
, end
);
177 static inline int is_vmalloc_or_module_addr(const void *x
)
180 * ARM, x86-64 and sparc64 put modules in a special place,
181 * and fall back on vmalloc() if that fails. Others
182 * just put it in the vmalloc space.
184 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
185 unsigned long addr
= (unsigned long)x
;
186 if (addr
>= MODULES_VADDR
&& addr
< MODULES_END
)
189 return is_vmalloc_addr(x
);
193 * Walk a vmap address to the struct page it maps.
195 struct page
*vmalloc_to_page(const void *vmalloc_addr
)
197 unsigned long addr
= (unsigned long) vmalloc_addr
;
198 struct page
*page
= NULL
;
199 pgd_t
*pgd
= pgd_offset_k(addr
);
202 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
203 * architectures that do not vmalloc module space
205 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr
));
207 if (!pgd_none(*pgd
)) {
208 pud_t
*pud
= pud_offset(pgd
, addr
);
209 if (!pud_none(*pud
)) {
210 pmd_t
*pmd
= pmd_offset(pud
, addr
);
211 if (!pmd_none(*pmd
)) {
214 ptep
= pte_offset_map(pmd
, addr
);
216 if (pte_present(pte
))
217 page
= pte_page(pte
);
224 EXPORT_SYMBOL(vmalloc_to_page
);
227 * Map a vmalloc()-space virtual address to the physical page frame number.
229 unsigned long vmalloc_to_pfn(const void *vmalloc_addr
)
231 return page_to_pfn(vmalloc_to_page(vmalloc_addr
));
233 EXPORT_SYMBOL(vmalloc_to_pfn
);
236 /*** Global kva allocator ***/
238 #define VM_LAZY_FREE 0x01
239 #define VM_LAZY_FREEING 0x02
240 #define VM_VM_AREA 0x04
243 unsigned long va_start
;
244 unsigned long va_end
;
246 struct rb_node rb_node
; /* address sorted rbtree */
247 struct list_head list
; /* address sorted list */
248 struct list_head purge_list
; /* "lazy purge" list */
250 struct rcu_head rcu_head
;
253 static DEFINE_SPINLOCK(vmap_area_lock
);
254 static struct rb_root vmap_area_root
= RB_ROOT
;
255 static LIST_HEAD(vmap_area_list
);
257 static struct vmap_area
*__find_vmap_area(unsigned long addr
)
259 struct rb_node
*n
= vmap_area_root
.rb_node
;
262 struct vmap_area
*va
;
264 va
= rb_entry(n
, struct vmap_area
, rb_node
);
265 if (addr
< va
->va_start
)
267 else if (addr
> va
->va_start
)
276 static void __insert_vmap_area(struct vmap_area
*va
)
278 struct rb_node
**p
= &vmap_area_root
.rb_node
;
279 struct rb_node
*parent
= NULL
;
283 struct vmap_area
*tmp
;
286 tmp
= rb_entry(parent
, struct vmap_area
, rb_node
);
287 if (va
->va_start
< tmp
->va_end
)
289 else if (va
->va_end
> tmp
->va_start
)
295 rb_link_node(&va
->rb_node
, parent
, p
);
296 rb_insert_color(&va
->rb_node
, &vmap_area_root
);
298 /* address-sort this list so it is usable like the vmlist */
299 tmp
= rb_prev(&va
->rb_node
);
301 struct vmap_area
*prev
;
302 prev
= rb_entry(tmp
, struct vmap_area
, rb_node
);
303 list_add_rcu(&va
->list
, &prev
->list
);
305 list_add_rcu(&va
->list
, &vmap_area_list
);
308 static void purge_vmap_area_lazy(void);
311 * Allocate a region of KVA of the specified size and alignment, within the
314 static struct vmap_area
*alloc_vmap_area(unsigned long size
,
316 unsigned long vstart
, unsigned long vend
,
317 int node
, gfp_t gfp_mask
)
319 struct vmap_area
*va
;
324 BUG_ON(size
& ~PAGE_MASK
);
326 va
= kmalloc_node(sizeof(struct vmap_area
),
327 gfp_mask
& GFP_RECLAIM_MASK
, node
);
329 return ERR_PTR(-ENOMEM
);
332 addr
= ALIGN(vstart
, align
);
334 spin_lock(&vmap_area_lock
);
335 /* XXX: could have a last_hole cache */
336 n
= vmap_area_root
.rb_node
;
338 struct vmap_area
*first
= NULL
;
341 struct vmap_area
*tmp
;
342 tmp
= rb_entry(n
, struct vmap_area
, rb_node
);
343 if (tmp
->va_end
>= addr
) {
344 if (!first
&& tmp
->va_start
< addr
+ size
)
356 if (first
->va_end
< addr
) {
357 n
= rb_next(&first
->rb_node
);
359 first
= rb_entry(n
, struct vmap_area
, rb_node
);
364 while (addr
+ size
> first
->va_start
&& addr
+ size
<= vend
) {
365 addr
= ALIGN(first
->va_end
+ PAGE_SIZE
, align
);
367 n
= rb_next(&first
->rb_node
);
369 first
= rb_entry(n
, struct vmap_area
, rb_node
);
375 if (addr
+ size
> vend
) {
376 spin_unlock(&vmap_area_lock
);
378 purge_vmap_area_lazy();
382 if (printk_ratelimit())
383 printk(KERN_WARNING
"vmap allocation failed: "
384 "use vmalloc=<size> to increase size.\n");
385 return ERR_PTR(-EBUSY
);
388 BUG_ON(addr
& (align
-1));
391 va
->va_end
= addr
+ size
;
393 __insert_vmap_area(va
);
394 spin_unlock(&vmap_area_lock
);
399 static void rcu_free_va(struct rcu_head
*head
)
401 struct vmap_area
*va
= container_of(head
, struct vmap_area
, rcu_head
);
406 static void __free_vmap_area(struct vmap_area
*va
)
408 BUG_ON(RB_EMPTY_NODE(&va
->rb_node
));
409 rb_erase(&va
->rb_node
, &vmap_area_root
);
410 RB_CLEAR_NODE(&va
->rb_node
);
411 list_del_rcu(&va
->list
);
413 call_rcu(&va
->rcu_head
, rcu_free_va
);
417 * Free a region of KVA allocated by alloc_vmap_area
419 static void free_vmap_area(struct vmap_area
*va
)
421 spin_lock(&vmap_area_lock
);
422 __free_vmap_area(va
);
423 spin_unlock(&vmap_area_lock
);
427 * Clear the pagetable entries of a given vmap_area
429 static void unmap_vmap_area(struct vmap_area
*va
)
431 vunmap_page_range(va
->va_start
, va
->va_end
);
435 * lazy_max_pages is the maximum amount of virtual address space we gather up
436 * before attempting to purge with a TLB flush.
438 * There is a tradeoff here: a larger number will cover more kernel page tables
439 * and take slightly longer to purge, but it will linearly reduce the number of
440 * global TLB flushes that must be performed. It would seem natural to scale
441 * this number up linearly with the number of CPUs (because vmapping activity
442 * could also scale linearly with the number of CPUs), however it is likely
443 * that in practice, workloads might be constrained in other ways that mean
444 * vmap activity will not scale linearly with CPUs. Also, I want to be
445 * conservative and not introduce a big latency on huge systems, so go with
446 * a less aggressive log scale. It will still be an improvement over the old
447 * code, and it will be simple to change the scale factor if we find that it
448 * becomes a problem on bigger systems.
450 static unsigned long lazy_max_pages(void)
454 log
= fls(num_online_cpus());
456 return log
* (32UL * 1024 * 1024 / PAGE_SIZE
);
459 static atomic_t vmap_lazy_nr
= ATOMIC_INIT(0);
462 * Purges all lazily-freed vmap areas.
464 * If sync is 0 then don't purge if there is already a purge in progress.
465 * If force_flush is 1, then flush kernel TLBs between *start and *end even
466 * if we found no lazy vmap areas to unmap (callers can use this to optimise
467 * their own TLB flushing).
468 * Returns with *start = min(*start, lowest purged address)
469 * *end = max(*end, highest purged address)
471 static void __purge_vmap_area_lazy(unsigned long *start
, unsigned long *end
,
472 int sync
, int force_flush
)
474 static DEFINE_SPINLOCK(purge_lock
);
476 struct vmap_area
*va
;
480 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
481 * should not expect such behaviour. This just simplifies locking for
482 * the case that isn't actually used at the moment anyway.
484 if (!sync
&& !force_flush
) {
485 if (!spin_trylock(&purge_lock
))
488 spin_lock(&purge_lock
);
491 list_for_each_entry_rcu(va
, &vmap_area_list
, list
) {
492 if (va
->flags
& VM_LAZY_FREE
) {
493 if (va
->va_start
< *start
)
494 *start
= va
->va_start
;
495 if (va
->va_end
> *end
)
497 nr
+= (va
->va_end
- va
->va_start
) >> PAGE_SHIFT
;
499 list_add_tail(&va
->purge_list
, &valist
);
500 va
->flags
|= VM_LAZY_FREEING
;
501 va
->flags
&= ~VM_LAZY_FREE
;
507 BUG_ON(nr
> atomic_read(&vmap_lazy_nr
));
508 atomic_sub(nr
, &vmap_lazy_nr
);
511 if (nr
|| force_flush
)
512 flush_tlb_kernel_range(*start
, *end
);
515 spin_lock(&vmap_area_lock
);
516 list_for_each_entry(va
, &valist
, purge_list
)
517 __free_vmap_area(va
);
518 spin_unlock(&vmap_area_lock
);
520 spin_unlock(&purge_lock
);
524 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
525 * is already purging.
527 static void try_purge_vmap_area_lazy(void)
529 unsigned long start
= ULONG_MAX
, end
= 0;
531 __purge_vmap_area_lazy(&start
, &end
, 0, 0);
535 * Kick off a purge of the outstanding lazy areas.
537 static void purge_vmap_area_lazy(void)
539 unsigned long start
= ULONG_MAX
, end
= 0;
541 __purge_vmap_area_lazy(&start
, &end
, 1, 0);
545 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
546 * called for the correct range previously.
548 static void free_unmap_vmap_area_noflush(struct vmap_area
*va
)
550 va
->flags
|= VM_LAZY_FREE
;
551 atomic_add((va
->va_end
- va
->va_start
) >> PAGE_SHIFT
, &vmap_lazy_nr
);
552 if (unlikely(atomic_read(&vmap_lazy_nr
) > lazy_max_pages()))
553 try_purge_vmap_area_lazy();
557 * Free and unmap a vmap area
559 static void free_unmap_vmap_area(struct vmap_area
*va
)
561 flush_cache_vunmap(va
->va_start
, va
->va_end
);
562 free_unmap_vmap_area_noflush(va
);
565 static struct vmap_area
*find_vmap_area(unsigned long addr
)
567 struct vmap_area
*va
;
569 spin_lock(&vmap_area_lock
);
570 va
= __find_vmap_area(addr
);
571 spin_unlock(&vmap_area_lock
);
576 static void free_unmap_vmap_area_addr(unsigned long addr
)
578 struct vmap_area
*va
;
580 va
= find_vmap_area(addr
);
582 free_unmap_vmap_area(va
);
586 /*** Per cpu kva allocator ***/
589 * vmap space is limited especially on 32 bit architectures. Ensure there is
590 * room for at least 16 percpu vmap blocks per CPU.
593 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
594 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
595 * instead (we just need a rough idea)
597 #if BITS_PER_LONG == 32
598 #define VMALLOC_SPACE (128UL*1024*1024)
600 #define VMALLOC_SPACE (128UL*1024*1024*1024)
603 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
604 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
605 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
606 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
607 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
608 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
609 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
610 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
611 VMALLOC_PAGES / NR_CPUS / 16))
613 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
615 static bool vmap_initialized __read_mostly
= false;
617 struct vmap_block_queue
{
619 struct list_head free
;
620 struct list_head dirty
;
621 unsigned int nr_dirty
;
626 struct vmap_area
*va
;
627 struct vmap_block_queue
*vbq
;
628 unsigned long free
, dirty
;
629 DECLARE_BITMAP(alloc_map
, VMAP_BBMAP_BITS
);
630 DECLARE_BITMAP(dirty_map
, VMAP_BBMAP_BITS
);
633 struct list_head free_list
;
634 struct list_head dirty_list
;
636 struct rcu_head rcu_head
;
640 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
641 static DEFINE_PER_CPU(struct vmap_block_queue
, vmap_block_queue
);
644 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
645 * in the free path. Could get rid of this if we change the API to return a
646 * "cookie" from alloc, to be passed to free. But no big deal yet.
648 static DEFINE_SPINLOCK(vmap_block_tree_lock
);
649 static RADIX_TREE(vmap_block_tree
, GFP_ATOMIC
);
652 * We should probably have a fallback mechanism to allocate virtual memory
653 * out of partially filled vmap blocks. However vmap block sizing should be
654 * fairly reasonable according to the vmalloc size, so it shouldn't be a
658 static unsigned long addr_to_vb_idx(unsigned long addr
)
660 addr
-= VMALLOC_START
& ~(VMAP_BLOCK_SIZE
-1);
661 addr
/= VMAP_BLOCK_SIZE
;
665 static struct vmap_block
*new_vmap_block(gfp_t gfp_mask
)
667 struct vmap_block_queue
*vbq
;
668 struct vmap_block
*vb
;
669 struct vmap_area
*va
;
670 unsigned long vb_idx
;
673 node
= numa_node_id();
675 vb
= kmalloc_node(sizeof(struct vmap_block
),
676 gfp_mask
& GFP_RECLAIM_MASK
, node
);
678 return ERR_PTR(-ENOMEM
);
680 va
= alloc_vmap_area(VMAP_BLOCK_SIZE
, VMAP_BLOCK_SIZE
,
681 VMALLOC_START
, VMALLOC_END
,
683 if (unlikely(IS_ERR(va
))) {
685 return ERR_PTR(PTR_ERR(va
));
688 err
= radix_tree_preload(gfp_mask
);
695 spin_lock_init(&vb
->lock
);
697 vb
->free
= VMAP_BBMAP_BITS
;
699 bitmap_zero(vb
->alloc_map
, VMAP_BBMAP_BITS
);
700 bitmap_zero(vb
->dirty_map
, VMAP_BBMAP_BITS
);
701 INIT_LIST_HEAD(&vb
->free_list
);
702 INIT_LIST_HEAD(&vb
->dirty_list
);
704 vb_idx
= addr_to_vb_idx(va
->va_start
);
705 spin_lock(&vmap_block_tree_lock
);
706 err
= radix_tree_insert(&vmap_block_tree
, vb_idx
, vb
);
707 spin_unlock(&vmap_block_tree_lock
);
709 radix_tree_preload_end();
711 vbq
= &get_cpu_var(vmap_block_queue
);
713 spin_lock(&vbq
->lock
);
714 list_add(&vb
->free_list
, &vbq
->free
);
715 spin_unlock(&vbq
->lock
);
716 put_cpu_var(vmap_cpu_blocks
);
721 static void rcu_free_vb(struct rcu_head
*head
)
723 struct vmap_block
*vb
= container_of(head
, struct vmap_block
, rcu_head
);
728 static void free_vmap_block(struct vmap_block
*vb
)
730 struct vmap_block
*tmp
;
731 unsigned long vb_idx
;
733 spin_lock(&vb
->vbq
->lock
);
734 if (!list_empty(&vb
->free_list
))
735 list_del(&vb
->free_list
);
736 if (!list_empty(&vb
->dirty_list
))
737 list_del(&vb
->dirty_list
);
738 spin_unlock(&vb
->vbq
->lock
);
740 vb_idx
= addr_to_vb_idx(vb
->va
->va_start
);
741 spin_lock(&vmap_block_tree_lock
);
742 tmp
= radix_tree_delete(&vmap_block_tree
, vb_idx
);
743 spin_unlock(&vmap_block_tree_lock
);
746 free_unmap_vmap_area_noflush(vb
->va
);
747 call_rcu(&vb
->rcu_head
, rcu_free_vb
);
750 static void *vb_alloc(unsigned long size
, gfp_t gfp_mask
)
752 struct vmap_block_queue
*vbq
;
753 struct vmap_block
*vb
;
754 unsigned long addr
= 0;
757 BUG_ON(size
& ~PAGE_MASK
);
758 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
759 order
= get_order(size
);
763 vbq
= &get_cpu_var(vmap_block_queue
);
764 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
767 spin_lock(&vb
->lock
);
768 i
= bitmap_find_free_region(vb
->alloc_map
,
769 VMAP_BBMAP_BITS
, order
);
772 addr
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
773 BUG_ON(addr_to_vb_idx(addr
) !=
774 addr_to_vb_idx(vb
->va
->va_start
));
775 vb
->free
-= 1UL << order
;
777 spin_lock(&vbq
->lock
);
778 list_del_init(&vb
->free_list
);
779 spin_unlock(&vbq
->lock
);
781 spin_unlock(&vb
->lock
);
784 spin_unlock(&vb
->lock
);
786 put_cpu_var(vmap_cpu_blocks
);
790 vb
= new_vmap_block(gfp_mask
);
799 static void vb_free(const void *addr
, unsigned long size
)
801 unsigned long offset
;
802 unsigned long vb_idx
;
804 struct vmap_block
*vb
;
806 BUG_ON(size
& ~PAGE_MASK
);
807 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
809 flush_cache_vunmap((unsigned long)addr
, (unsigned long)addr
+ size
);
811 order
= get_order(size
);
813 offset
= (unsigned long)addr
& (VMAP_BLOCK_SIZE
- 1);
815 vb_idx
= addr_to_vb_idx((unsigned long)addr
);
817 vb
= radix_tree_lookup(&vmap_block_tree
, vb_idx
);
821 spin_lock(&vb
->lock
);
822 bitmap_allocate_region(vb
->dirty_map
, offset
>> PAGE_SHIFT
, order
);
824 spin_lock(&vb
->vbq
->lock
);
825 list_add(&vb
->dirty_list
, &vb
->vbq
->dirty
);
826 spin_unlock(&vb
->vbq
->lock
);
828 vb
->dirty
+= 1UL << order
;
829 if (vb
->dirty
== VMAP_BBMAP_BITS
) {
830 BUG_ON(vb
->free
|| !list_empty(&vb
->free_list
));
831 spin_unlock(&vb
->lock
);
834 spin_unlock(&vb
->lock
);
838 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
840 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
841 * to amortize TLB flushing overheads. What this means is that any page you
842 * have now, may, in a former life, have been mapped into kernel virtual
843 * address by the vmap layer and so there might be some CPUs with TLB entries
844 * still referencing that page (additional to the regular 1:1 kernel mapping).
846 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
847 * be sure that none of the pages we have control over will have any aliases
848 * from the vmap layer.
850 void vm_unmap_aliases(void)
852 unsigned long start
= ULONG_MAX
, end
= 0;
856 if (unlikely(!vmap_initialized
))
859 for_each_possible_cpu(cpu
) {
860 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
861 struct vmap_block
*vb
;
864 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
867 spin_lock(&vb
->lock
);
868 i
= find_first_bit(vb
->dirty_map
, VMAP_BBMAP_BITS
);
869 while (i
< VMAP_BBMAP_BITS
) {
872 j
= find_next_zero_bit(vb
->dirty_map
,
875 s
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
876 e
= vb
->va
->va_start
+ (j
<< PAGE_SHIFT
);
877 vunmap_page_range(s
, e
);
886 i
= find_next_bit(vb
->dirty_map
,
889 spin_unlock(&vb
->lock
);
894 __purge_vmap_area_lazy(&start
, &end
, 1, flush
);
896 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
899 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
900 * @mem: the pointer returned by vm_map_ram
901 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
903 void vm_unmap_ram(const void *mem
, unsigned int count
)
905 unsigned long size
= count
<< PAGE_SHIFT
;
906 unsigned long addr
= (unsigned long)mem
;
909 BUG_ON(addr
< VMALLOC_START
);
910 BUG_ON(addr
> VMALLOC_END
);
911 BUG_ON(addr
& (PAGE_SIZE
-1));
913 debug_check_no_locks_freed(mem
, size
);
915 if (likely(count
<= VMAP_MAX_ALLOC
))
918 free_unmap_vmap_area_addr(addr
);
920 EXPORT_SYMBOL(vm_unmap_ram
);
923 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
924 * @pages: an array of pointers to the pages to be mapped
925 * @count: number of pages
926 * @node: prefer to allocate data structures on this node
927 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
929 * Returns: a pointer to the address that has been mapped, or %NULL on failure
931 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
933 unsigned long size
= count
<< PAGE_SHIFT
;
937 if (likely(count
<= VMAP_MAX_ALLOC
)) {
938 mem
= vb_alloc(size
, GFP_KERNEL
);
941 addr
= (unsigned long)mem
;
943 struct vmap_area
*va
;
944 va
= alloc_vmap_area(size
, PAGE_SIZE
,
945 VMALLOC_START
, VMALLOC_END
, node
, GFP_KERNEL
);
952 if (vmap_page_range(addr
, addr
+ size
, prot
, pages
) < 0) {
953 vm_unmap_ram(mem
, count
);
958 EXPORT_SYMBOL(vm_map_ram
);
960 void __init
vmalloc_init(void)
964 for_each_possible_cpu(i
) {
965 struct vmap_block_queue
*vbq
;
967 vbq
= &per_cpu(vmap_block_queue
, i
);
968 spin_lock_init(&vbq
->lock
);
969 INIT_LIST_HEAD(&vbq
->free
);
970 INIT_LIST_HEAD(&vbq
->dirty
);
974 vmap_initialized
= true;
977 void unmap_kernel_range(unsigned long addr
, unsigned long size
)
979 unsigned long end
= addr
+ size
;
980 vunmap_page_range(addr
, end
);
981 flush_tlb_kernel_range(addr
, end
);
984 int map_vm_area(struct vm_struct
*area
, pgprot_t prot
, struct page
***pages
)
986 unsigned long addr
= (unsigned long)area
->addr
;
987 unsigned long end
= addr
+ area
->size
- PAGE_SIZE
;
990 err
= vmap_page_range(addr
, end
, prot
, *pages
);
998 EXPORT_SYMBOL_GPL(map_vm_area
);
1000 /*** Old vmalloc interfaces ***/
1001 DEFINE_RWLOCK(vmlist_lock
);
1002 struct vm_struct
*vmlist
;
1004 static struct vm_struct
*__get_vm_area_node(unsigned long size
,
1005 unsigned long flags
, unsigned long start
, unsigned long end
,
1006 int node
, gfp_t gfp_mask
, void *caller
)
1008 static struct vmap_area
*va
;
1009 struct vm_struct
*area
;
1010 struct vm_struct
*tmp
, **p
;
1011 unsigned long align
= 1;
1013 BUG_ON(in_interrupt());
1014 if (flags
& VM_IOREMAP
) {
1015 int bit
= fls(size
);
1017 if (bit
> IOREMAP_MAX_ORDER
)
1018 bit
= IOREMAP_MAX_ORDER
;
1019 else if (bit
< PAGE_SHIFT
)
1025 size
= PAGE_ALIGN(size
);
1026 if (unlikely(!size
))
1029 area
= kmalloc_node(sizeof(*area
), gfp_mask
& GFP_RECLAIM_MASK
, node
);
1030 if (unlikely(!area
))
1034 * We always allocate a guard page.
1038 va
= alloc_vmap_area(size
, align
, start
, end
, node
, gfp_mask
);
1044 area
->flags
= flags
;
1045 area
->addr
= (void *)va
->va_start
;
1049 area
->phys_addr
= 0;
1050 area
->caller
= caller
;
1052 va
->flags
|= VM_VM_AREA
;
1054 write_lock(&vmlist_lock
);
1055 for (p
= &vmlist
; (tmp
= *p
) != NULL
; p
= &tmp
->next
) {
1056 if (tmp
->addr
>= area
->addr
)
1061 write_unlock(&vmlist_lock
);
1066 struct vm_struct
*__get_vm_area(unsigned long size
, unsigned long flags
,
1067 unsigned long start
, unsigned long end
)
1069 return __get_vm_area_node(size
, flags
, start
, end
, -1, GFP_KERNEL
,
1070 __builtin_return_address(0));
1072 EXPORT_SYMBOL_GPL(__get_vm_area
);
1075 * get_vm_area - reserve a contiguous kernel virtual area
1076 * @size: size of the area
1077 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1079 * Search an area of @size in the kernel virtual mapping area,
1080 * and reserved it for out purposes. Returns the area descriptor
1081 * on success or %NULL on failure.
1083 struct vm_struct
*get_vm_area(unsigned long size
, unsigned long flags
)
1085 return __get_vm_area_node(size
, flags
, VMALLOC_START
, VMALLOC_END
,
1086 -1, GFP_KERNEL
, __builtin_return_address(0));
1089 struct vm_struct
*get_vm_area_caller(unsigned long size
, unsigned long flags
,
1092 return __get_vm_area_node(size
, flags
, VMALLOC_START
, VMALLOC_END
,
1093 -1, GFP_KERNEL
, caller
);
1096 struct vm_struct
*get_vm_area_node(unsigned long size
, unsigned long flags
,
1097 int node
, gfp_t gfp_mask
)
1099 return __get_vm_area_node(size
, flags
, VMALLOC_START
, VMALLOC_END
, node
,
1100 gfp_mask
, __builtin_return_address(0));
1103 static struct vm_struct
*find_vm_area(const void *addr
)
1105 struct vmap_area
*va
;
1107 va
= find_vmap_area((unsigned long)addr
);
1108 if (va
&& va
->flags
& VM_VM_AREA
)
1115 * remove_vm_area - find and remove a continuous kernel virtual area
1116 * @addr: base address
1118 * Search for the kernel VM area starting at @addr, and remove it.
1119 * This function returns the found VM area, but using it is NOT safe
1120 * on SMP machines, except for its size or flags.
1122 struct vm_struct
*remove_vm_area(const void *addr
)
1124 struct vmap_area
*va
;
1126 va
= find_vmap_area((unsigned long)addr
);
1127 if (va
&& va
->flags
& VM_VM_AREA
) {
1128 struct vm_struct
*vm
= va
->private;
1129 struct vm_struct
*tmp
, **p
;
1130 free_unmap_vmap_area(va
);
1131 vm
->size
-= PAGE_SIZE
;
1133 write_lock(&vmlist_lock
);
1134 for (p
= &vmlist
; (tmp
= *p
) != vm
; p
= &tmp
->next
)
1137 write_unlock(&vmlist_lock
);
1144 static void __vunmap(const void *addr
, int deallocate_pages
)
1146 struct vm_struct
*area
;
1151 if ((PAGE_SIZE
-1) & (unsigned long)addr
) {
1152 WARN(1, KERN_ERR
"Trying to vfree() bad address (%p)\n", addr
);
1156 area
= remove_vm_area(addr
);
1157 if (unlikely(!area
)) {
1158 WARN(1, KERN_ERR
"Trying to vfree() nonexistent vm area (%p)\n",
1163 debug_check_no_locks_freed(addr
, area
->size
);
1164 debug_check_no_obj_freed(addr
, area
->size
);
1166 if (deallocate_pages
) {
1169 for (i
= 0; i
< area
->nr_pages
; i
++) {
1170 struct page
*page
= area
->pages
[i
];
1176 if (area
->flags
& VM_VPAGES
)
1187 * vfree - release memory allocated by vmalloc()
1188 * @addr: memory base address
1190 * Free the virtually continuous memory area starting at @addr, as
1191 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1192 * NULL, no operation is performed.
1194 * Must not be called in interrupt context.
1196 void vfree(const void *addr
)
1198 BUG_ON(in_interrupt());
1201 EXPORT_SYMBOL(vfree
);
1204 * vunmap - release virtual mapping obtained by vmap()
1205 * @addr: memory base address
1207 * Free the virtually contiguous memory area starting at @addr,
1208 * which was created from the page array passed to vmap().
1210 * Must not be called in interrupt context.
1212 void vunmap(const void *addr
)
1214 BUG_ON(in_interrupt());
1217 EXPORT_SYMBOL(vunmap
);
1220 * vmap - map an array of pages into virtually contiguous space
1221 * @pages: array of page pointers
1222 * @count: number of pages to map
1223 * @flags: vm_area->flags
1224 * @prot: page protection for the mapping
1226 * Maps @count pages from @pages into contiguous kernel virtual
1229 void *vmap(struct page
**pages
, unsigned int count
,
1230 unsigned long flags
, pgprot_t prot
)
1232 struct vm_struct
*area
;
1234 if (count
> num_physpages
)
1237 area
= get_vm_area_caller((count
<< PAGE_SHIFT
), flags
,
1238 __builtin_return_address(0));
1242 if (map_vm_area(area
, prot
, &pages
)) {
1249 EXPORT_SYMBOL(vmap
);
1251 static void *__vmalloc_node(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
,
1252 int node
, void *caller
);
1253 static void *__vmalloc_area_node(struct vm_struct
*area
, gfp_t gfp_mask
,
1254 pgprot_t prot
, int node
, void *caller
)
1256 struct page
**pages
;
1257 unsigned int nr_pages
, array_size
, i
;
1259 nr_pages
= (area
->size
- PAGE_SIZE
) >> PAGE_SHIFT
;
1260 array_size
= (nr_pages
* sizeof(struct page
*));
1262 area
->nr_pages
= nr_pages
;
1263 /* Please note that the recursion is strictly bounded. */
1264 if (array_size
> PAGE_SIZE
) {
1265 pages
= __vmalloc_node(array_size
, gfp_mask
| __GFP_ZERO
,
1266 PAGE_KERNEL
, node
, caller
);
1267 area
->flags
|= VM_VPAGES
;
1269 pages
= kmalloc_node(array_size
,
1270 (gfp_mask
& GFP_RECLAIM_MASK
) | __GFP_ZERO
,
1273 area
->pages
= pages
;
1274 area
->caller
= caller
;
1276 remove_vm_area(area
->addr
);
1281 for (i
= 0; i
< area
->nr_pages
; i
++) {
1285 page
= alloc_page(gfp_mask
);
1287 page
= alloc_pages_node(node
, gfp_mask
, 0);
1289 if (unlikely(!page
)) {
1290 /* Successfully allocated i pages, free them in __vunmap() */
1294 area
->pages
[i
] = page
;
1297 if (map_vm_area(area
, prot
, &pages
))
1306 void *__vmalloc_area(struct vm_struct
*area
, gfp_t gfp_mask
, pgprot_t prot
)
1308 return __vmalloc_area_node(area
, gfp_mask
, prot
, -1,
1309 __builtin_return_address(0));
1313 * __vmalloc_node - allocate virtually contiguous memory
1314 * @size: allocation size
1315 * @gfp_mask: flags for the page level allocator
1316 * @prot: protection mask for the allocated pages
1317 * @node: node to use for allocation or -1
1318 * @caller: caller's return address
1320 * Allocate enough pages to cover @size from the page level
1321 * allocator with @gfp_mask flags. Map them into contiguous
1322 * kernel virtual space, using a pagetable protection of @prot.
1324 static void *__vmalloc_node(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
,
1325 int node
, void *caller
)
1327 struct vm_struct
*area
;
1329 size
= PAGE_ALIGN(size
);
1330 if (!size
|| (size
>> PAGE_SHIFT
) > num_physpages
)
1333 area
= __get_vm_area_node(size
, VM_ALLOC
, VMALLOC_START
, VMALLOC_END
,
1334 node
, gfp_mask
, caller
);
1339 return __vmalloc_area_node(area
, gfp_mask
, prot
, node
, caller
);
1342 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
1344 return __vmalloc_node(size
, gfp_mask
, prot
, -1,
1345 __builtin_return_address(0));
1347 EXPORT_SYMBOL(__vmalloc
);
1350 * vmalloc - allocate virtually contiguous memory
1351 * @size: allocation size
1352 * Allocate enough pages to cover @size from the page level
1353 * allocator and map them into contiguous kernel virtual space.
1355 * For tight control over page level allocator and protection flags
1356 * use __vmalloc() instead.
1358 void *vmalloc(unsigned long size
)
1360 return __vmalloc_node(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
,
1361 -1, __builtin_return_address(0));
1363 EXPORT_SYMBOL(vmalloc
);
1366 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1367 * @size: allocation size
1369 * The resulting memory area is zeroed so it can be mapped to userspace
1370 * without leaking data.
1372 void *vmalloc_user(unsigned long size
)
1374 struct vm_struct
*area
;
1377 ret
= __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
, PAGE_KERNEL
);
1379 area
= find_vm_area(ret
);
1380 area
->flags
|= VM_USERMAP
;
1384 EXPORT_SYMBOL(vmalloc_user
);
1387 * vmalloc_node - allocate memory on a specific node
1388 * @size: allocation size
1391 * Allocate enough pages to cover @size from the page level
1392 * allocator and map them into contiguous kernel virtual space.
1394 * For tight control over page level allocator and protection flags
1395 * use __vmalloc() instead.
1397 void *vmalloc_node(unsigned long size
, int node
)
1399 return __vmalloc_node(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
,
1400 node
, __builtin_return_address(0));
1402 EXPORT_SYMBOL(vmalloc_node
);
1404 #ifndef PAGE_KERNEL_EXEC
1405 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1409 * vmalloc_exec - allocate virtually contiguous, executable memory
1410 * @size: allocation size
1412 * Kernel-internal function to allocate enough pages to cover @size
1413 * the page level allocator and map them into contiguous and
1414 * executable kernel virtual space.
1416 * For tight control over page level allocator and protection flags
1417 * use __vmalloc() instead.
1420 void *vmalloc_exec(unsigned long size
)
1422 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
);
1425 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1426 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1427 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1428 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1430 #define GFP_VMALLOC32 GFP_KERNEL
1434 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1435 * @size: allocation size
1437 * Allocate enough 32bit PA addressable pages to cover @size from the
1438 * page level allocator and map them into contiguous kernel virtual space.
1440 void *vmalloc_32(unsigned long size
)
1442 return __vmalloc(size
, GFP_VMALLOC32
, PAGE_KERNEL
);
1444 EXPORT_SYMBOL(vmalloc_32
);
1447 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1448 * @size: allocation size
1450 * The resulting memory area is 32bit addressable and zeroed so it can be
1451 * mapped to userspace without leaking data.
1453 void *vmalloc_32_user(unsigned long size
)
1455 struct vm_struct
*area
;
1458 ret
= __vmalloc(size
, GFP_VMALLOC32
| __GFP_ZERO
, PAGE_KERNEL
);
1460 area
= find_vm_area(ret
);
1461 area
->flags
|= VM_USERMAP
;
1465 EXPORT_SYMBOL(vmalloc_32_user
);
1467 long vread(char *buf
, char *addr
, unsigned long count
)
1469 struct vm_struct
*tmp
;
1470 char *vaddr
, *buf_start
= buf
;
1473 /* Don't allow overflow */
1474 if ((unsigned long) addr
+ count
< count
)
1475 count
= -(unsigned long) addr
;
1477 read_lock(&vmlist_lock
);
1478 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1479 vaddr
= (char *) tmp
->addr
;
1480 if (addr
>= vaddr
+ tmp
->size
- PAGE_SIZE
)
1482 while (addr
< vaddr
) {
1490 n
= vaddr
+ tmp
->size
- PAGE_SIZE
- addr
;
1501 read_unlock(&vmlist_lock
);
1502 return buf
- buf_start
;
1505 long vwrite(char *buf
, char *addr
, unsigned long count
)
1507 struct vm_struct
*tmp
;
1508 char *vaddr
, *buf_start
= buf
;
1511 /* Don't allow overflow */
1512 if ((unsigned long) addr
+ count
< count
)
1513 count
= -(unsigned long) addr
;
1515 read_lock(&vmlist_lock
);
1516 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1517 vaddr
= (char *) tmp
->addr
;
1518 if (addr
>= vaddr
+ tmp
->size
- PAGE_SIZE
)
1520 while (addr
< vaddr
) {
1527 n
= vaddr
+ tmp
->size
- PAGE_SIZE
- addr
;
1538 read_unlock(&vmlist_lock
);
1539 return buf
- buf_start
;
1543 * remap_vmalloc_range - map vmalloc pages to userspace
1544 * @vma: vma to cover (map full range of vma)
1545 * @addr: vmalloc memory
1546 * @pgoff: number of pages into addr before first page to map
1548 * Returns: 0 for success, -Exxx on failure
1550 * This function checks that addr is a valid vmalloc'ed area, and
1551 * that it is big enough to cover the vma. Will return failure if
1552 * that criteria isn't met.
1554 * Similar to remap_pfn_range() (see mm/memory.c)
1556 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
1557 unsigned long pgoff
)
1559 struct vm_struct
*area
;
1560 unsigned long uaddr
= vma
->vm_start
;
1561 unsigned long usize
= vma
->vm_end
- vma
->vm_start
;
1563 if ((PAGE_SIZE
-1) & (unsigned long)addr
)
1566 area
= find_vm_area(addr
);
1570 if (!(area
->flags
& VM_USERMAP
))
1573 if (usize
+ (pgoff
<< PAGE_SHIFT
) > area
->size
- PAGE_SIZE
)
1576 addr
+= pgoff
<< PAGE_SHIFT
;
1578 struct page
*page
= vmalloc_to_page(addr
);
1581 ret
= vm_insert_page(vma
, uaddr
, page
);
1588 } while (usize
> 0);
1590 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
1591 vma
->vm_flags
|= VM_RESERVED
;
1595 EXPORT_SYMBOL(remap_vmalloc_range
);
1598 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1601 void __attribute__((weak
)) vmalloc_sync_all(void)
1606 static int f(pte_t
*pte
, pgtable_t table
, unsigned long addr
, void *data
)
1608 /* apply_to_page_range() does all the hard work. */
1613 * alloc_vm_area - allocate a range of kernel address space
1614 * @size: size of the area
1616 * Returns: NULL on failure, vm_struct on success
1618 * This function reserves a range of kernel address space, and
1619 * allocates pagetables to map that range. No actual mappings
1620 * are created. If the kernel address space is not shared
1621 * between processes, it syncs the pagetable across all
1624 struct vm_struct
*alloc_vm_area(size_t size
)
1626 struct vm_struct
*area
;
1628 area
= get_vm_area_caller(size
, VM_IOREMAP
,
1629 __builtin_return_address(0));
1634 * This ensures that page tables are constructed for this region
1635 * of kernel virtual address space and mapped into init_mm.
1637 if (apply_to_page_range(&init_mm
, (unsigned long)area
->addr
,
1638 area
->size
, f
, NULL
)) {
1643 /* Make sure the pagetables are constructed in process kernel
1649 EXPORT_SYMBOL_GPL(alloc_vm_area
);
1651 void free_vm_area(struct vm_struct
*area
)
1653 struct vm_struct
*ret
;
1654 ret
= remove_vm_area(area
->addr
);
1655 BUG_ON(ret
!= area
);
1658 EXPORT_SYMBOL_GPL(free_vm_area
);
1661 #ifdef CONFIG_PROC_FS
1662 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
1665 struct vm_struct
*v
;
1667 read_lock(&vmlist_lock
);
1669 while (n
> 0 && v
) {
1680 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
1682 struct vm_struct
*v
= p
;
1688 static void s_stop(struct seq_file
*m
, void *p
)
1690 read_unlock(&vmlist_lock
);
1693 static void show_numa_info(struct seq_file
*m
, struct vm_struct
*v
)
1696 unsigned int nr
, *counters
= m
->private;
1701 memset(counters
, 0, nr_node_ids
* sizeof(unsigned int));
1703 for (nr
= 0; nr
< v
->nr_pages
; nr
++)
1704 counters
[page_to_nid(v
->pages
[nr
])]++;
1706 for_each_node_state(nr
, N_HIGH_MEMORY
)
1708 seq_printf(m
, " N%u=%u", nr
, counters
[nr
]);
1712 static int s_show(struct seq_file
*m
, void *p
)
1714 struct vm_struct
*v
= p
;
1716 seq_printf(m
, "0x%p-0x%p %7ld",
1717 v
->addr
, v
->addr
+ v
->size
, v
->size
);
1720 char buff
[KSYM_SYMBOL_LEN
];
1723 sprint_symbol(buff
, (unsigned long)v
->caller
);
1728 seq_printf(m
, " pages=%d", v
->nr_pages
);
1731 seq_printf(m
, " phys=%lx", v
->phys_addr
);
1733 if (v
->flags
& VM_IOREMAP
)
1734 seq_printf(m
, " ioremap");
1736 if (v
->flags
& VM_ALLOC
)
1737 seq_printf(m
, " vmalloc");
1739 if (v
->flags
& VM_MAP
)
1740 seq_printf(m
, " vmap");
1742 if (v
->flags
& VM_USERMAP
)
1743 seq_printf(m
, " user");
1745 if (v
->flags
& VM_VPAGES
)
1746 seq_printf(m
, " vpages");
1748 show_numa_info(m
, v
);
1753 static const struct seq_operations vmalloc_op
= {
1760 static int vmalloc_open(struct inode
*inode
, struct file
*file
)
1762 unsigned int *ptr
= NULL
;
1766 ptr
= kmalloc(nr_node_ids
* sizeof(unsigned int), GFP_KERNEL
);
1767 ret
= seq_open(file
, &vmalloc_op
);
1769 struct seq_file
*m
= file
->private_data
;
1776 static const struct file_operations proc_vmalloc_operations
= {
1777 .open
= vmalloc_open
,
1779 .llseek
= seq_lseek
,
1780 .release
= seq_release_private
,
1783 static int __init
proc_vmalloc_init(void)
1785 proc_create("vmallocinfo", S_IRUSR
, NULL
, &proc_vmalloc_operations
);
1788 module_init(proc_vmalloc_init
);