4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/hdreg.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50 #include <linux/scatterlist.h>
51 #include <linux/bitops.h>
53 #include <asm/byteorder.h>
55 #include <asm/uaccess.h>
58 static int __ide_end_request(ide_drive_t
*drive
, struct request
*rq
,
59 int uptodate
, unsigned int nr_bytes
, int dequeue
)
65 error
= uptodate
? uptodate
: -EIO
;
68 * if failfast is set on a request, override number of sectors and
69 * complete the whole request right now
71 if (blk_noretry_request(rq
) && error
)
72 nr_bytes
= rq
->hard_nr_sectors
<< 9;
74 if (!blk_fs_request(rq
) && error
&& !rq
->errors
)
78 * decide whether to reenable DMA -- 3 is a random magic for now,
79 * if we DMA timeout more than 3 times, just stay in PIO
81 if ((drive
->dev_flags
& IDE_DFLAG_DMA_PIO_RETRY
) &&
82 drive
->retry_pio
<= 3) {
83 drive
->dev_flags
&= ~IDE_DFLAG_DMA_PIO_RETRY
;
87 if (!__blk_end_request(rq
, error
, nr_bytes
)) {
89 HWGROUP(drive
)->rq
= NULL
;
97 * ide_end_request - complete an IDE I/O
98 * @drive: IDE device for the I/O
100 * @nr_sectors: number of sectors completed
102 * This is our end_request wrapper function. We complete the I/O
103 * update random number input and dequeue the request, which if
104 * it was tagged may be out of order.
107 int ide_end_request (ide_drive_t
*drive
, int uptodate
, int nr_sectors
)
109 unsigned int nr_bytes
= nr_sectors
<< 9;
115 * room for locking improvements here, the calls below don't
116 * need the queue lock held at all
118 spin_lock_irqsave(&ide_lock
, flags
);
119 rq
= HWGROUP(drive
)->rq
;
122 if (blk_pc_request(rq
))
123 nr_bytes
= rq
->data_len
;
125 nr_bytes
= rq
->hard_cur_sectors
<< 9;
128 ret
= __ide_end_request(drive
, rq
, uptodate
, nr_bytes
, 1);
130 spin_unlock_irqrestore(&ide_lock
, flags
);
133 EXPORT_SYMBOL(ide_end_request
);
135 static void ide_complete_power_step(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 error
)
137 struct request_pm_state
*pm
= rq
->data
;
139 if (drive
->media
!= ide_disk
)
142 switch (pm
->pm_step
) {
143 case IDE_PM_FLUSH_CACHE
: /* Suspend step 1 (flush cache) */
144 if (pm
->pm_state
== PM_EVENT_FREEZE
)
145 pm
->pm_step
= IDE_PM_COMPLETED
;
147 pm
->pm_step
= IDE_PM_STANDBY
;
149 case IDE_PM_STANDBY
: /* Suspend step 2 (standby) */
150 pm
->pm_step
= IDE_PM_COMPLETED
;
152 case IDE_PM_RESTORE_PIO
: /* Resume step 1 (restore PIO) */
153 pm
->pm_step
= IDE_PM_IDLE
;
155 case IDE_PM_IDLE
: /* Resume step 2 (idle)*/
156 pm
->pm_step
= IDE_PM_RESTORE_DMA
;
161 static ide_startstop_t
ide_start_power_step(ide_drive_t
*drive
, struct request
*rq
)
163 struct request_pm_state
*pm
= rq
->data
;
164 ide_task_t
*args
= rq
->special
;
166 memset(args
, 0, sizeof(*args
));
168 switch (pm
->pm_step
) {
169 case IDE_PM_FLUSH_CACHE
: /* Suspend step 1 (flush cache) */
170 if (drive
->media
!= ide_disk
)
172 /* Not supported? Switch to next step now. */
173 if (ata_id_flush_enabled(drive
->id
) == 0 ||
174 (drive
->dev_flags
& IDE_DFLAG_WCACHE
) == 0) {
175 ide_complete_power_step(drive
, rq
, 0, 0);
178 if (ata_id_flush_ext_enabled(drive
->id
))
179 args
->tf
.command
= ATA_CMD_FLUSH_EXT
;
181 args
->tf
.command
= ATA_CMD_FLUSH
;
183 case IDE_PM_STANDBY
: /* Suspend step 2 (standby) */
184 args
->tf
.command
= ATA_CMD_STANDBYNOW1
;
186 case IDE_PM_RESTORE_PIO
: /* Resume step 1 (restore PIO) */
187 ide_set_max_pio(drive
);
189 * skip IDE_PM_IDLE for ATAPI devices
191 if (drive
->media
!= ide_disk
)
192 pm
->pm_step
= IDE_PM_RESTORE_DMA
;
194 ide_complete_power_step(drive
, rq
, 0, 0);
196 case IDE_PM_IDLE
: /* Resume step 2 (idle) */
197 args
->tf
.command
= ATA_CMD_IDLEIMMEDIATE
;
199 case IDE_PM_RESTORE_DMA
: /* Resume step 3 (restore DMA) */
201 * Right now, all we do is call ide_set_dma(drive),
202 * we could be smarter and check for current xfer_speed
203 * in struct drive etc...
205 if (drive
->hwif
->dma_ops
== NULL
)
208 * TODO: respect IDE_DFLAG_USING_DMA
214 pm
->pm_step
= IDE_PM_COMPLETED
;
218 args
->tf_flags
= IDE_TFLAG_TF
| IDE_TFLAG_DEVICE
;
219 args
->data_phase
= TASKFILE_NO_DATA
;
220 return do_rw_taskfile(drive
, args
);
224 * ide_end_dequeued_request - complete an IDE I/O
225 * @drive: IDE device for the I/O
227 * @nr_sectors: number of sectors completed
229 * Complete an I/O that is no longer on the request queue. This
230 * typically occurs when we pull the request and issue a REQUEST_SENSE.
231 * We must still finish the old request but we must not tamper with the
232 * queue in the meantime.
234 * NOTE: This path does not handle barrier, but barrier is not supported
238 int ide_end_dequeued_request(ide_drive_t
*drive
, struct request
*rq
,
239 int uptodate
, int nr_sectors
)
244 spin_lock_irqsave(&ide_lock
, flags
);
245 BUG_ON(!blk_rq_started(rq
));
246 ret
= __ide_end_request(drive
, rq
, uptodate
, nr_sectors
<< 9, 0);
247 spin_unlock_irqrestore(&ide_lock
, flags
);
251 EXPORT_SYMBOL_GPL(ide_end_dequeued_request
);
255 * ide_complete_pm_request - end the current Power Management request
256 * @drive: target drive
259 * This function cleans up the current PM request and stops the queue
262 static void ide_complete_pm_request (ide_drive_t
*drive
, struct request
*rq
)
267 printk("%s: completing PM request, %s\n", drive
->name
,
268 blk_pm_suspend_request(rq
) ? "suspend" : "resume");
270 spin_lock_irqsave(&ide_lock
, flags
);
271 if (blk_pm_suspend_request(rq
)) {
272 blk_stop_queue(drive
->queue
);
274 drive
->dev_flags
&= ~IDE_DFLAG_BLOCKED
;
275 blk_start_queue(drive
->queue
);
277 HWGROUP(drive
)->rq
= NULL
;
278 if (__blk_end_request(rq
, 0, 0))
280 spin_unlock_irqrestore(&ide_lock
, flags
);
284 * ide_end_drive_cmd - end an explicit drive command
289 * Clean up after success/failure of an explicit drive command.
290 * These get thrown onto the queue so they are synchronized with
291 * real I/O operations on the drive.
293 * In LBA48 mode we have to read the register set twice to get
294 * all the extra information out.
297 void ide_end_drive_cmd (ide_drive_t
*drive
, u8 stat
, u8 err
)
302 spin_lock_irqsave(&ide_lock
, flags
);
303 rq
= HWGROUP(drive
)->rq
;
304 spin_unlock_irqrestore(&ide_lock
, flags
);
306 if (rq
->cmd_type
== REQ_TYPE_ATA_TASKFILE
) {
307 ide_task_t
*task
= (ide_task_t
*)rq
->special
;
310 rq
->errors
= !OK_STAT(stat
, ATA_DRDY
, BAD_STAT
);
313 struct ide_taskfile
*tf
= &task
->tf
;
318 drive
->hwif
->tp_ops
->tf_read(drive
, task
);
320 if (task
->tf_flags
& IDE_TFLAG_DYN
)
323 } else if (blk_pm_request(rq
)) {
324 struct request_pm_state
*pm
= rq
->data
;
326 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
327 drive
->name
, rq
->pm
->pm_step
, stat
, err
);
329 ide_complete_power_step(drive
, rq
, stat
, err
);
330 if (pm
->pm_step
== IDE_PM_COMPLETED
)
331 ide_complete_pm_request(drive
, rq
);
335 spin_lock_irqsave(&ide_lock
, flags
);
336 HWGROUP(drive
)->rq
= NULL
;
338 if (unlikely(__blk_end_request(rq
, (rq
->errors
? -EIO
: 0),
341 spin_unlock_irqrestore(&ide_lock
, flags
);
344 EXPORT_SYMBOL(ide_end_drive_cmd
);
346 static void ide_kill_rq(ide_drive_t
*drive
, struct request
*rq
)
351 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
352 drv
->end_request(drive
, 0, 0);
354 ide_end_request(drive
, 0, 0);
357 static ide_startstop_t
ide_ata_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
359 ide_hwif_t
*hwif
= drive
->hwif
;
361 if ((stat
& ATA_BUSY
) ||
362 ((stat
& ATA_DF
) && (drive
->dev_flags
& IDE_DFLAG_NOWERR
) == 0)) {
363 /* other bits are useless when BUSY */
364 rq
->errors
|= ERROR_RESET
;
365 } else if (stat
& ATA_ERR
) {
366 /* err has different meaning on cdrom and tape */
367 if (err
== ATA_ABORTED
) {
368 if ((drive
->dev_flags
& IDE_DFLAG_LBA
) &&
369 /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */
370 hwif
->tp_ops
->read_status(hwif
) == ATA_CMD_INIT_DEV_PARAMS
)
372 } else if ((err
& BAD_CRC
) == BAD_CRC
) {
373 /* UDMA crc error, just retry the operation */
375 } else if (err
& (ATA_BBK
| ATA_UNC
)) {
376 /* retries won't help these */
377 rq
->errors
= ERROR_MAX
;
378 } else if (err
& ATA_TRK0NF
) {
379 /* help it find track zero */
380 rq
->errors
|= ERROR_RECAL
;
384 if ((stat
& ATA_DRQ
) && rq_data_dir(rq
) == READ
&&
385 (hwif
->host_flags
& IDE_HFLAG_ERROR_STOPS_FIFO
) == 0) {
386 int nsect
= drive
->mult_count
? drive
->mult_count
: 1;
388 ide_pad_transfer(drive
, READ
, nsect
* SECTOR_SIZE
);
391 if (rq
->errors
>= ERROR_MAX
|| blk_noretry_request(rq
)) {
392 ide_kill_rq(drive
, rq
);
396 if (hwif
->tp_ops
->read_status(hwif
) & (ATA_BUSY
| ATA_DRQ
))
397 rq
->errors
|= ERROR_RESET
;
399 if ((rq
->errors
& ERROR_RESET
) == ERROR_RESET
) {
401 return ide_do_reset(drive
);
404 if ((rq
->errors
& ERROR_RECAL
) == ERROR_RECAL
)
405 drive
->special
.b
.recalibrate
= 1;
412 static ide_startstop_t
ide_atapi_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
414 ide_hwif_t
*hwif
= drive
->hwif
;
416 if ((stat
& ATA_BUSY
) ||
417 ((stat
& ATA_DF
) && (drive
->dev_flags
& IDE_DFLAG_NOWERR
) == 0)) {
418 /* other bits are useless when BUSY */
419 rq
->errors
|= ERROR_RESET
;
421 /* add decoding error stuff */
424 if (hwif
->tp_ops
->read_status(hwif
) & (ATA_BUSY
| ATA_DRQ
))
426 hwif
->tp_ops
->exec_command(hwif
, ATA_CMD_IDLEIMMEDIATE
);
428 if (rq
->errors
>= ERROR_MAX
) {
429 ide_kill_rq(drive
, rq
);
431 if ((rq
->errors
& ERROR_RESET
) == ERROR_RESET
) {
433 return ide_do_reset(drive
);
442 __ide_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
444 if (drive
->media
== ide_disk
)
445 return ide_ata_error(drive
, rq
, stat
, err
);
446 return ide_atapi_error(drive
, rq
, stat
, err
);
449 EXPORT_SYMBOL_GPL(__ide_error
);
452 * ide_error - handle an error on the IDE
453 * @drive: drive the error occurred on
454 * @msg: message to report
457 * ide_error() takes action based on the error returned by the drive.
458 * For normal I/O that may well include retries. We deal with
459 * both new-style (taskfile) and old style command handling here.
460 * In the case of taskfile command handling there is work left to
464 ide_startstop_t
ide_error (ide_drive_t
*drive
, const char *msg
, u8 stat
)
469 err
= ide_dump_status(drive
, msg
, stat
);
471 if ((rq
= HWGROUP(drive
)->rq
) == NULL
)
474 /* retry only "normal" I/O: */
475 if (!blk_fs_request(rq
)) {
477 ide_end_drive_cmd(drive
, stat
, err
);
484 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
485 return drv
->error(drive
, rq
, stat
, err
);
487 return __ide_error(drive
, rq
, stat
, err
);
490 EXPORT_SYMBOL_GPL(ide_error
);
492 static void ide_tf_set_specify_cmd(ide_drive_t
*drive
, struct ide_taskfile
*tf
)
494 tf
->nsect
= drive
->sect
;
495 tf
->lbal
= drive
->sect
;
496 tf
->lbam
= drive
->cyl
;
497 tf
->lbah
= drive
->cyl
>> 8;
498 tf
->device
= (drive
->head
- 1) | drive
->select
;
499 tf
->command
= ATA_CMD_INIT_DEV_PARAMS
;
502 static void ide_tf_set_restore_cmd(ide_drive_t
*drive
, struct ide_taskfile
*tf
)
504 tf
->nsect
= drive
->sect
;
505 tf
->command
= ATA_CMD_RESTORE
;
508 static void ide_tf_set_setmult_cmd(ide_drive_t
*drive
, struct ide_taskfile
*tf
)
510 tf
->nsect
= drive
->mult_req
;
511 tf
->command
= ATA_CMD_SET_MULTI
;
514 static ide_startstop_t
ide_disk_special(ide_drive_t
*drive
)
516 special_t
*s
= &drive
->special
;
519 memset(&args
, 0, sizeof(ide_task_t
));
520 args
.data_phase
= TASKFILE_NO_DATA
;
522 if (s
->b
.set_geometry
) {
523 s
->b
.set_geometry
= 0;
524 ide_tf_set_specify_cmd(drive
, &args
.tf
);
525 } else if (s
->b
.recalibrate
) {
526 s
->b
.recalibrate
= 0;
527 ide_tf_set_restore_cmd(drive
, &args
.tf
);
528 } else if (s
->b
.set_multmode
) {
529 s
->b
.set_multmode
= 0;
530 ide_tf_set_setmult_cmd(drive
, &args
.tf
);
532 int special
= s
->all
;
534 printk(KERN_ERR
"%s: bad special flag: 0x%02x\n", drive
->name
, special
);
538 args
.tf_flags
= IDE_TFLAG_TF
| IDE_TFLAG_DEVICE
|
539 IDE_TFLAG_CUSTOM_HANDLER
;
541 do_rw_taskfile(drive
, &args
);
547 * do_special - issue some special commands
548 * @drive: drive the command is for
550 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
551 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
553 * It used to do much more, but has been scaled back.
556 static ide_startstop_t
do_special (ide_drive_t
*drive
)
558 special_t
*s
= &drive
->special
;
561 printk("%s: do_special: 0x%02x\n", drive
->name
, s
->all
);
563 if (drive
->media
== ide_disk
)
564 return ide_disk_special(drive
);
571 void ide_map_sg(ide_drive_t
*drive
, struct request
*rq
)
573 ide_hwif_t
*hwif
= drive
->hwif
;
574 struct scatterlist
*sg
= hwif
->sg_table
;
576 if (hwif
->sg_mapped
) /* needed by ide-scsi */
579 if (rq
->cmd_type
!= REQ_TYPE_ATA_TASKFILE
) {
580 hwif
->sg_nents
= blk_rq_map_sg(drive
->queue
, rq
, sg
);
582 sg_init_one(sg
, rq
->buffer
, rq
->nr_sectors
* SECTOR_SIZE
);
587 EXPORT_SYMBOL_GPL(ide_map_sg
);
589 void ide_init_sg_cmd(ide_drive_t
*drive
, struct request
*rq
)
591 ide_hwif_t
*hwif
= drive
->hwif
;
593 hwif
->nsect
= hwif
->nleft
= rq
->nr_sectors
;
598 EXPORT_SYMBOL_GPL(ide_init_sg_cmd
);
601 * execute_drive_command - issue special drive command
602 * @drive: the drive to issue the command on
603 * @rq: the request structure holding the command
605 * execute_drive_cmd() issues a special drive command, usually
606 * initiated by ioctl() from the external hdparm program. The
607 * command can be a drive command, drive task or taskfile
608 * operation. Weirdly you can call it with NULL to wait for
609 * all commands to finish. Don't do this as that is due to change
612 static ide_startstop_t
execute_drive_cmd (ide_drive_t
*drive
,
615 ide_hwif_t
*hwif
= HWIF(drive
);
616 ide_task_t
*task
= rq
->special
;
619 hwif
->data_phase
= task
->data_phase
;
621 switch (hwif
->data_phase
) {
622 case TASKFILE_MULTI_OUT
:
624 case TASKFILE_MULTI_IN
:
626 ide_init_sg_cmd(drive
, rq
);
627 ide_map_sg(drive
, rq
);
632 return do_rw_taskfile(drive
, task
);
636 * NULL is actually a valid way of waiting for
637 * all current requests to be flushed from the queue.
640 printk("%s: DRIVE_CMD (null)\n", drive
->name
);
642 ide_end_drive_cmd(drive
, hwif
->tp_ops
->read_status(hwif
),
643 ide_read_error(drive
));
648 int ide_devset_execute(ide_drive_t
*drive
, const struct ide_devset
*setting
,
651 struct request_queue
*q
= drive
->queue
;
655 if (!(setting
->flags
& DS_SYNC
))
656 return setting
->set(drive
, arg
);
658 rq
= blk_get_request(q
, READ
, __GFP_WAIT
);
659 rq
->cmd_type
= REQ_TYPE_SPECIAL
;
661 rq
->cmd
[0] = REQ_DEVSET_EXEC
;
662 *(int *)&rq
->cmd
[1] = arg
;
663 rq
->special
= setting
->set
;
665 if (blk_execute_rq(q
, NULL
, rq
, 0))
671 EXPORT_SYMBOL_GPL(ide_devset_execute
);
673 static ide_startstop_t
ide_special_rq(ide_drive_t
*drive
, struct request
*rq
)
677 if (cmd
== REQ_PARK_HEADS
|| cmd
== REQ_UNPARK_HEADS
) {
679 struct ide_taskfile
*tf
= &task
.tf
;
681 memset(&task
, 0, sizeof(task
));
682 if (cmd
== REQ_PARK_HEADS
) {
683 drive
->sleep
= *(unsigned long *)rq
->special
;
684 drive
->dev_flags
|= IDE_DFLAG_SLEEPING
;
685 tf
->command
= ATA_CMD_IDLEIMMEDIATE
;
690 task
.tf_flags
|= IDE_TFLAG_CUSTOM_HANDLER
;
691 } else /* cmd == REQ_UNPARK_HEADS */
692 tf
->command
= ATA_CMD_CHK_POWER
;
694 task
.tf_flags
|= IDE_TFLAG_TF
| IDE_TFLAG_DEVICE
;
696 drive
->hwif
->data_phase
= task
.data_phase
= TASKFILE_NO_DATA
;
697 return do_rw_taskfile(drive
, &task
);
701 case REQ_DEVSET_EXEC
:
703 int err
, (*setfunc
)(ide_drive_t
*, int) = rq
->special
;
705 err
= setfunc(drive
, *(int *)&rq
->cmd
[1]);
710 ide_end_request(drive
, err
, 0);
713 case REQ_DRIVE_RESET
:
714 return ide_do_reset(drive
);
716 blk_dump_rq_flags(rq
, "ide_special_rq - bad request");
717 ide_end_request(drive
, 0, 0);
722 static void ide_check_pm_state(ide_drive_t
*drive
, struct request
*rq
)
724 struct request_pm_state
*pm
= rq
->data
;
726 if (blk_pm_suspend_request(rq
) &&
727 pm
->pm_step
== IDE_PM_START_SUSPEND
)
728 /* Mark drive blocked when starting the suspend sequence. */
729 drive
->dev_flags
|= IDE_DFLAG_BLOCKED
;
730 else if (blk_pm_resume_request(rq
) &&
731 pm
->pm_step
== IDE_PM_START_RESUME
) {
733 * The first thing we do on wakeup is to wait for BSY bit to
734 * go away (with a looong timeout) as a drive on this hwif may
735 * just be POSTing itself.
736 * We do that before even selecting as the "other" device on
737 * the bus may be broken enough to walk on our toes at this
740 ide_hwif_t
*hwif
= drive
->hwif
;
743 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive
->name
);
745 rc
= ide_wait_not_busy(hwif
, 35000);
747 printk(KERN_WARNING
"%s: bus not ready on wakeup\n", drive
->name
);
749 hwif
->tp_ops
->set_irq(hwif
, 1);
750 rc
= ide_wait_not_busy(hwif
, 100000);
752 printk(KERN_WARNING
"%s: drive not ready on wakeup\n", drive
->name
);
757 * start_request - start of I/O and command issuing for IDE
759 * start_request() initiates handling of a new I/O request. It
760 * accepts commands and I/O (read/write) requests.
762 * FIXME: this function needs a rename
765 static ide_startstop_t
start_request (ide_drive_t
*drive
, struct request
*rq
)
767 ide_startstop_t startstop
;
769 BUG_ON(!blk_rq_started(rq
));
772 printk("%s: start_request: current=0x%08lx\n",
773 HWIF(drive
)->name
, (unsigned long) rq
);
776 /* bail early if we've exceeded max_failures */
777 if (drive
->max_failures
&& (drive
->failures
> drive
->max_failures
)) {
778 rq
->cmd_flags
|= REQ_FAILED
;
782 if (blk_pm_request(rq
))
783 ide_check_pm_state(drive
, rq
);
786 if (ide_wait_stat(&startstop
, drive
, drive
->ready_stat
,
787 ATA_BUSY
| ATA_DRQ
, WAIT_READY
)) {
788 printk(KERN_ERR
"%s: drive not ready for command\n", drive
->name
);
791 if (!drive
->special
.all
) {
795 * We reset the drive so we need to issue a SETFEATURES.
796 * Do it _after_ do_special() restored device parameters.
798 if (drive
->current_speed
== 0xff)
799 ide_config_drive_speed(drive
, drive
->desired_speed
);
801 if (rq
->cmd_type
== REQ_TYPE_ATA_TASKFILE
)
802 return execute_drive_cmd(drive
, rq
);
803 else if (blk_pm_request(rq
)) {
804 struct request_pm_state
*pm
= rq
->data
;
806 printk("%s: start_power_step(step: %d)\n",
807 drive
->name
, rq
->pm
->pm_step
);
809 startstop
= ide_start_power_step(drive
, rq
);
810 if (startstop
== ide_stopped
&&
811 pm
->pm_step
== IDE_PM_COMPLETED
)
812 ide_complete_pm_request(drive
, rq
);
814 } else if (!rq
->rq_disk
&& blk_special_request(rq
))
816 * TODO: Once all ULDs have been modified to
817 * check for specific op codes rather than
818 * blindly accepting any special request, the
819 * check for ->rq_disk above may be replaced
820 * by a more suitable mechanism or even
823 return ide_special_rq(drive
, rq
);
825 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
827 return drv
->do_request(drive
, rq
, rq
->sector
);
829 return do_special(drive
);
831 ide_kill_rq(drive
, rq
);
836 * ide_stall_queue - pause an IDE device
837 * @drive: drive to stall
838 * @timeout: time to stall for (jiffies)
840 * ide_stall_queue() can be used by a drive to give excess bandwidth back
841 * to the hwgroup by sleeping for timeout jiffies.
844 void ide_stall_queue (ide_drive_t
*drive
, unsigned long timeout
)
846 if (timeout
> WAIT_WORSTCASE
)
847 timeout
= WAIT_WORSTCASE
;
848 drive
->sleep
= timeout
+ jiffies
;
849 drive
->dev_flags
|= IDE_DFLAG_SLEEPING
;
852 EXPORT_SYMBOL(ide_stall_queue
);
854 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
857 * choose_drive - select a drive to service
858 * @hwgroup: hardware group to select on
860 * choose_drive() selects the next drive which will be serviced.
861 * This is necessary because the IDE layer can't issue commands
862 * to both drives on the same cable, unlike SCSI.
865 static inline ide_drive_t
*choose_drive (ide_hwgroup_t
*hwgroup
)
867 ide_drive_t
*drive
, *best
;
871 drive
= hwgroup
->drive
;
874 * drive is doing pre-flush, ordered write, post-flush sequence. even
875 * though that is 3 requests, it must be seen as a single transaction.
876 * we must not preempt this drive until that is complete
878 if (blk_queue_flushing(drive
->queue
)) {
880 * small race where queue could get replugged during
881 * the 3-request flush cycle, just yank the plug since
882 * we want it to finish asap
884 blk_remove_plug(drive
->queue
);
889 u8 dev_s
= !!(drive
->dev_flags
& IDE_DFLAG_SLEEPING
);
890 u8 best_s
= (best
&& !!(best
->dev_flags
& IDE_DFLAG_SLEEPING
));
892 if ((dev_s
== 0 || time_after_eq(jiffies
, drive
->sleep
)) &&
893 !elv_queue_empty(drive
->queue
)) {
895 (dev_s
&& (best_s
== 0 || time_before(drive
->sleep
, best
->sleep
))) ||
896 (best_s
== 0 && time_before(WAKEUP(drive
), WAKEUP(best
)))) {
897 if (!blk_queue_plugged(drive
->queue
))
901 } while ((drive
= drive
->next
) != hwgroup
->drive
);
903 if (best
&& (best
->dev_flags
& IDE_DFLAG_NICE1
) &&
904 (best
->dev_flags
& IDE_DFLAG_SLEEPING
) == 0 &&
905 best
!= hwgroup
->drive
&& best
->service_time
> WAIT_MIN_SLEEP
) {
906 long t
= (signed long)(WAKEUP(best
) - jiffies
);
907 if (t
>= WAIT_MIN_SLEEP
) {
909 * We *may* have some time to spare, but first let's see if
910 * someone can potentially benefit from our nice mood today..
914 if ((drive
->dev_flags
& IDE_DFLAG_SLEEPING
) == 0
915 && time_before(jiffies
- best
->service_time
, WAKEUP(drive
))
916 && time_before(WAKEUP(drive
), jiffies
+ t
))
918 ide_stall_queue(best
, min_t(long, t
, 10 * WAIT_MIN_SLEEP
));
921 } while ((drive
= drive
->next
) != best
);
928 * Issue a new request to a drive from hwgroup
929 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
931 * A hwgroup is a serialized group of IDE interfaces. Usually there is
932 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
933 * may have both interfaces in a single hwgroup to "serialize" access.
934 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
935 * together into one hwgroup for serialized access.
937 * Note also that several hwgroups can end up sharing a single IRQ,
938 * possibly along with many other devices. This is especially common in
939 * PCI-based systems with off-board IDE controller cards.
941 * The IDE driver uses the single global ide_lock spinlock to protect
942 * access to the request queues, and to protect the hwgroup->busy flag.
944 * The first thread into the driver for a particular hwgroup sets the
945 * hwgroup->busy flag to indicate that this hwgroup is now active,
946 * and then initiates processing of the top request from the request queue.
948 * Other threads attempting entry notice the busy setting, and will simply
949 * queue their new requests and exit immediately. Note that hwgroup->busy
950 * remains set even when the driver is merely awaiting the next interrupt.
951 * Thus, the meaning is "this hwgroup is busy processing a request".
953 * When processing of a request completes, the completing thread or IRQ-handler
954 * will start the next request from the queue. If no more work remains,
955 * the driver will clear the hwgroup->busy flag and exit.
957 * The ide_lock (spinlock) is used to protect all access to the
958 * hwgroup->busy flag, but is otherwise not needed for most processing in
959 * the driver. This makes the driver much more friendlier to shared IRQs
960 * than previous designs, while remaining 100% (?) SMP safe and capable.
962 static void ide_do_request (ide_hwgroup_t
*hwgroup
, int masked_irq
)
967 ide_startstop_t startstop
;
970 /* for atari only: POSSIBLY BROKEN HERE(?) */
971 ide_get_lock(ide_intr
, hwgroup
);
973 /* caller must own ide_lock */
974 BUG_ON(!irqs_disabled());
976 while (!hwgroup
->busy
) {
978 drive
= choose_drive(hwgroup
);
981 unsigned long sleep
= 0; /* shut up, gcc */
983 drive
= hwgroup
->drive
;
985 if ((drive
->dev_flags
& IDE_DFLAG_SLEEPING
) &&
987 time_before(drive
->sleep
, sleep
))) {
989 sleep
= drive
->sleep
;
991 } while ((drive
= drive
->next
) != hwgroup
->drive
);
994 * Take a short snooze, and then wake up this hwgroup again.
995 * This gives other hwgroups on the same a chance to
996 * play fairly with us, just in case there are big differences
997 * in relative throughputs.. don't want to hog the cpu too much.
999 if (time_before(sleep
, jiffies
+ WAIT_MIN_SLEEP
))
1000 sleep
= jiffies
+ WAIT_MIN_SLEEP
;
1002 if (timer_pending(&hwgroup
->timer
))
1003 printk(KERN_CRIT
"ide_set_handler: timer already active\n");
1005 /* so that ide_timer_expiry knows what to do */
1006 hwgroup
->sleeping
= 1;
1007 hwgroup
->req_gen_timer
= hwgroup
->req_gen
;
1008 mod_timer(&hwgroup
->timer
, sleep
);
1009 /* we purposely leave hwgroup->busy==1
1012 /* Ugly, but how can we sleep for the lock
1013 * otherwise? perhaps from tq_disk?
1016 /* for atari only */
1021 /* no more work for this hwgroup (for now) */
1026 if (hwgroup
->hwif
->sharing_irq
&& hwif
!= hwgroup
->hwif
) {
1028 * set nIEN for previous hwif, drives in the
1029 * quirk_list may not like intr setups/cleanups
1031 if (drive
->quirk_list
!= 1)
1032 hwif
->tp_ops
->set_irq(hwif
, 0);
1034 hwgroup
->hwif
= hwif
;
1035 hwgroup
->drive
= drive
;
1036 drive
->dev_flags
&= ~(IDE_DFLAG_SLEEPING
| IDE_DFLAG_PARKED
);
1037 drive
->service_start
= jiffies
;
1039 if (blk_queue_plugged(drive
->queue
)) {
1040 printk(KERN_ERR
"ide: huh? queue was plugged!\n");
1045 * we know that the queue isn't empty, but this can happen
1046 * if the q->prep_rq_fn() decides to kill a request
1048 rq
= elv_next_request(drive
->queue
);
1055 * Sanity: don't accept a request that isn't a PM request
1056 * if we are currently power managed. This is very important as
1057 * blk_stop_queue() doesn't prevent the elv_next_request()
1058 * above to return us whatever is in the queue. Since we call
1059 * ide_do_request() ourselves, we end up taking requests while
1060 * the queue is blocked...
1062 * We let requests forced at head of queue with ide-preempt
1063 * though. I hope that doesn't happen too much, hopefully not
1064 * unless the subdriver triggers such a thing in its own PM
1067 * We count how many times we loop here to make sure we service
1068 * all drives in the hwgroup without looping for ever
1070 if ((drive
->dev_flags
& IDE_DFLAG_BLOCKED
) &&
1071 blk_pm_request(rq
) == 0 &&
1072 (rq
->cmd_flags
& REQ_PREEMPT
) == 0) {
1073 drive
= drive
->next
? drive
->next
: hwgroup
->drive
;
1074 if (loops
++ < 4 && !blk_queue_plugged(drive
->queue
))
1076 /* We clear busy, there should be no pending ATA command at this point. */
1084 * Some systems have trouble with IDE IRQs arriving while
1085 * the driver is still setting things up. So, here we disable
1086 * the IRQ used by this interface while the request is being started.
1087 * This may look bad at first, but pretty much the same thing
1088 * happens anyway when any interrupt comes in, IDE or otherwise
1089 * -- the kernel masks the IRQ while it is being handled.
1091 if (masked_irq
!= IDE_NO_IRQ
&& hwif
->irq
!= masked_irq
)
1092 disable_irq_nosync(hwif
->irq
);
1093 spin_unlock(&ide_lock
);
1094 local_irq_enable_in_hardirq();
1095 /* allow other IRQs while we start this request */
1096 startstop
= start_request(drive
, rq
);
1097 spin_lock_irq(&ide_lock
);
1098 if (masked_irq
!= IDE_NO_IRQ
&& hwif
->irq
!= masked_irq
)
1099 enable_irq(hwif
->irq
);
1100 if (startstop
== ide_stopped
)
1106 * Passes the stuff to ide_do_request
1108 void do_ide_request(struct request_queue
*q
)
1110 ide_drive_t
*drive
= q
->queuedata
;
1112 ide_do_request(HWGROUP(drive
), IDE_NO_IRQ
);
1116 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1117 * retry the current request in pio mode instead of risking tossing it
1120 static ide_startstop_t
ide_dma_timeout_retry(ide_drive_t
*drive
, int error
)
1122 ide_hwif_t
*hwif
= HWIF(drive
);
1124 ide_startstop_t ret
= ide_stopped
;
1127 * end current dma transaction
1131 printk(KERN_WARNING
"%s: DMA timeout error\n", drive
->name
);
1132 (void)hwif
->dma_ops
->dma_end(drive
);
1133 ret
= ide_error(drive
, "dma timeout error",
1134 hwif
->tp_ops
->read_status(hwif
));
1136 printk(KERN_WARNING
"%s: DMA timeout retry\n", drive
->name
);
1137 hwif
->dma_ops
->dma_timeout(drive
);
1141 * disable dma for now, but remember that we did so because of
1142 * a timeout -- we'll reenable after we finish this next request
1143 * (or rather the first chunk of it) in pio.
1145 drive
->dev_flags
|= IDE_DFLAG_DMA_PIO_RETRY
;
1147 ide_dma_off_quietly(drive
);
1150 * un-busy drive etc (hwgroup->busy is cleared on return) and
1151 * make sure request is sane
1153 rq
= HWGROUP(drive
)->rq
;
1158 HWGROUP(drive
)->rq
= NULL
;
1165 rq
->sector
= rq
->bio
->bi_sector
;
1166 rq
->current_nr_sectors
= bio_iovec(rq
->bio
)->bv_len
>> 9;
1167 rq
->hard_cur_sectors
= rq
->current_nr_sectors
;
1168 rq
->buffer
= bio_data(rq
->bio
);
1174 * ide_timer_expiry - handle lack of an IDE interrupt
1175 * @data: timer callback magic (hwgroup)
1177 * An IDE command has timed out before the expected drive return
1178 * occurred. At this point we attempt to clean up the current
1179 * mess. If the current handler includes an expiry handler then
1180 * we invoke the expiry handler, and providing it is happy the
1181 * work is done. If that fails we apply generic recovery rules
1182 * invoking the handler and checking the drive DMA status. We
1183 * have an excessively incestuous relationship with the DMA
1184 * logic that wants cleaning up.
1187 void ide_timer_expiry (unsigned long data
)
1189 ide_hwgroup_t
*hwgroup
= (ide_hwgroup_t
*) data
;
1190 ide_handler_t
*handler
;
1191 ide_expiry_t
*expiry
;
1192 unsigned long flags
;
1193 unsigned long wait
= -1;
1195 spin_lock_irqsave(&ide_lock
, flags
);
1197 if (((handler
= hwgroup
->handler
) == NULL
) ||
1198 (hwgroup
->req_gen
!= hwgroup
->req_gen_timer
)) {
1200 * Either a marginal timeout occurred
1201 * (got the interrupt just as timer expired),
1202 * or we were "sleeping" to give other devices a chance.
1203 * Either way, we don't really want to complain about anything.
1205 if (hwgroup
->sleeping
) {
1206 hwgroup
->sleeping
= 0;
1210 ide_drive_t
*drive
= hwgroup
->drive
;
1212 printk(KERN_ERR
"ide_timer_expiry: hwgroup->drive was NULL\n");
1213 hwgroup
->handler
= NULL
;
1216 ide_startstop_t startstop
= ide_stopped
;
1217 if (!hwgroup
->busy
) {
1218 hwgroup
->busy
= 1; /* paranoia */
1219 printk(KERN_ERR
"%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive
->name
);
1221 if ((expiry
= hwgroup
->expiry
) != NULL
) {
1223 if ((wait
= expiry(drive
)) > 0) {
1225 hwgroup
->timer
.expires
= jiffies
+ wait
;
1226 hwgroup
->req_gen_timer
= hwgroup
->req_gen
;
1227 add_timer(&hwgroup
->timer
);
1228 spin_unlock_irqrestore(&ide_lock
, flags
);
1232 hwgroup
->handler
= NULL
;
1234 * We need to simulate a real interrupt when invoking
1235 * the handler() function, which means we need to
1236 * globally mask the specific IRQ:
1238 spin_unlock(&ide_lock
);
1240 /* disable_irq_nosync ?? */
1241 disable_irq(hwif
->irq
);
1243 * as if we were handling an interrupt */
1244 local_irq_disable();
1245 if (hwgroup
->polling
) {
1246 startstop
= handler(drive
);
1247 } else if (drive_is_ready(drive
)) {
1248 if (drive
->waiting_for_dma
)
1249 hwif
->dma_ops
->dma_lost_irq(drive
);
1250 (void)ide_ack_intr(hwif
);
1251 printk(KERN_WARNING
"%s: lost interrupt\n", drive
->name
);
1252 startstop
= handler(drive
);
1254 if (drive
->waiting_for_dma
) {
1255 startstop
= ide_dma_timeout_retry(drive
, wait
);
1258 ide_error(drive
, "irq timeout",
1259 hwif
->tp_ops
->read_status(hwif
));
1261 drive
->service_time
= jiffies
- drive
->service_start
;
1262 spin_lock_irq(&ide_lock
);
1263 enable_irq(hwif
->irq
);
1264 if (startstop
== ide_stopped
)
1268 ide_do_request(hwgroup
, IDE_NO_IRQ
);
1269 spin_unlock_irqrestore(&ide_lock
, flags
);
1273 * unexpected_intr - handle an unexpected IDE interrupt
1274 * @irq: interrupt line
1275 * @hwgroup: hwgroup being processed
1277 * There's nothing really useful we can do with an unexpected interrupt,
1278 * other than reading the status register (to clear it), and logging it.
1279 * There should be no way that an irq can happen before we're ready for it,
1280 * so we needn't worry much about losing an "important" interrupt here.
1282 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1283 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1284 * looks "good", we just ignore the interrupt completely.
1286 * This routine assumes __cli() is in effect when called.
1288 * If an unexpected interrupt happens on irq15 while we are handling irq14
1289 * and if the two interfaces are "serialized" (CMD640), then it looks like
1290 * we could screw up by interfering with a new request being set up for
1293 * In reality, this is a non-issue. The new command is not sent unless
1294 * the drive is ready to accept one, in which case we know the drive is
1295 * not trying to interrupt us. And ide_set_handler() is always invoked
1296 * before completing the issuance of any new drive command, so we will not
1297 * be accidentally invoked as a result of any valid command completion
1300 * Note that we must walk the entire hwgroup here. We know which hwif
1301 * is doing the current command, but we don't know which hwif burped
1305 static void unexpected_intr (int irq
, ide_hwgroup_t
*hwgroup
)
1308 ide_hwif_t
*hwif
= hwgroup
->hwif
;
1311 * handle the unexpected interrupt
1314 if (hwif
->irq
== irq
) {
1315 stat
= hwif
->tp_ops
->read_status(hwif
);
1317 if (!OK_STAT(stat
, ATA_DRDY
, BAD_STAT
)) {
1318 /* Try to not flood the console with msgs */
1319 static unsigned long last_msgtime
, count
;
1321 if (time_after(jiffies
, last_msgtime
+ HZ
)) {
1322 last_msgtime
= jiffies
;
1323 printk(KERN_ERR
"%s%s: unexpected interrupt, "
1324 "status=0x%02x, count=%ld\n",
1326 (hwif
->next
==hwgroup
->hwif
) ? "" : "(?)", stat
, count
);
1330 } while ((hwif
= hwif
->next
) != hwgroup
->hwif
);
1334 * ide_intr - default IDE interrupt handler
1335 * @irq: interrupt number
1336 * @dev_id: hwif group
1337 * @regs: unused weirdness from the kernel irq layer
1339 * This is the default IRQ handler for the IDE layer. You should
1340 * not need to override it. If you do be aware it is subtle in
1343 * hwgroup->hwif is the interface in the group currently performing
1344 * a command. hwgroup->drive is the drive and hwgroup->handler is
1345 * the IRQ handler to call. As we issue a command the handlers
1346 * step through multiple states, reassigning the handler to the
1347 * next step in the process. Unlike a smart SCSI controller IDE
1348 * expects the main processor to sequence the various transfer
1349 * stages. We also manage a poll timer to catch up with most
1350 * timeout situations. There are still a few where the handlers
1351 * don't ever decide to give up.
1353 * The handler eventually returns ide_stopped to indicate the
1354 * request completed. At this point we issue the next request
1355 * on the hwgroup and the process begins again.
1358 irqreturn_t
ide_intr (int irq
, void *dev_id
)
1360 unsigned long flags
;
1361 ide_hwgroup_t
*hwgroup
= (ide_hwgroup_t
*)dev_id
;
1364 ide_handler_t
*handler
;
1365 ide_startstop_t startstop
;
1367 spin_lock_irqsave(&ide_lock
, flags
);
1368 hwif
= hwgroup
->hwif
;
1370 if (!ide_ack_intr(hwif
)) {
1371 spin_unlock_irqrestore(&ide_lock
, flags
);
1375 if ((handler
= hwgroup
->handler
) == NULL
|| hwgroup
->polling
) {
1377 * Not expecting an interrupt from this drive.
1378 * That means this could be:
1379 * (1) an interrupt from another PCI device
1380 * sharing the same PCI INT# as us.
1381 * or (2) a drive just entered sleep or standby mode,
1382 * and is interrupting to let us know.
1383 * or (3) a spurious interrupt of unknown origin.
1385 * For PCI, we cannot tell the difference,
1386 * so in that case we just ignore it and hope it goes away.
1388 * FIXME: unexpected_intr should be hwif-> then we can
1389 * remove all the ifdef PCI crap
1391 #ifdef CONFIG_BLK_DEV_IDEPCI
1392 if (hwif
->chipset
!= ide_pci
)
1393 #endif /* CONFIG_BLK_DEV_IDEPCI */
1396 * Probably not a shared PCI interrupt,
1397 * so we can safely try to do something about it:
1399 unexpected_intr(irq
, hwgroup
);
1400 #ifdef CONFIG_BLK_DEV_IDEPCI
1403 * Whack the status register, just in case
1404 * we have a leftover pending IRQ.
1406 (void)hwif
->tp_ops
->read_status(hwif
);
1407 #endif /* CONFIG_BLK_DEV_IDEPCI */
1409 spin_unlock_irqrestore(&ide_lock
, flags
);
1412 drive
= hwgroup
->drive
;
1415 * This should NEVER happen, and there isn't much
1416 * we could do about it here.
1418 * [Note - this can occur if the drive is hot unplugged]
1420 spin_unlock_irqrestore(&ide_lock
, flags
);
1423 if (!drive_is_ready(drive
)) {
1425 * This happens regularly when we share a PCI IRQ with
1426 * another device. Unfortunately, it can also happen
1427 * with some buggy drives that trigger the IRQ before
1428 * their status register is up to date. Hopefully we have
1429 * enough advance overhead that the latter isn't a problem.
1431 spin_unlock_irqrestore(&ide_lock
, flags
);
1434 if (!hwgroup
->busy
) {
1435 hwgroup
->busy
= 1; /* paranoia */
1436 printk(KERN_ERR
"%s: ide_intr: hwgroup->busy was 0 ??\n", drive
->name
);
1438 hwgroup
->handler
= NULL
;
1440 del_timer(&hwgroup
->timer
);
1441 spin_unlock(&ide_lock
);
1443 if (hwif
->port_ops
&& hwif
->port_ops
->clear_irq
)
1444 hwif
->port_ops
->clear_irq(drive
);
1446 if (drive
->dev_flags
& IDE_DFLAG_UNMASK
)
1447 local_irq_enable_in_hardirq();
1449 /* service this interrupt, may set handler for next interrupt */
1450 startstop
= handler(drive
);
1452 spin_lock_irq(&ide_lock
);
1454 * Note that handler() may have set things up for another
1455 * interrupt to occur soon, but it cannot happen until
1456 * we exit from this routine, because it will be the
1457 * same irq as is currently being serviced here, and Linux
1458 * won't allow another of the same (on any CPU) until we return.
1460 drive
->service_time
= jiffies
- drive
->service_start
;
1461 if (startstop
== ide_stopped
) {
1462 if (hwgroup
->handler
== NULL
) { /* paranoia */
1464 ide_do_request(hwgroup
, hwif
->irq
);
1466 printk(KERN_ERR
"%s: ide_intr: huh? expected NULL handler "
1467 "on exit\n", drive
->name
);
1470 spin_unlock_irqrestore(&ide_lock
, flags
);
1475 * ide_do_drive_cmd - issue IDE special command
1476 * @drive: device to issue command
1477 * @rq: request to issue
1479 * This function issues a special IDE device request
1480 * onto the request queue.
1482 * the rq is queued at the head of the request queue, displacing
1483 * the currently-being-processed request and this function
1484 * returns immediately without waiting for the new rq to be
1485 * completed. This is VERY DANGEROUS, and is intended for
1486 * careful use by the ATAPI tape/cdrom driver code.
1489 void ide_do_drive_cmd(ide_drive_t
*drive
, struct request
*rq
)
1491 unsigned long flags
;
1492 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
1494 spin_lock_irqsave(&ide_lock
, flags
);
1496 __elv_add_request(drive
->queue
, rq
, ELEVATOR_INSERT_FRONT
, 0);
1497 blk_start_queueing(drive
->queue
);
1498 spin_unlock_irqrestore(&ide_lock
, flags
);
1501 EXPORT_SYMBOL(ide_do_drive_cmd
);
1503 void ide_pktcmd_tf_load(ide_drive_t
*drive
, u32 tf_flags
, u16 bcount
, u8 dma
)
1505 ide_hwif_t
*hwif
= drive
->hwif
;
1508 memset(&task
, 0, sizeof(task
));
1509 task
.tf_flags
= IDE_TFLAG_OUT_LBAH
| IDE_TFLAG_OUT_LBAM
|
1510 IDE_TFLAG_OUT_FEATURE
| tf_flags
;
1511 task
.tf
.feature
= dma
; /* Use PIO/DMA */
1512 task
.tf
.lbam
= bcount
& 0xff;
1513 task
.tf
.lbah
= (bcount
>> 8) & 0xff;
1515 ide_tf_dump(drive
->name
, &task
.tf
);
1516 hwif
->tp_ops
->set_irq(hwif
, 1);
1517 SELECT_MASK(drive
, 0);
1518 hwif
->tp_ops
->tf_load(drive
, &task
);
1521 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load
);
1523 void ide_pad_transfer(ide_drive_t
*drive
, int write
, int len
)
1525 ide_hwif_t
*hwif
= drive
->hwif
;
1530 hwif
->tp_ops
->output_data(drive
, NULL
, buf
, min(4, len
));
1532 hwif
->tp_ops
->input_data(drive
, NULL
, buf
, min(4, len
));
1536 EXPORT_SYMBOL_GPL(ide_pad_transfer
);