x86: Under BIOS control, restore AP's APIC_LVTTHMR to the BSP value
[linux-2.6/mini2440.git] / fs / btrfs / inode.c
blob59cba180fe833f08f815f4ca968956eaa7f33e18
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include "compat.h"
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48 #include "xattr.h"
49 #include "tree-log.h"
50 #include "compression.h"
51 #include "locking.h"
53 struct btrfs_iget_args {
54 u64 ino;
55 struct btrfs_root *root;
58 static struct inode_operations btrfs_dir_inode_operations;
59 static struct inode_operations btrfs_symlink_inode_operations;
60 static struct inode_operations btrfs_dir_ro_inode_operations;
61 static struct inode_operations btrfs_special_inode_operations;
62 static struct inode_operations btrfs_file_inode_operations;
63 static struct address_space_operations btrfs_aops;
64 static struct address_space_operations btrfs_symlink_aops;
65 static struct file_operations btrfs_dir_file_operations;
66 static struct extent_io_ops btrfs_extent_io_ops;
68 static struct kmem_cache *btrfs_inode_cachep;
69 struct kmem_cache *btrfs_trans_handle_cachep;
70 struct kmem_cache *btrfs_transaction_cachep;
71 struct kmem_cache *btrfs_path_cachep;
73 #define S_SHIFT 12
74 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
76 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
77 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
78 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
79 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
80 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
81 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
84 static void btrfs_truncate(struct inode *inode);
85 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
86 static noinline int cow_file_range(struct inode *inode,
87 struct page *locked_page,
88 u64 start, u64 end, int *page_started,
89 unsigned long *nr_written, int unlock);
91 static int btrfs_init_inode_security(struct inode *inode, struct inode *dir)
93 int err;
95 err = btrfs_init_acl(inode, dir);
96 if (!err)
97 err = btrfs_xattr_security_init(inode, dir);
98 return err;
102 * this does all the hard work for inserting an inline extent into
103 * the btree. The caller should have done a btrfs_drop_extents so that
104 * no overlapping inline items exist in the btree
106 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
107 struct btrfs_root *root, struct inode *inode,
108 u64 start, size_t size, size_t compressed_size,
109 struct page **compressed_pages)
111 struct btrfs_key key;
112 struct btrfs_path *path;
113 struct extent_buffer *leaf;
114 struct page *page = NULL;
115 char *kaddr;
116 unsigned long ptr;
117 struct btrfs_file_extent_item *ei;
118 int err = 0;
119 int ret;
120 size_t cur_size = size;
121 size_t datasize;
122 unsigned long offset;
123 int use_compress = 0;
125 if (compressed_size && compressed_pages) {
126 use_compress = 1;
127 cur_size = compressed_size;
130 path = btrfs_alloc_path();
131 if (!path)
132 return -ENOMEM;
134 path->leave_spinning = 1;
135 btrfs_set_trans_block_group(trans, inode);
137 key.objectid = inode->i_ino;
138 key.offset = start;
139 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
140 datasize = btrfs_file_extent_calc_inline_size(cur_size);
142 inode_add_bytes(inode, size);
143 ret = btrfs_insert_empty_item(trans, root, path, &key,
144 datasize);
145 BUG_ON(ret);
146 if (ret) {
147 err = ret;
148 goto fail;
150 leaf = path->nodes[0];
151 ei = btrfs_item_ptr(leaf, path->slots[0],
152 struct btrfs_file_extent_item);
153 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
154 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
155 btrfs_set_file_extent_encryption(leaf, ei, 0);
156 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
157 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
158 ptr = btrfs_file_extent_inline_start(ei);
160 if (use_compress) {
161 struct page *cpage;
162 int i = 0;
163 while (compressed_size > 0) {
164 cpage = compressed_pages[i];
165 cur_size = min_t(unsigned long, compressed_size,
166 PAGE_CACHE_SIZE);
168 kaddr = kmap_atomic(cpage, KM_USER0);
169 write_extent_buffer(leaf, kaddr, ptr, cur_size);
170 kunmap_atomic(kaddr, KM_USER0);
172 i++;
173 ptr += cur_size;
174 compressed_size -= cur_size;
176 btrfs_set_file_extent_compression(leaf, ei,
177 BTRFS_COMPRESS_ZLIB);
178 } else {
179 page = find_get_page(inode->i_mapping,
180 start >> PAGE_CACHE_SHIFT);
181 btrfs_set_file_extent_compression(leaf, ei, 0);
182 kaddr = kmap_atomic(page, KM_USER0);
183 offset = start & (PAGE_CACHE_SIZE - 1);
184 write_extent_buffer(leaf, kaddr + offset, ptr, size);
185 kunmap_atomic(kaddr, KM_USER0);
186 page_cache_release(page);
188 btrfs_mark_buffer_dirty(leaf);
189 btrfs_free_path(path);
191 BTRFS_I(inode)->disk_i_size = inode->i_size;
192 btrfs_update_inode(trans, root, inode);
193 return 0;
194 fail:
195 btrfs_free_path(path);
196 return err;
201 * conditionally insert an inline extent into the file. This
202 * does the checks required to make sure the data is small enough
203 * to fit as an inline extent.
205 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
206 struct btrfs_root *root,
207 struct inode *inode, u64 start, u64 end,
208 size_t compressed_size,
209 struct page **compressed_pages)
211 u64 isize = i_size_read(inode);
212 u64 actual_end = min(end + 1, isize);
213 u64 inline_len = actual_end - start;
214 u64 aligned_end = (end + root->sectorsize - 1) &
215 ~((u64)root->sectorsize - 1);
216 u64 hint_byte;
217 u64 data_len = inline_len;
218 int ret;
220 if (compressed_size)
221 data_len = compressed_size;
223 if (start > 0 ||
224 actual_end >= PAGE_CACHE_SIZE ||
225 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
226 (!compressed_size &&
227 (actual_end & (root->sectorsize - 1)) == 0) ||
228 end + 1 < isize ||
229 data_len > root->fs_info->max_inline) {
230 return 1;
233 ret = btrfs_drop_extents(trans, root, inode, start,
234 aligned_end, aligned_end, start, &hint_byte);
235 BUG_ON(ret);
237 if (isize > actual_end)
238 inline_len = min_t(u64, isize, actual_end);
239 ret = insert_inline_extent(trans, root, inode, start,
240 inline_len, compressed_size,
241 compressed_pages);
242 BUG_ON(ret);
243 btrfs_drop_extent_cache(inode, start, aligned_end, 0);
244 return 0;
247 struct async_extent {
248 u64 start;
249 u64 ram_size;
250 u64 compressed_size;
251 struct page **pages;
252 unsigned long nr_pages;
253 struct list_head list;
256 struct async_cow {
257 struct inode *inode;
258 struct btrfs_root *root;
259 struct page *locked_page;
260 u64 start;
261 u64 end;
262 struct list_head extents;
263 struct btrfs_work work;
266 static noinline int add_async_extent(struct async_cow *cow,
267 u64 start, u64 ram_size,
268 u64 compressed_size,
269 struct page **pages,
270 unsigned long nr_pages)
272 struct async_extent *async_extent;
274 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
275 async_extent->start = start;
276 async_extent->ram_size = ram_size;
277 async_extent->compressed_size = compressed_size;
278 async_extent->pages = pages;
279 async_extent->nr_pages = nr_pages;
280 list_add_tail(&async_extent->list, &cow->extents);
281 return 0;
285 * we create compressed extents in two phases. The first
286 * phase compresses a range of pages that have already been
287 * locked (both pages and state bits are locked).
289 * This is done inside an ordered work queue, and the compression
290 * is spread across many cpus. The actual IO submission is step
291 * two, and the ordered work queue takes care of making sure that
292 * happens in the same order things were put onto the queue by
293 * writepages and friends.
295 * If this code finds it can't get good compression, it puts an
296 * entry onto the work queue to write the uncompressed bytes. This
297 * makes sure that both compressed inodes and uncompressed inodes
298 * are written in the same order that pdflush sent them down.
300 static noinline int compress_file_range(struct inode *inode,
301 struct page *locked_page,
302 u64 start, u64 end,
303 struct async_cow *async_cow,
304 int *num_added)
306 struct btrfs_root *root = BTRFS_I(inode)->root;
307 struct btrfs_trans_handle *trans;
308 u64 num_bytes;
309 u64 orig_start;
310 u64 disk_num_bytes;
311 u64 blocksize = root->sectorsize;
312 u64 actual_end;
313 u64 isize = i_size_read(inode);
314 int ret = 0;
315 struct page **pages = NULL;
316 unsigned long nr_pages;
317 unsigned long nr_pages_ret = 0;
318 unsigned long total_compressed = 0;
319 unsigned long total_in = 0;
320 unsigned long max_compressed = 128 * 1024;
321 unsigned long max_uncompressed = 128 * 1024;
322 int i;
323 int will_compress;
325 orig_start = start;
327 actual_end = min_t(u64, isize, end + 1);
328 again:
329 will_compress = 0;
330 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
331 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
334 * we don't want to send crud past the end of i_size through
335 * compression, that's just a waste of CPU time. So, if the
336 * end of the file is before the start of our current
337 * requested range of bytes, we bail out to the uncompressed
338 * cleanup code that can deal with all of this.
340 * It isn't really the fastest way to fix things, but this is a
341 * very uncommon corner.
343 if (actual_end <= start)
344 goto cleanup_and_bail_uncompressed;
346 total_compressed = actual_end - start;
348 /* we want to make sure that amount of ram required to uncompress
349 * an extent is reasonable, so we limit the total size in ram
350 * of a compressed extent to 128k. This is a crucial number
351 * because it also controls how easily we can spread reads across
352 * cpus for decompression.
354 * We also want to make sure the amount of IO required to do
355 * a random read is reasonably small, so we limit the size of
356 * a compressed extent to 128k.
358 total_compressed = min(total_compressed, max_uncompressed);
359 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
360 num_bytes = max(blocksize, num_bytes);
361 disk_num_bytes = num_bytes;
362 total_in = 0;
363 ret = 0;
366 * we do compression for mount -o compress and when the
367 * inode has not been flagged as nocompress. This flag can
368 * change at any time if we discover bad compression ratios.
370 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
371 btrfs_test_opt(root, COMPRESS)) {
372 WARN_ON(pages);
373 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
375 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
376 total_compressed, pages,
377 nr_pages, &nr_pages_ret,
378 &total_in,
379 &total_compressed,
380 max_compressed);
382 if (!ret) {
383 unsigned long offset = total_compressed &
384 (PAGE_CACHE_SIZE - 1);
385 struct page *page = pages[nr_pages_ret - 1];
386 char *kaddr;
388 /* zero the tail end of the last page, we might be
389 * sending it down to disk
391 if (offset) {
392 kaddr = kmap_atomic(page, KM_USER0);
393 memset(kaddr + offset, 0,
394 PAGE_CACHE_SIZE - offset);
395 kunmap_atomic(kaddr, KM_USER0);
397 will_compress = 1;
400 if (start == 0) {
401 trans = btrfs_join_transaction(root, 1);
402 BUG_ON(!trans);
403 btrfs_set_trans_block_group(trans, inode);
405 /* lets try to make an inline extent */
406 if (ret || total_in < (actual_end - start)) {
407 /* we didn't compress the entire range, try
408 * to make an uncompressed inline extent.
410 ret = cow_file_range_inline(trans, root, inode,
411 start, end, 0, NULL);
412 } else {
413 /* try making a compressed inline extent */
414 ret = cow_file_range_inline(trans, root, inode,
415 start, end,
416 total_compressed, pages);
418 btrfs_end_transaction(trans, root);
419 if (ret == 0) {
421 * inline extent creation worked, we don't need
422 * to create any more async work items. Unlock
423 * and free up our temp pages.
425 extent_clear_unlock_delalloc(inode,
426 &BTRFS_I(inode)->io_tree,
427 start, end, NULL, 1, 0,
428 0, 1, 1, 1);
429 ret = 0;
430 goto free_pages_out;
434 if (will_compress) {
436 * we aren't doing an inline extent round the compressed size
437 * up to a block size boundary so the allocator does sane
438 * things
440 total_compressed = (total_compressed + blocksize - 1) &
441 ~(blocksize - 1);
444 * one last check to make sure the compression is really a
445 * win, compare the page count read with the blocks on disk
447 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
448 ~(PAGE_CACHE_SIZE - 1);
449 if (total_compressed >= total_in) {
450 will_compress = 0;
451 } else {
452 disk_num_bytes = total_compressed;
453 num_bytes = total_in;
456 if (!will_compress && pages) {
458 * the compression code ran but failed to make things smaller,
459 * free any pages it allocated and our page pointer array
461 for (i = 0; i < nr_pages_ret; i++) {
462 WARN_ON(pages[i]->mapping);
463 page_cache_release(pages[i]);
465 kfree(pages);
466 pages = NULL;
467 total_compressed = 0;
468 nr_pages_ret = 0;
470 /* flag the file so we don't compress in the future */
471 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
473 if (will_compress) {
474 *num_added += 1;
476 /* the async work queues will take care of doing actual
477 * allocation on disk for these compressed pages,
478 * and will submit them to the elevator.
480 add_async_extent(async_cow, start, num_bytes,
481 total_compressed, pages, nr_pages_ret);
483 if (start + num_bytes < end && start + num_bytes < actual_end) {
484 start += num_bytes;
485 pages = NULL;
486 cond_resched();
487 goto again;
489 } else {
490 cleanup_and_bail_uncompressed:
492 * No compression, but we still need to write the pages in
493 * the file we've been given so far. redirty the locked
494 * page if it corresponds to our extent and set things up
495 * for the async work queue to run cow_file_range to do
496 * the normal delalloc dance
498 if (page_offset(locked_page) >= start &&
499 page_offset(locked_page) <= end) {
500 __set_page_dirty_nobuffers(locked_page);
501 /* unlocked later on in the async handlers */
503 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
504 *num_added += 1;
507 out:
508 return 0;
510 free_pages_out:
511 for (i = 0; i < nr_pages_ret; i++) {
512 WARN_ON(pages[i]->mapping);
513 page_cache_release(pages[i]);
515 kfree(pages);
517 goto out;
521 * phase two of compressed writeback. This is the ordered portion
522 * of the code, which only gets called in the order the work was
523 * queued. We walk all the async extents created by compress_file_range
524 * and send them down to the disk.
526 static noinline int submit_compressed_extents(struct inode *inode,
527 struct async_cow *async_cow)
529 struct async_extent *async_extent;
530 u64 alloc_hint = 0;
531 struct btrfs_trans_handle *trans;
532 struct btrfs_key ins;
533 struct extent_map *em;
534 struct btrfs_root *root = BTRFS_I(inode)->root;
535 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
536 struct extent_io_tree *io_tree;
537 int ret;
539 if (list_empty(&async_cow->extents))
540 return 0;
542 trans = btrfs_join_transaction(root, 1);
544 while (!list_empty(&async_cow->extents)) {
545 async_extent = list_entry(async_cow->extents.next,
546 struct async_extent, list);
547 list_del(&async_extent->list);
549 io_tree = &BTRFS_I(inode)->io_tree;
551 /* did the compression code fall back to uncompressed IO? */
552 if (!async_extent->pages) {
553 int page_started = 0;
554 unsigned long nr_written = 0;
556 lock_extent(io_tree, async_extent->start,
557 async_extent->start +
558 async_extent->ram_size - 1, GFP_NOFS);
560 /* allocate blocks */
561 cow_file_range(inode, async_cow->locked_page,
562 async_extent->start,
563 async_extent->start +
564 async_extent->ram_size - 1,
565 &page_started, &nr_written, 0);
568 * if page_started, cow_file_range inserted an
569 * inline extent and took care of all the unlocking
570 * and IO for us. Otherwise, we need to submit
571 * all those pages down to the drive.
573 if (!page_started)
574 extent_write_locked_range(io_tree,
575 inode, async_extent->start,
576 async_extent->start +
577 async_extent->ram_size - 1,
578 btrfs_get_extent,
579 WB_SYNC_ALL);
580 kfree(async_extent);
581 cond_resched();
582 continue;
585 lock_extent(io_tree, async_extent->start,
586 async_extent->start + async_extent->ram_size - 1,
587 GFP_NOFS);
589 * here we're doing allocation and writeback of the
590 * compressed pages
592 btrfs_drop_extent_cache(inode, async_extent->start,
593 async_extent->start +
594 async_extent->ram_size - 1, 0);
596 ret = btrfs_reserve_extent(trans, root,
597 async_extent->compressed_size,
598 async_extent->compressed_size,
599 0, alloc_hint,
600 (u64)-1, &ins, 1);
601 BUG_ON(ret);
602 em = alloc_extent_map(GFP_NOFS);
603 em->start = async_extent->start;
604 em->len = async_extent->ram_size;
605 em->orig_start = em->start;
607 em->block_start = ins.objectid;
608 em->block_len = ins.offset;
609 em->bdev = root->fs_info->fs_devices->latest_bdev;
610 set_bit(EXTENT_FLAG_PINNED, &em->flags);
611 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
613 while (1) {
614 spin_lock(&em_tree->lock);
615 ret = add_extent_mapping(em_tree, em);
616 spin_unlock(&em_tree->lock);
617 if (ret != -EEXIST) {
618 free_extent_map(em);
619 break;
621 btrfs_drop_extent_cache(inode, async_extent->start,
622 async_extent->start +
623 async_extent->ram_size - 1, 0);
626 ret = btrfs_add_ordered_extent(inode, async_extent->start,
627 ins.objectid,
628 async_extent->ram_size,
629 ins.offset,
630 BTRFS_ORDERED_COMPRESSED);
631 BUG_ON(ret);
633 btrfs_end_transaction(trans, root);
636 * clear dirty, set writeback and unlock the pages.
638 extent_clear_unlock_delalloc(inode,
639 &BTRFS_I(inode)->io_tree,
640 async_extent->start,
641 async_extent->start +
642 async_extent->ram_size - 1,
643 NULL, 1, 1, 0, 1, 1, 0);
645 ret = btrfs_submit_compressed_write(inode,
646 async_extent->start,
647 async_extent->ram_size,
648 ins.objectid,
649 ins.offset, async_extent->pages,
650 async_extent->nr_pages);
652 BUG_ON(ret);
653 trans = btrfs_join_transaction(root, 1);
654 alloc_hint = ins.objectid + ins.offset;
655 kfree(async_extent);
656 cond_resched();
659 btrfs_end_transaction(trans, root);
660 return 0;
664 * when extent_io.c finds a delayed allocation range in the file,
665 * the call backs end up in this code. The basic idea is to
666 * allocate extents on disk for the range, and create ordered data structs
667 * in ram to track those extents.
669 * locked_page is the page that writepage had locked already. We use
670 * it to make sure we don't do extra locks or unlocks.
672 * *page_started is set to one if we unlock locked_page and do everything
673 * required to start IO on it. It may be clean and already done with
674 * IO when we return.
676 static noinline int cow_file_range(struct inode *inode,
677 struct page *locked_page,
678 u64 start, u64 end, int *page_started,
679 unsigned long *nr_written,
680 int unlock)
682 struct btrfs_root *root = BTRFS_I(inode)->root;
683 struct btrfs_trans_handle *trans;
684 u64 alloc_hint = 0;
685 u64 num_bytes;
686 unsigned long ram_size;
687 u64 disk_num_bytes;
688 u64 cur_alloc_size;
689 u64 blocksize = root->sectorsize;
690 u64 actual_end;
691 u64 isize = i_size_read(inode);
692 struct btrfs_key ins;
693 struct extent_map *em;
694 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
695 int ret = 0;
697 trans = btrfs_join_transaction(root, 1);
698 BUG_ON(!trans);
699 btrfs_set_trans_block_group(trans, inode);
701 actual_end = min_t(u64, isize, end + 1);
703 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
704 num_bytes = max(blocksize, num_bytes);
705 disk_num_bytes = num_bytes;
706 ret = 0;
708 if (start == 0) {
709 /* lets try to make an inline extent */
710 ret = cow_file_range_inline(trans, root, inode,
711 start, end, 0, NULL);
712 if (ret == 0) {
713 extent_clear_unlock_delalloc(inode,
714 &BTRFS_I(inode)->io_tree,
715 start, end, NULL, 1, 1,
716 1, 1, 1, 1);
717 *nr_written = *nr_written +
718 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
719 *page_started = 1;
720 ret = 0;
721 goto out;
725 BUG_ON(disk_num_bytes >
726 btrfs_super_total_bytes(&root->fs_info->super_copy));
728 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
730 while (disk_num_bytes > 0) {
731 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
732 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
733 root->sectorsize, 0, alloc_hint,
734 (u64)-1, &ins, 1);
735 BUG_ON(ret);
737 em = alloc_extent_map(GFP_NOFS);
738 em->start = start;
739 em->orig_start = em->start;
741 ram_size = ins.offset;
742 em->len = ins.offset;
744 em->block_start = ins.objectid;
745 em->block_len = ins.offset;
746 em->bdev = root->fs_info->fs_devices->latest_bdev;
747 set_bit(EXTENT_FLAG_PINNED, &em->flags);
749 while (1) {
750 spin_lock(&em_tree->lock);
751 ret = add_extent_mapping(em_tree, em);
752 spin_unlock(&em_tree->lock);
753 if (ret != -EEXIST) {
754 free_extent_map(em);
755 break;
757 btrfs_drop_extent_cache(inode, start,
758 start + ram_size - 1, 0);
761 cur_alloc_size = ins.offset;
762 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
763 ram_size, cur_alloc_size, 0);
764 BUG_ON(ret);
766 if (root->root_key.objectid ==
767 BTRFS_DATA_RELOC_TREE_OBJECTID) {
768 ret = btrfs_reloc_clone_csums(inode, start,
769 cur_alloc_size);
770 BUG_ON(ret);
773 if (disk_num_bytes < cur_alloc_size)
774 break;
776 /* we're not doing compressed IO, don't unlock the first
777 * page (which the caller expects to stay locked), don't
778 * clear any dirty bits and don't set any writeback bits
780 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
781 start, start + ram_size - 1,
782 locked_page, unlock, 1,
783 1, 0, 0, 0);
784 disk_num_bytes -= cur_alloc_size;
785 num_bytes -= cur_alloc_size;
786 alloc_hint = ins.objectid + ins.offset;
787 start += cur_alloc_size;
789 out:
790 ret = 0;
791 btrfs_end_transaction(trans, root);
793 return ret;
797 * work queue call back to started compression on a file and pages
799 static noinline void async_cow_start(struct btrfs_work *work)
801 struct async_cow *async_cow;
802 int num_added = 0;
803 async_cow = container_of(work, struct async_cow, work);
805 compress_file_range(async_cow->inode, async_cow->locked_page,
806 async_cow->start, async_cow->end, async_cow,
807 &num_added);
808 if (num_added == 0)
809 async_cow->inode = NULL;
813 * work queue call back to submit previously compressed pages
815 static noinline void async_cow_submit(struct btrfs_work *work)
817 struct async_cow *async_cow;
818 struct btrfs_root *root;
819 unsigned long nr_pages;
821 async_cow = container_of(work, struct async_cow, work);
823 root = async_cow->root;
824 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
825 PAGE_CACHE_SHIFT;
827 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
829 if (atomic_read(&root->fs_info->async_delalloc_pages) <
830 5 * 1042 * 1024 &&
831 waitqueue_active(&root->fs_info->async_submit_wait))
832 wake_up(&root->fs_info->async_submit_wait);
834 if (async_cow->inode)
835 submit_compressed_extents(async_cow->inode, async_cow);
838 static noinline void async_cow_free(struct btrfs_work *work)
840 struct async_cow *async_cow;
841 async_cow = container_of(work, struct async_cow, work);
842 kfree(async_cow);
845 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
846 u64 start, u64 end, int *page_started,
847 unsigned long *nr_written)
849 struct async_cow *async_cow;
850 struct btrfs_root *root = BTRFS_I(inode)->root;
851 unsigned long nr_pages;
852 u64 cur_end;
853 int limit = 10 * 1024 * 1042;
855 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
856 EXTENT_DELALLOC, 1, 0, GFP_NOFS);
857 while (start < end) {
858 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
859 async_cow->inode = inode;
860 async_cow->root = root;
861 async_cow->locked_page = locked_page;
862 async_cow->start = start;
864 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
865 cur_end = end;
866 else
867 cur_end = min(end, start + 512 * 1024 - 1);
869 async_cow->end = cur_end;
870 INIT_LIST_HEAD(&async_cow->extents);
872 async_cow->work.func = async_cow_start;
873 async_cow->work.ordered_func = async_cow_submit;
874 async_cow->work.ordered_free = async_cow_free;
875 async_cow->work.flags = 0;
877 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
878 PAGE_CACHE_SHIFT;
879 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
881 btrfs_queue_worker(&root->fs_info->delalloc_workers,
882 &async_cow->work);
884 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
885 wait_event(root->fs_info->async_submit_wait,
886 (atomic_read(&root->fs_info->async_delalloc_pages) <
887 limit));
890 while (atomic_read(&root->fs_info->async_submit_draining) &&
891 atomic_read(&root->fs_info->async_delalloc_pages)) {
892 wait_event(root->fs_info->async_submit_wait,
893 (atomic_read(&root->fs_info->async_delalloc_pages) ==
894 0));
897 *nr_written += nr_pages;
898 start = cur_end + 1;
900 *page_started = 1;
901 return 0;
904 static noinline int csum_exist_in_range(struct btrfs_root *root,
905 u64 bytenr, u64 num_bytes)
907 int ret;
908 struct btrfs_ordered_sum *sums;
909 LIST_HEAD(list);
911 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
912 bytenr + num_bytes - 1, &list);
913 if (ret == 0 && list_empty(&list))
914 return 0;
916 while (!list_empty(&list)) {
917 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
918 list_del(&sums->list);
919 kfree(sums);
921 return 1;
925 * when nowcow writeback call back. This checks for snapshots or COW copies
926 * of the extents that exist in the file, and COWs the file as required.
928 * If no cow copies or snapshots exist, we write directly to the existing
929 * blocks on disk
931 static noinline int run_delalloc_nocow(struct inode *inode,
932 struct page *locked_page,
933 u64 start, u64 end, int *page_started, int force,
934 unsigned long *nr_written)
936 struct btrfs_root *root = BTRFS_I(inode)->root;
937 struct btrfs_trans_handle *trans;
938 struct extent_buffer *leaf;
939 struct btrfs_path *path;
940 struct btrfs_file_extent_item *fi;
941 struct btrfs_key found_key;
942 u64 cow_start;
943 u64 cur_offset;
944 u64 extent_end;
945 u64 extent_offset;
946 u64 disk_bytenr;
947 u64 num_bytes;
948 int extent_type;
949 int ret;
950 int type;
951 int nocow;
952 int check_prev = 1;
954 path = btrfs_alloc_path();
955 BUG_ON(!path);
956 trans = btrfs_join_transaction(root, 1);
957 BUG_ON(!trans);
959 cow_start = (u64)-1;
960 cur_offset = start;
961 while (1) {
962 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
963 cur_offset, 0);
964 BUG_ON(ret < 0);
965 if (ret > 0 && path->slots[0] > 0 && check_prev) {
966 leaf = path->nodes[0];
967 btrfs_item_key_to_cpu(leaf, &found_key,
968 path->slots[0] - 1);
969 if (found_key.objectid == inode->i_ino &&
970 found_key.type == BTRFS_EXTENT_DATA_KEY)
971 path->slots[0]--;
973 check_prev = 0;
974 next_slot:
975 leaf = path->nodes[0];
976 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
977 ret = btrfs_next_leaf(root, path);
978 if (ret < 0)
979 BUG_ON(1);
980 if (ret > 0)
981 break;
982 leaf = path->nodes[0];
985 nocow = 0;
986 disk_bytenr = 0;
987 num_bytes = 0;
988 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
990 if (found_key.objectid > inode->i_ino ||
991 found_key.type > BTRFS_EXTENT_DATA_KEY ||
992 found_key.offset > end)
993 break;
995 if (found_key.offset > cur_offset) {
996 extent_end = found_key.offset;
997 goto out_check;
1000 fi = btrfs_item_ptr(leaf, path->slots[0],
1001 struct btrfs_file_extent_item);
1002 extent_type = btrfs_file_extent_type(leaf, fi);
1004 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1005 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1006 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1007 extent_offset = btrfs_file_extent_offset(leaf, fi);
1008 extent_end = found_key.offset +
1009 btrfs_file_extent_num_bytes(leaf, fi);
1010 if (extent_end <= start) {
1011 path->slots[0]++;
1012 goto next_slot;
1014 if (disk_bytenr == 0)
1015 goto out_check;
1016 if (btrfs_file_extent_compression(leaf, fi) ||
1017 btrfs_file_extent_encryption(leaf, fi) ||
1018 btrfs_file_extent_other_encoding(leaf, fi))
1019 goto out_check;
1020 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1021 goto out_check;
1022 if (btrfs_extent_readonly(root, disk_bytenr))
1023 goto out_check;
1024 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1025 found_key.offset -
1026 extent_offset, disk_bytenr))
1027 goto out_check;
1028 disk_bytenr += extent_offset;
1029 disk_bytenr += cur_offset - found_key.offset;
1030 num_bytes = min(end + 1, extent_end) - cur_offset;
1032 * force cow if csum exists in the range.
1033 * this ensure that csum for a given extent are
1034 * either valid or do not exist.
1036 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1037 goto out_check;
1038 nocow = 1;
1039 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1040 extent_end = found_key.offset +
1041 btrfs_file_extent_inline_len(leaf, fi);
1042 extent_end = ALIGN(extent_end, root->sectorsize);
1043 } else {
1044 BUG_ON(1);
1046 out_check:
1047 if (extent_end <= start) {
1048 path->slots[0]++;
1049 goto next_slot;
1051 if (!nocow) {
1052 if (cow_start == (u64)-1)
1053 cow_start = cur_offset;
1054 cur_offset = extent_end;
1055 if (cur_offset > end)
1056 break;
1057 path->slots[0]++;
1058 goto next_slot;
1061 btrfs_release_path(root, path);
1062 if (cow_start != (u64)-1) {
1063 ret = cow_file_range(inode, locked_page, cow_start,
1064 found_key.offset - 1, page_started,
1065 nr_written, 1);
1066 BUG_ON(ret);
1067 cow_start = (u64)-1;
1070 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1071 struct extent_map *em;
1072 struct extent_map_tree *em_tree;
1073 em_tree = &BTRFS_I(inode)->extent_tree;
1074 em = alloc_extent_map(GFP_NOFS);
1075 em->start = cur_offset;
1076 em->orig_start = em->start;
1077 em->len = num_bytes;
1078 em->block_len = num_bytes;
1079 em->block_start = disk_bytenr;
1080 em->bdev = root->fs_info->fs_devices->latest_bdev;
1081 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1082 while (1) {
1083 spin_lock(&em_tree->lock);
1084 ret = add_extent_mapping(em_tree, em);
1085 spin_unlock(&em_tree->lock);
1086 if (ret != -EEXIST) {
1087 free_extent_map(em);
1088 break;
1090 btrfs_drop_extent_cache(inode, em->start,
1091 em->start + em->len - 1, 0);
1093 type = BTRFS_ORDERED_PREALLOC;
1094 } else {
1095 type = BTRFS_ORDERED_NOCOW;
1098 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1099 num_bytes, num_bytes, type);
1100 BUG_ON(ret);
1102 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1103 cur_offset, cur_offset + num_bytes - 1,
1104 locked_page, 1, 1, 1, 0, 0, 0);
1105 cur_offset = extent_end;
1106 if (cur_offset > end)
1107 break;
1109 btrfs_release_path(root, path);
1111 if (cur_offset <= end && cow_start == (u64)-1)
1112 cow_start = cur_offset;
1113 if (cow_start != (u64)-1) {
1114 ret = cow_file_range(inode, locked_page, cow_start, end,
1115 page_started, nr_written, 1);
1116 BUG_ON(ret);
1119 ret = btrfs_end_transaction(trans, root);
1120 BUG_ON(ret);
1121 btrfs_free_path(path);
1122 return 0;
1126 * extent_io.c call back to do delayed allocation processing
1128 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1129 u64 start, u64 end, int *page_started,
1130 unsigned long *nr_written)
1132 int ret;
1133 struct btrfs_root *root = BTRFS_I(inode)->root;
1135 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1136 ret = run_delalloc_nocow(inode, locked_page, start, end,
1137 page_started, 1, nr_written);
1138 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1139 ret = run_delalloc_nocow(inode, locked_page, start, end,
1140 page_started, 0, nr_written);
1141 else if (!btrfs_test_opt(root, COMPRESS))
1142 ret = cow_file_range(inode, locked_page, start, end,
1143 page_started, nr_written, 1);
1144 else
1145 ret = cow_file_range_async(inode, locked_page, start, end,
1146 page_started, nr_written);
1147 return ret;
1151 * extent_io.c set_bit_hook, used to track delayed allocation
1152 * bytes in this file, and to maintain the list of inodes that
1153 * have pending delalloc work to be done.
1155 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1156 unsigned long old, unsigned long bits)
1159 * set_bit and clear bit hooks normally require _irqsave/restore
1160 * but in this case, we are only testeing for the DELALLOC
1161 * bit, which is only set or cleared with irqs on
1163 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1164 struct btrfs_root *root = BTRFS_I(inode)->root;
1165 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1166 spin_lock(&root->fs_info->delalloc_lock);
1167 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1168 root->fs_info->delalloc_bytes += end - start + 1;
1169 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1170 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1171 &root->fs_info->delalloc_inodes);
1173 spin_unlock(&root->fs_info->delalloc_lock);
1175 return 0;
1179 * extent_io.c clear_bit_hook, see set_bit_hook for why
1181 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
1182 unsigned long old, unsigned long bits)
1185 * set_bit and clear bit hooks normally require _irqsave/restore
1186 * but in this case, we are only testeing for the DELALLOC
1187 * bit, which is only set or cleared with irqs on
1189 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1190 struct btrfs_root *root = BTRFS_I(inode)->root;
1192 spin_lock(&root->fs_info->delalloc_lock);
1193 if (end - start + 1 > root->fs_info->delalloc_bytes) {
1194 printk(KERN_INFO "btrfs warning: delalloc account "
1195 "%llu %llu\n",
1196 (unsigned long long)end - start + 1,
1197 (unsigned long long)
1198 root->fs_info->delalloc_bytes);
1199 btrfs_delalloc_free_space(root, inode, (u64)-1);
1200 root->fs_info->delalloc_bytes = 0;
1201 BTRFS_I(inode)->delalloc_bytes = 0;
1202 } else {
1203 btrfs_delalloc_free_space(root, inode,
1204 end - start + 1);
1205 root->fs_info->delalloc_bytes -= end - start + 1;
1206 BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
1208 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1209 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1210 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1212 spin_unlock(&root->fs_info->delalloc_lock);
1214 return 0;
1218 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1219 * we don't create bios that span stripes or chunks
1221 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1222 size_t size, struct bio *bio,
1223 unsigned long bio_flags)
1225 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1226 struct btrfs_mapping_tree *map_tree;
1227 u64 logical = (u64)bio->bi_sector << 9;
1228 u64 length = 0;
1229 u64 map_length;
1230 int ret;
1232 if (bio_flags & EXTENT_BIO_COMPRESSED)
1233 return 0;
1235 length = bio->bi_size;
1236 map_tree = &root->fs_info->mapping_tree;
1237 map_length = length;
1238 ret = btrfs_map_block(map_tree, READ, logical,
1239 &map_length, NULL, 0);
1241 if (map_length < length + size)
1242 return 1;
1243 return 0;
1247 * in order to insert checksums into the metadata in large chunks,
1248 * we wait until bio submission time. All the pages in the bio are
1249 * checksummed and sums are attached onto the ordered extent record.
1251 * At IO completion time the cums attached on the ordered extent record
1252 * are inserted into the btree
1254 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1255 struct bio *bio, int mirror_num,
1256 unsigned long bio_flags)
1258 struct btrfs_root *root = BTRFS_I(inode)->root;
1259 int ret = 0;
1261 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1262 BUG_ON(ret);
1263 return 0;
1267 * in order to insert checksums into the metadata in large chunks,
1268 * we wait until bio submission time. All the pages in the bio are
1269 * checksummed and sums are attached onto the ordered extent record.
1271 * At IO completion time the cums attached on the ordered extent record
1272 * are inserted into the btree
1274 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1275 int mirror_num, unsigned long bio_flags)
1277 struct btrfs_root *root = BTRFS_I(inode)->root;
1278 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1282 * extent_io.c submission hook. This does the right thing for csum calculation
1283 * on write, or reading the csums from the tree before a read
1285 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1286 int mirror_num, unsigned long bio_flags)
1288 struct btrfs_root *root = BTRFS_I(inode)->root;
1289 int ret = 0;
1290 int skip_sum;
1292 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1294 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1295 BUG_ON(ret);
1297 if (!(rw & (1 << BIO_RW))) {
1298 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1299 return btrfs_submit_compressed_read(inode, bio,
1300 mirror_num, bio_flags);
1301 } else if (!skip_sum)
1302 btrfs_lookup_bio_sums(root, inode, bio, NULL);
1303 goto mapit;
1304 } else if (!skip_sum) {
1305 /* csum items have already been cloned */
1306 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1307 goto mapit;
1308 /* we're doing a write, do the async checksumming */
1309 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1310 inode, rw, bio, mirror_num,
1311 bio_flags, __btrfs_submit_bio_start,
1312 __btrfs_submit_bio_done);
1315 mapit:
1316 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1320 * given a list of ordered sums record them in the inode. This happens
1321 * at IO completion time based on sums calculated at bio submission time.
1323 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1324 struct inode *inode, u64 file_offset,
1325 struct list_head *list)
1327 struct btrfs_ordered_sum *sum;
1329 btrfs_set_trans_block_group(trans, inode);
1331 list_for_each_entry(sum, list, list) {
1332 btrfs_csum_file_blocks(trans,
1333 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1335 return 0;
1338 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1340 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1341 WARN_ON(1);
1342 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1343 GFP_NOFS);
1346 /* see btrfs_writepage_start_hook for details on why this is required */
1347 struct btrfs_writepage_fixup {
1348 struct page *page;
1349 struct btrfs_work work;
1352 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1354 struct btrfs_writepage_fixup *fixup;
1355 struct btrfs_ordered_extent *ordered;
1356 struct page *page;
1357 struct inode *inode;
1358 u64 page_start;
1359 u64 page_end;
1361 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1362 page = fixup->page;
1363 again:
1364 lock_page(page);
1365 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1366 ClearPageChecked(page);
1367 goto out_page;
1370 inode = page->mapping->host;
1371 page_start = page_offset(page);
1372 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1374 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1376 /* already ordered? We're done */
1377 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
1378 EXTENT_ORDERED, 0)) {
1379 goto out;
1382 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1383 if (ordered) {
1384 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1385 page_end, GFP_NOFS);
1386 unlock_page(page);
1387 btrfs_start_ordered_extent(inode, ordered, 1);
1388 goto again;
1391 btrfs_set_extent_delalloc(inode, page_start, page_end);
1392 ClearPageChecked(page);
1393 out:
1394 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1395 out_page:
1396 unlock_page(page);
1397 page_cache_release(page);
1401 * There are a few paths in the higher layers of the kernel that directly
1402 * set the page dirty bit without asking the filesystem if it is a
1403 * good idea. This causes problems because we want to make sure COW
1404 * properly happens and the data=ordered rules are followed.
1406 * In our case any range that doesn't have the ORDERED bit set
1407 * hasn't been properly setup for IO. We kick off an async process
1408 * to fix it up. The async helper will wait for ordered extents, set
1409 * the delalloc bit and make it safe to write the page.
1411 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1413 struct inode *inode = page->mapping->host;
1414 struct btrfs_writepage_fixup *fixup;
1415 struct btrfs_root *root = BTRFS_I(inode)->root;
1416 int ret;
1418 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1419 EXTENT_ORDERED, 0);
1420 if (ret)
1421 return 0;
1423 if (PageChecked(page))
1424 return -EAGAIN;
1426 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1427 if (!fixup)
1428 return -EAGAIN;
1430 SetPageChecked(page);
1431 page_cache_get(page);
1432 fixup->work.func = btrfs_writepage_fixup_worker;
1433 fixup->page = page;
1434 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1435 return -EAGAIN;
1438 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1439 struct inode *inode, u64 file_pos,
1440 u64 disk_bytenr, u64 disk_num_bytes,
1441 u64 num_bytes, u64 ram_bytes,
1442 u64 locked_end,
1443 u8 compression, u8 encryption,
1444 u16 other_encoding, int extent_type)
1446 struct btrfs_root *root = BTRFS_I(inode)->root;
1447 struct btrfs_file_extent_item *fi;
1448 struct btrfs_path *path;
1449 struct extent_buffer *leaf;
1450 struct btrfs_key ins;
1451 u64 hint;
1452 int ret;
1454 path = btrfs_alloc_path();
1455 BUG_ON(!path);
1457 path->leave_spinning = 1;
1458 ret = btrfs_drop_extents(trans, root, inode, file_pos,
1459 file_pos + num_bytes, locked_end,
1460 file_pos, &hint);
1461 BUG_ON(ret);
1463 ins.objectid = inode->i_ino;
1464 ins.offset = file_pos;
1465 ins.type = BTRFS_EXTENT_DATA_KEY;
1466 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1467 BUG_ON(ret);
1468 leaf = path->nodes[0];
1469 fi = btrfs_item_ptr(leaf, path->slots[0],
1470 struct btrfs_file_extent_item);
1471 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1472 btrfs_set_file_extent_type(leaf, fi, extent_type);
1473 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1474 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1475 btrfs_set_file_extent_offset(leaf, fi, 0);
1476 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1477 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1478 btrfs_set_file_extent_compression(leaf, fi, compression);
1479 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1480 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1482 btrfs_unlock_up_safe(path, 1);
1483 btrfs_set_lock_blocking(leaf);
1485 btrfs_mark_buffer_dirty(leaf);
1487 inode_add_bytes(inode, num_bytes);
1488 btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0);
1490 ins.objectid = disk_bytenr;
1491 ins.offset = disk_num_bytes;
1492 ins.type = BTRFS_EXTENT_ITEM_KEY;
1493 ret = btrfs_alloc_reserved_file_extent(trans, root,
1494 root->root_key.objectid,
1495 inode->i_ino, file_pos, &ins);
1496 BUG_ON(ret);
1497 btrfs_free_path(path);
1499 return 0;
1503 * helper function for btrfs_finish_ordered_io, this
1504 * just reads in some of the csum leaves to prime them into ram
1505 * before we start the transaction. It limits the amount of btree
1506 * reads required while inside the transaction.
1508 static noinline void reada_csum(struct btrfs_root *root,
1509 struct btrfs_path *path,
1510 struct btrfs_ordered_extent *ordered_extent)
1512 struct btrfs_ordered_sum *sum;
1513 u64 bytenr;
1515 sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1516 list);
1517 bytenr = sum->sums[0].bytenr;
1520 * we don't care about the results, the point of this search is
1521 * just to get the btree leaves into ram
1523 btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1526 /* as ordered data IO finishes, this gets called so we can finish
1527 * an ordered extent if the range of bytes in the file it covers are
1528 * fully written.
1530 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1532 struct btrfs_root *root = BTRFS_I(inode)->root;
1533 struct btrfs_trans_handle *trans;
1534 struct btrfs_ordered_extent *ordered_extent = NULL;
1535 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1536 struct btrfs_path *path;
1537 int compressed = 0;
1538 int ret;
1540 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1541 if (!ret)
1542 return 0;
1545 * before we join the transaction, try to do some of our IO.
1546 * This will limit the amount of IO that we have to do with
1547 * the transaction running. We're unlikely to need to do any
1548 * IO if the file extents are new, the disk_i_size checks
1549 * covers the most common case.
1551 if (start < BTRFS_I(inode)->disk_i_size) {
1552 path = btrfs_alloc_path();
1553 if (path) {
1554 ret = btrfs_lookup_file_extent(NULL, root, path,
1555 inode->i_ino,
1556 start, 0);
1557 ordered_extent = btrfs_lookup_ordered_extent(inode,
1558 start);
1559 if (!list_empty(&ordered_extent->list)) {
1560 btrfs_release_path(root, path);
1561 reada_csum(root, path, ordered_extent);
1563 btrfs_free_path(path);
1567 trans = btrfs_join_transaction(root, 1);
1569 if (!ordered_extent)
1570 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1571 BUG_ON(!ordered_extent);
1572 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1573 goto nocow;
1575 lock_extent(io_tree, ordered_extent->file_offset,
1576 ordered_extent->file_offset + ordered_extent->len - 1,
1577 GFP_NOFS);
1579 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1580 compressed = 1;
1581 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1582 BUG_ON(compressed);
1583 ret = btrfs_mark_extent_written(trans, root, inode,
1584 ordered_extent->file_offset,
1585 ordered_extent->file_offset +
1586 ordered_extent->len);
1587 BUG_ON(ret);
1588 } else {
1589 ret = insert_reserved_file_extent(trans, inode,
1590 ordered_extent->file_offset,
1591 ordered_extent->start,
1592 ordered_extent->disk_len,
1593 ordered_extent->len,
1594 ordered_extent->len,
1595 ordered_extent->file_offset +
1596 ordered_extent->len,
1597 compressed, 0, 0,
1598 BTRFS_FILE_EXTENT_REG);
1599 BUG_ON(ret);
1601 unlock_extent(io_tree, ordered_extent->file_offset,
1602 ordered_extent->file_offset + ordered_extent->len - 1,
1603 GFP_NOFS);
1604 nocow:
1605 add_pending_csums(trans, inode, ordered_extent->file_offset,
1606 &ordered_extent->list);
1608 mutex_lock(&BTRFS_I(inode)->extent_mutex);
1609 btrfs_ordered_update_i_size(inode, ordered_extent);
1610 btrfs_update_inode(trans, root, inode);
1611 btrfs_remove_ordered_extent(inode, ordered_extent);
1612 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1614 /* once for us */
1615 btrfs_put_ordered_extent(ordered_extent);
1616 /* once for the tree */
1617 btrfs_put_ordered_extent(ordered_extent);
1619 btrfs_end_transaction(trans, root);
1620 return 0;
1623 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1624 struct extent_state *state, int uptodate)
1626 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1630 * When IO fails, either with EIO or csum verification fails, we
1631 * try other mirrors that might have a good copy of the data. This
1632 * io_failure_record is used to record state as we go through all the
1633 * mirrors. If another mirror has good data, the page is set up to date
1634 * and things continue. If a good mirror can't be found, the original
1635 * bio end_io callback is called to indicate things have failed.
1637 struct io_failure_record {
1638 struct page *page;
1639 u64 start;
1640 u64 len;
1641 u64 logical;
1642 unsigned long bio_flags;
1643 int last_mirror;
1646 static int btrfs_io_failed_hook(struct bio *failed_bio,
1647 struct page *page, u64 start, u64 end,
1648 struct extent_state *state)
1650 struct io_failure_record *failrec = NULL;
1651 u64 private;
1652 struct extent_map *em;
1653 struct inode *inode = page->mapping->host;
1654 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1655 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1656 struct bio *bio;
1657 int num_copies;
1658 int ret;
1659 int rw;
1660 u64 logical;
1662 ret = get_state_private(failure_tree, start, &private);
1663 if (ret) {
1664 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1665 if (!failrec)
1666 return -ENOMEM;
1667 failrec->start = start;
1668 failrec->len = end - start + 1;
1669 failrec->last_mirror = 0;
1670 failrec->bio_flags = 0;
1672 spin_lock(&em_tree->lock);
1673 em = lookup_extent_mapping(em_tree, start, failrec->len);
1674 if (em->start > start || em->start + em->len < start) {
1675 free_extent_map(em);
1676 em = NULL;
1678 spin_unlock(&em_tree->lock);
1680 if (!em || IS_ERR(em)) {
1681 kfree(failrec);
1682 return -EIO;
1684 logical = start - em->start;
1685 logical = em->block_start + logical;
1686 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1687 logical = em->block_start;
1688 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1690 failrec->logical = logical;
1691 free_extent_map(em);
1692 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1693 EXTENT_DIRTY, GFP_NOFS);
1694 set_state_private(failure_tree, start,
1695 (u64)(unsigned long)failrec);
1696 } else {
1697 failrec = (struct io_failure_record *)(unsigned long)private;
1699 num_copies = btrfs_num_copies(
1700 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1701 failrec->logical, failrec->len);
1702 failrec->last_mirror++;
1703 if (!state) {
1704 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1705 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1706 failrec->start,
1707 EXTENT_LOCKED);
1708 if (state && state->start != failrec->start)
1709 state = NULL;
1710 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1712 if (!state || failrec->last_mirror > num_copies) {
1713 set_state_private(failure_tree, failrec->start, 0);
1714 clear_extent_bits(failure_tree, failrec->start,
1715 failrec->start + failrec->len - 1,
1716 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1717 kfree(failrec);
1718 return -EIO;
1720 bio = bio_alloc(GFP_NOFS, 1);
1721 bio->bi_private = state;
1722 bio->bi_end_io = failed_bio->bi_end_io;
1723 bio->bi_sector = failrec->logical >> 9;
1724 bio->bi_bdev = failed_bio->bi_bdev;
1725 bio->bi_size = 0;
1727 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1728 if (failed_bio->bi_rw & (1 << BIO_RW))
1729 rw = WRITE;
1730 else
1731 rw = READ;
1733 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1734 failrec->last_mirror,
1735 failrec->bio_flags);
1736 return 0;
1740 * each time an IO finishes, we do a fast check in the IO failure tree
1741 * to see if we need to process or clean up an io_failure_record
1743 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1745 u64 private;
1746 u64 private_failure;
1747 struct io_failure_record *failure;
1748 int ret;
1750 private = 0;
1751 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1752 (u64)-1, 1, EXTENT_DIRTY)) {
1753 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1754 start, &private_failure);
1755 if (ret == 0) {
1756 failure = (struct io_failure_record *)(unsigned long)
1757 private_failure;
1758 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1759 failure->start, 0);
1760 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1761 failure->start,
1762 failure->start + failure->len - 1,
1763 EXTENT_DIRTY | EXTENT_LOCKED,
1764 GFP_NOFS);
1765 kfree(failure);
1768 return 0;
1772 * when reads are done, we need to check csums to verify the data is correct
1773 * if there's a match, we allow the bio to finish. If not, we go through
1774 * the io_failure_record routines to find good copies
1776 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1777 struct extent_state *state)
1779 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1780 struct inode *inode = page->mapping->host;
1781 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1782 char *kaddr;
1783 u64 private = ~(u32)0;
1784 int ret;
1785 struct btrfs_root *root = BTRFS_I(inode)->root;
1786 u32 csum = ~(u32)0;
1788 if (PageChecked(page)) {
1789 ClearPageChecked(page);
1790 goto good;
1793 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1794 return 0;
1796 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1797 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) {
1798 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1799 GFP_NOFS);
1800 return 0;
1803 if (state && state->start == start) {
1804 private = state->private;
1805 ret = 0;
1806 } else {
1807 ret = get_state_private(io_tree, start, &private);
1809 kaddr = kmap_atomic(page, KM_USER0);
1810 if (ret)
1811 goto zeroit;
1813 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1814 btrfs_csum_final(csum, (char *)&csum);
1815 if (csum != private)
1816 goto zeroit;
1818 kunmap_atomic(kaddr, KM_USER0);
1819 good:
1820 /* if the io failure tree for this inode is non-empty,
1821 * check to see if we've recovered from a failed IO
1823 btrfs_clean_io_failures(inode, start);
1824 return 0;
1826 zeroit:
1827 if (printk_ratelimit()) {
1828 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1829 "private %llu\n", page->mapping->host->i_ino,
1830 (unsigned long long)start, csum,
1831 (unsigned long long)private);
1833 memset(kaddr + offset, 1, end - start + 1);
1834 flush_dcache_page(page);
1835 kunmap_atomic(kaddr, KM_USER0);
1836 if (private == 0)
1837 return 0;
1838 return -EIO;
1842 * This creates an orphan entry for the given inode in case something goes
1843 * wrong in the middle of an unlink/truncate.
1845 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1847 struct btrfs_root *root = BTRFS_I(inode)->root;
1848 int ret = 0;
1850 spin_lock(&root->list_lock);
1852 /* already on the orphan list, we're good */
1853 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1854 spin_unlock(&root->list_lock);
1855 return 0;
1858 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1860 spin_unlock(&root->list_lock);
1863 * insert an orphan item to track this unlinked/truncated file
1865 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1867 return ret;
1871 * We have done the truncate/delete so we can go ahead and remove the orphan
1872 * item for this particular inode.
1874 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1876 struct btrfs_root *root = BTRFS_I(inode)->root;
1877 int ret = 0;
1879 spin_lock(&root->list_lock);
1881 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1882 spin_unlock(&root->list_lock);
1883 return 0;
1886 list_del_init(&BTRFS_I(inode)->i_orphan);
1887 if (!trans) {
1888 spin_unlock(&root->list_lock);
1889 return 0;
1892 spin_unlock(&root->list_lock);
1894 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1896 return ret;
1900 * this cleans up any orphans that may be left on the list from the last use
1901 * of this root.
1903 void btrfs_orphan_cleanup(struct btrfs_root *root)
1905 struct btrfs_path *path;
1906 struct extent_buffer *leaf;
1907 struct btrfs_item *item;
1908 struct btrfs_key key, found_key;
1909 struct btrfs_trans_handle *trans;
1910 struct inode *inode;
1911 int ret = 0, nr_unlink = 0, nr_truncate = 0;
1913 path = btrfs_alloc_path();
1914 if (!path)
1915 return;
1916 path->reada = -1;
1918 key.objectid = BTRFS_ORPHAN_OBJECTID;
1919 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1920 key.offset = (u64)-1;
1923 while (1) {
1924 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1925 if (ret < 0) {
1926 printk(KERN_ERR "Error searching slot for orphan: %d"
1927 "\n", ret);
1928 break;
1932 * if ret == 0 means we found what we were searching for, which
1933 * is weird, but possible, so only screw with path if we didnt
1934 * find the key and see if we have stuff that matches
1936 if (ret > 0) {
1937 if (path->slots[0] == 0)
1938 break;
1939 path->slots[0]--;
1942 /* pull out the item */
1943 leaf = path->nodes[0];
1944 item = btrfs_item_nr(leaf, path->slots[0]);
1945 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1947 /* make sure the item matches what we want */
1948 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1949 break;
1950 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1951 break;
1953 /* release the path since we're done with it */
1954 btrfs_release_path(root, path);
1957 * this is where we are basically btrfs_lookup, without the
1958 * crossing root thing. we store the inode number in the
1959 * offset of the orphan item.
1961 found_key.objectid = found_key.offset;
1962 found_key.type = BTRFS_INODE_ITEM_KEY;
1963 found_key.offset = 0;
1964 inode = btrfs_iget(root->fs_info->sb, &found_key, root);
1965 if (IS_ERR(inode))
1966 break;
1969 * add this inode to the orphan list so btrfs_orphan_del does
1970 * the proper thing when we hit it
1972 spin_lock(&root->list_lock);
1973 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1974 spin_unlock(&root->list_lock);
1977 * if this is a bad inode, means we actually succeeded in
1978 * removing the inode, but not the orphan record, which means
1979 * we need to manually delete the orphan since iput will just
1980 * do a destroy_inode
1982 if (is_bad_inode(inode)) {
1983 trans = btrfs_start_transaction(root, 1);
1984 btrfs_orphan_del(trans, inode);
1985 btrfs_end_transaction(trans, root);
1986 iput(inode);
1987 continue;
1990 /* if we have links, this was a truncate, lets do that */
1991 if (inode->i_nlink) {
1992 nr_truncate++;
1993 btrfs_truncate(inode);
1994 } else {
1995 nr_unlink++;
1998 /* this will do delete_inode and everything for us */
1999 iput(inode);
2002 if (nr_unlink)
2003 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2004 if (nr_truncate)
2005 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2007 btrfs_free_path(path);
2011 * very simple check to peek ahead in the leaf looking for xattrs. If we
2012 * don't find any xattrs, we know there can't be any acls.
2014 * slot is the slot the inode is in, objectid is the objectid of the inode
2016 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2017 int slot, u64 objectid)
2019 u32 nritems = btrfs_header_nritems(leaf);
2020 struct btrfs_key found_key;
2021 int scanned = 0;
2023 slot++;
2024 while (slot < nritems) {
2025 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2027 /* we found a different objectid, there must not be acls */
2028 if (found_key.objectid != objectid)
2029 return 0;
2031 /* we found an xattr, assume we've got an acl */
2032 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2033 return 1;
2036 * we found a key greater than an xattr key, there can't
2037 * be any acls later on
2039 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2040 return 0;
2042 slot++;
2043 scanned++;
2046 * it goes inode, inode backrefs, xattrs, extents,
2047 * so if there are a ton of hard links to an inode there can
2048 * be a lot of backrefs. Don't waste time searching too hard,
2049 * this is just an optimization
2051 if (scanned >= 8)
2052 break;
2054 /* we hit the end of the leaf before we found an xattr or
2055 * something larger than an xattr. We have to assume the inode
2056 * has acls
2058 return 1;
2062 * read an inode from the btree into the in-memory inode
2064 static void btrfs_read_locked_inode(struct inode *inode)
2066 struct btrfs_path *path;
2067 struct extent_buffer *leaf;
2068 struct btrfs_inode_item *inode_item;
2069 struct btrfs_timespec *tspec;
2070 struct btrfs_root *root = BTRFS_I(inode)->root;
2071 struct btrfs_key location;
2072 int maybe_acls;
2073 u64 alloc_group_block;
2074 u32 rdev;
2075 int ret;
2077 path = btrfs_alloc_path();
2078 BUG_ON(!path);
2079 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2081 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2082 if (ret)
2083 goto make_bad;
2085 leaf = path->nodes[0];
2086 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2087 struct btrfs_inode_item);
2089 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2090 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2091 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2092 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2093 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2095 tspec = btrfs_inode_atime(inode_item);
2096 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2097 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2099 tspec = btrfs_inode_mtime(inode_item);
2100 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2101 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2103 tspec = btrfs_inode_ctime(inode_item);
2104 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2105 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2107 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2108 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2109 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2110 inode->i_generation = BTRFS_I(inode)->generation;
2111 inode->i_rdev = 0;
2112 rdev = btrfs_inode_rdev(leaf, inode_item);
2114 BTRFS_I(inode)->index_cnt = (u64)-1;
2115 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2117 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2120 * try to precache a NULL acl entry for files that don't have
2121 * any xattrs or acls
2123 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2124 if (!maybe_acls)
2125 cache_no_acl(inode);
2127 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2128 alloc_group_block, 0);
2129 btrfs_free_path(path);
2130 inode_item = NULL;
2132 switch (inode->i_mode & S_IFMT) {
2133 case S_IFREG:
2134 inode->i_mapping->a_ops = &btrfs_aops;
2135 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2136 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2137 inode->i_fop = &btrfs_file_operations;
2138 inode->i_op = &btrfs_file_inode_operations;
2139 break;
2140 case S_IFDIR:
2141 inode->i_fop = &btrfs_dir_file_operations;
2142 if (root == root->fs_info->tree_root)
2143 inode->i_op = &btrfs_dir_ro_inode_operations;
2144 else
2145 inode->i_op = &btrfs_dir_inode_operations;
2146 break;
2147 case S_IFLNK:
2148 inode->i_op = &btrfs_symlink_inode_operations;
2149 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2150 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2151 break;
2152 default:
2153 inode->i_op = &btrfs_special_inode_operations;
2154 init_special_inode(inode, inode->i_mode, rdev);
2155 break;
2158 btrfs_update_iflags(inode);
2159 return;
2161 make_bad:
2162 btrfs_free_path(path);
2163 make_bad_inode(inode);
2167 * given a leaf and an inode, copy the inode fields into the leaf
2169 static void fill_inode_item(struct btrfs_trans_handle *trans,
2170 struct extent_buffer *leaf,
2171 struct btrfs_inode_item *item,
2172 struct inode *inode)
2174 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2175 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2176 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2177 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2178 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2180 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2181 inode->i_atime.tv_sec);
2182 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2183 inode->i_atime.tv_nsec);
2185 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2186 inode->i_mtime.tv_sec);
2187 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2188 inode->i_mtime.tv_nsec);
2190 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2191 inode->i_ctime.tv_sec);
2192 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2193 inode->i_ctime.tv_nsec);
2195 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2196 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2197 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2198 btrfs_set_inode_transid(leaf, item, trans->transid);
2199 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2200 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2201 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2205 * copy everything in the in-memory inode into the btree.
2207 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2208 struct btrfs_root *root, struct inode *inode)
2210 struct btrfs_inode_item *inode_item;
2211 struct btrfs_path *path;
2212 struct extent_buffer *leaf;
2213 int ret;
2215 path = btrfs_alloc_path();
2216 BUG_ON(!path);
2217 path->leave_spinning = 1;
2218 ret = btrfs_lookup_inode(trans, root, path,
2219 &BTRFS_I(inode)->location, 1);
2220 if (ret) {
2221 if (ret > 0)
2222 ret = -ENOENT;
2223 goto failed;
2226 btrfs_unlock_up_safe(path, 1);
2227 leaf = path->nodes[0];
2228 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2229 struct btrfs_inode_item);
2231 fill_inode_item(trans, leaf, inode_item, inode);
2232 btrfs_mark_buffer_dirty(leaf);
2233 btrfs_set_inode_last_trans(trans, inode);
2234 ret = 0;
2235 failed:
2236 btrfs_free_path(path);
2237 return ret;
2242 * unlink helper that gets used here in inode.c and in the tree logging
2243 * recovery code. It remove a link in a directory with a given name, and
2244 * also drops the back refs in the inode to the directory
2246 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2247 struct btrfs_root *root,
2248 struct inode *dir, struct inode *inode,
2249 const char *name, int name_len)
2251 struct btrfs_path *path;
2252 int ret = 0;
2253 struct extent_buffer *leaf;
2254 struct btrfs_dir_item *di;
2255 struct btrfs_key key;
2256 u64 index;
2258 path = btrfs_alloc_path();
2259 if (!path) {
2260 ret = -ENOMEM;
2261 goto err;
2264 path->leave_spinning = 1;
2265 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2266 name, name_len, -1);
2267 if (IS_ERR(di)) {
2268 ret = PTR_ERR(di);
2269 goto err;
2271 if (!di) {
2272 ret = -ENOENT;
2273 goto err;
2275 leaf = path->nodes[0];
2276 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2277 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2278 if (ret)
2279 goto err;
2280 btrfs_release_path(root, path);
2282 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2283 inode->i_ino,
2284 dir->i_ino, &index);
2285 if (ret) {
2286 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2287 "inode %lu parent %lu\n", name_len, name,
2288 inode->i_ino, dir->i_ino);
2289 goto err;
2292 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2293 index, name, name_len, -1);
2294 if (IS_ERR(di)) {
2295 ret = PTR_ERR(di);
2296 goto err;
2298 if (!di) {
2299 ret = -ENOENT;
2300 goto err;
2302 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2303 btrfs_release_path(root, path);
2305 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2306 inode, dir->i_ino);
2307 BUG_ON(ret != 0 && ret != -ENOENT);
2309 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2310 dir, index);
2311 BUG_ON(ret);
2312 err:
2313 btrfs_free_path(path);
2314 if (ret)
2315 goto out;
2317 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2318 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2319 btrfs_update_inode(trans, root, dir);
2320 btrfs_drop_nlink(inode);
2321 ret = btrfs_update_inode(trans, root, inode);
2322 out:
2323 return ret;
2326 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2328 struct btrfs_root *root;
2329 struct btrfs_trans_handle *trans;
2330 struct inode *inode = dentry->d_inode;
2331 int ret;
2332 unsigned long nr = 0;
2334 root = BTRFS_I(dir)->root;
2336 trans = btrfs_start_transaction(root, 1);
2338 btrfs_set_trans_block_group(trans, dir);
2340 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2342 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2343 dentry->d_name.name, dentry->d_name.len);
2345 if (inode->i_nlink == 0)
2346 ret = btrfs_orphan_add(trans, inode);
2348 nr = trans->blocks_used;
2350 btrfs_end_transaction_throttle(trans, root);
2351 btrfs_btree_balance_dirty(root, nr);
2352 return ret;
2355 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2357 struct inode *inode = dentry->d_inode;
2358 int err = 0;
2359 int ret;
2360 struct btrfs_root *root = BTRFS_I(dir)->root;
2361 struct btrfs_trans_handle *trans;
2362 unsigned long nr = 0;
2365 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2366 * the root of a subvolume or snapshot
2368 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2369 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
2370 return -ENOTEMPTY;
2373 trans = btrfs_start_transaction(root, 1);
2374 btrfs_set_trans_block_group(trans, dir);
2376 err = btrfs_orphan_add(trans, inode);
2377 if (err)
2378 goto fail_trans;
2380 /* now the directory is empty */
2381 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2382 dentry->d_name.name, dentry->d_name.len);
2383 if (!err)
2384 btrfs_i_size_write(inode, 0);
2386 fail_trans:
2387 nr = trans->blocks_used;
2388 ret = btrfs_end_transaction_throttle(trans, root);
2389 btrfs_btree_balance_dirty(root, nr);
2391 if (ret && !err)
2392 err = ret;
2393 return err;
2396 #if 0
2398 * when truncating bytes in a file, it is possible to avoid reading
2399 * the leaves that contain only checksum items. This can be the
2400 * majority of the IO required to delete a large file, but it must
2401 * be done carefully.
2403 * The keys in the level just above the leaves are checked to make sure
2404 * the lowest key in a given leaf is a csum key, and starts at an offset
2405 * after the new size.
2407 * Then the key for the next leaf is checked to make sure it also has
2408 * a checksum item for the same file. If it does, we know our target leaf
2409 * contains only checksum items, and it can be safely freed without reading
2410 * it.
2412 * This is just an optimization targeted at large files. It may do
2413 * nothing. It will return 0 unless things went badly.
2415 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2416 struct btrfs_root *root,
2417 struct btrfs_path *path,
2418 struct inode *inode, u64 new_size)
2420 struct btrfs_key key;
2421 int ret;
2422 int nritems;
2423 struct btrfs_key found_key;
2424 struct btrfs_key other_key;
2425 struct btrfs_leaf_ref *ref;
2426 u64 leaf_gen;
2427 u64 leaf_start;
2429 path->lowest_level = 1;
2430 key.objectid = inode->i_ino;
2431 key.type = BTRFS_CSUM_ITEM_KEY;
2432 key.offset = new_size;
2433 again:
2434 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2435 if (ret < 0)
2436 goto out;
2438 if (path->nodes[1] == NULL) {
2439 ret = 0;
2440 goto out;
2442 ret = 0;
2443 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2444 nritems = btrfs_header_nritems(path->nodes[1]);
2446 if (!nritems)
2447 goto out;
2449 if (path->slots[1] >= nritems)
2450 goto next_node;
2452 /* did we find a key greater than anything we want to delete? */
2453 if (found_key.objectid > inode->i_ino ||
2454 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2455 goto out;
2457 /* we check the next key in the node to make sure the leave contains
2458 * only checksum items. This comparison doesn't work if our
2459 * leaf is the last one in the node
2461 if (path->slots[1] + 1 >= nritems) {
2462 next_node:
2463 /* search forward from the last key in the node, this
2464 * will bring us into the next node in the tree
2466 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2468 /* unlikely, but we inc below, so check to be safe */
2469 if (found_key.offset == (u64)-1)
2470 goto out;
2472 /* search_forward needs a path with locks held, do the
2473 * search again for the original key. It is possible
2474 * this will race with a balance and return a path that
2475 * we could modify, but this drop is just an optimization
2476 * and is allowed to miss some leaves.
2478 btrfs_release_path(root, path);
2479 found_key.offset++;
2481 /* setup a max key for search_forward */
2482 other_key.offset = (u64)-1;
2483 other_key.type = key.type;
2484 other_key.objectid = key.objectid;
2486 path->keep_locks = 1;
2487 ret = btrfs_search_forward(root, &found_key, &other_key,
2488 path, 0, 0);
2489 path->keep_locks = 0;
2490 if (ret || found_key.objectid != key.objectid ||
2491 found_key.type != key.type) {
2492 ret = 0;
2493 goto out;
2496 key.offset = found_key.offset;
2497 btrfs_release_path(root, path);
2498 cond_resched();
2499 goto again;
2502 /* we know there's one more slot after us in the tree,
2503 * read that key so we can verify it is also a checksum item
2505 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2507 if (found_key.objectid < inode->i_ino)
2508 goto next_key;
2510 if (found_key.type != key.type || found_key.offset < new_size)
2511 goto next_key;
2514 * if the key for the next leaf isn't a csum key from this objectid,
2515 * we can't be sure there aren't good items inside this leaf.
2516 * Bail out
2518 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2519 goto out;
2521 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2522 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2524 * it is safe to delete this leaf, it contains only
2525 * csum items from this inode at an offset >= new_size
2527 ret = btrfs_del_leaf(trans, root, path, leaf_start);
2528 BUG_ON(ret);
2530 if (root->ref_cows && leaf_gen < trans->transid) {
2531 ref = btrfs_alloc_leaf_ref(root, 0);
2532 if (ref) {
2533 ref->root_gen = root->root_key.offset;
2534 ref->bytenr = leaf_start;
2535 ref->owner = 0;
2536 ref->generation = leaf_gen;
2537 ref->nritems = 0;
2539 btrfs_sort_leaf_ref(ref);
2541 ret = btrfs_add_leaf_ref(root, ref, 0);
2542 WARN_ON(ret);
2543 btrfs_free_leaf_ref(root, ref);
2544 } else {
2545 WARN_ON(1);
2548 next_key:
2549 btrfs_release_path(root, path);
2551 if (other_key.objectid == inode->i_ino &&
2552 other_key.type == key.type && other_key.offset > key.offset) {
2553 key.offset = other_key.offset;
2554 cond_resched();
2555 goto again;
2557 ret = 0;
2558 out:
2559 /* fixup any changes we've made to the path */
2560 path->lowest_level = 0;
2561 path->keep_locks = 0;
2562 btrfs_release_path(root, path);
2563 return ret;
2566 #endif
2569 * this can truncate away extent items, csum items and directory items.
2570 * It starts at a high offset and removes keys until it can't find
2571 * any higher than new_size
2573 * csum items that cross the new i_size are truncated to the new size
2574 * as well.
2576 * min_type is the minimum key type to truncate down to. If set to 0, this
2577 * will kill all the items on this inode, including the INODE_ITEM_KEY.
2579 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2580 struct btrfs_root *root,
2581 struct inode *inode,
2582 u64 new_size, u32 min_type)
2584 int ret;
2585 struct btrfs_path *path;
2586 struct btrfs_key key;
2587 struct btrfs_key found_key;
2588 u32 found_type = (u8)-1;
2589 struct extent_buffer *leaf;
2590 struct btrfs_file_extent_item *fi;
2591 u64 extent_start = 0;
2592 u64 extent_num_bytes = 0;
2593 u64 extent_offset = 0;
2594 u64 item_end = 0;
2595 int found_extent;
2596 int del_item;
2597 int pending_del_nr = 0;
2598 int pending_del_slot = 0;
2599 int extent_type = -1;
2600 int encoding;
2601 u64 mask = root->sectorsize - 1;
2603 if (root->ref_cows)
2604 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2605 path = btrfs_alloc_path();
2606 BUG_ON(!path);
2607 path->reada = -1;
2609 /* FIXME, add redo link to tree so we don't leak on crash */
2610 key.objectid = inode->i_ino;
2611 key.offset = (u64)-1;
2612 key.type = (u8)-1;
2614 search_again:
2615 path->leave_spinning = 1;
2616 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2617 if (ret < 0)
2618 goto error;
2620 if (ret > 0) {
2621 /* there are no items in the tree for us to truncate, we're
2622 * done
2624 if (path->slots[0] == 0) {
2625 ret = 0;
2626 goto error;
2628 path->slots[0]--;
2631 while (1) {
2632 fi = NULL;
2633 leaf = path->nodes[0];
2634 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2635 found_type = btrfs_key_type(&found_key);
2636 encoding = 0;
2638 if (found_key.objectid != inode->i_ino)
2639 break;
2641 if (found_type < min_type)
2642 break;
2644 item_end = found_key.offset;
2645 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2646 fi = btrfs_item_ptr(leaf, path->slots[0],
2647 struct btrfs_file_extent_item);
2648 extent_type = btrfs_file_extent_type(leaf, fi);
2649 encoding = btrfs_file_extent_compression(leaf, fi);
2650 encoding |= btrfs_file_extent_encryption(leaf, fi);
2651 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2653 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2654 item_end +=
2655 btrfs_file_extent_num_bytes(leaf, fi);
2656 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2657 item_end += btrfs_file_extent_inline_len(leaf,
2658 fi);
2660 item_end--;
2662 if (item_end < new_size) {
2663 if (found_type == BTRFS_DIR_ITEM_KEY)
2664 found_type = BTRFS_INODE_ITEM_KEY;
2665 else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2666 found_type = BTRFS_EXTENT_DATA_KEY;
2667 else if (found_type == BTRFS_EXTENT_DATA_KEY)
2668 found_type = BTRFS_XATTR_ITEM_KEY;
2669 else if (found_type == BTRFS_XATTR_ITEM_KEY)
2670 found_type = BTRFS_INODE_REF_KEY;
2671 else if (found_type)
2672 found_type--;
2673 else
2674 break;
2675 btrfs_set_key_type(&key, found_type);
2676 goto next;
2678 if (found_key.offset >= new_size)
2679 del_item = 1;
2680 else
2681 del_item = 0;
2682 found_extent = 0;
2684 /* FIXME, shrink the extent if the ref count is only 1 */
2685 if (found_type != BTRFS_EXTENT_DATA_KEY)
2686 goto delete;
2688 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2689 u64 num_dec;
2690 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2691 if (!del_item && !encoding) {
2692 u64 orig_num_bytes =
2693 btrfs_file_extent_num_bytes(leaf, fi);
2694 extent_num_bytes = new_size -
2695 found_key.offset + root->sectorsize - 1;
2696 extent_num_bytes = extent_num_bytes &
2697 ~((u64)root->sectorsize - 1);
2698 btrfs_set_file_extent_num_bytes(leaf, fi,
2699 extent_num_bytes);
2700 num_dec = (orig_num_bytes -
2701 extent_num_bytes);
2702 if (root->ref_cows && extent_start != 0)
2703 inode_sub_bytes(inode, num_dec);
2704 btrfs_mark_buffer_dirty(leaf);
2705 } else {
2706 extent_num_bytes =
2707 btrfs_file_extent_disk_num_bytes(leaf,
2708 fi);
2709 extent_offset = found_key.offset -
2710 btrfs_file_extent_offset(leaf, fi);
2712 /* FIXME blocksize != 4096 */
2713 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2714 if (extent_start != 0) {
2715 found_extent = 1;
2716 if (root->ref_cows)
2717 inode_sub_bytes(inode, num_dec);
2720 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2722 * we can't truncate inline items that have had
2723 * special encodings
2725 if (!del_item &&
2726 btrfs_file_extent_compression(leaf, fi) == 0 &&
2727 btrfs_file_extent_encryption(leaf, fi) == 0 &&
2728 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2729 u32 size = new_size - found_key.offset;
2731 if (root->ref_cows) {
2732 inode_sub_bytes(inode, item_end + 1 -
2733 new_size);
2735 size =
2736 btrfs_file_extent_calc_inline_size(size);
2737 ret = btrfs_truncate_item(trans, root, path,
2738 size, 1);
2739 BUG_ON(ret);
2740 } else if (root->ref_cows) {
2741 inode_sub_bytes(inode, item_end + 1 -
2742 found_key.offset);
2745 delete:
2746 if (del_item) {
2747 if (!pending_del_nr) {
2748 /* no pending yet, add ourselves */
2749 pending_del_slot = path->slots[0];
2750 pending_del_nr = 1;
2751 } else if (pending_del_nr &&
2752 path->slots[0] + 1 == pending_del_slot) {
2753 /* hop on the pending chunk */
2754 pending_del_nr++;
2755 pending_del_slot = path->slots[0];
2756 } else {
2757 BUG();
2759 } else {
2760 break;
2762 if (found_extent && root->ref_cows) {
2763 btrfs_set_path_blocking(path);
2764 ret = btrfs_free_extent(trans, root, extent_start,
2765 extent_num_bytes, 0,
2766 btrfs_header_owner(leaf),
2767 inode->i_ino, extent_offset);
2768 BUG_ON(ret);
2770 next:
2771 if (path->slots[0] == 0) {
2772 if (pending_del_nr)
2773 goto del_pending;
2774 btrfs_release_path(root, path);
2775 if (found_type == BTRFS_INODE_ITEM_KEY)
2776 break;
2777 goto search_again;
2780 path->slots[0]--;
2781 if (pending_del_nr &&
2782 path->slots[0] + 1 != pending_del_slot) {
2783 struct btrfs_key debug;
2784 del_pending:
2785 btrfs_item_key_to_cpu(path->nodes[0], &debug,
2786 pending_del_slot);
2787 ret = btrfs_del_items(trans, root, path,
2788 pending_del_slot,
2789 pending_del_nr);
2790 BUG_ON(ret);
2791 pending_del_nr = 0;
2792 btrfs_release_path(root, path);
2793 if (found_type == BTRFS_INODE_ITEM_KEY)
2794 break;
2795 goto search_again;
2798 ret = 0;
2799 error:
2800 if (pending_del_nr) {
2801 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2802 pending_del_nr);
2804 btrfs_free_path(path);
2805 return ret;
2809 * taken from block_truncate_page, but does cow as it zeros out
2810 * any bytes left in the last page in the file.
2812 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2814 struct inode *inode = mapping->host;
2815 struct btrfs_root *root = BTRFS_I(inode)->root;
2816 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2817 struct btrfs_ordered_extent *ordered;
2818 char *kaddr;
2819 u32 blocksize = root->sectorsize;
2820 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2821 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2822 struct page *page;
2823 int ret = 0;
2824 u64 page_start;
2825 u64 page_end;
2827 if ((offset & (blocksize - 1)) == 0)
2828 goto out;
2830 ret = -ENOMEM;
2831 again:
2832 page = grab_cache_page(mapping, index);
2833 if (!page)
2834 goto out;
2836 page_start = page_offset(page);
2837 page_end = page_start + PAGE_CACHE_SIZE - 1;
2839 if (!PageUptodate(page)) {
2840 ret = btrfs_readpage(NULL, page);
2841 lock_page(page);
2842 if (page->mapping != mapping) {
2843 unlock_page(page);
2844 page_cache_release(page);
2845 goto again;
2847 if (!PageUptodate(page)) {
2848 ret = -EIO;
2849 goto out_unlock;
2852 wait_on_page_writeback(page);
2854 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2855 set_page_extent_mapped(page);
2857 ordered = btrfs_lookup_ordered_extent(inode, page_start);
2858 if (ordered) {
2859 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2860 unlock_page(page);
2861 page_cache_release(page);
2862 btrfs_start_ordered_extent(inode, ordered, 1);
2863 btrfs_put_ordered_extent(ordered);
2864 goto again;
2867 btrfs_set_extent_delalloc(inode, page_start, page_end);
2868 ret = 0;
2869 if (offset != PAGE_CACHE_SIZE) {
2870 kaddr = kmap(page);
2871 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2872 flush_dcache_page(page);
2873 kunmap(page);
2875 ClearPageChecked(page);
2876 set_page_dirty(page);
2877 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2879 out_unlock:
2880 unlock_page(page);
2881 page_cache_release(page);
2882 out:
2883 return ret;
2886 int btrfs_cont_expand(struct inode *inode, loff_t size)
2888 struct btrfs_trans_handle *trans;
2889 struct btrfs_root *root = BTRFS_I(inode)->root;
2890 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2891 struct extent_map *em;
2892 u64 mask = root->sectorsize - 1;
2893 u64 hole_start = (inode->i_size + mask) & ~mask;
2894 u64 block_end = (size + mask) & ~mask;
2895 u64 last_byte;
2896 u64 cur_offset;
2897 u64 hole_size;
2898 int err;
2900 if (size <= hole_start)
2901 return 0;
2903 err = btrfs_check_metadata_free_space(root);
2904 if (err)
2905 return err;
2907 btrfs_truncate_page(inode->i_mapping, inode->i_size);
2909 while (1) {
2910 struct btrfs_ordered_extent *ordered;
2911 btrfs_wait_ordered_range(inode, hole_start,
2912 block_end - hole_start);
2913 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2914 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2915 if (!ordered)
2916 break;
2917 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2918 btrfs_put_ordered_extent(ordered);
2921 trans = btrfs_start_transaction(root, 1);
2922 btrfs_set_trans_block_group(trans, inode);
2924 cur_offset = hole_start;
2925 while (1) {
2926 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2927 block_end - cur_offset, 0);
2928 BUG_ON(IS_ERR(em) || !em);
2929 last_byte = min(extent_map_end(em), block_end);
2930 last_byte = (last_byte + mask) & ~mask;
2931 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2932 u64 hint_byte = 0;
2933 hole_size = last_byte - cur_offset;
2934 err = btrfs_drop_extents(trans, root, inode,
2935 cur_offset,
2936 cur_offset + hole_size,
2937 block_end,
2938 cur_offset, &hint_byte);
2939 if (err)
2940 break;
2941 err = btrfs_insert_file_extent(trans, root,
2942 inode->i_ino, cur_offset, 0,
2943 0, hole_size, 0, hole_size,
2944 0, 0, 0);
2945 btrfs_drop_extent_cache(inode, hole_start,
2946 last_byte - 1, 0);
2948 free_extent_map(em);
2949 cur_offset = last_byte;
2950 if (err || cur_offset >= block_end)
2951 break;
2954 btrfs_end_transaction(trans, root);
2955 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2956 return err;
2959 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2961 struct inode *inode = dentry->d_inode;
2962 int err;
2964 err = inode_change_ok(inode, attr);
2965 if (err)
2966 return err;
2968 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
2969 if (attr->ia_size > inode->i_size) {
2970 err = btrfs_cont_expand(inode, attr->ia_size);
2971 if (err)
2972 return err;
2973 } else if (inode->i_size > 0 &&
2974 attr->ia_size == 0) {
2976 /* we're truncating a file that used to have good
2977 * data down to zero. Make sure it gets into
2978 * the ordered flush list so that any new writes
2979 * get down to disk quickly.
2981 BTRFS_I(inode)->ordered_data_close = 1;
2985 err = inode_setattr(inode, attr);
2987 if (!err && ((attr->ia_valid & ATTR_MODE)))
2988 err = btrfs_acl_chmod(inode);
2989 return err;
2992 void btrfs_delete_inode(struct inode *inode)
2994 struct btrfs_trans_handle *trans;
2995 struct btrfs_root *root = BTRFS_I(inode)->root;
2996 unsigned long nr;
2997 int ret;
2999 truncate_inode_pages(&inode->i_data, 0);
3000 if (is_bad_inode(inode)) {
3001 btrfs_orphan_del(NULL, inode);
3002 goto no_delete;
3004 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3006 btrfs_i_size_write(inode, 0);
3007 trans = btrfs_join_transaction(root, 1);
3009 btrfs_set_trans_block_group(trans, inode);
3010 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
3011 if (ret) {
3012 btrfs_orphan_del(NULL, inode);
3013 goto no_delete_lock;
3016 btrfs_orphan_del(trans, inode);
3018 nr = trans->blocks_used;
3019 clear_inode(inode);
3021 btrfs_end_transaction(trans, root);
3022 btrfs_btree_balance_dirty(root, nr);
3023 return;
3025 no_delete_lock:
3026 nr = trans->blocks_used;
3027 btrfs_end_transaction(trans, root);
3028 btrfs_btree_balance_dirty(root, nr);
3029 no_delete:
3030 clear_inode(inode);
3034 * this returns the key found in the dir entry in the location pointer.
3035 * If no dir entries were found, location->objectid is 0.
3037 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3038 struct btrfs_key *location)
3040 const char *name = dentry->d_name.name;
3041 int namelen = dentry->d_name.len;
3042 struct btrfs_dir_item *di;
3043 struct btrfs_path *path;
3044 struct btrfs_root *root = BTRFS_I(dir)->root;
3045 int ret = 0;
3047 path = btrfs_alloc_path();
3048 BUG_ON(!path);
3050 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3051 namelen, 0);
3052 if (IS_ERR(di))
3053 ret = PTR_ERR(di);
3055 if (!di || IS_ERR(di))
3056 goto out_err;
3058 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3059 out:
3060 btrfs_free_path(path);
3061 return ret;
3062 out_err:
3063 location->objectid = 0;
3064 goto out;
3068 * when we hit a tree root in a directory, the btrfs part of the inode
3069 * needs to be changed to reflect the root directory of the tree root. This
3070 * is kind of like crossing a mount point.
3072 static int fixup_tree_root_location(struct btrfs_root *root,
3073 struct btrfs_key *location,
3074 struct btrfs_root **sub_root,
3075 struct dentry *dentry)
3077 struct btrfs_root_item *ri;
3079 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
3080 return 0;
3081 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
3082 return 0;
3084 *sub_root = btrfs_read_fs_root(root->fs_info, location,
3085 dentry->d_name.name,
3086 dentry->d_name.len);
3087 if (IS_ERR(*sub_root))
3088 return PTR_ERR(*sub_root);
3090 ri = &(*sub_root)->root_item;
3091 location->objectid = btrfs_root_dirid(ri);
3092 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3093 location->offset = 0;
3095 return 0;
3098 static void inode_tree_add(struct inode *inode)
3100 struct btrfs_root *root = BTRFS_I(inode)->root;
3101 struct btrfs_inode *entry;
3102 struct rb_node **p;
3103 struct rb_node *parent;
3105 again:
3106 p = &root->inode_tree.rb_node;
3107 parent = NULL;
3109 spin_lock(&root->inode_lock);
3110 while (*p) {
3111 parent = *p;
3112 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3114 if (inode->i_ino < entry->vfs_inode.i_ino)
3115 p = &parent->rb_left;
3116 else if (inode->i_ino > entry->vfs_inode.i_ino)
3117 p = &parent->rb_right;
3118 else {
3119 WARN_ON(!(entry->vfs_inode.i_state &
3120 (I_WILL_FREE | I_FREEING | I_CLEAR)));
3121 rb_erase(parent, &root->inode_tree);
3122 RB_CLEAR_NODE(parent);
3123 spin_unlock(&root->inode_lock);
3124 goto again;
3127 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3128 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3129 spin_unlock(&root->inode_lock);
3132 static void inode_tree_del(struct inode *inode)
3134 struct btrfs_root *root = BTRFS_I(inode)->root;
3136 spin_lock(&root->inode_lock);
3137 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3138 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3139 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3141 spin_unlock(&root->inode_lock);
3144 static noinline void init_btrfs_i(struct inode *inode)
3146 struct btrfs_inode *bi = BTRFS_I(inode);
3148 bi->generation = 0;
3149 bi->sequence = 0;
3150 bi->last_trans = 0;
3151 bi->logged_trans = 0;
3152 bi->delalloc_bytes = 0;
3153 bi->reserved_bytes = 0;
3154 bi->disk_i_size = 0;
3155 bi->flags = 0;
3156 bi->index_cnt = (u64)-1;
3157 bi->last_unlink_trans = 0;
3158 bi->ordered_data_close = 0;
3159 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3160 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3161 inode->i_mapping, GFP_NOFS);
3162 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3163 inode->i_mapping, GFP_NOFS);
3164 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3165 INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
3166 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3167 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3168 mutex_init(&BTRFS_I(inode)->extent_mutex);
3169 mutex_init(&BTRFS_I(inode)->log_mutex);
3172 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3174 struct btrfs_iget_args *args = p;
3175 inode->i_ino = args->ino;
3176 init_btrfs_i(inode);
3177 BTRFS_I(inode)->root = args->root;
3178 btrfs_set_inode_space_info(args->root, inode);
3179 return 0;
3182 static int btrfs_find_actor(struct inode *inode, void *opaque)
3184 struct btrfs_iget_args *args = opaque;
3185 return args->ino == inode->i_ino &&
3186 args->root == BTRFS_I(inode)->root;
3189 static struct inode *btrfs_iget_locked(struct super_block *s,
3190 u64 objectid,
3191 struct btrfs_root *root)
3193 struct inode *inode;
3194 struct btrfs_iget_args args;
3195 args.ino = objectid;
3196 args.root = root;
3198 inode = iget5_locked(s, objectid, btrfs_find_actor,
3199 btrfs_init_locked_inode,
3200 (void *)&args);
3201 return inode;
3204 /* Get an inode object given its location and corresponding root.
3205 * Returns in *is_new if the inode was read from disk
3207 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3208 struct btrfs_root *root)
3210 struct inode *inode;
3212 inode = btrfs_iget_locked(s, location->objectid, root);
3213 if (!inode)
3214 return ERR_PTR(-ENOMEM);
3216 if (inode->i_state & I_NEW) {
3217 BTRFS_I(inode)->root = root;
3218 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3219 btrfs_read_locked_inode(inode);
3221 inode_tree_add(inode);
3222 unlock_new_inode(inode);
3225 return inode;
3228 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3230 struct inode *inode;
3231 struct btrfs_inode *bi = BTRFS_I(dir);
3232 struct btrfs_root *root = bi->root;
3233 struct btrfs_root *sub_root = root;
3234 struct btrfs_key location;
3235 int ret;
3237 if (dentry->d_name.len > BTRFS_NAME_LEN)
3238 return ERR_PTR(-ENAMETOOLONG);
3240 ret = btrfs_inode_by_name(dir, dentry, &location);
3242 if (ret < 0)
3243 return ERR_PTR(ret);
3245 inode = NULL;
3246 if (location.objectid) {
3247 ret = fixup_tree_root_location(root, &location, &sub_root,
3248 dentry);
3249 if (ret < 0)
3250 return ERR_PTR(ret);
3251 if (ret > 0)
3252 return ERR_PTR(-ENOENT);
3253 inode = btrfs_iget(dir->i_sb, &location, sub_root);
3254 if (IS_ERR(inode))
3255 return ERR_CAST(inode);
3257 return inode;
3260 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3261 struct nameidata *nd)
3263 struct inode *inode;
3265 if (dentry->d_name.len > BTRFS_NAME_LEN)
3266 return ERR_PTR(-ENAMETOOLONG);
3268 inode = btrfs_lookup_dentry(dir, dentry);
3269 if (IS_ERR(inode))
3270 return ERR_CAST(inode);
3272 return d_splice_alias(inode, dentry);
3275 static unsigned char btrfs_filetype_table[] = {
3276 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3279 static int btrfs_real_readdir(struct file *filp, void *dirent,
3280 filldir_t filldir)
3282 struct inode *inode = filp->f_dentry->d_inode;
3283 struct btrfs_root *root = BTRFS_I(inode)->root;
3284 struct btrfs_item *item;
3285 struct btrfs_dir_item *di;
3286 struct btrfs_key key;
3287 struct btrfs_key found_key;
3288 struct btrfs_path *path;
3289 int ret;
3290 u32 nritems;
3291 struct extent_buffer *leaf;
3292 int slot;
3293 int advance;
3294 unsigned char d_type;
3295 int over = 0;
3296 u32 di_cur;
3297 u32 di_total;
3298 u32 di_len;
3299 int key_type = BTRFS_DIR_INDEX_KEY;
3300 char tmp_name[32];
3301 char *name_ptr;
3302 int name_len;
3304 /* FIXME, use a real flag for deciding about the key type */
3305 if (root->fs_info->tree_root == root)
3306 key_type = BTRFS_DIR_ITEM_KEY;
3308 /* special case for "." */
3309 if (filp->f_pos == 0) {
3310 over = filldir(dirent, ".", 1,
3311 1, inode->i_ino,
3312 DT_DIR);
3313 if (over)
3314 return 0;
3315 filp->f_pos = 1;
3317 /* special case for .., just use the back ref */
3318 if (filp->f_pos == 1) {
3319 u64 pino = parent_ino(filp->f_path.dentry);
3320 over = filldir(dirent, "..", 2,
3321 2, pino, DT_DIR);
3322 if (over)
3323 return 0;
3324 filp->f_pos = 2;
3326 path = btrfs_alloc_path();
3327 path->reada = 2;
3329 btrfs_set_key_type(&key, key_type);
3330 key.offset = filp->f_pos;
3331 key.objectid = inode->i_ino;
3333 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3334 if (ret < 0)
3335 goto err;
3336 advance = 0;
3338 while (1) {
3339 leaf = path->nodes[0];
3340 nritems = btrfs_header_nritems(leaf);
3341 slot = path->slots[0];
3342 if (advance || slot >= nritems) {
3343 if (slot >= nritems - 1) {
3344 ret = btrfs_next_leaf(root, path);
3345 if (ret)
3346 break;
3347 leaf = path->nodes[0];
3348 nritems = btrfs_header_nritems(leaf);
3349 slot = path->slots[0];
3350 } else {
3351 slot++;
3352 path->slots[0]++;
3356 advance = 1;
3357 item = btrfs_item_nr(leaf, slot);
3358 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3360 if (found_key.objectid != key.objectid)
3361 break;
3362 if (btrfs_key_type(&found_key) != key_type)
3363 break;
3364 if (found_key.offset < filp->f_pos)
3365 continue;
3367 filp->f_pos = found_key.offset;
3369 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3370 di_cur = 0;
3371 di_total = btrfs_item_size(leaf, item);
3373 while (di_cur < di_total) {
3374 struct btrfs_key location;
3376 name_len = btrfs_dir_name_len(leaf, di);
3377 if (name_len <= sizeof(tmp_name)) {
3378 name_ptr = tmp_name;
3379 } else {
3380 name_ptr = kmalloc(name_len, GFP_NOFS);
3381 if (!name_ptr) {
3382 ret = -ENOMEM;
3383 goto err;
3386 read_extent_buffer(leaf, name_ptr,
3387 (unsigned long)(di + 1), name_len);
3389 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3390 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3392 /* is this a reference to our own snapshot? If so
3393 * skip it
3395 if (location.type == BTRFS_ROOT_ITEM_KEY &&
3396 location.objectid == root->root_key.objectid) {
3397 over = 0;
3398 goto skip;
3400 over = filldir(dirent, name_ptr, name_len,
3401 found_key.offset, location.objectid,
3402 d_type);
3404 skip:
3405 if (name_ptr != tmp_name)
3406 kfree(name_ptr);
3408 if (over)
3409 goto nopos;
3410 di_len = btrfs_dir_name_len(leaf, di) +
3411 btrfs_dir_data_len(leaf, di) + sizeof(*di);
3412 di_cur += di_len;
3413 di = (struct btrfs_dir_item *)((char *)di + di_len);
3417 /* Reached end of directory/root. Bump pos past the last item. */
3418 if (key_type == BTRFS_DIR_INDEX_KEY)
3419 filp->f_pos = INT_LIMIT(off_t);
3420 else
3421 filp->f_pos++;
3422 nopos:
3423 ret = 0;
3424 err:
3425 btrfs_free_path(path);
3426 return ret;
3429 int btrfs_write_inode(struct inode *inode, int wait)
3431 struct btrfs_root *root = BTRFS_I(inode)->root;
3432 struct btrfs_trans_handle *trans;
3433 int ret = 0;
3435 if (root->fs_info->btree_inode == inode)
3436 return 0;
3438 if (wait) {
3439 trans = btrfs_join_transaction(root, 1);
3440 btrfs_set_trans_block_group(trans, inode);
3441 ret = btrfs_commit_transaction(trans, root);
3443 return ret;
3447 * This is somewhat expensive, updating the tree every time the
3448 * inode changes. But, it is most likely to find the inode in cache.
3449 * FIXME, needs more benchmarking...there are no reasons other than performance
3450 * to keep or drop this code.
3452 void btrfs_dirty_inode(struct inode *inode)
3454 struct btrfs_root *root = BTRFS_I(inode)->root;
3455 struct btrfs_trans_handle *trans;
3457 trans = btrfs_join_transaction(root, 1);
3458 btrfs_set_trans_block_group(trans, inode);
3459 btrfs_update_inode(trans, root, inode);
3460 btrfs_end_transaction(trans, root);
3464 * find the highest existing sequence number in a directory
3465 * and then set the in-memory index_cnt variable to reflect
3466 * free sequence numbers
3468 static int btrfs_set_inode_index_count(struct inode *inode)
3470 struct btrfs_root *root = BTRFS_I(inode)->root;
3471 struct btrfs_key key, found_key;
3472 struct btrfs_path *path;
3473 struct extent_buffer *leaf;
3474 int ret;
3476 key.objectid = inode->i_ino;
3477 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3478 key.offset = (u64)-1;
3480 path = btrfs_alloc_path();
3481 if (!path)
3482 return -ENOMEM;
3484 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3485 if (ret < 0)
3486 goto out;
3487 /* FIXME: we should be able to handle this */
3488 if (ret == 0)
3489 goto out;
3490 ret = 0;
3493 * MAGIC NUMBER EXPLANATION:
3494 * since we search a directory based on f_pos we have to start at 2
3495 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3496 * else has to start at 2
3498 if (path->slots[0] == 0) {
3499 BTRFS_I(inode)->index_cnt = 2;
3500 goto out;
3503 path->slots[0]--;
3505 leaf = path->nodes[0];
3506 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3508 if (found_key.objectid != inode->i_ino ||
3509 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3510 BTRFS_I(inode)->index_cnt = 2;
3511 goto out;
3514 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3515 out:
3516 btrfs_free_path(path);
3517 return ret;
3521 * helper to find a free sequence number in a given directory. This current
3522 * code is very simple, later versions will do smarter things in the btree
3524 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3526 int ret = 0;
3528 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3529 ret = btrfs_set_inode_index_count(dir);
3530 if (ret)
3531 return ret;
3534 *index = BTRFS_I(dir)->index_cnt;
3535 BTRFS_I(dir)->index_cnt++;
3537 return ret;
3540 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3541 struct btrfs_root *root,
3542 struct inode *dir,
3543 const char *name, int name_len,
3544 u64 ref_objectid, u64 objectid,
3545 u64 alloc_hint, int mode, u64 *index)
3547 struct inode *inode;
3548 struct btrfs_inode_item *inode_item;
3549 struct btrfs_key *location;
3550 struct btrfs_path *path;
3551 struct btrfs_inode_ref *ref;
3552 struct btrfs_key key[2];
3553 u32 sizes[2];
3554 unsigned long ptr;
3555 int ret;
3556 int owner;
3558 path = btrfs_alloc_path();
3559 BUG_ON(!path);
3561 inode = new_inode(root->fs_info->sb);
3562 if (!inode)
3563 return ERR_PTR(-ENOMEM);
3565 if (dir) {
3566 ret = btrfs_set_inode_index(dir, index);
3567 if (ret) {
3568 iput(inode);
3569 return ERR_PTR(ret);
3573 * index_cnt is ignored for everything but a dir,
3574 * btrfs_get_inode_index_count has an explanation for the magic
3575 * number
3577 init_btrfs_i(inode);
3578 BTRFS_I(inode)->index_cnt = 2;
3579 BTRFS_I(inode)->root = root;
3580 BTRFS_I(inode)->generation = trans->transid;
3581 btrfs_set_inode_space_info(root, inode);
3583 if (mode & S_IFDIR)
3584 owner = 0;
3585 else
3586 owner = 1;
3587 BTRFS_I(inode)->block_group =
3588 btrfs_find_block_group(root, 0, alloc_hint, owner);
3590 key[0].objectid = objectid;
3591 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3592 key[0].offset = 0;
3594 key[1].objectid = objectid;
3595 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3596 key[1].offset = ref_objectid;
3598 sizes[0] = sizeof(struct btrfs_inode_item);
3599 sizes[1] = name_len + sizeof(*ref);
3601 path->leave_spinning = 1;
3602 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3603 if (ret != 0)
3604 goto fail;
3606 if (objectid > root->highest_inode)
3607 root->highest_inode = objectid;
3609 inode->i_uid = current_fsuid();
3611 if (dir && (dir->i_mode & S_ISGID)) {
3612 inode->i_gid = dir->i_gid;
3613 if (S_ISDIR(mode))
3614 mode |= S_ISGID;
3615 } else
3616 inode->i_gid = current_fsgid();
3618 inode->i_mode = mode;
3619 inode->i_ino = objectid;
3620 inode_set_bytes(inode, 0);
3621 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3622 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3623 struct btrfs_inode_item);
3624 fill_inode_item(trans, path->nodes[0], inode_item, inode);
3626 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3627 struct btrfs_inode_ref);
3628 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
3629 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
3630 ptr = (unsigned long)(ref + 1);
3631 write_extent_buffer(path->nodes[0], name, ptr, name_len);
3633 btrfs_mark_buffer_dirty(path->nodes[0]);
3634 btrfs_free_path(path);
3636 location = &BTRFS_I(inode)->location;
3637 location->objectid = objectid;
3638 location->offset = 0;
3639 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3641 btrfs_inherit_iflags(inode, dir);
3643 if ((mode & S_IFREG)) {
3644 if (btrfs_test_opt(root, NODATASUM))
3645 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
3646 if (btrfs_test_opt(root, NODATACOW))
3647 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
3650 insert_inode_hash(inode);
3651 inode_tree_add(inode);
3652 return inode;
3653 fail:
3654 if (dir)
3655 BTRFS_I(dir)->index_cnt--;
3656 btrfs_free_path(path);
3657 iput(inode);
3658 return ERR_PTR(ret);
3661 static inline u8 btrfs_inode_type(struct inode *inode)
3663 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3667 * utility function to add 'inode' into 'parent_inode' with
3668 * a give name and a given sequence number.
3669 * if 'add_backref' is true, also insert a backref from the
3670 * inode to the parent directory.
3672 int btrfs_add_link(struct btrfs_trans_handle *trans,
3673 struct inode *parent_inode, struct inode *inode,
3674 const char *name, int name_len, int add_backref, u64 index)
3676 int ret;
3677 struct btrfs_key key;
3678 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
3680 key.objectid = inode->i_ino;
3681 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3682 key.offset = 0;
3684 ret = btrfs_insert_dir_item(trans, root, name, name_len,
3685 parent_inode->i_ino,
3686 &key, btrfs_inode_type(inode),
3687 index);
3688 if (ret == 0) {
3689 if (add_backref) {
3690 ret = btrfs_insert_inode_ref(trans, root,
3691 name, name_len,
3692 inode->i_ino,
3693 parent_inode->i_ino,
3694 index);
3696 btrfs_i_size_write(parent_inode, parent_inode->i_size +
3697 name_len * 2);
3698 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
3699 ret = btrfs_update_inode(trans, root, parent_inode);
3701 return ret;
3704 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
3705 struct dentry *dentry, struct inode *inode,
3706 int backref, u64 index)
3708 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3709 inode, dentry->d_name.name,
3710 dentry->d_name.len, backref, index);
3711 if (!err) {
3712 d_instantiate(dentry, inode);
3713 return 0;
3715 if (err > 0)
3716 err = -EEXIST;
3717 return err;
3720 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3721 int mode, dev_t rdev)
3723 struct btrfs_trans_handle *trans;
3724 struct btrfs_root *root = BTRFS_I(dir)->root;
3725 struct inode *inode = NULL;
3726 int err;
3727 int drop_inode = 0;
3728 u64 objectid;
3729 unsigned long nr = 0;
3730 u64 index = 0;
3732 if (!new_valid_dev(rdev))
3733 return -EINVAL;
3735 err = btrfs_check_metadata_free_space(root);
3736 if (err)
3737 goto fail;
3739 trans = btrfs_start_transaction(root, 1);
3740 btrfs_set_trans_block_group(trans, dir);
3742 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3743 if (err) {
3744 err = -ENOSPC;
3745 goto out_unlock;
3748 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3749 dentry->d_name.len,
3750 dentry->d_parent->d_inode->i_ino, objectid,
3751 BTRFS_I(dir)->block_group, mode, &index);
3752 err = PTR_ERR(inode);
3753 if (IS_ERR(inode))
3754 goto out_unlock;
3756 err = btrfs_init_inode_security(inode, dir);
3757 if (err) {
3758 drop_inode = 1;
3759 goto out_unlock;
3762 btrfs_set_trans_block_group(trans, inode);
3763 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3764 if (err)
3765 drop_inode = 1;
3766 else {
3767 inode->i_op = &btrfs_special_inode_operations;
3768 init_special_inode(inode, inode->i_mode, rdev);
3769 btrfs_update_inode(trans, root, inode);
3771 btrfs_update_inode_block_group(trans, inode);
3772 btrfs_update_inode_block_group(trans, dir);
3773 out_unlock:
3774 nr = trans->blocks_used;
3775 btrfs_end_transaction_throttle(trans, root);
3776 fail:
3777 if (drop_inode) {
3778 inode_dec_link_count(inode);
3779 iput(inode);
3781 btrfs_btree_balance_dirty(root, nr);
3782 return err;
3785 static int btrfs_create(struct inode *dir, struct dentry *dentry,
3786 int mode, struct nameidata *nd)
3788 struct btrfs_trans_handle *trans;
3789 struct btrfs_root *root = BTRFS_I(dir)->root;
3790 struct inode *inode = NULL;
3791 int err;
3792 int drop_inode = 0;
3793 unsigned long nr = 0;
3794 u64 objectid;
3795 u64 index = 0;
3797 err = btrfs_check_metadata_free_space(root);
3798 if (err)
3799 goto fail;
3800 trans = btrfs_start_transaction(root, 1);
3801 btrfs_set_trans_block_group(trans, dir);
3803 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3804 if (err) {
3805 err = -ENOSPC;
3806 goto out_unlock;
3809 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3810 dentry->d_name.len,
3811 dentry->d_parent->d_inode->i_ino,
3812 objectid, BTRFS_I(dir)->block_group, mode,
3813 &index);
3814 err = PTR_ERR(inode);
3815 if (IS_ERR(inode))
3816 goto out_unlock;
3818 err = btrfs_init_inode_security(inode, dir);
3819 if (err) {
3820 drop_inode = 1;
3821 goto out_unlock;
3824 btrfs_set_trans_block_group(trans, inode);
3825 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3826 if (err)
3827 drop_inode = 1;
3828 else {
3829 inode->i_mapping->a_ops = &btrfs_aops;
3830 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3831 inode->i_fop = &btrfs_file_operations;
3832 inode->i_op = &btrfs_file_inode_operations;
3833 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3835 btrfs_update_inode_block_group(trans, inode);
3836 btrfs_update_inode_block_group(trans, dir);
3837 out_unlock:
3838 nr = trans->blocks_used;
3839 btrfs_end_transaction_throttle(trans, root);
3840 fail:
3841 if (drop_inode) {
3842 inode_dec_link_count(inode);
3843 iput(inode);
3845 btrfs_btree_balance_dirty(root, nr);
3846 return err;
3849 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3850 struct dentry *dentry)
3852 struct btrfs_trans_handle *trans;
3853 struct btrfs_root *root = BTRFS_I(dir)->root;
3854 struct inode *inode = old_dentry->d_inode;
3855 u64 index;
3856 unsigned long nr = 0;
3857 int err;
3858 int drop_inode = 0;
3860 if (inode->i_nlink == 0)
3861 return -ENOENT;
3863 btrfs_inc_nlink(inode);
3864 err = btrfs_check_metadata_free_space(root);
3865 if (err)
3866 goto fail;
3867 err = btrfs_set_inode_index(dir, &index);
3868 if (err)
3869 goto fail;
3871 trans = btrfs_start_transaction(root, 1);
3873 btrfs_set_trans_block_group(trans, dir);
3874 atomic_inc(&inode->i_count);
3876 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
3878 if (err)
3879 drop_inode = 1;
3881 btrfs_update_inode_block_group(trans, dir);
3882 err = btrfs_update_inode(trans, root, inode);
3884 if (err)
3885 drop_inode = 1;
3887 nr = trans->blocks_used;
3889 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
3890 btrfs_end_transaction_throttle(trans, root);
3891 fail:
3892 if (drop_inode) {
3893 inode_dec_link_count(inode);
3894 iput(inode);
3896 btrfs_btree_balance_dirty(root, nr);
3897 return err;
3900 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3902 struct inode *inode = NULL;
3903 struct btrfs_trans_handle *trans;
3904 struct btrfs_root *root = BTRFS_I(dir)->root;
3905 int err = 0;
3906 int drop_on_err = 0;
3907 u64 objectid = 0;
3908 u64 index = 0;
3909 unsigned long nr = 1;
3911 err = btrfs_check_metadata_free_space(root);
3912 if (err)
3913 goto out_unlock;
3915 trans = btrfs_start_transaction(root, 1);
3916 btrfs_set_trans_block_group(trans, dir);
3918 if (IS_ERR(trans)) {
3919 err = PTR_ERR(trans);
3920 goto out_unlock;
3923 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3924 if (err) {
3925 err = -ENOSPC;
3926 goto out_unlock;
3929 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3930 dentry->d_name.len,
3931 dentry->d_parent->d_inode->i_ino, objectid,
3932 BTRFS_I(dir)->block_group, S_IFDIR | mode,
3933 &index);
3934 if (IS_ERR(inode)) {
3935 err = PTR_ERR(inode);
3936 goto out_fail;
3939 drop_on_err = 1;
3941 err = btrfs_init_inode_security(inode, dir);
3942 if (err)
3943 goto out_fail;
3945 inode->i_op = &btrfs_dir_inode_operations;
3946 inode->i_fop = &btrfs_dir_file_operations;
3947 btrfs_set_trans_block_group(trans, inode);
3949 btrfs_i_size_write(inode, 0);
3950 err = btrfs_update_inode(trans, root, inode);
3951 if (err)
3952 goto out_fail;
3954 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3955 inode, dentry->d_name.name,
3956 dentry->d_name.len, 0, index);
3957 if (err)
3958 goto out_fail;
3960 d_instantiate(dentry, inode);
3961 drop_on_err = 0;
3962 btrfs_update_inode_block_group(trans, inode);
3963 btrfs_update_inode_block_group(trans, dir);
3965 out_fail:
3966 nr = trans->blocks_used;
3967 btrfs_end_transaction_throttle(trans, root);
3969 out_unlock:
3970 if (drop_on_err)
3971 iput(inode);
3972 btrfs_btree_balance_dirty(root, nr);
3973 return err;
3976 /* helper for btfs_get_extent. Given an existing extent in the tree,
3977 * and an extent that you want to insert, deal with overlap and insert
3978 * the new extent into the tree.
3980 static int merge_extent_mapping(struct extent_map_tree *em_tree,
3981 struct extent_map *existing,
3982 struct extent_map *em,
3983 u64 map_start, u64 map_len)
3985 u64 start_diff;
3987 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
3988 start_diff = map_start - em->start;
3989 em->start = map_start;
3990 em->len = map_len;
3991 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
3992 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3993 em->block_start += start_diff;
3994 em->block_len -= start_diff;
3996 return add_extent_mapping(em_tree, em);
3999 static noinline int uncompress_inline(struct btrfs_path *path,
4000 struct inode *inode, struct page *page,
4001 size_t pg_offset, u64 extent_offset,
4002 struct btrfs_file_extent_item *item)
4004 int ret;
4005 struct extent_buffer *leaf = path->nodes[0];
4006 char *tmp;
4007 size_t max_size;
4008 unsigned long inline_size;
4009 unsigned long ptr;
4011 WARN_ON(pg_offset != 0);
4012 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4013 inline_size = btrfs_file_extent_inline_item_len(leaf,
4014 btrfs_item_nr(leaf, path->slots[0]));
4015 tmp = kmalloc(inline_size, GFP_NOFS);
4016 ptr = btrfs_file_extent_inline_start(item);
4018 read_extent_buffer(leaf, tmp, ptr, inline_size);
4020 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4021 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4022 inline_size, max_size);
4023 if (ret) {
4024 char *kaddr = kmap_atomic(page, KM_USER0);
4025 unsigned long copy_size = min_t(u64,
4026 PAGE_CACHE_SIZE - pg_offset,
4027 max_size - extent_offset);
4028 memset(kaddr + pg_offset, 0, copy_size);
4029 kunmap_atomic(kaddr, KM_USER0);
4031 kfree(tmp);
4032 return 0;
4036 * a bit scary, this does extent mapping from logical file offset to the disk.
4037 * the ugly parts come from merging extents from the disk with the in-ram
4038 * representation. This gets more complex because of the data=ordered code,
4039 * where the in-ram extents might be locked pending data=ordered completion.
4041 * This also copies inline extents directly into the page.
4044 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4045 size_t pg_offset, u64 start, u64 len,
4046 int create)
4048 int ret;
4049 int err = 0;
4050 u64 bytenr;
4051 u64 extent_start = 0;
4052 u64 extent_end = 0;
4053 u64 objectid = inode->i_ino;
4054 u32 found_type;
4055 struct btrfs_path *path = NULL;
4056 struct btrfs_root *root = BTRFS_I(inode)->root;
4057 struct btrfs_file_extent_item *item;
4058 struct extent_buffer *leaf;
4059 struct btrfs_key found_key;
4060 struct extent_map *em = NULL;
4061 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4062 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4063 struct btrfs_trans_handle *trans = NULL;
4064 int compressed;
4066 again:
4067 spin_lock(&em_tree->lock);
4068 em = lookup_extent_mapping(em_tree, start, len);
4069 if (em)
4070 em->bdev = root->fs_info->fs_devices->latest_bdev;
4071 spin_unlock(&em_tree->lock);
4073 if (em) {
4074 if (em->start > start || em->start + em->len <= start)
4075 free_extent_map(em);
4076 else if (em->block_start == EXTENT_MAP_INLINE && page)
4077 free_extent_map(em);
4078 else
4079 goto out;
4081 em = alloc_extent_map(GFP_NOFS);
4082 if (!em) {
4083 err = -ENOMEM;
4084 goto out;
4086 em->bdev = root->fs_info->fs_devices->latest_bdev;
4087 em->start = EXTENT_MAP_HOLE;
4088 em->orig_start = EXTENT_MAP_HOLE;
4089 em->len = (u64)-1;
4090 em->block_len = (u64)-1;
4092 if (!path) {
4093 path = btrfs_alloc_path();
4094 BUG_ON(!path);
4097 ret = btrfs_lookup_file_extent(trans, root, path,
4098 objectid, start, trans != NULL);
4099 if (ret < 0) {
4100 err = ret;
4101 goto out;
4104 if (ret != 0) {
4105 if (path->slots[0] == 0)
4106 goto not_found;
4107 path->slots[0]--;
4110 leaf = path->nodes[0];
4111 item = btrfs_item_ptr(leaf, path->slots[0],
4112 struct btrfs_file_extent_item);
4113 /* are we inside the extent that was found? */
4114 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4115 found_type = btrfs_key_type(&found_key);
4116 if (found_key.objectid != objectid ||
4117 found_type != BTRFS_EXTENT_DATA_KEY) {
4118 goto not_found;
4121 found_type = btrfs_file_extent_type(leaf, item);
4122 extent_start = found_key.offset;
4123 compressed = btrfs_file_extent_compression(leaf, item);
4124 if (found_type == BTRFS_FILE_EXTENT_REG ||
4125 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4126 extent_end = extent_start +
4127 btrfs_file_extent_num_bytes(leaf, item);
4128 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4129 size_t size;
4130 size = btrfs_file_extent_inline_len(leaf, item);
4131 extent_end = (extent_start + size + root->sectorsize - 1) &
4132 ~((u64)root->sectorsize - 1);
4135 if (start >= extent_end) {
4136 path->slots[0]++;
4137 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4138 ret = btrfs_next_leaf(root, path);
4139 if (ret < 0) {
4140 err = ret;
4141 goto out;
4143 if (ret > 0)
4144 goto not_found;
4145 leaf = path->nodes[0];
4147 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4148 if (found_key.objectid != objectid ||
4149 found_key.type != BTRFS_EXTENT_DATA_KEY)
4150 goto not_found;
4151 if (start + len <= found_key.offset)
4152 goto not_found;
4153 em->start = start;
4154 em->len = found_key.offset - start;
4155 goto not_found_em;
4158 if (found_type == BTRFS_FILE_EXTENT_REG ||
4159 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4160 em->start = extent_start;
4161 em->len = extent_end - extent_start;
4162 em->orig_start = extent_start -
4163 btrfs_file_extent_offset(leaf, item);
4164 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4165 if (bytenr == 0) {
4166 em->block_start = EXTENT_MAP_HOLE;
4167 goto insert;
4169 if (compressed) {
4170 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4171 em->block_start = bytenr;
4172 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4173 item);
4174 } else {
4175 bytenr += btrfs_file_extent_offset(leaf, item);
4176 em->block_start = bytenr;
4177 em->block_len = em->len;
4178 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4179 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4181 goto insert;
4182 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4183 unsigned long ptr;
4184 char *map;
4185 size_t size;
4186 size_t extent_offset;
4187 size_t copy_size;
4189 em->block_start = EXTENT_MAP_INLINE;
4190 if (!page || create) {
4191 em->start = extent_start;
4192 em->len = extent_end - extent_start;
4193 goto out;
4196 size = btrfs_file_extent_inline_len(leaf, item);
4197 extent_offset = page_offset(page) + pg_offset - extent_start;
4198 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4199 size - extent_offset);
4200 em->start = extent_start + extent_offset;
4201 em->len = (copy_size + root->sectorsize - 1) &
4202 ~((u64)root->sectorsize - 1);
4203 em->orig_start = EXTENT_MAP_INLINE;
4204 if (compressed)
4205 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4206 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4207 if (create == 0 && !PageUptodate(page)) {
4208 if (btrfs_file_extent_compression(leaf, item) ==
4209 BTRFS_COMPRESS_ZLIB) {
4210 ret = uncompress_inline(path, inode, page,
4211 pg_offset,
4212 extent_offset, item);
4213 BUG_ON(ret);
4214 } else {
4215 map = kmap(page);
4216 read_extent_buffer(leaf, map + pg_offset, ptr,
4217 copy_size);
4218 kunmap(page);
4220 flush_dcache_page(page);
4221 } else if (create && PageUptodate(page)) {
4222 if (!trans) {
4223 kunmap(page);
4224 free_extent_map(em);
4225 em = NULL;
4226 btrfs_release_path(root, path);
4227 trans = btrfs_join_transaction(root, 1);
4228 goto again;
4230 map = kmap(page);
4231 write_extent_buffer(leaf, map + pg_offset, ptr,
4232 copy_size);
4233 kunmap(page);
4234 btrfs_mark_buffer_dirty(leaf);
4236 set_extent_uptodate(io_tree, em->start,
4237 extent_map_end(em) - 1, GFP_NOFS);
4238 goto insert;
4239 } else {
4240 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4241 WARN_ON(1);
4243 not_found:
4244 em->start = start;
4245 em->len = len;
4246 not_found_em:
4247 em->block_start = EXTENT_MAP_HOLE;
4248 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4249 insert:
4250 btrfs_release_path(root, path);
4251 if (em->start > start || extent_map_end(em) <= start) {
4252 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4253 "[%llu %llu]\n", (unsigned long long)em->start,
4254 (unsigned long long)em->len,
4255 (unsigned long long)start,
4256 (unsigned long long)len);
4257 err = -EIO;
4258 goto out;
4261 err = 0;
4262 spin_lock(&em_tree->lock);
4263 ret = add_extent_mapping(em_tree, em);
4264 /* it is possible that someone inserted the extent into the tree
4265 * while we had the lock dropped. It is also possible that
4266 * an overlapping map exists in the tree
4268 if (ret == -EEXIST) {
4269 struct extent_map *existing;
4271 ret = 0;
4273 existing = lookup_extent_mapping(em_tree, start, len);
4274 if (existing && (existing->start > start ||
4275 existing->start + existing->len <= start)) {
4276 free_extent_map(existing);
4277 existing = NULL;
4279 if (!existing) {
4280 existing = lookup_extent_mapping(em_tree, em->start,
4281 em->len);
4282 if (existing) {
4283 err = merge_extent_mapping(em_tree, existing,
4284 em, start,
4285 root->sectorsize);
4286 free_extent_map(existing);
4287 if (err) {
4288 free_extent_map(em);
4289 em = NULL;
4291 } else {
4292 err = -EIO;
4293 free_extent_map(em);
4294 em = NULL;
4296 } else {
4297 free_extent_map(em);
4298 em = existing;
4299 err = 0;
4302 spin_unlock(&em_tree->lock);
4303 out:
4304 if (path)
4305 btrfs_free_path(path);
4306 if (trans) {
4307 ret = btrfs_end_transaction(trans, root);
4308 if (!err)
4309 err = ret;
4311 if (err) {
4312 free_extent_map(em);
4313 return ERR_PTR(err);
4315 return em;
4318 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4319 const struct iovec *iov, loff_t offset,
4320 unsigned long nr_segs)
4322 return -EINVAL;
4325 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4326 __u64 start, __u64 len)
4328 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4331 int btrfs_readpage(struct file *file, struct page *page)
4333 struct extent_io_tree *tree;
4334 tree = &BTRFS_I(page->mapping->host)->io_tree;
4335 return extent_read_full_page(tree, page, btrfs_get_extent);
4338 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4340 struct extent_io_tree *tree;
4343 if (current->flags & PF_MEMALLOC) {
4344 redirty_page_for_writepage(wbc, page);
4345 unlock_page(page);
4346 return 0;
4348 tree = &BTRFS_I(page->mapping->host)->io_tree;
4349 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4352 int btrfs_writepages(struct address_space *mapping,
4353 struct writeback_control *wbc)
4355 struct extent_io_tree *tree;
4357 tree = &BTRFS_I(mapping->host)->io_tree;
4358 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4361 static int
4362 btrfs_readpages(struct file *file, struct address_space *mapping,
4363 struct list_head *pages, unsigned nr_pages)
4365 struct extent_io_tree *tree;
4366 tree = &BTRFS_I(mapping->host)->io_tree;
4367 return extent_readpages(tree, mapping, pages, nr_pages,
4368 btrfs_get_extent);
4370 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4372 struct extent_io_tree *tree;
4373 struct extent_map_tree *map;
4374 int ret;
4376 tree = &BTRFS_I(page->mapping->host)->io_tree;
4377 map = &BTRFS_I(page->mapping->host)->extent_tree;
4378 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4379 if (ret == 1) {
4380 ClearPagePrivate(page);
4381 set_page_private(page, 0);
4382 page_cache_release(page);
4384 return ret;
4387 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4389 if (PageWriteback(page) || PageDirty(page))
4390 return 0;
4391 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
4394 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4396 struct extent_io_tree *tree;
4397 struct btrfs_ordered_extent *ordered;
4398 u64 page_start = page_offset(page);
4399 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4401 wait_on_page_writeback(page);
4402 tree = &BTRFS_I(page->mapping->host)->io_tree;
4403 if (offset) {
4404 btrfs_releasepage(page, GFP_NOFS);
4405 return;
4408 lock_extent(tree, page_start, page_end, GFP_NOFS);
4409 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4410 page_offset(page));
4411 if (ordered) {
4413 * IO on this page will never be started, so we need
4414 * to account for any ordered extents now
4416 clear_extent_bit(tree, page_start, page_end,
4417 EXTENT_DIRTY | EXTENT_DELALLOC |
4418 EXTENT_LOCKED, 1, 0, GFP_NOFS);
4419 btrfs_finish_ordered_io(page->mapping->host,
4420 page_start, page_end);
4421 btrfs_put_ordered_extent(ordered);
4422 lock_extent(tree, page_start, page_end, GFP_NOFS);
4424 clear_extent_bit(tree, page_start, page_end,
4425 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4426 EXTENT_ORDERED,
4427 1, 1, GFP_NOFS);
4428 __btrfs_releasepage(page, GFP_NOFS);
4430 ClearPageChecked(page);
4431 if (PagePrivate(page)) {
4432 ClearPagePrivate(page);
4433 set_page_private(page, 0);
4434 page_cache_release(page);
4439 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4440 * called from a page fault handler when a page is first dirtied. Hence we must
4441 * be careful to check for EOF conditions here. We set the page up correctly
4442 * for a written page which means we get ENOSPC checking when writing into
4443 * holes and correct delalloc and unwritten extent mapping on filesystems that
4444 * support these features.
4446 * We are not allowed to take the i_mutex here so we have to play games to
4447 * protect against truncate races as the page could now be beyond EOF. Because
4448 * vmtruncate() writes the inode size before removing pages, once we have the
4449 * page lock we can determine safely if the page is beyond EOF. If it is not
4450 * beyond EOF, then the page is guaranteed safe against truncation until we
4451 * unlock the page.
4453 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4455 struct page *page = vmf->page;
4456 struct inode *inode = fdentry(vma->vm_file)->d_inode;
4457 struct btrfs_root *root = BTRFS_I(inode)->root;
4458 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4459 struct btrfs_ordered_extent *ordered;
4460 char *kaddr;
4461 unsigned long zero_start;
4462 loff_t size;
4463 int ret;
4464 u64 page_start;
4465 u64 page_end;
4467 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
4468 if (ret) {
4469 if (ret == -ENOMEM)
4470 ret = VM_FAULT_OOM;
4471 else /* -ENOSPC, -EIO, etc */
4472 ret = VM_FAULT_SIGBUS;
4473 goto out;
4476 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
4477 again:
4478 lock_page(page);
4479 size = i_size_read(inode);
4480 page_start = page_offset(page);
4481 page_end = page_start + PAGE_CACHE_SIZE - 1;
4483 if ((page->mapping != inode->i_mapping) ||
4484 (page_start >= size)) {
4485 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4486 /* page got truncated out from underneath us */
4487 goto out_unlock;
4489 wait_on_page_writeback(page);
4491 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4492 set_page_extent_mapped(page);
4495 * we can't set the delalloc bits if there are pending ordered
4496 * extents. Drop our locks and wait for them to finish
4498 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4499 if (ordered) {
4500 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4501 unlock_page(page);
4502 btrfs_start_ordered_extent(inode, ordered, 1);
4503 btrfs_put_ordered_extent(ordered);
4504 goto again;
4507 btrfs_set_extent_delalloc(inode, page_start, page_end);
4508 ret = 0;
4510 /* page is wholly or partially inside EOF */
4511 if (page_start + PAGE_CACHE_SIZE > size)
4512 zero_start = size & ~PAGE_CACHE_MASK;
4513 else
4514 zero_start = PAGE_CACHE_SIZE;
4516 if (zero_start != PAGE_CACHE_SIZE) {
4517 kaddr = kmap(page);
4518 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4519 flush_dcache_page(page);
4520 kunmap(page);
4522 ClearPageChecked(page);
4523 set_page_dirty(page);
4525 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
4526 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4528 out_unlock:
4529 unlock_page(page);
4530 out:
4531 return ret;
4534 static void btrfs_truncate(struct inode *inode)
4536 struct btrfs_root *root = BTRFS_I(inode)->root;
4537 int ret;
4538 struct btrfs_trans_handle *trans;
4539 unsigned long nr;
4540 u64 mask = root->sectorsize - 1;
4542 if (!S_ISREG(inode->i_mode))
4543 return;
4544 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4545 return;
4547 btrfs_truncate_page(inode->i_mapping, inode->i_size);
4548 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
4550 trans = btrfs_start_transaction(root, 1);
4553 * setattr is responsible for setting the ordered_data_close flag,
4554 * but that is only tested during the last file release. That
4555 * could happen well after the next commit, leaving a great big
4556 * window where new writes may get lost if someone chooses to write
4557 * to this file after truncating to zero
4559 * The inode doesn't have any dirty data here, and so if we commit
4560 * this is a noop. If someone immediately starts writing to the inode
4561 * it is very likely we'll catch some of their writes in this
4562 * transaction, and the commit will find this file on the ordered
4563 * data list with good things to send down.
4565 * This is a best effort solution, there is still a window where
4566 * using truncate to replace the contents of the file will
4567 * end up with a zero length file after a crash.
4569 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
4570 btrfs_add_ordered_operation(trans, root, inode);
4572 btrfs_set_trans_block_group(trans, inode);
4573 btrfs_i_size_write(inode, inode->i_size);
4575 ret = btrfs_orphan_add(trans, inode);
4576 if (ret)
4577 goto out;
4578 /* FIXME, add redo link to tree so we don't leak on crash */
4579 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
4580 BTRFS_EXTENT_DATA_KEY);
4581 btrfs_update_inode(trans, root, inode);
4583 ret = btrfs_orphan_del(trans, inode);
4584 BUG_ON(ret);
4586 out:
4587 nr = trans->blocks_used;
4588 ret = btrfs_end_transaction_throttle(trans, root);
4589 BUG_ON(ret);
4590 btrfs_btree_balance_dirty(root, nr);
4594 * create a new subvolume directory/inode (helper for the ioctl).
4596 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
4597 struct btrfs_root *new_root, struct dentry *dentry,
4598 u64 new_dirid, u64 alloc_hint)
4600 struct inode *inode;
4601 int error;
4602 u64 index = 0;
4604 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
4605 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
4606 if (IS_ERR(inode))
4607 return PTR_ERR(inode);
4608 inode->i_op = &btrfs_dir_inode_operations;
4609 inode->i_fop = &btrfs_dir_file_operations;
4611 inode->i_nlink = 1;
4612 btrfs_i_size_write(inode, 0);
4614 error = btrfs_update_inode(trans, new_root, inode);
4615 if (error)
4616 return error;
4618 d_instantiate(dentry, inode);
4619 return 0;
4622 /* helper function for file defrag and space balancing. This
4623 * forces readahead on a given range of bytes in an inode
4625 unsigned long btrfs_force_ra(struct address_space *mapping,
4626 struct file_ra_state *ra, struct file *file,
4627 pgoff_t offset, pgoff_t last_index)
4629 pgoff_t req_size = last_index - offset + 1;
4631 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4632 return offset + req_size;
4635 struct inode *btrfs_alloc_inode(struct super_block *sb)
4637 struct btrfs_inode *ei;
4639 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4640 if (!ei)
4641 return NULL;
4642 ei->last_trans = 0;
4643 ei->logged_trans = 0;
4644 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
4645 INIT_LIST_HEAD(&ei->i_orphan);
4646 INIT_LIST_HEAD(&ei->ordered_operations);
4647 return &ei->vfs_inode;
4650 void btrfs_destroy_inode(struct inode *inode)
4652 struct btrfs_ordered_extent *ordered;
4653 struct btrfs_root *root = BTRFS_I(inode)->root;
4655 WARN_ON(!list_empty(&inode->i_dentry));
4656 WARN_ON(inode->i_data.nrpages);
4659 * Make sure we're properly removed from the ordered operation
4660 * lists.
4662 smp_mb();
4663 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
4664 spin_lock(&root->fs_info->ordered_extent_lock);
4665 list_del_init(&BTRFS_I(inode)->ordered_operations);
4666 spin_unlock(&root->fs_info->ordered_extent_lock);
4669 spin_lock(&root->list_lock);
4670 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4671 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4672 " list\n", inode->i_ino);
4673 dump_stack();
4675 spin_unlock(&root->list_lock);
4677 while (1) {
4678 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4679 if (!ordered)
4680 break;
4681 else {
4682 printk(KERN_ERR "btrfs found ordered "
4683 "extent %llu %llu on inode cleanup\n",
4684 (unsigned long long)ordered->file_offset,
4685 (unsigned long long)ordered->len);
4686 btrfs_remove_ordered_extent(inode, ordered);
4687 btrfs_put_ordered_extent(ordered);
4688 btrfs_put_ordered_extent(ordered);
4691 inode_tree_del(inode);
4692 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
4693 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4696 static void init_once(void *foo)
4698 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4700 inode_init_once(&ei->vfs_inode);
4703 void btrfs_destroy_cachep(void)
4705 if (btrfs_inode_cachep)
4706 kmem_cache_destroy(btrfs_inode_cachep);
4707 if (btrfs_trans_handle_cachep)
4708 kmem_cache_destroy(btrfs_trans_handle_cachep);
4709 if (btrfs_transaction_cachep)
4710 kmem_cache_destroy(btrfs_transaction_cachep);
4711 if (btrfs_path_cachep)
4712 kmem_cache_destroy(btrfs_path_cachep);
4715 int btrfs_init_cachep(void)
4717 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
4718 sizeof(struct btrfs_inode), 0,
4719 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
4720 if (!btrfs_inode_cachep)
4721 goto fail;
4723 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
4724 sizeof(struct btrfs_trans_handle), 0,
4725 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
4726 if (!btrfs_trans_handle_cachep)
4727 goto fail;
4729 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
4730 sizeof(struct btrfs_transaction), 0,
4731 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
4732 if (!btrfs_transaction_cachep)
4733 goto fail;
4735 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
4736 sizeof(struct btrfs_path), 0,
4737 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
4738 if (!btrfs_path_cachep)
4739 goto fail;
4741 return 0;
4742 fail:
4743 btrfs_destroy_cachep();
4744 return -ENOMEM;
4747 static int btrfs_getattr(struct vfsmount *mnt,
4748 struct dentry *dentry, struct kstat *stat)
4750 struct inode *inode = dentry->d_inode;
4751 generic_fillattr(inode, stat);
4752 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
4753 stat->blksize = PAGE_CACHE_SIZE;
4754 stat->blocks = (inode_get_bytes(inode) +
4755 BTRFS_I(inode)->delalloc_bytes) >> 9;
4756 return 0;
4759 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4760 struct inode *new_dir, struct dentry *new_dentry)
4762 struct btrfs_trans_handle *trans;
4763 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4764 struct inode *new_inode = new_dentry->d_inode;
4765 struct inode *old_inode = old_dentry->d_inode;
4766 struct timespec ctime = CURRENT_TIME;
4767 u64 index = 0;
4768 int ret;
4770 /* we're not allowed to rename between subvolumes */
4771 if (BTRFS_I(old_inode)->root->root_key.objectid !=
4772 BTRFS_I(new_dir)->root->root_key.objectid)
4773 return -EXDEV;
4775 if (S_ISDIR(old_inode->i_mode) && new_inode &&
4776 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4777 return -ENOTEMPTY;
4780 /* to rename a snapshot or subvolume, we need to juggle the
4781 * backrefs. This isn't coded yet
4783 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
4784 return -EXDEV;
4786 ret = btrfs_check_metadata_free_space(root);
4787 if (ret)
4788 goto out_unlock;
4791 * we're using rename to replace one file with another.
4792 * and the replacement file is large. Start IO on it now so
4793 * we don't add too much work to the end of the transaction
4795 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
4796 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
4797 filemap_flush(old_inode->i_mapping);
4799 trans = btrfs_start_transaction(root, 1);
4802 * make sure the inode gets flushed if it is replacing
4803 * something.
4805 if (new_inode && new_inode->i_size &&
4806 old_inode && S_ISREG(old_inode->i_mode)) {
4807 btrfs_add_ordered_operation(trans, root, old_inode);
4811 * this is an ugly little race, but the rename is required to make
4812 * sure that if we crash, the inode is either at the old name
4813 * or the new one. pinning the log transaction lets us make sure
4814 * we don't allow a log commit to come in after we unlink the
4815 * name but before we add the new name back in.
4817 btrfs_pin_log_trans(root);
4819 btrfs_set_trans_block_group(trans, new_dir);
4821 btrfs_inc_nlink(old_dentry->d_inode);
4822 old_dir->i_ctime = old_dir->i_mtime = ctime;
4823 new_dir->i_ctime = new_dir->i_mtime = ctime;
4824 old_inode->i_ctime = ctime;
4826 if (old_dentry->d_parent != new_dentry->d_parent)
4827 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
4829 ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4830 old_dentry->d_name.name,
4831 old_dentry->d_name.len);
4832 if (ret)
4833 goto out_fail;
4835 if (new_inode) {
4836 new_inode->i_ctime = CURRENT_TIME;
4837 ret = btrfs_unlink_inode(trans, root, new_dir,
4838 new_dentry->d_inode,
4839 new_dentry->d_name.name,
4840 new_dentry->d_name.len);
4841 if (ret)
4842 goto out_fail;
4843 if (new_inode->i_nlink == 0) {
4844 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4845 if (ret)
4846 goto out_fail;
4850 ret = btrfs_set_inode_index(new_dir, &index);
4851 if (ret)
4852 goto out_fail;
4854 ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4855 old_inode, new_dentry->d_name.name,
4856 new_dentry->d_name.len, 1, index);
4857 if (ret)
4858 goto out_fail;
4860 btrfs_log_new_name(trans, old_inode, old_dir,
4861 new_dentry->d_parent);
4862 out_fail:
4864 /* this btrfs_end_log_trans just allows the current
4865 * log-sub transaction to complete
4867 btrfs_end_log_trans(root);
4868 btrfs_end_transaction_throttle(trans, root);
4869 out_unlock:
4870 return ret;
4874 * some fairly slow code that needs optimization. This walks the list
4875 * of all the inodes with pending delalloc and forces them to disk.
4877 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4879 struct list_head *head = &root->fs_info->delalloc_inodes;
4880 struct btrfs_inode *binode;
4881 struct inode *inode;
4883 if (root->fs_info->sb->s_flags & MS_RDONLY)
4884 return -EROFS;
4886 spin_lock(&root->fs_info->delalloc_lock);
4887 while (!list_empty(head)) {
4888 binode = list_entry(head->next, struct btrfs_inode,
4889 delalloc_inodes);
4890 inode = igrab(&binode->vfs_inode);
4891 if (!inode)
4892 list_del_init(&binode->delalloc_inodes);
4893 spin_unlock(&root->fs_info->delalloc_lock);
4894 if (inode) {
4895 filemap_flush(inode->i_mapping);
4896 iput(inode);
4898 cond_resched();
4899 spin_lock(&root->fs_info->delalloc_lock);
4901 spin_unlock(&root->fs_info->delalloc_lock);
4903 /* the filemap_flush will queue IO into the worker threads, but
4904 * we have to make sure the IO is actually started and that
4905 * ordered extents get created before we return
4907 atomic_inc(&root->fs_info->async_submit_draining);
4908 while (atomic_read(&root->fs_info->nr_async_submits) ||
4909 atomic_read(&root->fs_info->async_delalloc_pages)) {
4910 wait_event(root->fs_info->async_submit_wait,
4911 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
4912 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
4914 atomic_dec(&root->fs_info->async_submit_draining);
4915 return 0;
4918 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4919 const char *symname)
4921 struct btrfs_trans_handle *trans;
4922 struct btrfs_root *root = BTRFS_I(dir)->root;
4923 struct btrfs_path *path;
4924 struct btrfs_key key;
4925 struct inode *inode = NULL;
4926 int err;
4927 int drop_inode = 0;
4928 u64 objectid;
4929 u64 index = 0 ;
4930 int name_len;
4931 int datasize;
4932 unsigned long ptr;
4933 struct btrfs_file_extent_item *ei;
4934 struct extent_buffer *leaf;
4935 unsigned long nr = 0;
4937 name_len = strlen(symname) + 1;
4938 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4939 return -ENAMETOOLONG;
4941 err = btrfs_check_metadata_free_space(root);
4942 if (err)
4943 goto out_fail;
4945 trans = btrfs_start_transaction(root, 1);
4946 btrfs_set_trans_block_group(trans, dir);
4948 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4949 if (err) {
4950 err = -ENOSPC;
4951 goto out_unlock;
4954 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4955 dentry->d_name.len,
4956 dentry->d_parent->d_inode->i_ino, objectid,
4957 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
4958 &index);
4959 err = PTR_ERR(inode);
4960 if (IS_ERR(inode))
4961 goto out_unlock;
4963 err = btrfs_init_inode_security(inode, dir);
4964 if (err) {
4965 drop_inode = 1;
4966 goto out_unlock;
4969 btrfs_set_trans_block_group(trans, inode);
4970 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4971 if (err)
4972 drop_inode = 1;
4973 else {
4974 inode->i_mapping->a_ops = &btrfs_aops;
4975 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4976 inode->i_fop = &btrfs_file_operations;
4977 inode->i_op = &btrfs_file_inode_operations;
4978 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4980 btrfs_update_inode_block_group(trans, inode);
4981 btrfs_update_inode_block_group(trans, dir);
4982 if (drop_inode)
4983 goto out_unlock;
4985 path = btrfs_alloc_path();
4986 BUG_ON(!path);
4987 key.objectid = inode->i_ino;
4988 key.offset = 0;
4989 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
4990 datasize = btrfs_file_extent_calc_inline_size(name_len);
4991 err = btrfs_insert_empty_item(trans, root, path, &key,
4992 datasize);
4993 if (err) {
4994 drop_inode = 1;
4995 goto out_unlock;
4997 leaf = path->nodes[0];
4998 ei = btrfs_item_ptr(leaf, path->slots[0],
4999 struct btrfs_file_extent_item);
5000 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5001 btrfs_set_file_extent_type(leaf, ei,
5002 BTRFS_FILE_EXTENT_INLINE);
5003 btrfs_set_file_extent_encryption(leaf, ei, 0);
5004 btrfs_set_file_extent_compression(leaf, ei, 0);
5005 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5006 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5008 ptr = btrfs_file_extent_inline_start(ei);
5009 write_extent_buffer(leaf, symname, ptr, name_len);
5010 btrfs_mark_buffer_dirty(leaf);
5011 btrfs_free_path(path);
5013 inode->i_op = &btrfs_symlink_inode_operations;
5014 inode->i_mapping->a_ops = &btrfs_symlink_aops;
5015 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5016 inode_set_bytes(inode, name_len);
5017 btrfs_i_size_write(inode, name_len - 1);
5018 err = btrfs_update_inode(trans, root, inode);
5019 if (err)
5020 drop_inode = 1;
5022 out_unlock:
5023 nr = trans->blocks_used;
5024 btrfs_end_transaction_throttle(trans, root);
5025 out_fail:
5026 if (drop_inode) {
5027 inode_dec_link_count(inode);
5028 iput(inode);
5030 btrfs_btree_balance_dirty(root, nr);
5031 return err;
5034 static int prealloc_file_range(struct btrfs_trans_handle *trans,
5035 struct inode *inode, u64 start, u64 end,
5036 u64 locked_end, u64 alloc_hint, int mode)
5038 struct btrfs_root *root = BTRFS_I(inode)->root;
5039 struct btrfs_key ins;
5040 u64 alloc_size;
5041 u64 cur_offset = start;
5042 u64 num_bytes = end - start;
5043 int ret = 0;
5045 while (num_bytes > 0) {
5046 alloc_size = min(num_bytes, root->fs_info->max_extent);
5047 ret = btrfs_reserve_extent(trans, root, alloc_size,
5048 root->sectorsize, 0, alloc_hint,
5049 (u64)-1, &ins, 1);
5050 if (ret) {
5051 WARN_ON(1);
5052 goto out;
5054 ret = insert_reserved_file_extent(trans, inode,
5055 cur_offset, ins.objectid,
5056 ins.offset, ins.offset,
5057 ins.offset, locked_end,
5058 0, 0, 0,
5059 BTRFS_FILE_EXTENT_PREALLOC);
5060 BUG_ON(ret);
5061 num_bytes -= ins.offset;
5062 cur_offset += ins.offset;
5063 alloc_hint = ins.objectid + ins.offset;
5065 out:
5066 if (cur_offset > start) {
5067 inode->i_ctime = CURRENT_TIME;
5068 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
5069 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5070 cur_offset > i_size_read(inode))
5071 btrfs_i_size_write(inode, cur_offset);
5072 ret = btrfs_update_inode(trans, root, inode);
5073 BUG_ON(ret);
5076 return ret;
5079 static long btrfs_fallocate(struct inode *inode, int mode,
5080 loff_t offset, loff_t len)
5082 u64 cur_offset;
5083 u64 last_byte;
5084 u64 alloc_start;
5085 u64 alloc_end;
5086 u64 alloc_hint = 0;
5087 u64 locked_end;
5088 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5089 struct extent_map *em;
5090 struct btrfs_trans_handle *trans;
5091 struct btrfs_root *root;
5092 int ret;
5094 alloc_start = offset & ~mask;
5095 alloc_end = (offset + len + mask) & ~mask;
5098 * wait for ordered IO before we have any locks. We'll loop again
5099 * below with the locks held.
5101 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5103 mutex_lock(&inode->i_mutex);
5104 if (alloc_start > inode->i_size) {
5105 ret = btrfs_cont_expand(inode, alloc_start);
5106 if (ret)
5107 goto out;
5110 root = BTRFS_I(inode)->root;
5112 ret = btrfs_check_data_free_space(root, inode,
5113 alloc_end - alloc_start);
5114 if (ret)
5115 goto out;
5117 locked_end = alloc_end - 1;
5118 while (1) {
5119 struct btrfs_ordered_extent *ordered;
5121 trans = btrfs_start_transaction(BTRFS_I(inode)->root, 1);
5122 if (!trans) {
5123 ret = -EIO;
5124 goto out_free;
5127 /* the extent lock is ordered inside the running
5128 * transaction
5130 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5131 GFP_NOFS);
5132 ordered = btrfs_lookup_first_ordered_extent(inode,
5133 alloc_end - 1);
5134 if (ordered &&
5135 ordered->file_offset + ordered->len > alloc_start &&
5136 ordered->file_offset < alloc_end) {
5137 btrfs_put_ordered_extent(ordered);
5138 unlock_extent(&BTRFS_I(inode)->io_tree,
5139 alloc_start, locked_end, GFP_NOFS);
5140 btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5143 * we can't wait on the range with the transaction
5144 * running or with the extent lock held
5146 btrfs_wait_ordered_range(inode, alloc_start,
5147 alloc_end - alloc_start);
5148 } else {
5149 if (ordered)
5150 btrfs_put_ordered_extent(ordered);
5151 break;
5155 cur_offset = alloc_start;
5156 while (1) {
5157 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5158 alloc_end - cur_offset, 0);
5159 BUG_ON(IS_ERR(em) || !em);
5160 last_byte = min(extent_map_end(em), alloc_end);
5161 last_byte = (last_byte + mask) & ~mask;
5162 if (em->block_start == EXTENT_MAP_HOLE) {
5163 ret = prealloc_file_range(trans, inode, cur_offset,
5164 last_byte, locked_end + 1,
5165 alloc_hint, mode);
5166 if (ret < 0) {
5167 free_extent_map(em);
5168 break;
5171 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5172 alloc_hint = em->block_start;
5173 free_extent_map(em);
5175 cur_offset = last_byte;
5176 if (cur_offset >= alloc_end) {
5177 ret = 0;
5178 break;
5181 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5182 GFP_NOFS);
5184 btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5185 out_free:
5186 btrfs_free_reserved_data_space(root, inode, alloc_end - alloc_start);
5187 out:
5188 mutex_unlock(&inode->i_mutex);
5189 return ret;
5192 static int btrfs_set_page_dirty(struct page *page)
5194 return __set_page_dirty_nobuffers(page);
5197 static int btrfs_permission(struct inode *inode, int mask)
5199 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
5200 return -EACCES;
5201 return generic_permission(inode, mask, btrfs_check_acl);
5204 static struct inode_operations btrfs_dir_inode_operations = {
5205 .getattr = btrfs_getattr,
5206 .lookup = btrfs_lookup,
5207 .create = btrfs_create,
5208 .unlink = btrfs_unlink,
5209 .link = btrfs_link,
5210 .mkdir = btrfs_mkdir,
5211 .rmdir = btrfs_rmdir,
5212 .rename = btrfs_rename,
5213 .symlink = btrfs_symlink,
5214 .setattr = btrfs_setattr,
5215 .mknod = btrfs_mknod,
5216 .setxattr = btrfs_setxattr,
5217 .getxattr = btrfs_getxattr,
5218 .listxattr = btrfs_listxattr,
5219 .removexattr = btrfs_removexattr,
5220 .permission = btrfs_permission,
5222 static struct inode_operations btrfs_dir_ro_inode_operations = {
5223 .lookup = btrfs_lookup,
5224 .permission = btrfs_permission,
5226 static struct file_operations btrfs_dir_file_operations = {
5227 .llseek = generic_file_llseek,
5228 .read = generic_read_dir,
5229 .readdir = btrfs_real_readdir,
5230 .unlocked_ioctl = btrfs_ioctl,
5231 #ifdef CONFIG_COMPAT
5232 .compat_ioctl = btrfs_ioctl,
5233 #endif
5234 .release = btrfs_release_file,
5235 .fsync = btrfs_sync_file,
5238 static struct extent_io_ops btrfs_extent_io_ops = {
5239 .fill_delalloc = run_delalloc_range,
5240 .submit_bio_hook = btrfs_submit_bio_hook,
5241 .merge_bio_hook = btrfs_merge_bio_hook,
5242 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
5243 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
5244 .writepage_start_hook = btrfs_writepage_start_hook,
5245 .readpage_io_failed_hook = btrfs_io_failed_hook,
5246 .set_bit_hook = btrfs_set_bit_hook,
5247 .clear_bit_hook = btrfs_clear_bit_hook,
5251 * btrfs doesn't support the bmap operation because swapfiles
5252 * use bmap to make a mapping of extents in the file. They assume
5253 * these extents won't change over the life of the file and they
5254 * use the bmap result to do IO directly to the drive.
5256 * the btrfs bmap call would return logical addresses that aren't
5257 * suitable for IO and they also will change frequently as COW
5258 * operations happen. So, swapfile + btrfs == corruption.
5260 * For now we're avoiding this by dropping bmap.
5262 static struct address_space_operations btrfs_aops = {
5263 .readpage = btrfs_readpage,
5264 .writepage = btrfs_writepage,
5265 .writepages = btrfs_writepages,
5266 .readpages = btrfs_readpages,
5267 .sync_page = block_sync_page,
5268 .direct_IO = btrfs_direct_IO,
5269 .invalidatepage = btrfs_invalidatepage,
5270 .releasepage = btrfs_releasepage,
5271 .set_page_dirty = btrfs_set_page_dirty,
5274 static struct address_space_operations btrfs_symlink_aops = {
5275 .readpage = btrfs_readpage,
5276 .writepage = btrfs_writepage,
5277 .invalidatepage = btrfs_invalidatepage,
5278 .releasepage = btrfs_releasepage,
5281 static struct inode_operations btrfs_file_inode_operations = {
5282 .truncate = btrfs_truncate,
5283 .getattr = btrfs_getattr,
5284 .setattr = btrfs_setattr,
5285 .setxattr = btrfs_setxattr,
5286 .getxattr = btrfs_getxattr,
5287 .listxattr = btrfs_listxattr,
5288 .removexattr = btrfs_removexattr,
5289 .permission = btrfs_permission,
5290 .fallocate = btrfs_fallocate,
5291 .fiemap = btrfs_fiemap,
5293 static struct inode_operations btrfs_special_inode_operations = {
5294 .getattr = btrfs_getattr,
5295 .setattr = btrfs_setattr,
5296 .permission = btrfs_permission,
5297 .setxattr = btrfs_setxattr,
5298 .getxattr = btrfs_getxattr,
5299 .listxattr = btrfs_listxattr,
5300 .removexattr = btrfs_removexattr,
5302 static struct inode_operations btrfs_symlink_inode_operations = {
5303 .readlink = generic_readlink,
5304 .follow_link = page_follow_link_light,
5305 .put_link = page_put_link,
5306 .permission = btrfs_permission,
5307 .setxattr = btrfs_setxattr,
5308 .getxattr = btrfs_getxattr,
5309 .listxattr = btrfs_listxattr,
5310 .removexattr = btrfs_removexattr,