1 /* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
3 Copyright (c) 2001, 2002 by D-Link Corporation
4 Written by Edward Peng.<edward_peng@dlink.com.tw>
5 Created 03-May-2001, base on Linux' sundance.c.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
13 #define DRV_NAME "DL2000/TC902x-based linux driver"
14 #define DRV_VERSION "v1.19"
15 #define DRV_RELDATE "2007/08/12"
17 #include <linux/dma-mapping.h>
19 static char version
[] __devinitdata
=
20 KERN_INFO DRV_NAME
" " DRV_VERSION
" " DRV_RELDATE
"\n";
22 static int mtu
[MAX_UNITS
];
23 static int vlan
[MAX_UNITS
];
24 static int jumbo
[MAX_UNITS
];
25 static char *media
[MAX_UNITS
];
26 static int tx_flow
=-1;
27 static int rx_flow
=-1;
28 static int copy_thresh
;
29 static int rx_coalesce
=10; /* Rx frame count each interrupt */
30 static int rx_timeout
=200; /* Rx DMA wait time in 640ns increments */
31 static int tx_coalesce
=16; /* HW xmit count each TxDMAComplete */
34 MODULE_AUTHOR ("Edward Peng");
35 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
36 MODULE_LICENSE("GPL");
37 module_param_array(mtu
, int, NULL
, 0);
38 module_param_array(media
, charp
, NULL
, 0);
39 module_param_array(vlan
, int, NULL
, 0);
40 module_param_array(jumbo
, int, NULL
, 0);
41 module_param(tx_flow
, int, 0);
42 module_param(rx_flow
, int, 0);
43 module_param(copy_thresh
, int, 0);
44 module_param(rx_coalesce
, int, 0); /* Rx frame count each interrupt */
45 module_param(rx_timeout
, int, 0); /* Rx DMA wait time in 64ns increments */
46 module_param(tx_coalesce
, int, 0); /* HW xmit count each TxDMAComplete */
49 /* Enable the default interrupts */
50 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
51 UpdateStats | LinkEvent)
53 writew(DEFAULT_INTR, ioaddr + IntEnable)
55 static const int max_intrloop
= 50;
56 static const int multicast_filter_limit
= 0x40;
58 static int rio_open (struct net_device
*dev
);
59 static void rio_timer (unsigned long data
);
60 static void rio_tx_timeout (struct net_device
*dev
);
61 static void alloc_list (struct net_device
*dev
);
62 static int start_xmit (struct sk_buff
*skb
, struct net_device
*dev
);
63 static irqreturn_t
rio_interrupt (int irq
, void *dev_instance
);
64 static void rio_free_tx (struct net_device
*dev
, int irq
);
65 static void tx_error (struct net_device
*dev
, int tx_status
);
66 static int receive_packet (struct net_device
*dev
);
67 static void rio_error (struct net_device
*dev
, int int_status
);
68 static int change_mtu (struct net_device
*dev
, int new_mtu
);
69 static void set_multicast (struct net_device
*dev
);
70 static struct net_device_stats
*get_stats (struct net_device
*dev
);
71 static int clear_stats (struct net_device
*dev
);
72 static int rio_ioctl (struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
73 static int rio_close (struct net_device
*dev
);
74 static int find_miiphy (struct net_device
*dev
);
75 static int parse_eeprom (struct net_device
*dev
);
76 static int read_eeprom (long ioaddr
, int eep_addr
);
77 static int mii_wait_link (struct net_device
*dev
, int wait
);
78 static int mii_set_media (struct net_device
*dev
);
79 static int mii_get_media (struct net_device
*dev
);
80 static int mii_set_media_pcs (struct net_device
*dev
);
81 static int mii_get_media_pcs (struct net_device
*dev
);
82 static int mii_read (struct net_device
*dev
, int phy_addr
, int reg_num
);
83 static int mii_write (struct net_device
*dev
, int phy_addr
, int reg_num
,
86 static const struct ethtool_ops ethtool_ops
;
89 rio_probe1 (struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
91 struct net_device
*dev
;
92 struct netdev_private
*np
;
94 int chip_idx
= ent
->driver_data
;
97 static int version_printed
;
100 DECLARE_MAC_BUF(mac
);
102 if (!version_printed
++)
103 printk ("%s", version
);
105 err
= pci_enable_device (pdev
);
110 err
= pci_request_regions (pdev
, "dl2k");
112 goto err_out_disable
;
114 pci_set_master (pdev
);
115 dev
= alloc_etherdev (sizeof (*np
));
120 SET_NETDEV_DEV(dev
, &pdev
->dev
);
123 ioaddr
= pci_resource_start (pdev
, 1);
124 ioaddr
= (long) ioremap (ioaddr
, RIO_IO_SIZE
);
130 ioaddr
= pci_resource_start (pdev
, 0);
132 dev
->base_addr
= ioaddr
;
134 np
= netdev_priv(dev
);
135 np
->chip_id
= chip_idx
;
137 spin_lock_init (&np
->tx_lock
);
138 spin_lock_init (&np
->rx_lock
);
140 /* Parse manual configuration */
143 if (card_idx
< MAX_UNITS
) {
144 if (media
[card_idx
] != NULL
) {
146 if (strcmp (media
[card_idx
], "auto") == 0 ||
147 strcmp (media
[card_idx
], "autosense") == 0 ||
148 strcmp (media
[card_idx
], "0") == 0 ) {
150 } else if (strcmp (media
[card_idx
], "100mbps_fd") == 0 ||
151 strcmp (media
[card_idx
], "4") == 0) {
154 } else if (strcmp (media
[card_idx
], "100mbps_hd") == 0
155 || strcmp (media
[card_idx
], "3") == 0) {
158 } else if (strcmp (media
[card_idx
], "10mbps_fd") == 0 ||
159 strcmp (media
[card_idx
], "2") == 0) {
162 } else if (strcmp (media
[card_idx
], "10mbps_hd") == 0 ||
163 strcmp (media
[card_idx
], "1") == 0) {
166 } else if (strcmp (media
[card_idx
], "1000mbps_fd") == 0 ||
167 strcmp (media
[card_idx
], "6") == 0) {
170 } else if (strcmp (media
[card_idx
], "1000mbps_hd") == 0 ||
171 strcmp (media
[card_idx
], "5") == 0) {
178 if (jumbo
[card_idx
] != 0) {
180 dev
->mtu
= MAX_JUMBO
;
183 if (mtu
[card_idx
] > 0 && mtu
[card_idx
] < PACKET_SIZE
)
184 dev
->mtu
= mtu
[card_idx
];
186 np
->vlan
= (vlan
[card_idx
] > 0 && vlan
[card_idx
] < 4096) ?
188 if (rx_coalesce
> 0 && rx_timeout
> 0) {
189 np
->rx_coalesce
= rx_coalesce
;
190 np
->rx_timeout
= rx_timeout
;
193 np
->tx_flow
= (tx_flow
== 0) ? 0 : 1;
194 np
->rx_flow
= (rx_flow
== 0) ? 0 : 1;
198 else if (tx_coalesce
> TX_RING_SIZE
-1)
199 tx_coalesce
= TX_RING_SIZE
- 1;
201 dev
->open
= &rio_open
;
202 dev
->hard_start_xmit
= &start_xmit
;
203 dev
->stop
= &rio_close
;
204 dev
->get_stats
= &get_stats
;
205 dev
->set_multicast_list
= &set_multicast
;
206 dev
->do_ioctl
= &rio_ioctl
;
207 dev
->tx_timeout
= &rio_tx_timeout
;
208 dev
->watchdog_timeo
= TX_TIMEOUT
;
209 dev
->change_mtu
= &change_mtu
;
210 SET_ETHTOOL_OPS(dev
, ðtool_ops
);
212 dev
->features
= NETIF_F_IP_CSUM
;
214 pci_set_drvdata (pdev
, dev
);
216 ring_space
= pci_alloc_consistent (pdev
, TX_TOTAL_SIZE
, &ring_dma
);
218 goto err_out_iounmap
;
219 np
->tx_ring
= (struct netdev_desc
*) ring_space
;
220 np
->tx_ring_dma
= ring_dma
;
222 ring_space
= pci_alloc_consistent (pdev
, RX_TOTAL_SIZE
, &ring_dma
);
224 goto err_out_unmap_tx
;
225 np
->rx_ring
= (struct netdev_desc
*) ring_space
;
226 np
->rx_ring_dma
= ring_dma
;
228 /* Parse eeprom data */
231 /* Find PHY address */
232 err
= find_miiphy (dev
);
234 goto err_out_unmap_rx
;
237 np
->phy_media
= (readw(ioaddr
+ ASICCtrl
) & PhyMedia
) ? 1 : 0;
239 /* Set media and reset PHY */
241 /* default Auto-Negotiation for fiber deivices */
242 if (np
->an_enable
== 2) {
245 mii_set_media_pcs (dev
);
247 /* Auto-Negotiation is mandatory for 1000BASE-T,
248 IEEE 802.3ab Annex 28D page 14 */
249 if (np
->speed
== 1000)
254 err
= register_netdev (dev
);
256 goto err_out_unmap_rx
;
260 printk (KERN_INFO
"%s: %s, %s, IRQ %d\n",
261 dev
->name
, np
->name
, print_mac(mac
, dev
->dev_addr
), irq
);
263 printk(KERN_INFO
"tx_coalesce:\t%d packets\n",
266 printk(KERN_INFO
"rx_coalesce:\t%d packets\n"
267 KERN_INFO
"rx_timeout: \t%d ns\n",
268 np
->rx_coalesce
, np
->rx_timeout
*640);
270 printk(KERN_INFO
"vlan(id):\t%d\n", np
->vlan
);
274 pci_free_consistent (pdev
, RX_TOTAL_SIZE
, np
->rx_ring
, np
->rx_ring_dma
);
276 pci_free_consistent (pdev
, TX_TOTAL_SIZE
, np
->tx_ring
, np
->tx_ring_dma
);
279 iounmap ((void *) ioaddr
);
286 pci_release_regions (pdev
);
289 pci_disable_device (pdev
);
294 find_miiphy (struct net_device
*dev
)
296 int i
, phy_found
= 0;
297 struct netdev_private
*np
;
299 np
= netdev_priv(dev
);
300 ioaddr
= dev
->base_addr
;
303 for (i
= 31; i
>= 0; i
--) {
304 int mii_status
= mii_read (dev
, i
, 1);
305 if (mii_status
!= 0xffff && mii_status
!= 0x0000) {
311 printk (KERN_ERR
"%s: No MII PHY found!\n", dev
->name
);
318 parse_eeprom (struct net_device
*dev
)
321 long ioaddr
= dev
->base_addr
;
325 PSROM_t psrom
= (PSROM_t
) sromdata
;
326 struct netdev_private
*np
= netdev_priv(dev
);
331 ioaddr
= pci_resource_start (np
->pdev
, 0);
334 for (i
= 0; i
< 128; i
++) {
335 ((__le16
*) sromdata
)[i
] = cpu_to_le16(read_eeprom (ioaddr
, i
));
338 ioaddr
= dev
->base_addr
;
340 if (np
->pdev
->vendor
== PCI_VENDOR_ID_DLINK
) { /* D-Link Only */
342 crc
= ~ether_crc_le (256 - 4, sromdata
);
343 if (psrom
->crc
!= crc
) {
344 printk (KERN_ERR
"%s: EEPROM data CRC error.\n",
350 /* Set MAC address */
351 for (i
= 0; i
< 6; i
++)
352 dev
->dev_addr
[i
] = psrom
->mac_addr
[i
];
354 if (np
->pdev
->vendor
!= PCI_VENDOR_ID_DLINK
) {
358 /* Parse Software Information Block */
360 psib
= (u8
*) sromdata
;
364 if ((cid
== 0 && next
== 0) || (cid
== 0xff && next
== 0xff)) {
365 printk (KERN_ERR
"Cell data error\n");
369 case 0: /* Format version */
371 case 1: /* End of cell */
373 case 2: /* Duplex Polarity */
374 np
->duplex_polarity
= psib
[i
];
375 writeb (readb (ioaddr
+ PhyCtrl
) | psib
[i
],
378 case 3: /* Wake Polarity */
379 np
->wake_polarity
= psib
[i
];
381 case 9: /* Adapter description */
382 j
= (next
- i
> 255) ? 255 : next
- i
;
383 memcpy (np
->name
, &(psib
[i
]), j
);
389 case 8: /* Reversed */
391 default: /* Unknown cell */
401 rio_open (struct net_device
*dev
)
403 struct netdev_private
*np
= netdev_priv(dev
);
404 long ioaddr
= dev
->base_addr
;
408 i
= request_irq (dev
->irq
, &rio_interrupt
, IRQF_SHARED
, dev
->name
, dev
);
412 /* Reset all logic functions */
413 writew (GlobalReset
| DMAReset
| FIFOReset
| NetworkReset
| HostReset
,
414 ioaddr
+ ASICCtrl
+ 2);
417 /* DebugCtrl bit 4, 5, 9 must set */
418 writel (readl (ioaddr
+ DebugCtrl
) | 0x0230, ioaddr
+ DebugCtrl
);
422 writew (MAX_JUMBO
+14, ioaddr
+ MaxFrameSize
);
426 /* Get station address */
427 for (i
= 0; i
< 6; i
++)
428 writeb (dev
->dev_addr
[i
], ioaddr
+ StationAddr0
+ i
);
432 writel (np
->rx_coalesce
| np
->rx_timeout
<< 16,
433 ioaddr
+ RxDMAIntCtrl
);
435 /* Set RIO to poll every N*320nsec. */
436 writeb (0x20, ioaddr
+ RxDMAPollPeriod
);
437 writeb (0xff, ioaddr
+ TxDMAPollPeriod
);
438 writeb (0x30, ioaddr
+ RxDMABurstThresh
);
439 writeb (0x30, ioaddr
+ RxDMAUrgentThresh
);
440 writel (0x0007ffff, ioaddr
+ RmonStatMask
);
441 /* clear statistics */
446 /* priority field in RxDMAIntCtrl */
447 writel (readl(ioaddr
+ RxDMAIntCtrl
) | 0x7 << 10,
448 ioaddr
+ RxDMAIntCtrl
);
450 writew (np
->vlan
, ioaddr
+ VLANId
);
451 /* Length/Type should be 0x8100 */
452 writel (0x8100 << 16 | np
->vlan
, ioaddr
+ VLANTag
);
453 /* Enable AutoVLANuntagging, but disable AutoVLANtagging.
454 VLAN information tagged by TFC' VID, CFI fields. */
455 writel (readl (ioaddr
+ MACCtrl
) | AutoVLANuntagging
,
459 init_timer (&np
->timer
);
460 np
->timer
.expires
= jiffies
+ 1*HZ
;
461 np
->timer
.data
= (unsigned long) dev
;
462 np
->timer
.function
= &rio_timer
;
463 add_timer (&np
->timer
);
466 writel (readl (ioaddr
+ MACCtrl
) | StatsEnable
| RxEnable
| TxEnable
,
470 macctrl
|= (np
->vlan
) ? AutoVLANuntagging
: 0;
471 macctrl
|= (np
->full_duplex
) ? DuplexSelect
: 0;
472 macctrl
|= (np
->tx_flow
) ? TxFlowControlEnable
: 0;
473 macctrl
|= (np
->rx_flow
) ? RxFlowControlEnable
: 0;
474 writew(macctrl
, ioaddr
+ MACCtrl
);
476 netif_start_queue (dev
);
478 /* Enable default interrupts */
484 rio_timer (unsigned long data
)
486 struct net_device
*dev
= (struct net_device
*)data
;
487 struct netdev_private
*np
= netdev_priv(dev
);
489 int next_tick
= 1*HZ
;
492 spin_lock_irqsave(&np
->rx_lock
, flags
);
493 /* Recover rx ring exhausted error */
494 if (np
->cur_rx
- np
->old_rx
>= RX_RING_SIZE
) {
495 printk(KERN_INFO
"Try to recover rx ring exhausted...\n");
496 /* Re-allocate skbuffs to fill the descriptor ring */
497 for (; np
->cur_rx
- np
->old_rx
> 0; np
->old_rx
++) {
499 entry
= np
->old_rx
% RX_RING_SIZE
;
500 /* Dropped packets don't need to re-allocate */
501 if (np
->rx_skbuff
[entry
] == NULL
) {
502 skb
= dev_alloc_skb (np
->rx_buf_sz
);
504 np
->rx_ring
[entry
].fraginfo
= 0;
506 "%s: Still unable to re-allocate Rx skbuff.#%d\n",
510 np
->rx_skbuff
[entry
] = skb
;
511 /* 16 byte align the IP header */
512 skb_reserve (skb
, 2);
513 np
->rx_ring
[entry
].fraginfo
=
514 cpu_to_le64 (pci_map_single
515 (np
->pdev
, skb
->data
, np
->rx_buf_sz
,
516 PCI_DMA_FROMDEVICE
));
518 np
->rx_ring
[entry
].fraginfo
|=
519 cpu_to_le64((u64
)np
->rx_buf_sz
<< 48);
520 np
->rx_ring
[entry
].status
= 0;
523 spin_unlock_irqrestore (&np
->rx_lock
, flags
);
524 np
->timer
.expires
= jiffies
+ next_tick
;
525 add_timer(&np
->timer
);
529 rio_tx_timeout (struct net_device
*dev
)
531 long ioaddr
= dev
->base_addr
;
533 printk (KERN_INFO
"%s: Tx timed out (%4.4x), is buffer full?\n",
534 dev
->name
, readl (ioaddr
+ TxStatus
));
537 dev
->trans_start
= jiffies
;
540 /* allocate and initialize Tx and Rx descriptors */
542 alloc_list (struct net_device
*dev
)
544 struct netdev_private
*np
= netdev_priv(dev
);
547 np
->cur_rx
= np
->cur_tx
= 0;
548 np
->old_rx
= np
->old_tx
= 0;
549 np
->rx_buf_sz
= (dev
->mtu
<= 1500 ? PACKET_SIZE
: dev
->mtu
+ 32);
551 /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
552 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
553 np
->tx_skbuff
[i
] = NULL
;
554 np
->tx_ring
[i
].status
= cpu_to_le64 (TFDDone
);
555 np
->tx_ring
[i
].next_desc
= cpu_to_le64 (np
->tx_ring_dma
+
556 ((i
+1)%TX_RING_SIZE
) *
557 sizeof (struct netdev_desc
));
560 /* Initialize Rx descriptors */
561 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
562 np
->rx_ring
[i
].next_desc
= cpu_to_le64 (np
->rx_ring_dma
+
563 ((i
+ 1) % RX_RING_SIZE
) *
564 sizeof (struct netdev_desc
));
565 np
->rx_ring
[i
].status
= 0;
566 np
->rx_ring
[i
].fraginfo
= 0;
567 np
->rx_skbuff
[i
] = NULL
;
570 /* Allocate the rx buffers */
571 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
572 /* Allocated fixed size of skbuff */
573 struct sk_buff
*skb
= dev_alloc_skb (np
->rx_buf_sz
);
574 np
->rx_skbuff
[i
] = skb
;
577 "%s: alloc_list: allocate Rx buffer error! ",
581 skb_reserve (skb
, 2); /* 16 byte align the IP header. */
582 /* Rubicon now supports 40 bits of addressing space. */
583 np
->rx_ring
[i
].fraginfo
=
584 cpu_to_le64 ( pci_map_single (
585 np
->pdev
, skb
->data
, np
->rx_buf_sz
,
586 PCI_DMA_FROMDEVICE
));
587 np
->rx_ring
[i
].fraginfo
|= cpu_to_le64((u64
)np
->rx_buf_sz
<< 48);
591 writel (np
->rx_ring_dma
, dev
->base_addr
+ RFDListPtr0
);
592 writel (0, dev
->base_addr
+ RFDListPtr1
);
598 start_xmit (struct sk_buff
*skb
, struct net_device
*dev
)
600 struct netdev_private
*np
= netdev_priv(dev
);
601 struct netdev_desc
*txdesc
;
604 u64 tfc_vlan_tag
= 0;
606 if (np
->link_status
== 0) { /* Link Down */
610 ioaddr
= dev
->base_addr
;
611 entry
= np
->cur_tx
% TX_RING_SIZE
;
612 np
->tx_skbuff
[entry
] = skb
;
613 txdesc
= &np
->tx_ring
[entry
];
616 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
618 cpu_to_le64 (TCPChecksumEnable
| UDPChecksumEnable
|
623 tfc_vlan_tag
= VLANTagInsert
|
624 ((u64
)np
->vlan
<< 32) |
625 ((u64
)skb
->priority
<< 45);
627 txdesc
->fraginfo
= cpu_to_le64 (pci_map_single (np
->pdev
, skb
->data
,
630 txdesc
->fraginfo
|= cpu_to_le64((u64
)skb
->len
<< 48);
632 /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
633 * Work around: Always use 1 descriptor in 10Mbps mode */
634 if (entry
% np
->tx_coalesce
== 0 || np
->speed
== 10)
635 txdesc
->status
= cpu_to_le64 (entry
| tfc_vlan_tag
|
638 (1 << FragCountShift
));
640 txdesc
->status
= cpu_to_le64 (entry
| tfc_vlan_tag
|
642 (1 << FragCountShift
));
645 writel (readl (ioaddr
+ DMACtrl
) | 0x00001000, ioaddr
+ DMACtrl
);
647 writel(10000, ioaddr
+ CountDown
);
648 np
->cur_tx
= (np
->cur_tx
+ 1) % TX_RING_SIZE
;
649 if ((np
->cur_tx
- np
->old_tx
+ TX_RING_SIZE
) % TX_RING_SIZE
650 < TX_QUEUE_LEN
- 1 && np
->speed
!= 10) {
652 } else if (!netif_queue_stopped(dev
)) {
653 netif_stop_queue (dev
);
656 /* The first TFDListPtr */
657 if (readl (dev
->base_addr
+ TFDListPtr0
) == 0) {
658 writel (np
->tx_ring_dma
+ entry
* sizeof (struct netdev_desc
),
659 dev
->base_addr
+ TFDListPtr0
);
660 writel (0, dev
->base_addr
+ TFDListPtr1
);
663 /* NETDEV WATCHDOG timer */
664 dev
->trans_start
= jiffies
;
669 rio_interrupt (int irq
, void *dev_instance
)
671 struct net_device
*dev
= dev_instance
;
672 struct netdev_private
*np
;
675 int cnt
= max_intrloop
;
678 ioaddr
= dev
->base_addr
;
679 np
= netdev_priv(dev
);
681 int_status
= readw (ioaddr
+ IntStatus
);
682 writew (int_status
, ioaddr
+ IntStatus
);
683 int_status
&= DEFAULT_INTR
;
684 if (int_status
== 0 || --cnt
< 0)
687 /* Processing received packets */
688 if (int_status
& RxDMAComplete
)
689 receive_packet (dev
);
690 /* TxDMAComplete interrupt */
691 if ((int_status
& (TxDMAComplete
|IntRequested
))) {
693 tx_status
= readl (ioaddr
+ TxStatus
);
694 if (tx_status
& 0x01)
695 tx_error (dev
, tx_status
);
696 /* Free used tx skbuffs */
697 rio_free_tx (dev
, 1);
700 /* Handle uncommon events */
702 (HostError
| LinkEvent
| UpdateStats
))
703 rio_error (dev
, int_status
);
705 if (np
->cur_tx
!= np
->old_tx
)
706 writel (100, ioaddr
+ CountDown
);
707 return IRQ_RETVAL(handled
);
710 static inline dma_addr_t
desc_to_dma(struct netdev_desc
*desc
)
712 return le64_to_cpu(desc
->fraginfo
) & DMA_48BIT_MASK
;
716 rio_free_tx (struct net_device
*dev
, int irq
)
718 struct netdev_private
*np
= netdev_priv(dev
);
719 int entry
= np
->old_tx
% TX_RING_SIZE
;
721 unsigned long flag
= 0;
724 spin_lock(&np
->tx_lock
);
726 spin_lock_irqsave(&np
->tx_lock
, flag
);
728 /* Free used tx skbuffs */
729 while (entry
!= np
->cur_tx
) {
732 if (!(np
->tx_ring
[entry
].status
& cpu_to_le64(TFDDone
)))
734 skb
= np
->tx_skbuff
[entry
];
735 pci_unmap_single (np
->pdev
,
736 desc_to_dma(&np
->tx_ring
[entry
]),
737 skb
->len
, PCI_DMA_TODEVICE
);
739 dev_kfree_skb_irq (skb
);
743 np
->tx_skbuff
[entry
] = NULL
;
744 entry
= (entry
+ 1) % TX_RING_SIZE
;
748 spin_unlock(&np
->tx_lock
);
750 spin_unlock_irqrestore(&np
->tx_lock
, flag
);
753 /* If the ring is no longer full, clear tx_full and
754 call netif_wake_queue() */
756 if (netif_queue_stopped(dev
) &&
757 ((np
->cur_tx
- np
->old_tx
+ TX_RING_SIZE
) % TX_RING_SIZE
758 < TX_QUEUE_LEN
- 1 || np
->speed
== 10)) {
759 netif_wake_queue (dev
);
764 tx_error (struct net_device
*dev
, int tx_status
)
766 struct netdev_private
*np
;
767 long ioaddr
= dev
->base_addr
;
771 np
= netdev_priv(dev
);
773 frame_id
= (tx_status
& 0xffff0000);
774 printk (KERN_ERR
"%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
775 dev
->name
, tx_status
, frame_id
);
776 np
->stats
.tx_errors
++;
777 /* Ttransmit Underrun */
778 if (tx_status
& 0x10) {
779 np
->stats
.tx_fifo_errors
++;
780 writew (readw (ioaddr
+ TxStartThresh
) + 0x10,
781 ioaddr
+ TxStartThresh
);
782 /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
783 writew (TxReset
| DMAReset
| FIFOReset
| NetworkReset
,
784 ioaddr
+ ASICCtrl
+ 2);
785 /* Wait for ResetBusy bit clear */
786 for (i
= 50; i
> 0; i
--) {
787 if ((readw (ioaddr
+ ASICCtrl
+ 2) & ResetBusy
) == 0)
791 rio_free_tx (dev
, 1);
792 /* Reset TFDListPtr */
793 writel (np
->tx_ring_dma
+
794 np
->old_tx
* sizeof (struct netdev_desc
),
795 dev
->base_addr
+ TFDListPtr0
);
796 writel (0, dev
->base_addr
+ TFDListPtr1
);
798 /* Let TxStartThresh stay default value */
801 if (tx_status
& 0x04) {
802 np
->stats
.tx_fifo_errors
++;
803 /* TxReset and clear FIFO */
804 writew (TxReset
| FIFOReset
, ioaddr
+ ASICCtrl
+ 2);
805 /* Wait reset done */
806 for (i
= 50; i
> 0; i
--) {
807 if ((readw (ioaddr
+ ASICCtrl
+ 2) & ResetBusy
) == 0)
811 /* Let TxStartThresh stay default value */
813 /* Maximum Collisions */
815 if (tx_status
& 0x08)
816 np
->stats
.collisions16
++;
818 if (tx_status
& 0x08)
819 np
->stats
.collisions
++;
822 writel (readw (dev
->base_addr
+ MACCtrl
) | TxEnable
, ioaddr
+ MACCtrl
);
826 receive_packet (struct net_device
*dev
)
828 struct netdev_private
*np
= netdev_priv(dev
);
829 int entry
= np
->cur_rx
% RX_RING_SIZE
;
832 /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
834 struct netdev_desc
*desc
= &np
->rx_ring
[entry
];
838 if (!(desc
->status
& cpu_to_le64(RFDDone
)) ||
839 !(desc
->status
& cpu_to_le64(FrameStart
)) ||
840 !(desc
->status
& cpu_to_le64(FrameEnd
)))
843 /* Chip omits the CRC. */
844 frame_status
= le64_to_cpu(desc
->status
);
845 pkt_len
= frame_status
& 0xffff;
848 /* Update rx error statistics, drop packet. */
849 if (frame_status
& RFS_Errors
) {
850 np
->stats
.rx_errors
++;
851 if (frame_status
& (RxRuntFrame
| RxLengthError
))
852 np
->stats
.rx_length_errors
++;
853 if (frame_status
& RxFCSError
)
854 np
->stats
.rx_crc_errors
++;
855 if (frame_status
& RxAlignmentError
&& np
->speed
!= 1000)
856 np
->stats
.rx_frame_errors
++;
857 if (frame_status
& RxFIFOOverrun
)
858 np
->stats
.rx_fifo_errors
++;
862 /* Small skbuffs for short packets */
863 if (pkt_len
> copy_thresh
) {
864 pci_unmap_single (np
->pdev
,
868 skb_put (skb
= np
->rx_skbuff
[entry
], pkt_len
);
869 np
->rx_skbuff
[entry
] = NULL
;
870 } else if ((skb
= dev_alloc_skb (pkt_len
+ 2)) != NULL
) {
871 pci_dma_sync_single_for_cpu(np
->pdev
,
875 /* 16 byte align the IP header */
876 skb_reserve (skb
, 2);
877 skb_copy_to_linear_data (skb
,
878 np
->rx_skbuff
[entry
]->data
,
880 skb_put (skb
, pkt_len
);
881 pci_dma_sync_single_for_device(np
->pdev
,
886 skb
->protocol
= eth_type_trans (skb
, dev
);
888 /* Checksum done by hw, but csum value unavailable. */
889 if (np
->pdev
->pci_rev_id
>= 0x0c &&
890 !(frame_status
& (TCPError
| UDPError
| IPError
))) {
891 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
895 dev
->last_rx
= jiffies
;
897 entry
= (entry
+ 1) % RX_RING_SIZE
;
899 spin_lock(&np
->rx_lock
);
901 /* Re-allocate skbuffs to fill the descriptor ring */
903 while (entry
!= np
->cur_rx
) {
905 /* Dropped packets don't need to re-allocate */
906 if (np
->rx_skbuff
[entry
] == NULL
) {
907 skb
= dev_alloc_skb (np
->rx_buf_sz
);
909 np
->rx_ring
[entry
].fraginfo
= 0;
911 "%s: receive_packet: "
912 "Unable to re-allocate Rx skbuff.#%d\n",
916 np
->rx_skbuff
[entry
] = skb
;
917 /* 16 byte align the IP header */
918 skb_reserve (skb
, 2);
919 np
->rx_ring
[entry
].fraginfo
=
920 cpu_to_le64 (pci_map_single
921 (np
->pdev
, skb
->data
, np
->rx_buf_sz
,
922 PCI_DMA_FROMDEVICE
));
924 np
->rx_ring
[entry
].fraginfo
|=
925 cpu_to_le64((u64
)np
->rx_buf_sz
<< 48);
926 np
->rx_ring
[entry
].status
= 0;
927 entry
= (entry
+ 1) % RX_RING_SIZE
;
930 spin_unlock(&np
->rx_lock
);
935 rio_error (struct net_device
*dev
, int int_status
)
937 long ioaddr
= dev
->base_addr
;
938 struct netdev_private
*np
= netdev_priv(dev
);
941 /* Link change event */
942 if (int_status
& LinkEvent
) {
943 if (mii_wait_link (dev
, 10) == 0) {
944 printk (KERN_INFO
"%s: Link up\n", dev
->name
);
946 mii_get_media_pcs (dev
);
949 if (np
->speed
== 1000)
950 np
->tx_coalesce
= tx_coalesce
;
954 macctrl
|= (np
->vlan
) ? AutoVLANuntagging
: 0;
955 macctrl
|= (np
->full_duplex
) ? DuplexSelect
: 0;
956 macctrl
|= (np
->tx_flow
) ?
957 TxFlowControlEnable
: 0;
958 macctrl
|= (np
->rx_flow
) ?
959 RxFlowControlEnable
: 0;
960 writew(macctrl
, ioaddr
+ MACCtrl
);
962 netif_carrier_on(dev
);
964 printk (KERN_INFO
"%s: Link off\n", dev
->name
);
966 netif_carrier_off(dev
);
970 /* UpdateStats statistics registers */
971 if (int_status
& UpdateStats
) {
975 /* PCI Error, a catastronphic error related to the bus interface
976 occurs, set GlobalReset and HostReset to reset. */
977 if (int_status
& HostError
) {
978 printk (KERN_ERR
"%s: HostError! IntStatus %4.4x.\n",
979 dev
->name
, int_status
);
980 writew (GlobalReset
| HostReset
, ioaddr
+ ASICCtrl
+ 2);
985 static struct net_device_stats
*
986 get_stats (struct net_device
*dev
)
988 long ioaddr
= dev
->base_addr
;
989 struct netdev_private
*np
= netdev_priv(dev
);
993 unsigned int stat_reg
;
995 /* All statistics registers need to be acknowledged,
996 else statistic overflow could cause problems */
998 np
->stats
.rx_packets
+= readl (ioaddr
+ FramesRcvOk
);
999 np
->stats
.tx_packets
+= readl (ioaddr
+ FramesXmtOk
);
1000 np
->stats
.rx_bytes
+= readl (ioaddr
+ OctetRcvOk
);
1001 np
->stats
.tx_bytes
+= readl (ioaddr
+ OctetXmtOk
);
1003 np
->stats
.multicast
= readl (ioaddr
+ McstFramesRcvdOk
);
1004 np
->stats
.collisions
+= readl (ioaddr
+ SingleColFrames
)
1005 + readl (ioaddr
+ MultiColFrames
);
1007 /* detailed tx errors */
1008 stat_reg
= readw (ioaddr
+ FramesAbortXSColls
);
1009 np
->stats
.tx_aborted_errors
+= stat_reg
;
1010 np
->stats
.tx_errors
+= stat_reg
;
1012 stat_reg
= readw (ioaddr
+ CarrierSenseErrors
);
1013 np
->stats
.tx_carrier_errors
+= stat_reg
;
1014 np
->stats
.tx_errors
+= stat_reg
;
1016 /* Clear all other statistic register. */
1017 readl (ioaddr
+ McstOctetXmtOk
);
1018 readw (ioaddr
+ BcstFramesXmtdOk
);
1019 readl (ioaddr
+ McstFramesXmtdOk
);
1020 readw (ioaddr
+ BcstFramesRcvdOk
);
1021 readw (ioaddr
+ MacControlFramesRcvd
);
1022 readw (ioaddr
+ FrameTooLongErrors
);
1023 readw (ioaddr
+ InRangeLengthErrors
);
1024 readw (ioaddr
+ FramesCheckSeqErrors
);
1025 readw (ioaddr
+ FramesLostRxErrors
);
1026 readl (ioaddr
+ McstOctetXmtOk
);
1027 readl (ioaddr
+ BcstOctetXmtOk
);
1028 readl (ioaddr
+ McstFramesXmtdOk
);
1029 readl (ioaddr
+ FramesWDeferredXmt
);
1030 readl (ioaddr
+ LateCollisions
);
1031 readw (ioaddr
+ BcstFramesXmtdOk
);
1032 readw (ioaddr
+ MacControlFramesXmtd
);
1033 readw (ioaddr
+ FramesWEXDeferal
);
1036 for (i
= 0x100; i
<= 0x150; i
+= 4)
1039 readw (ioaddr
+ TxJumboFrames
);
1040 readw (ioaddr
+ RxJumboFrames
);
1041 readw (ioaddr
+ TCPCheckSumErrors
);
1042 readw (ioaddr
+ UDPCheckSumErrors
);
1043 readw (ioaddr
+ IPCheckSumErrors
);
1048 clear_stats (struct net_device
*dev
)
1050 long ioaddr
= dev
->base_addr
;
1055 /* All statistics registers need to be acknowledged,
1056 else statistic overflow could cause problems */
1057 readl (ioaddr
+ FramesRcvOk
);
1058 readl (ioaddr
+ FramesXmtOk
);
1059 readl (ioaddr
+ OctetRcvOk
);
1060 readl (ioaddr
+ OctetXmtOk
);
1062 readl (ioaddr
+ McstFramesRcvdOk
);
1063 readl (ioaddr
+ SingleColFrames
);
1064 readl (ioaddr
+ MultiColFrames
);
1065 readl (ioaddr
+ LateCollisions
);
1066 /* detailed rx errors */
1067 readw (ioaddr
+ FrameTooLongErrors
);
1068 readw (ioaddr
+ InRangeLengthErrors
);
1069 readw (ioaddr
+ FramesCheckSeqErrors
);
1070 readw (ioaddr
+ FramesLostRxErrors
);
1072 /* detailed tx errors */
1073 readw (ioaddr
+ FramesAbortXSColls
);
1074 readw (ioaddr
+ CarrierSenseErrors
);
1076 /* Clear all other statistic register. */
1077 readl (ioaddr
+ McstOctetXmtOk
);
1078 readw (ioaddr
+ BcstFramesXmtdOk
);
1079 readl (ioaddr
+ McstFramesXmtdOk
);
1080 readw (ioaddr
+ BcstFramesRcvdOk
);
1081 readw (ioaddr
+ MacControlFramesRcvd
);
1082 readl (ioaddr
+ McstOctetXmtOk
);
1083 readl (ioaddr
+ BcstOctetXmtOk
);
1084 readl (ioaddr
+ McstFramesXmtdOk
);
1085 readl (ioaddr
+ FramesWDeferredXmt
);
1086 readw (ioaddr
+ BcstFramesXmtdOk
);
1087 readw (ioaddr
+ MacControlFramesXmtd
);
1088 readw (ioaddr
+ FramesWEXDeferal
);
1090 for (i
= 0x100; i
<= 0x150; i
+= 4)
1093 readw (ioaddr
+ TxJumboFrames
);
1094 readw (ioaddr
+ RxJumboFrames
);
1095 readw (ioaddr
+ TCPCheckSumErrors
);
1096 readw (ioaddr
+ UDPCheckSumErrors
);
1097 readw (ioaddr
+ IPCheckSumErrors
);
1103 change_mtu (struct net_device
*dev
, int new_mtu
)
1105 struct netdev_private
*np
= netdev_priv(dev
);
1106 int max
= (np
->jumbo
) ? MAX_JUMBO
: 1536;
1108 if ((new_mtu
< 68) || (new_mtu
> max
)) {
1118 set_multicast (struct net_device
*dev
)
1120 long ioaddr
= dev
->base_addr
;
1123 struct netdev_private
*np
= netdev_priv(dev
);
1125 hash_table
[0] = hash_table
[1] = 0;
1126 /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1127 hash_table
[1] |= 0x02000000;
1128 if (dev
->flags
& IFF_PROMISC
) {
1129 /* Receive all frames promiscuously. */
1130 rx_mode
= ReceiveAllFrames
;
1131 } else if ((dev
->flags
& IFF_ALLMULTI
) ||
1132 (dev
->mc_count
> multicast_filter_limit
)) {
1133 /* Receive broadcast and multicast frames */
1134 rx_mode
= ReceiveBroadcast
| ReceiveMulticast
| ReceiveUnicast
;
1135 } else if (dev
->mc_count
> 0) {
1137 struct dev_mc_list
*mclist
;
1138 /* Receive broadcast frames and multicast frames filtering
1141 ReceiveBroadcast
| ReceiveMulticastHash
| ReceiveUnicast
;
1142 for (i
=0, mclist
= dev
->mc_list
; mclist
&& i
< dev
->mc_count
;
1143 i
++, mclist
=mclist
->next
)
1146 int crc
= ether_crc_le (ETH_ALEN
, mclist
->dmi_addr
);
1147 /* The inverted high significant 6 bits of CRC are
1148 used as an index to hashtable */
1149 for (bit
= 0; bit
< 6; bit
++)
1150 if (crc
& (1 << (31 - bit
)))
1151 index
|= (1 << bit
);
1152 hash_table
[index
/ 32] |= (1 << (index
% 32));
1155 rx_mode
= ReceiveBroadcast
| ReceiveUnicast
;
1158 /* ReceiveVLANMatch field in ReceiveMode */
1159 rx_mode
|= ReceiveVLANMatch
;
1162 writel (hash_table
[0], ioaddr
+ HashTable0
);
1163 writel (hash_table
[1], ioaddr
+ HashTable1
);
1164 writew (rx_mode
, ioaddr
+ ReceiveMode
);
1167 static void rio_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
1169 struct netdev_private
*np
= netdev_priv(dev
);
1170 strcpy(info
->driver
, "dl2k");
1171 strcpy(info
->version
, DRV_VERSION
);
1172 strcpy(info
->bus_info
, pci_name(np
->pdev
));
1175 static int rio_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1177 struct netdev_private
*np
= netdev_priv(dev
);
1178 if (np
->phy_media
) {
1180 cmd
->supported
= SUPPORTED_Autoneg
| SUPPORTED_FIBRE
;
1181 cmd
->advertising
= ADVERTISED_Autoneg
| ADVERTISED_FIBRE
;
1182 cmd
->port
= PORT_FIBRE
;
1183 cmd
->transceiver
= XCVR_INTERNAL
;
1186 cmd
->supported
= SUPPORTED_10baseT_Half
|
1187 SUPPORTED_10baseT_Full
| SUPPORTED_100baseT_Half
1188 | SUPPORTED_100baseT_Full
| SUPPORTED_1000baseT_Full
|
1189 SUPPORTED_Autoneg
| SUPPORTED_MII
;
1190 cmd
->advertising
= ADVERTISED_10baseT_Half
|
1191 ADVERTISED_10baseT_Full
| ADVERTISED_100baseT_Half
|
1192 ADVERTISED_100baseT_Full
| ADVERTISED_1000baseT_Full
|
1193 ADVERTISED_Autoneg
| ADVERTISED_MII
;
1194 cmd
->port
= PORT_MII
;
1195 cmd
->transceiver
= XCVR_INTERNAL
;
1197 if ( np
->link_status
) {
1198 cmd
->speed
= np
->speed
;
1199 cmd
->duplex
= np
->full_duplex
? DUPLEX_FULL
: DUPLEX_HALF
;
1205 cmd
->autoneg
= AUTONEG_ENABLE
;
1207 cmd
->autoneg
= AUTONEG_DISABLE
;
1209 cmd
->phy_address
= np
->phy_addr
;
1213 static int rio_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1215 struct netdev_private
*np
= netdev_priv(dev
);
1216 netif_carrier_off(dev
);
1217 if (cmd
->autoneg
== AUTONEG_ENABLE
) {
1227 if (np
->speed
== 1000) {
1228 cmd
->speed
= SPEED_100
;
1229 cmd
->duplex
= DUPLEX_FULL
;
1230 printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1232 switch(cmd
->speed
+ cmd
->duplex
) {
1234 case SPEED_10
+ DUPLEX_HALF
:
1236 np
->full_duplex
= 0;
1239 case SPEED_10
+ DUPLEX_FULL
:
1241 np
->full_duplex
= 1;
1243 case SPEED_100
+ DUPLEX_HALF
:
1245 np
->full_duplex
= 0;
1247 case SPEED_100
+ DUPLEX_FULL
:
1249 np
->full_duplex
= 1;
1251 case SPEED_1000
+ DUPLEX_HALF
:/* not supported */
1252 case SPEED_1000
+ DUPLEX_FULL
:/* not supported */
1261 static u32
rio_get_link(struct net_device
*dev
)
1263 struct netdev_private
*np
= netdev_priv(dev
);
1264 return np
->link_status
;
1267 static const struct ethtool_ops ethtool_ops
= {
1268 .get_drvinfo
= rio_get_drvinfo
,
1269 .get_settings
= rio_get_settings
,
1270 .set_settings
= rio_set_settings
,
1271 .get_link
= rio_get_link
,
1275 rio_ioctl (struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1278 struct netdev_private
*np
= netdev_priv(dev
);
1279 struct mii_data
*miidata
= (struct mii_data
*) &rq
->ifr_ifru
;
1281 struct netdev_desc
*desc
;
1284 phy_addr
= np
->phy_addr
;
1286 case SIOCDEVPRIVATE
:
1289 case SIOCDEVPRIVATE
+ 1:
1290 miidata
->out_value
= mii_read (dev
, phy_addr
, miidata
->reg_num
);
1292 case SIOCDEVPRIVATE
+ 2:
1293 mii_write (dev
, phy_addr
, miidata
->reg_num
, miidata
->in_value
);
1295 case SIOCDEVPRIVATE
+ 3:
1297 case SIOCDEVPRIVATE
+ 4:
1299 case SIOCDEVPRIVATE
+ 5:
1300 netif_stop_queue (dev
);
1302 case SIOCDEVPRIVATE
+ 6:
1303 netif_wake_queue (dev
);
1305 case SIOCDEVPRIVATE
+ 7:
1307 ("tx_full=%x cur_tx=%lx old_tx=%lx cur_rx=%lx old_rx=%lx\n",
1308 netif_queue_stopped(dev
), np
->cur_tx
, np
->old_tx
, np
->cur_rx
,
1311 case SIOCDEVPRIVATE
+ 8:
1312 printk("TX ring:\n");
1313 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1314 desc
= &np
->tx_ring
[i
];
1316 ("%02x:cur:%08x next:%08x status:%08x frag1:%08x frag0:%08x",
1318 (u32
) (np
->tx_ring_dma
+ i
* sizeof (*desc
)),
1319 (u32
)le64_to_cpu(desc
->next_desc
),
1320 (u32
)le64_to_cpu(desc
->status
),
1321 (u32
)(le64_to_cpu(desc
->fraginfo
) >> 32),
1322 (u32
)le64_to_cpu(desc
->fraginfo
));
1334 #define EEP_READ 0x0200
1335 #define EEP_BUSY 0x8000
1336 /* Read the EEPROM word */
1337 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1339 read_eeprom (long ioaddr
, int eep_addr
)
1342 outw (EEP_READ
| (eep_addr
& 0xff), ioaddr
+ EepromCtrl
);
1344 if (!(inw (ioaddr
+ EepromCtrl
) & EEP_BUSY
)) {
1345 return inw (ioaddr
+ EepromData
);
1351 enum phy_ctrl_bits
{
1352 MII_READ
= 0x00, MII_CLK
= 0x01, MII_DATA1
= 0x02, MII_WRITE
= 0x04,
1356 #define mii_delay() readb(ioaddr)
1358 mii_sendbit (struct net_device
*dev
, u32 data
)
1360 long ioaddr
= dev
->base_addr
+ PhyCtrl
;
1361 data
= (data
) ? MII_DATA1
: 0;
1363 data
|= (readb (ioaddr
) & 0xf8) | MII_WRITE
;
1364 writeb (data
, ioaddr
);
1366 writeb (data
| MII_CLK
, ioaddr
);
1371 mii_getbit (struct net_device
*dev
)
1373 long ioaddr
= dev
->base_addr
+ PhyCtrl
;
1376 data
= (readb (ioaddr
) & 0xf8) | MII_READ
;
1377 writeb (data
, ioaddr
);
1379 writeb (data
| MII_CLK
, ioaddr
);
1381 return ((readb (ioaddr
) >> 1) & 1);
1385 mii_send_bits (struct net_device
*dev
, u32 data
, int len
)
1388 for (i
= len
- 1; i
>= 0; i
--) {
1389 mii_sendbit (dev
, data
& (1 << i
));
1394 mii_read (struct net_device
*dev
, int phy_addr
, int reg_num
)
1401 mii_send_bits (dev
, 0xffffffff, 32);
1402 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1403 /* ST,OP = 0110'b for read operation */
1404 cmd
= (0x06 << 10 | phy_addr
<< 5 | reg_num
);
1405 mii_send_bits (dev
, cmd
, 14);
1407 if (mii_getbit (dev
))
1410 for (i
= 0; i
< 16; i
++) {
1411 retval
|= mii_getbit (dev
);
1416 return (retval
>> 1) & 0xffff;
1422 mii_write (struct net_device
*dev
, int phy_addr
, int reg_num
, u16 data
)
1427 mii_send_bits (dev
, 0xffffffff, 32);
1428 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1429 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1430 cmd
= (0x5002 << 16) | (phy_addr
<< 23) | (reg_num
<< 18) | data
;
1431 mii_send_bits (dev
, cmd
, 32);
1437 mii_wait_link (struct net_device
*dev
, int wait
)
1441 struct netdev_private
*np
;
1443 np
= netdev_priv(dev
);
1444 phy_addr
= np
->phy_addr
;
1447 bmsr
= mii_read (dev
, phy_addr
, MII_BMSR
);
1448 if (bmsr
& MII_BMSR_LINK_STATUS
)
1451 } while (--wait
> 0);
1455 mii_get_media (struct net_device
*dev
)
1462 struct netdev_private
*np
;
1464 np
= netdev_priv(dev
);
1465 phy_addr
= np
->phy_addr
;
1467 bmsr
= mii_read (dev
, phy_addr
, MII_BMSR
);
1468 if (np
->an_enable
) {
1469 if (!(bmsr
& MII_BMSR_AN_COMPLETE
)) {
1470 /* Auto-Negotiation not completed */
1473 negotiate
= mii_read (dev
, phy_addr
, MII_ANAR
) &
1474 mii_read (dev
, phy_addr
, MII_ANLPAR
);
1475 mscr
= mii_read (dev
, phy_addr
, MII_MSCR
);
1476 mssr
= mii_read (dev
, phy_addr
, MII_MSSR
);
1477 if (mscr
& MII_MSCR_1000BT_FD
&& mssr
& MII_MSSR_LP_1000BT_FD
) {
1479 np
->full_duplex
= 1;
1480 printk (KERN_INFO
"Auto 1000 Mbps, Full duplex\n");
1481 } else if (mscr
& MII_MSCR_1000BT_HD
&& mssr
& MII_MSSR_LP_1000BT_HD
) {
1483 np
->full_duplex
= 0;
1484 printk (KERN_INFO
"Auto 1000 Mbps, Half duplex\n");
1485 } else if (negotiate
& MII_ANAR_100BX_FD
) {
1487 np
->full_duplex
= 1;
1488 printk (KERN_INFO
"Auto 100 Mbps, Full duplex\n");
1489 } else if (negotiate
& MII_ANAR_100BX_HD
) {
1491 np
->full_duplex
= 0;
1492 printk (KERN_INFO
"Auto 100 Mbps, Half duplex\n");
1493 } else if (negotiate
& MII_ANAR_10BT_FD
) {
1495 np
->full_duplex
= 1;
1496 printk (KERN_INFO
"Auto 10 Mbps, Full duplex\n");
1497 } else if (negotiate
& MII_ANAR_10BT_HD
) {
1499 np
->full_duplex
= 0;
1500 printk (KERN_INFO
"Auto 10 Mbps, Half duplex\n");
1502 if (negotiate
& MII_ANAR_PAUSE
) {
1505 } else if (negotiate
& MII_ANAR_ASYMMETRIC
) {
1509 /* else tx_flow, rx_flow = user select */
1511 __u16 bmcr
= mii_read (dev
, phy_addr
, MII_BMCR
);
1512 switch (bmcr
& (MII_BMCR_SPEED_100
| MII_BMCR_SPEED_1000
)) {
1513 case MII_BMCR_SPEED_1000
:
1514 printk (KERN_INFO
"Operating at 1000 Mbps, ");
1516 case MII_BMCR_SPEED_100
:
1517 printk (KERN_INFO
"Operating at 100 Mbps, ");
1520 printk (KERN_INFO
"Operating at 10 Mbps, ");
1522 if (bmcr
& MII_BMCR_DUPLEX_MODE
) {
1523 printk ("Full duplex\n");
1525 printk ("Half duplex\n");
1529 printk(KERN_INFO
"Enable Tx Flow Control\n");
1531 printk(KERN_INFO
"Disable Tx Flow Control\n");
1533 printk(KERN_INFO
"Enable Rx Flow Control\n");
1535 printk(KERN_INFO
"Disable Rx Flow Control\n");
1541 mii_set_media (struct net_device
*dev
)
1548 struct netdev_private
*np
;
1549 np
= netdev_priv(dev
);
1550 phy_addr
= np
->phy_addr
;
1552 /* Does user set speed? */
1553 if (np
->an_enable
) {
1554 /* Advertise capabilities */
1555 bmsr
= mii_read (dev
, phy_addr
, MII_BMSR
);
1556 anar
= mii_read (dev
, phy_addr
, MII_ANAR
) &
1557 ~MII_ANAR_100BX_FD
&
1558 ~MII_ANAR_100BX_HD
&
1562 if (bmsr
& MII_BMSR_100BX_FD
)
1563 anar
|= MII_ANAR_100BX_FD
;
1564 if (bmsr
& MII_BMSR_100BX_HD
)
1565 anar
|= MII_ANAR_100BX_HD
;
1566 if (bmsr
& MII_BMSR_100BT4
)
1567 anar
|= MII_ANAR_100BT4
;
1568 if (bmsr
& MII_BMSR_10BT_FD
)
1569 anar
|= MII_ANAR_10BT_FD
;
1570 if (bmsr
& MII_BMSR_10BT_HD
)
1571 anar
|= MII_ANAR_10BT_HD
;
1572 anar
|= MII_ANAR_PAUSE
| MII_ANAR_ASYMMETRIC
;
1573 mii_write (dev
, phy_addr
, MII_ANAR
, anar
);
1575 /* Enable Auto crossover */
1576 pscr
= mii_read (dev
, phy_addr
, MII_PHY_SCR
);
1577 pscr
|= 3 << 5; /* 11'b */
1578 mii_write (dev
, phy_addr
, MII_PHY_SCR
, pscr
);
1580 /* Soft reset PHY */
1581 mii_write (dev
, phy_addr
, MII_BMCR
, MII_BMCR_RESET
);
1582 bmcr
= MII_BMCR_AN_ENABLE
| MII_BMCR_RESTART_AN
| MII_BMCR_RESET
;
1583 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1586 /* Force speed setting */
1587 /* 1) Disable Auto crossover */
1588 pscr
= mii_read (dev
, phy_addr
, MII_PHY_SCR
);
1590 mii_write (dev
, phy_addr
, MII_PHY_SCR
, pscr
);
1593 bmcr
= mii_read (dev
, phy_addr
, MII_BMCR
);
1594 bmcr
|= MII_BMCR_RESET
;
1595 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1598 bmcr
= 0x1940; /* must be 0x1940 */
1599 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1600 mdelay (100); /* wait a certain time */
1602 /* 4) Advertise nothing */
1603 mii_write (dev
, phy_addr
, MII_ANAR
, 0);
1605 /* 5) Set media and Power Up */
1606 bmcr
= MII_BMCR_POWER_DOWN
;
1607 if (np
->speed
== 100) {
1608 bmcr
|= MII_BMCR_SPEED_100
;
1609 printk (KERN_INFO
"Manual 100 Mbps, ");
1610 } else if (np
->speed
== 10) {
1611 printk (KERN_INFO
"Manual 10 Mbps, ");
1613 if (np
->full_duplex
) {
1614 bmcr
|= MII_BMCR_DUPLEX_MODE
;
1615 printk ("Full duplex\n");
1617 printk ("Half duplex\n");
1620 /* Set 1000BaseT Master/Slave setting */
1621 mscr
= mii_read (dev
, phy_addr
, MII_MSCR
);
1622 mscr
|= MII_MSCR_CFG_ENABLE
;
1623 mscr
&= ~MII_MSCR_CFG_VALUE
= 0;
1625 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1632 mii_get_media_pcs (struct net_device
*dev
)
1637 struct netdev_private
*np
;
1639 np
= netdev_priv(dev
);
1640 phy_addr
= np
->phy_addr
;
1642 bmsr
= mii_read (dev
, phy_addr
, PCS_BMSR
);
1643 if (np
->an_enable
) {
1644 if (!(bmsr
& MII_BMSR_AN_COMPLETE
)) {
1645 /* Auto-Negotiation not completed */
1648 negotiate
= mii_read (dev
, phy_addr
, PCS_ANAR
) &
1649 mii_read (dev
, phy_addr
, PCS_ANLPAR
);
1651 if (negotiate
& PCS_ANAR_FULL_DUPLEX
) {
1652 printk (KERN_INFO
"Auto 1000 Mbps, Full duplex\n");
1653 np
->full_duplex
= 1;
1655 printk (KERN_INFO
"Auto 1000 Mbps, half duplex\n");
1656 np
->full_duplex
= 0;
1658 if (negotiate
& PCS_ANAR_PAUSE
) {
1661 } else if (negotiate
& PCS_ANAR_ASYMMETRIC
) {
1665 /* else tx_flow, rx_flow = user select */
1667 __u16 bmcr
= mii_read (dev
, phy_addr
, PCS_BMCR
);
1668 printk (KERN_INFO
"Operating at 1000 Mbps, ");
1669 if (bmcr
& MII_BMCR_DUPLEX_MODE
) {
1670 printk ("Full duplex\n");
1672 printk ("Half duplex\n");
1676 printk(KERN_INFO
"Enable Tx Flow Control\n");
1678 printk(KERN_INFO
"Disable Tx Flow Control\n");
1680 printk(KERN_INFO
"Enable Rx Flow Control\n");
1682 printk(KERN_INFO
"Disable Rx Flow Control\n");
1688 mii_set_media_pcs (struct net_device
*dev
)
1694 struct netdev_private
*np
;
1695 np
= netdev_priv(dev
);
1696 phy_addr
= np
->phy_addr
;
1698 /* Auto-Negotiation? */
1699 if (np
->an_enable
) {
1700 /* Advertise capabilities */
1701 esr
= mii_read (dev
, phy_addr
, PCS_ESR
);
1702 anar
= mii_read (dev
, phy_addr
, MII_ANAR
) &
1703 ~PCS_ANAR_HALF_DUPLEX
&
1704 ~PCS_ANAR_FULL_DUPLEX
;
1705 if (esr
& (MII_ESR_1000BT_HD
| MII_ESR_1000BX_HD
))
1706 anar
|= PCS_ANAR_HALF_DUPLEX
;
1707 if (esr
& (MII_ESR_1000BT_FD
| MII_ESR_1000BX_FD
))
1708 anar
|= PCS_ANAR_FULL_DUPLEX
;
1709 anar
|= PCS_ANAR_PAUSE
| PCS_ANAR_ASYMMETRIC
;
1710 mii_write (dev
, phy_addr
, MII_ANAR
, anar
);
1712 /* Soft reset PHY */
1713 mii_write (dev
, phy_addr
, MII_BMCR
, MII_BMCR_RESET
);
1714 bmcr
= MII_BMCR_AN_ENABLE
| MII_BMCR_RESTART_AN
|
1716 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1719 /* Force speed setting */
1721 bmcr
= MII_BMCR_RESET
;
1722 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1724 if (np
->full_duplex
) {
1725 bmcr
= MII_BMCR_DUPLEX_MODE
;
1726 printk (KERN_INFO
"Manual full duplex\n");
1729 printk (KERN_INFO
"Manual half duplex\n");
1731 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1734 /* Advertise nothing */
1735 mii_write (dev
, phy_addr
, MII_ANAR
, 0);
1742 rio_close (struct net_device
*dev
)
1744 long ioaddr
= dev
->base_addr
;
1745 struct netdev_private
*np
= netdev_priv(dev
);
1746 struct sk_buff
*skb
;
1749 netif_stop_queue (dev
);
1751 /* Disable interrupts */
1752 writew (0, ioaddr
+ IntEnable
);
1754 /* Stop Tx and Rx logics */
1755 writel (TxDisable
| RxDisable
| StatsDisable
, ioaddr
+ MACCtrl
);
1756 synchronize_irq (dev
->irq
);
1757 free_irq (dev
->irq
, dev
);
1758 del_timer_sync (&np
->timer
);
1760 /* Free all the skbuffs in the queue. */
1761 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1762 np
->rx_ring
[i
].status
= 0;
1763 np
->rx_ring
[i
].fraginfo
= 0;
1764 skb
= np
->rx_skbuff
[i
];
1766 pci_unmap_single(np
->pdev
,
1767 desc_to_dma(&np
->rx_ring
[i
]),
1768 skb
->len
, PCI_DMA_FROMDEVICE
);
1769 dev_kfree_skb (skb
);
1770 np
->rx_skbuff
[i
] = NULL
;
1773 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1774 skb
= np
->tx_skbuff
[i
];
1776 pci_unmap_single(np
->pdev
,
1777 desc_to_dma(&np
->tx_ring
[i
]),
1778 skb
->len
, PCI_DMA_TODEVICE
);
1779 dev_kfree_skb (skb
);
1780 np
->tx_skbuff
[i
] = NULL
;
1787 static void __devexit
1788 rio_remove1 (struct pci_dev
*pdev
)
1790 struct net_device
*dev
= pci_get_drvdata (pdev
);
1793 struct netdev_private
*np
= netdev_priv(dev
);
1795 unregister_netdev (dev
);
1796 pci_free_consistent (pdev
, RX_TOTAL_SIZE
, np
->rx_ring
,
1798 pci_free_consistent (pdev
, TX_TOTAL_SIZE
, np
->tx_ring
,
1801 iounmap ((char *) (dev
->base_addr
));
1804 pci_release_regions (pdev
);
1805 pci_disable_device (pdev
);
1807 pci_set_drvdata (pdev
, NULL
);
1810 static struct pci_driver rio_driver
= {
1812 .id_table
= rio_pci_tbl
,
1813 .probe
= rio_probe1
,
1814 .remove
= __devexit_p(rio_remove1
),
1820 return pci_register_driver(&rio_driver
);
1826 pci_unregister_driver (&rio_driver
);
1829 module_init (rio_init
);
1830 module_exit (rio_exit
);
1836 gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1838 Read Documentation/networking/dl2k.txt for details.