2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/config.h>
18 #include <linux/stddef.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
41 #include <asm/tlbflush.h>
42 #include <asm/div64.h>
46 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
49 nodemask_t node_online_map __read_mostly
= { { [0] = 1UL } };
50 EXPORT_SYMBOL(node_online_map
);
51 nodemask_t node_possible_map __read_mostly
= NODE_MASK_ALL
;
52 EXPORT_SYMBOL(node_possible_map
);
53 unsigned long totalram_pages __read_mostly
;
54 unsigned long totalhigh_pages __read_mostly
;
55 unsigned long totalreserve_pages __read_mostly
;
57 int percpu_pagelist_fraction
;
59 static void __free_pages_ok(struct page
*page
, unsigned int order
);
62 * results with 256, 32 in the lowmem_reserve sysctl:
63 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
64 * 1G machine -> (16M dma, 784M normal, 224M high)
65 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
66 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
67 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
69 * TBD: should special case ZONE_DMA32 machines here - in those we normally
70 * don't need any ZONE_NORMAL reservation
72 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = { 256, 256, 32 };
74 EXPORT_SYMBOL(totalram_pages
);
77 * Used by page_zone() to look up the address of the struct zone whose
78 * id is encoded in the upper bits of page->flags
80 struct zone
*zone_table
[1 << ZONETABLE_SHIFT
] __read_mostly
;
81 EXPORT_SYMBOL(zone_table
);
83 static char *zone_names
[MAX_NR_ZONES
] = { "DMA", "DMA32", "Normal", "HighMem" };
84 int min_free_kbytes
= 1024;
86 unsigned long __initdata nr_kernel_pages
;
87 unsigned long __initdata nr_all_pages
;
89 #ifdef CONFIG_DEBUG_VM
90 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
94 unsigned long pfn
= page_to_pfn(page
);
97 seq
= zone_span_seqbegin(zone
);
98 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
100 else if (pfn
< zone
->zone_start_pfn
)
102 } while (zone_span_seqretry(zone
, seq
));
107 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
109 #ifdef CONFIG_HOLES_IN_ZONE
110 if (!pfn_valid(page_to_pfn(page
)))
113 if (zone
!= page_zone(page
))
119 * Temporary debugging check for pages not lying within a given zone.
121 static int bad_range(struct zone
*zone
, struct page
*page
)
123 if (page_outside_zone_boundaries(zone
, page
))
125 if (!page_is_consistent(zone
, page
))
132 static inline int bad_range(struct zone
*zone
, struct page
*page
)
138 static void bad_page(struct page
*page
)
140 printk(KERN_EMERG
"Bad page state in process '%s'\n"
141 KERN_EMERG
"page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
142 KERN_EMERG
"Trying to fix it up, but a reboot is needed\n"
143 KERN_EMERG
"Backtrace:\n",
144 current
->comm
, page
, (int)(2*sizeof(unsigned long)),
145 (unsigned long)page
->flags
, page
->mapping
,
146 page_mapcount(page
), page_count(page
));
148 page
->flags
&= ~(1 << PG_lru
|
158 set_page_count(page
, 0);
159 reset_page_mapcount(page
);
160 page
->mapping
= NULL
;
161 add_taint(TAINT_BAD_PAGE
);
165 * Higher-order pages are called "compound pages". They are structured thusly:
167 * The first PAGE_SIZE page is called the "head page".
169 * The remaining PAGE_SIZE pages are called "tail pages".
171 * All pages have PG_compound set. All pages have their ->private pointing at
172 * the head page (even the head page has this).
174 * The first tail page's ->lru.next holds the address of the compound page's
175 * put_page() function. Its ->lru.prev holds the order of allocation.
176 * This usage means that zero-order pages may not be compound.
179 static void free_compound_page(struct page
*page
)
181 __free_pages_ok(page
, (unsigned long)page
[1].lru
.prev
);
184 static void prep_compound_page(struct page
*page
, unsigned long order
)
187 int nr_pages
= 1 << order
;
189 page
[1].lru
.next
= (void *)free_compound_page
; /* set dtor */
190 page
[1].lru
.prev
= (void *)order
;
191 for (i
= 0; i
< nr_pages
; i
++) {
192 struct page
*p
= page
+ i
;
194 __SetPageCompound(p
);
195 set_page_private(p
, (unsigned long)page
);
199 static void destroy_compound_page(struct page
*page
, unsigned long order
)
202 int nr_pages
= 1 << order
;
204 if (unlikely((unsigned long)page
[1].lru
.prev
!= order
))
207 for (i
= 0; i
< nr_pages
; i
++) {
208 struct page
*p
= page
+ i
;
210 if (unlikely(!PageCompound(p
) |
211 (page_private(p
) != (unsigned long)page
)))
213 __ClearPageCompound(p
);
217 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
221 BUG_ON((gfp_flags
& (__GFP_WAIT
| __GFP_HIGHMEM
)) == __GFP_HIGHMEM
);
223 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
224 * and __GFP_HIGHMEM from hard or soft interrupt context.
226 BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
227 for (i
= 0; i
< (1 << order
); i
++)
228 clear_highpage(page
+ i
);
232 * function for dealing with page's order in buddy system.
233 * zone->lock is already acquired when we use these.
234 * So, we don't need atomic page->flags operations here.
236 static inline unsigned long page_order(struct page
*page
)
238 return page_private(page
);
241 static inline void set_page_order(struct page
*page
, int order
)
243 set_page_private(page
, order
);
244 __SetPageBuddy(page
);
247 static inline void rmv_page_order(struct page
*page
)
249 __ClearPageBuddy(page
);
250 set_page_private(page
, 0);
254 * Locate the struct page for both the matching buddy in our
255 * pair (buddy1) and the combined O(n+1) page they form (page).
257 * 1) Any buddy B1 will have an order O twin B2 which satisfies
258 * the following equation:
260 * For example, if the starting buddy (buddy2) is #8 its order
262 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
264 * 2) Any buddy B will have an order O+1 parent P which
265 * satisfies the following equation:
268 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
270 static inline struct page
*
271 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
273 unsigned long buddy_idx
= page_idx
^ (1 << order
);
275 return page
+ (buddy_idx
- page_idx
);
278 static inline unsigned long
279 __find_combined_index(unsigned long page_idx
, unsigned int order
)
281 return (page_idx
& ~(1 << order
));
285 * This function checks whether a page is free && is the buddy
286 * we can do coalesce a page and its buddy if
287 * (a) the buddy is not in a hole &&
288 * (b) the buddy is in the buddy system &&
289 * (c) a page and its buddy have the same order.
291 * For recording whether a page is in the buddy system, we use PG_buddy.
292 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
294 * For recording page's order, we use page_private(page).
296 static inline int page_is_buddy(struct page
*page
, int order
)
298 #ifdef CONFIG_HOLES_IN_ZONE
299 if (!pfn_valid(page_to_pfn(page
)))
303 if (PageBuddy(page
) && page_order(page
) == order
) {
304 BUG_ON(page_count(page
) != 0);
311 * Freeing function for a buddy system allocator.
313 * The concept of a buddy system is to maintain direct-mapped table
314 * (containing bit values) for memory blocks of various "orders".
315 * The bottom level table contains the map for the smallest allocatable
316 * units of memory (here, pages), and each level above it describes
317 * pairs of units from the levels below, hence, "buddies".
318 * At a high level, all that happens here is marking the table entry
319 * at the bottom level available, and propagating the changes upward
320 * as necessary, plus some accounting needed to play nicely with other
321 * parts of the VM system.
322 * At each level, we keep a list of pages, which are heads of continuous
323 * free pages of length of (1 << order) and marked with PG_buddy. Page's
324 * order is recorded in page_private(page) field.
325 * So when we are allocating or freeing one, we can derive the state of the
326 * other. That is, if we allocate a small block, and both were
327 * free, the remainder of the region must be split into blocks.
328 * If a block is freed, and its buddy is also free, then this
329 * triggers coalescing into a block of larger size.
334 static inline void __free_one_page(struct page
*page
,
335 struct zone
*zone
, unsigned int order
)
337 unsigned long page_idx
;
338 int order_size
= 1 << order
;
340 if (unlikely(PageCompound(page
)))
341 destroy_compound_page(page
, order
);
343 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
345 BUG_ON(page_idx
& (order_size
- 1));
346 BUG_ON(bad_range(zone
, page
));
348 zone
->free_pages
+= order_size
;
349 while (order
< MAX_ORDER
-1) {
350 unsigned long combined_idx
;
351 struct free_area
*area
;
354 buddy
= __page_find_buddy(page
, page_idx
, order
);
355 if (!page_is_buddy(buddy
, order
))
356 break; /* Move the buddy up one level. */
358 list_del(&buddy
->lru
);
359 area
= zone
->free_area
+ order
;
361 rmv_page_order(buddy
);
362 combined_idx
= __find_combined_index(page_idx
, order
);
363 page
= page
+ (combined_idx
- page_idx
);
364 page_idx
= combined_idx
;
367 set_page_order(page
, order
);
368 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
);
369 zone
->free_area
[order
].nr_free
++;
372 static inline int free_pages_check(struct page
*page
)
374 if (unlikely(page_mapcount(page
) |
375 (page
->mapping
!= NULL
) |
376 (page_count(page
) != 0) |
390 __ClearPageDirty(page
);
392 * For now, we report if PG_reserved was found set, but do not
393 * clear it, and do not free the page. But we shall soon need
394 * to do more, for when the ZERO_PAGE count wraps negative.
396 return PageReserved(page
);
400 * Frees a list of pages.
401 * Assumes all pages on list are in same zone, and of same order.
402 * count is the number of pages to free.
404 * If the zone was previously in an "all pages pinned" state then look to
405 * see if this freeing clears that state.
407 * And clear the zone's pages_scanned counter, to hold off the "all pages are
408 * pinned" detection logic.
410 static void free_pages_bulk(struct zone
*zone
, int count
,
411 struct list_head
*list
, int order
)
413 spin_lock(&zone
->lock
);
414 zone
->all_unreclaimable
= 0;
415 zone
->pages_scanned
= 0;
419 BUG_ON(list_empty(list
));
420 page
= list_entry(list
->prev
, struct page
, lru
);
421 /* have to delete it as __free_one_page list manipulates */
422 list_del(&page
->lru
);
423 __free_one_page(page
, zone
, order
);
425 spin_unlock(&zone
->lock
);
428 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
)
431 list_add(&page
->lru
, &list
);
432 free_pages_bulk(zone
, 1, &list
, order
);
435 static void __free_pages_ok(struct page
*page
, unsigned int order
)
441 arch_free_page(page
, order
);
442 if (!PageHighMem(page
))
443 mutex_debug_check_no_locks_freed(page_address(page
),
446 for (i
= 0 ; i
< (1 << order
) ; ++i
)
447 reserved
+= free_pages_check(page
+ i
);
451 kernel_map_pages(page
, 1 << order
, 0);
452 local_irq_save(flags
);
453 __mod_page_state(pgfree
, 1 << order
);
454 free_one_page(page_zone(page
), page
, order
);
455 local_irq_restore(flags
);
459 * permit the bootmem allocator to evade page validation on high-order frees
461 void fastcall __init
__free_pages_bootmem(struct page
*page
, unsigned int order
)
464 __ClearPageReserved(page
);
465 set_page_count(page
, 0);
466 set_page_refcounted(page
);
472 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
473 struct page
*p
= &page
[loop
];
475 if (loop
+ 1 < BITS_PER_LONG
)
477 __ClearPageReserved(p
);
478 set_page_count(p
, 0);
481 set_page_refcounted(page
);
482 __free_pages(page
, order
);
488 * The order of subdivision here is critical for the IO subsystem.
489 * Please do not alter this order without good reasons and regression
490 * testing. Specifically, as large blocks of memory are subdivided,
491 * the order in which smaller blocks are delivered depends on the order
492 * they're subdivided in this function. This is the primary factor
493 * influencing the order in which pages are delivered to the IO
494 * subsystem according to empirical testing, and this is also justified
495 * by considering the behavior of a buddy system containing a single
496 * large block of memory acted on by a series of small allocations.
497 * This behavior is a critical factor in sglist merging's success.
501 static inline void expand(struct zone
*zone
, struct page
*page
,
502 int low
, int high
, struct free_area
*area
)
504 unsigned long size
= 1 << high
;
510 BUG_ON(bad_range(zone
, &page
[size
]));
511 list_add(&page
[size
].lru
, &area
->free_list
);
513 set_page_order(&page
[size
], high
);
518 * This page is about to be returned from the page allocator
520 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
522 if (unlikely(page_mapcount(page
) |
523 (page
->mapping
!= NULL
) |
524 (page_count(page
) != 0) |
540 * For now, we report if PG_reserved was found set, but do not
541 * clear it, and do not allocate the page: as a safety net.
543 if (PageReserved(page
))
546 page
->flags
&= ~(1 << PG_uptodate
| 1 << PG_error
|
547 1 << PG_referenced
| 1 << PG_arch_1
|
548 1 << PG_checked
| 1 << PG_mappedtodisk
);
549 set_page_private(page
, 0);
550 set_page_refcounted(page
);
551 kernel_map_pages(page
, 1 << order
, 1);
553 if (gfp_flags
& __GFP_ZERO
)
554 prep_zero_page(page
, order
, gfp_flags
);
556 if (order
&& (gfp_flags
& __GFP_COMP
))
557 prep_compound_page(page
, order
);
563 * Do the hard work of removing an element from the buddy allocator.
564 * Call me with the zone->lock already held.
566 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
)
568 struct free_area
* area
;
569 unsigned int current_order
;
572 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
573 area
= zone
->free_area
+ current_order
;
574 if (list_empty(&area
->free_list
))
577 page
= list_entry(area
->free_list
.next
, struct page
, lru
);
578 list_del(&page
->lru
);
579 rmv_page_order(page
);
581 zone
->free_pages
-= 1UL << order
;
582 expand(zone
, page
, order
, current_order
, area
);
590 * Obtain a specified number of elements from the buddy allocator, all under
591 * a single hold of the lock, for efficiency. Add them to the supplied list.
592 * Returns the number of new pages which were placed at *list.
594 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
595 unsigned long count
, struct list_head
*list
)
599 spin_lock(&zone
->lock
);
600 for (i
= 0; i
< count
; ++i
) {
601 struct page
*page
= __rmqueue(zone
, order
);
602 if (unlikely(page
== NULL
))
604 list_add_tail(&page
->lru
, list
);
606 spin_unlock(&zone
->lock
);
612 * Called from the slab reaper to drain pagesets on a particular node that
613 * belong to the currently executing processor.
614 * Note that this function must be called with the thread pinned to
615 * a single processor.
617 void drain_node_pages(int nodeid
)
622 for (z
= 0; z
< MAX_NR_ZONES
; z
++) {
623 struct zone
*zone
= NODE_DATA(nodeid
)->node_zones
+ z
;
624 struct per_cpu_pageset
*pset
;
626 pset
= zone_pcp(zone
, smp_processor_id());
627 for (i
= 0; i
< ARRAY_SIZE(pset
->pcp
); i
++) {
628 struct per_cpu_pages
*pcp
;
632 local_irq_save(flags
);
633 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
635 local_irq_restore(flags
);
642 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
643 static void __drain_pages(unsigned int cpu
)
649 for_each_zone(zone
) {
650 struct per_cpu_pageset
*pset
;
652 pset
= zone_pcp(zone
, cpu
);
653 for (i
= 0; i
< ARRAY_SIZE(pset
->pcp
); i
++) {
654 struct per_cpu_pages
*pcp
;
657 local_irq_save(flags
);
658 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
660 local_irq_restore(flags
);
664 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
668 void mark_free_pages(struct zone
*zone
)
670 unsigned long zone_pfn
, flags
;
672 struct list_head
*curr
;
674 if (!zone
->spanned_pages
)
677 spin_lock_irqsave(&zone
->lock
, flags
);
678 for (zone_pfn
= 0; zone_pfn
< zone
->spanned_pages
; ++zone_pfn
)
679 ClearPageNosaveFree(pfn_to_page(zone_pfn
+ zone
->zone_start_pfn
));
681 for (order
= MAX_ORDER
- 1; order
>= 0; --order
)
682 list_for_each(curr
, &zone
->free_area
[order
].free_list
) {
683 unsigned long start_pfn
, i
;
685 start_pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
687 for (i
=0; i
< (1<<order
); i
++)
688 SetPageNosaveFree(pfn_to_page(start_pfn
+i
));
690 spin_unlock_irqrestore(&zone
->lock
, flags
);
694 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
696 void drain_local_pages(void)
700 local_irq_save(flags
);
701 __drain_pages(smp_processor_id());
702 local_irq_restore(flags
);
704 #endif /* CONFIG_PM */
706 static void zone_statistics(struct zonelist
*zonelist
, struct zone
*z
, int cpu
)
709 pg_data_t
*pg
= z
->zone_pgdat
;
710 pg_data_t
*orig
= zonelist
->zones
[0]->zone_pgdat
;
711 struct per_cpu_pageset
*p
;
713 p
= zone_pcp(z
, cpu
);
718 zone_pcp(zonelist
->zones
[0], cpu
)->numa_foreign
++;
720 if (pg
== NODE_DATA(numa_node_id()))
728 * Free a 0-order page
730 static void fastcall
free_hot_cold_page(struct page
*page
, int cold
)
732 struct zone
*zone
= page_zone(page
);
733 struct per_cpu_pages
*pcp
;
736 arch_free_page(page
, 0);
739 page
->mapping
= NULL
;
740 if (free_pages_check(page
))
743 kernel_map_pages(page
, 1, 0);
745 pcp
= &zone_pcp(zone
, get_cpu())->pcp
[cold
];
746 local_irq_save(flags
);
747 __inc_page_state(pgfree
);
748 list_add(&page
->lru
, &pcp
->list
);
750 if (pcp
->count
>= pcp
->high
) {
751 free_pages_bulk(zone
, pcp
->batch
, &pcp
->list
, 0);
752 pcp
->count
-= pcp
->batch
;
754 local_irq_restore(flags
);
758 void fastcall
free_hot_page(struct page
*page
)
760 free_hot_cold_page(page
, 0);
763 void fastcall
free_cold_page(struct page
*page
)
765 free_hot_cold_page(page
, 1);
769 * split_page takes a non-compound higher-order page, and splits it into
770 * n (1<<order) sub-pages: page[0..n]
771 * Each sub-page must be freed individually.
773 * Note: this is probably too low level an operation for use in drivers.
774 * Please consult with lkml before using this in your driver.
776 void split_page(struct page
*page
, unsigned int order
)
780 BUG_ON(PageCompound(page
));
781 BUG_ON(!page_count(page
));
782 for (i
= 1; i
< (1 << order
); i
++)
783 set_page_refcounted(page
+ i
);
787 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
788 * we cheat by calling it from here, in the order > 0 path. Saves a branch
791 static struct page
*buffered_rmqueue(struct zonelist
*zonelist
,
792 struct zone
*zone
, int order
, gfp_t gfp_flags
)
796 int cold
= !!(gfp_flags
& __GFP_COLD
);
801 if (likely(order
== 0)) {
802 struct per_cpu_pages
*pcp
;
804 pcp
= &zone_pcp(zone
, cpu
)->pcp
[cold
];
805 local_irq_save(flags
);
807 pcp
->count
+= rmqueue_bulk(zone
, 0,
808 pcp
->batch
, &pcp
->list
);
809 if (unlikely(!pcp
->count
))
812 page
= list_entry(pcp
->list
.next
, struct page
, lru
);
813 list_del(&page
->lru
);
816 spin_lock_irqsave(&zone
->lock
, flags
);
817 page
= __rmqueue(zone
, order
);
818 spin_unlock(&zone
->lock
);
823 __mod_page_state_zone(zone
, pgalloc
, 1 << order
);
824 zone_statistics(zonelist
, zone
, cpu
);
825 local_irq_restore(flags
);
828 BUG_ON(bad_range(zone
, page
));
829 if (prep_new_page(page
, order
, gfp_flags
))
834 local_irq_restore(flags
);
839 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
840 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
841 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
842 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
843 #define ALLOC_HARDER 0x10 /* try to alloc harder */
844 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
845 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
848 * Return 1 if free pages are above 'mark'. This takes into account the order
851 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
852 int classzone_idx
, int alloc_flags
)
854 /* free_pages my go negative - that's OK */
855 long min
= mark
, free_pages
= z
->free_pages
- (1 << order
) + 1;
858 if (alloc_flags
& ALLOC_HIGH
)
860 if (alloc_flags
& ALLOC_HARDER
)
863 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
865 for (o
= 0; o
< order
; o
++) {
866 /* At the next order, this order's pages become unavailable */
867 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
869 /* Require fewer higher order pages to be free */
872 if (free_pages
<= min
)
879 * get_page_from_freeliest goes through the zonelist trying to allocate
883 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
,
884 struct zonelist
*zonelist
, int alloc_flags
)
886 struct zone
**z
= zonelist
->zones
;
887 struct page
*page
= NULL
;
888 int classzone_idx
= zone_idx(*z
);
891 * Go through the zonelist once, looking for a zone with enough free.
892 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
895 if ((alloc_flags
& ALLOC_CPUSET
) &&
896 !cpuset_zone_allowed(*z
, gfp_mask
))
899 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
901 if (alloc_flags
& ALLOC_WMARK_MIN
)
902 mark
= (*z
)->pages_min
;
903 else if (alloc_flags
& ALLOC_WMARK_LOW
)
904 mark
= (*z
)->pages_low
;
906 mark
= (*z
)->pages_high
;
907 if (!zone_watermark_ok(*z
, order
, mark
,
908 classzone_idx
, alloc_flags
))
909 if (!zone_reclaim_mode
||
910 !zone_reclaim(*z
, gfp_mask
, order
))
914 page
= buffered_rmqueue(zonelist
, *z
, order
, gfp_mask
);
918 } while (*(++z
) != NULL
);
923 * This is the 'heart' of the zoned buddy allocator.
925 struct page
* fastcall
926 __alloc_pages(gfp_t gfp_mask
, unsigned int order
,
927 struct zonelist
*zonelist
)
929 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
932 struct reclaim_state reclaim_state
;
933 struct task_struct
*p
= current
;
936 int did_some_progress
;
938 might_sleep_if(wait
);
941 z
= zonelist
->zones
; /* the list of zones suitable for gfp_mask */
943 if (unlikely(*z
== NULL
)) {
944 /* Should this ever happen?? */
948 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
949 zonelist
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
);
954 if (cpuset_zone_allowed(*z
, gfp_mask
|__GFP_HARDWALL
))
955 wakeup_kswapd(*z
, order
);
959 * OK, we're below the kswapd watermark and have kicked background
960 * reclaim. Now things get more complex, so set up alloc_flags according
961 * to how we want to proceed.
963 * The caller may dip into page reserves a bit more if the caller
964 * cannot run direct reclaim, or if the caller has realtime scheduling
965 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
966 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
968 alloc_flags
= ALLOC_WMARK_MIN
;
969 if ((unlikely(rt_task(p
)) && !in_interrupt()) || !wait
)
970 alloc_flags
|= ALLOC_HARDER
;
971 if (gfp_mask
& __GFP_HIGH
)
972 alloc_flags
|= ALLOC_HIGH
;
974 alloc_flags
|= ALLOC_CPUSET
;
977 * Go through the zonelist again. Let __GFP_HIGH and allocations
978 * coming from realtime tasks go deeper into reserves.
980 * This is the last chance, in general, before the goto nopage.
981 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
982 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
984 page
= get_page_from_freelist(gfp_mask
, order
, zonelist
, alloc_flags
);
988 /* This allocation should allow future memory freeing. */
990 if (((p
->flags
& PF_MEMALLOC
) || unlikely(test_thread_flag(TIF_MEMDIE
)))
991 && !in_interrupt()) {
992 if (!(gfp_mask
& __GFP_NOMEMALLOC
)) {
994 /* go through the zonelist yet again, ignoring mins */
995 page
= get_page_from_freelist(gfp_mask
, order
,
996 zonelist
, ALLOC_NO_WATERMARKS
);
999 if (gfp_mask
& __GFP_NOFAIL
) {
1000 blk_congestion_wait(WRITE
, HZ
/50);
1007 /* Atomic allocations - we can't balance anything */
1014 /* We now go into synchronous reclaim */
1015 cpuset_memory_pressure_bump();
1016 p
->flags
|= PF_MEMALLOC
;
1017 reclaim_state
.reclaimed_slab
= 0;
1018 p
->reclaim_state
= &reclaim_state
;
1020 did_some_progress
= try_to_free_pages(zonelist
->zones
, gfp_mask
);
1022 p
->reclaim_state
= NULL
;
1023 p
->flags
&= ~PF_MEMALLOC
;
1027 if (likely(did_some_progress
)) {
1028 page
= get_page_from_freelist(gfp_mask
, order
,
1029 zonelist
, alloc_flags
);
1032 } else if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
1034 * Go through the zonelist yet one more time, keep
1035 * very high watermark here, this is only to catch
1036 * a parallel oom killing, we must fail if we're still
1037 * under heavy pressure.
1039 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
1040 zonelist
, ALLOC_WMARK_HIGH
|ALLOC_CPUSET
);
1044 out_of_memory(zonelist
, gfp_mask
, order
);
1049 * Don't let big-order allocations loop unless the caller explicitly
1050 * requests that. Wait for some write requests to complete then retry.
1052 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1053 * <= 3, but that may not be true in other implementations.
1056 if (!(gfp_mask
& __GFP_NORETRY
)) {
1057 if ((order
<= 3) || (gfp_mask
& __GFP_REPEAT
))
1059 if (gfp_mask
& __GFP_NOFAIL
)
1063 blk_congestion_wait(WRITE
, HZ
/50);
1068 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
1069 printk(KERN_WARNING
"%s: page allocation failure."
1070 " order:%d, mode:0x%x\n",
1071 p
->comm
, order
, gfp_mask
);
1079 EXPORT_SYMBOL(__alloc_pages
);
1082 * Common helper functions.
1084 fastcall
unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
1087 page
= alloc_pages(gfp_mask
, order
);
1090 return (unsigned long) page_address(page
);
1093 EXPORT_SYMBOL(__get_free_pages
);
1095 fastcall
unsigned long get_zeroed_page(gfp_t gfp_mask
)
1100 * get_zeroed_page() returns a 32-bit address, which cannot represent
1103 BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
1105 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, 0);
1107 return (unsigned long) page_address(page
);
1111 EXPORT_SYMBOL(get_zeroed_page
);
1113 void __pagevec_free(struct pagevec
*pvec
)
1115 int i
= pagevec_count(pvec
);
1118 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
1121 fastcall
void __free_pages(struct page
*page
, unsigned int order
)
1123 if (put_page_testzero(page
)) {
1125 free_hot_page(page
);
1127 __free_pages_ok(page
, order
);
1131 EXPORT_SYMBOL(__free_pages
);
1133 fastcall
void free_pages(unsigned long addr
, unsigned int order
)
1136 BUG_ON(!virt_addr_valid((void *)addr
));
1137 __free_pages(virt_to_page((void *)addr
), order
);
1141 EXPORT_SYMBOL(free_pages
);
1144 * Total amount of free (allocatable) RAM:
1146 unsigned int nr_free_pages(void)
1148 unsigned int sum
= 0;
1152 sum
+= zone
->free_pages
;
1157 EXPORT_SYMBOL(nr_free_pages
);
1160 unsigned int nr_free_pages_pgdat(pg_data_t
*pgdat
)
1162 unsigned int i
, sum
= 0;
1164 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1165 sum
+= pgdat
->node_zones
[i
].free_pages
;
1171 static unsigned int nr_free_zone_pages(int offset
)
1173 /* Just pick one node, since fallback list is circular */
1174 pg_data_t
*pgdat
= NODE_DATA(numa_node_id());
1175 unsigned int sum
= 0;
1177 struct zonelist
*zonelist
= pgdat
->node_zonelists
+ offset
;
1178 struct zone
**zonep
= zonelist
->zones
;
1181 for (zone
= *zonep
++; zone
; zone
= *zonep
++) {
1182 unsigned long size
= zone
->present_pages
;
1183 unsigned long high
= zone
->pages_high
;
1192 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1194 unsigned int nr_free_buffer_pages(void)
1196 return nr_free_zone_pages(gfp_zone(GFP_USER
));
1200 * Amount of free RAM allocatable within all zones
1202 unsigned int nr_free_pagecache_pages(void)
1204 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER
));
1207 #ifdef CONFIG_HIGHMEM
1208 unsigned int nr_free_highpages (void)
1211 unsigned int pages
= 0;
1213 for_each_online_pgdat(pgdat
)
1214 pages
+= pgdat
->node_zones
[ZONE_HIGHMEM
].free_pages
;
1221 static void show_node(struct zone
*zone
)
1223 printk("Node %d ", zone
->zone_pgdat
->node_id
);
1226 #define show_node(zone) do { } while (0)
1230 * Accumulate the page_state information across all CPUs.
1231 * The result is unavoidably approximate - it can change
1232 * during and after execution of this function.
1234 static DEFINE_PER_CPU(struct page_state
, page_states
) = {0};
1236 atomic_t nr_pagecache
= ATOMIC_INIT(0);
1237 EXPORT_SYMBOL(nr_pagecache
);
1239 DEFINE_PER_CPU(long, nr_pagecache_local
) = 0;
1242 static void __get_page_state(struct page_state
*ret
, int nr
, cpumask_t
*cpumask
)
1246 memset(ret
, 0, nr
* sizeof(unsigned long));
1247 cpus_and(*cpumask
, *cpumask
, cpu_online_map
);
1249 for_each_cpu_mask(cpu
, *cpumask
) {
1255 in
= (unsigned long *)&per_cpu(page_states
, cpu
);
1257 next_cpu
= next_cpu(cpu
, *cpumask
);
1258 if (likely(next_cpu
< NR_CPUS
))
1259 prefetch(&per_cpu(page_states
, next_cpu
));
1261 out
= (unsigned long *)ret
;
1262 for (off
= 0; off
< nr
; off
++)
1267 void get_page_state_node(struct page_state
*ret
, int node
)
1270 cpumask_t mask
= node_to_cpumask(node
);
1272 nr
= offsetof(struct page_state
, GET_PAGE_STATE_LAST
);
1273 nr
/= sizeof(unsigned long);
1275 __get_page_state(ret
, nr
+1, &mask
);
1278 void get_page_state(struct page_state
*ret
)
1281 cpumask_t mask
= CPU_MASK_ALL
;
1283 nr
= offsetof(struct page_state
, GET_PAGE_STATE_LAST
);
1284 nr
/= sizeof(unsigned long);
1286 __get_page_state(ret
, nr
+ 1, &mask
);
1289 void get_full_page_state(struct page_state
*ret
)
1291 cpumask_t mask
= CPU_MASK_ALL
;
1293 __get_page_state(ret
, sizeof(*ret
) / sizeof(unsigned long), &mask
);
1296 unsigned long read_page_state_offset(unsigned long offset
)
1298 unsigned long ret
= 0;
1301 for_each_online_cpu(cpu
) {
1304 in
= (unsigned long)&per_cpu(page_states
, cpu
) + offset
;
1305 ret
+= *((unsigned long *)in
);
1310 void __mod_page_state_offset(unsigned long offset
, unsigned long delta
)
1314 ptr
= &__get_cpu_var(page_states
);
1315 *(unsigned long *)(ptr
+ offset
) += delta
;
1317 EXPORT_SYMBOL(__mod_page_state_offset
);
1319 void mod_page_state_offset(unsigned long offset
, unsigned long delta
)
1321 unsigned long flags
;
1324 local_irq_save(flags
);
1325 ptr
= &__get_cpu_var(page_states
);
1326 *(unsigned long *)(ptr
+ offset
) += delta
;
1327 local_irq_restore(flags
);
1329 EXPORT_SYMBOL(mod_page_state_offset
);
1331 void __get_zone_counts(unsigned long *active
, unsigned long *inactive
,
1332 unsigned long *free
, struct pglist_data
*pgdat
)
1334 struct zone
*zones
= pgdat
->node_zones
;
1340 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
1341 *active
+= zones
[i
].nr_active
;
1342 *inactive
+= zones
[i
].nr_inactive
;
1343 *free
+= zones
[i
].free_pages
;
1347 void get_zone_counts(unsigned long *active
,
1348 unsigned long *inactive
, unsigned long *free
)
1350 struct pglist_data
*pgdat
;
1355 for_each_online_pgdat(pgdat
) {
1356 unsigned long l
, m
, n
;
1357 __get_zone_counts(&l
, &m
, &n
, pgdat
);
1364 void si_meminfo(struct sysinfo
*val
)
1366 val
->totalram
= totalram_pages
;
1368 val
->freeram
= nr_free_pages();
1369 val
->bufferram
= nr_blockdev_pages();
1370 #ifdef CONFIG_HIGHMEM
1371 val
->totalhigh
= totalhigh_pages
;
1372 val
->freehigh
= nr_free_highpages();
1377 val
->mem_unit
= PAGE_SIZE
;
1380 EXPORT_SYMBOL(si_meminfo
);
1383 void si_meminfo_node(struct sysinfo
*val
, int nid
)
1385 pg_data_t
*pgdat
= NODE_DATA(nid
);
1387 val
->totalram
= pgdat
->node_present_pages
;
1388 val
->freeram
= nr_free_pages_pgdat(pgdat
);
1389 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
1390 val
->freehigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].free_pages
;
1391 val
->mem_unit
= PAGE_SIZE
;
1395 #define K(x) ((x) << (PAGE_SHIFT-10))
1398 * Show free area list (used inside shift_scroll-lock stuff)
1399 * We also calculate the percentage fragmentation. We do this by counting the
1400 * memory on each free list with the exception of the first item on the list.
1402 void show_free_areas(void)
1404 struct page_state ps
;
1405 int cpu
, temperature
;
1406 unsigned long active
;
1407 unsigned long inactive
;
1411 for_each_zone(zone
) {
1413 printk("%s per-cpu:", zone
->name
);
1415 if (!populated_zone(zone
)) {
1421 for_each_online_cpu(cpu
) {
1422 struct per_cpu_pageset
*pageset
;
1424 pageset
= zone_pcp(zone
, cpu
);
1426 for (temperature
= 0; temperature
< 2; temperature
++)
1427 printk("cpu %d %s: high %d, batch %d used:%d\n",
1429 temperature
? "cold" : "hot",
1430 pageset
->pcp
[temperature
].high
,
1431 pageset
->pcp
[temperature
].batch
,
1432 pageset
->pcp
[temperature
].count
);
1436 get_page_state(&ps
);
1437 get_zone_counts(&active
, &inactive
, &free
);
1439 printk("Free pages: %11ukB (%ukB HighMem)\n",
1441 K(nr_free_highpages()));
1443 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1444 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1453 ps
.nr_page_table_pages
);
1455 for_each_zone(zone
) {
1467 " pages_scanned:%lu"
1468 " all_unreclaimable? %s"
1471 K(zone
->free_pages
),
1474 K(zone
->pages_high
),
1476 K(zone
->nr_inactive
),
1477 K(zone
->present_pages
),
1478 zone
->pages_scanned
,
1479 (zone
->all_unreclaimable
? "yes" : "no")
1481 printk("lowmem_reserve[]:");
1482 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1483 printk(" %lu", zone
->lowmem_reserve
[i
]);
1487 for_each_zone(zone
) {
1488 unsigned long nr
, flags
, order
, total
= 0;
1491 printk("%s: ", zone
->name
);
1492 if (!populated_zone(zone
)) {
1497 spin_lock_irqsave(&zone
->lock
, flags
);
1498 for (order
= 0; order
< MAX_ORDER
; order
++) {
1499 nr
= zone
->free_area
[order
].nr_free
;
1500 total
+= nr
<< order
;
1501 printk("%lu*%lukB ", nr
, K(1UL) << order
);
1503 spin_unlock_irqrestore(&zone
->lock
, flags
);
1504 printk("= %lukB\n", K(total
));
1507 show_swap_cache_info();
1511 * Builds allocation fallback zone lists.
1513 * Add all populated zones of a node to the zonelist.
1515 static int __init
build_zonelists_node(pg_data_t
*pgdat
,
1516 struct zonelist
*zonelist
, int nr_zones
, int zone_type
)
1520 BUG_ON(zone_type
> ZONE_HIGHMEM
);
1523 zone
= pgdat
->node_zones
+ zone_type
;
1524 if (populated_zone(zone
)) {
1525 #ifndef CONFIG_HIGHMEM
1526 BUG_ON(zone_type
> ZONE_NORMAL
);
1528 zonelist
->zones
[nr_zones
++] = zone
;
1529 check_highest_zone(zone_type
);
1533 } while (zone_type
>= 0);
1537 static inline int highest_zone(int zone_bits
)
1539 int res
= ZONE_NORMAL
;
1540 if (zone_bits
& (__force
int)__GFP_HIGHMEM
)
1542 if (zone_bits
& (__force
int)__GFP_DMA32
)
1544 if (zone_bits
& (__force
int)__GFP_DMA
)
1550 #define MAX_NODE_LOAD (num_online_nodes())
1551 static int __initdata node_load
[MAX_NUMNODES
];
1553 * find_next_best_node - find the next node that should appear in a given node's fallback list
1554 * @node: node whose fallback list we're appending
1555 * @used_node_mask: nodemask_t of already used nodes
1557 * We use a number of factors to determine which is the next node that should
1558 * appear on a given node's fallback list. The node should not have appeared
1559 * already in @node's fallback list, and it should be the next closest node
1560 * according to the distance array (which contains arbitrary distance values
1561 * from each node to each node in the system), and should also prefer nodes
1562 * with no CPUs, since presumably they'll have very little allocation pressure
1563 * on them otherwise.
1564 * It returns -1 if no node is found.
1566 static int __init
find_next_best_node(int node
, nodemask_t
*used_node_mask
)
1569 int min_val
= INT_MAX
;
1572 /* Use the local node if we haven't already */
1573 if (!node_isset(node
, *used_node_mask
)) {
1574 node_set(node
, *used_node_mask
);
1578 for_each_online_node(n
) {
1581 /* Don't want a node to appear more than once */
1582 if (node_isset(n
, *used_node_mask
))
1585 /* Use the distance array to find the distance */
1586 val
= node_distance(node
, n
);
1588 /* Penalize nodes under us ("prefer the next node") */
1591 /* Give preference to headless and unused nodes */
1592 tmp
= node_to_cpumask(n
);
1593 if (!cpus_empty(tmp
))
1594 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
1596 /* Slight preference for less loaded node */
1597 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
1598 val
+= node_load
[n
];
1600 if (val
< min_val
) {
1607 node_set(best_node
, *used_node_mask
);
1612 static void __init
build_zonelists(pg_data_t
*pgdat
)
1614 int i
, j
, k
, node
, local_node
;
1615 int prev_node
, load
;
1616 struct zonelist
*zonelist
;
1617 nodemask_t used_mask
;
1619 /* initialize zonelists */
1620 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1621 zonelist
= pgdat
->node_zonelists
+ i
;
1622 zonelist
->zones
[0] = NULL
;
1625 /* NUMA-aware ordering of nodes */
1626 local_node
= pgdat
->node_id
;
1627 load
= num_online_nodes();
1628 prev_node
= local_node
;
1629 nodes_clear(used_mask
);
1630 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
1631 int distance
= node_distance(local_node
, node
);
1634 * If another node is sufficiently far away then it is better
1635 * to reclaim pages in a zone before going off node.
1637 if (distance
> RECLAIM_DISTANCE
)
1638 zone_reclaim_mode
= 1;
1641 * We don't want to pressure a particular node.
1642 * So adding penalty to the first node in same
1643 * distance group to make it round-robin.
1646 if (distance
!= node_distance(local_node
, prev_node
))
1647 node_load
[node
] += load
;
1650 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1651 zonelist
= pgdat
->node_zonelists
+ i
;
1652 for (j
= 0; zonelist
->zones
[j
] != NULL
; j
++);
1654 k
= highest_zone(i
);
1656 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1657 zonelist
->zones
[j
] = NULL
;
1662 #else /* CONFIG_NUMA */
1664 static void __init
build_zonelists(pg_data_t
*pgdat
)
1666 int i
, j
, k
, node
, local_node
;
1668 local_node
= pgdat
->node_id
;
1669 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1670 struct zonelist
*zonelist
;
1672 zonelist
= pgdat
->node_zonelists
+ i
;
1675 k
= highest_zone(i
);
1676 j
= build_zonelists_node(pgdat
, zonelist
, j
, k
);
1678 * Now we build the zonelist so that it contains the zones
1679 * of all the other nodes.
1680 * We don't want to pressure a particular node, so when
1681 * building the zones for node N, we make sure that the
1682 * zones coming right after the local ones are those from
1683 * node N+1 (modulo N)
1685 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
1686 if (!node_online(node
))
1688 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1690 for (node
= 0; node
< local_node
; node
++) {
1691 if (!node_online(node
))
1693 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1696 zonelist
->zones
[j
] = NULL
;
1700 #endif /* CONFIG_NUMA */
1702 void __init
build_all_zonelists(void)
1706 for_each_online_node(i
)
1707 build_zonelists(NODE_DATA(i
));
1708 printk("Built %i zonelists\n", num_online_nodes());
1709 cpuset_init_current_mems_allowed();
1713 * Helper functions to size the waitqueue hash table.
1714 * Essentially these want to choose hash table sizes sufficiently
1715 * large so that collisions trying to wait on pages are rare.
1716 * But in fact, the number of active page waitqueues on typical
1717 * systems is ridiculously low, less than 200. So this is even
1718 * conservative, even though it seems large.
1720 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1721 * waitqueues, i.e. the size of the waitq table given the number of pages.
1723 #define PAGES_PER_WAITQUEUE 256
1725 static inline unsigned long wait_table_size(unsigned long pages
)
1727 unsigned long size
= 1;
1729 pages
/= PAGES_PER_WAITQUEUE
;
1731 while (size
< pages
)
1735 * Once we have dozens or even hundreds of threads sleeping
1736 * on IO we've got bigger problems than wait queue collision.
1737 * Limit the size of the wait table to a reasonable size.
1739 size
= min(size
, 4096UL);
1741 return max(size
, 4UL);
1745 * This is an integer logarithm so that shifts can be used later
1746 * to extract the more random high bits from the multiplicative
1747 * hash function before the remainder is taken.
1749 static inline unsigned long wait_table_bits(unsigned long size
)
1754 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1756 static void __init
calculate_zone_totalpages(struct pglist_data
*pgdat
,
1757 unsigned long *zones_size
, unsigned long *zholes_size
)
1759 unsigned long realtotalpages
, totalpages
= 0;
1762 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1763 totalpages
+= zones_size
[i
];
1764 pgdat
->node_spanned_pages
= totalpages
;
1766 realtotalpages
= totalpages
;
1768 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1769 realtotalpages
-= zholes_size
[i
];
1770 pgdat
->node_present_pages
= realtotalpages
;
1771 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
, realtotalpages
);
1776 * Initially all pages are reserved - free ones are freed
1777 * up by free_all_bootmem() once the early boot process is
1778 * done. Non-atomic initialization, single-pass.
1780 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
1781 unsigned long start_pfn
)
1784 unsigned long end_pfn
= start_pfn
+ size
;
1787 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
1788 if (!early_pfn_valid(pfn
))
1790 page
= pfn_to_page(pfn
);
1791 set_page_links(page
, zone
, nid
, pfn
);
1792 init_page_count(page
);
1793 reset_page_mapcount(page
);
1794 SetPageReserved(page
);
1795 INIT_LIST_HEAD(&page
->lru
);
1796 #ifdef WANT_PAGE_VIRTUAL
1797 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1798 if (!is_highmem_idx(zone
))
1799 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1804 void zone_init_free_lists(struct pglist_data
*pgdat
, struct zone
*zone
,
1808 for (order
= 0; order
< MAX_ORDER
; order
++) {
1809 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
);
1810 zone
->free_area
[order
].nr_free
= 0;
1814 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1815 void zonetable_add(struct zone
*zone
, int nid
, int zid
, unsigned long pfn
,
1818 unsigned long snum
= pfn_to_section_nr(pfn
);
1819 unsigned long end
= pfn_to_section_nr(pfn
+ size
);
1822 zone_table
[ZONETABLE_INDEX(nid
, zid
)] = zone
;
1824 for (; snum
<= end
; snum
++)
1825 zone_table
[ZONETABLE_INDEX(snum
, zid
)] = zone
;
1828 #ifndef __HAVE_ARCH_MEMMAP_INIT
1829 #define memmap_init(size, nid, zone, start_pfn) \
1830 memmap_init_zone((size), (nid), (zone), (start_pfn))
1833 static int __cpuinit
zone_batchsize(struct zone
*zone
)
1838 * The per-cpu-pages pools are set to around 1000th of the
1839 * size of the zone. But no more than 1/2 of a meg.
1841 * OK, so we don't know how big the cache is. So guess.
1843 batch
= zone
->present_pages
/ 1024;
1844 if (batch
* PAGE_SIZE
> 512 * 1024)
1845 batch
= (512 * 1024) / PAGE_SIZE
;
1846 batch
/= 4; /* We effectively *= 4 below */
1851 * Clamp the batch to a 2^n - 1 value. Having a power
1852 * of 2 value was found to be more likely to have
1853 * suboptimal cache aliasing properties in some cases.
1855 * For example if 2 tasks are alternately allocating
1856 * batches of pages, one task can end up with a lot
1857 * of pages of one half of the possible page colors
1858 * and the other with pages of the other colors.
1860 batch
= (1 << (fls(batch
+ batch
/2)-1)) - 1;
1865 inline void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
1867 struct per_cpu_pages
*pcp
;
1869 memset(p
, 0, sizeof(*p
));
1871 pcp
= &p
->pcp
[0]; /* hot */
1873 pcp
->high
= 6 * batch
;
1874 pcp
->batch
= max(1UL, 1 * batch
);
1875 INIT_LIST_HEAD(&pcp
->list
);
1877 pcp
= &p
->pcp
[1]; /* cold*/
1879 pcp
->high
= 2 * batch
;
1880 pcp
->batch
= max(1UL, batch
/2);
1881 INIT_LIST_HEAD(&pcp
->list
);
1885 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1886 * to the value high for the pageset p.
1889 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
1892 struct per_cpu_pages
*pcp
;
1894 pcp
= &p
->pcp
[0]; /* hot list */
1896 pcp
->batch
= max(1UL, high
/4);
1897 if ((high
/4) > (PAGE_SHIFT
* 8))
1898 pcp
->batch
= PAGE_SHIFT
* 8;
1904 * Boot pageset table. One per cpu which is going to be used for all
1905 * zones and all nodes. The parameters will be set in such a way
1906 * that an item put on a list will immediately be handed over to
1907 * the buddy list. This is safe since pageset manipulation is done
1908 * with interrupts disabled.
1910 * Some NUMA counter updates may also be caught by the boot pagesets.
1912 * The boot_pagesets must be kept even after bootup is complete for
1913 * unused processors and/or zones. They do play a role for bootstrapping
1914 * hotplugged processors.
1916 * zoneinfo_show() and maybe other functions do
1917 * not check if the processor is online before following the pageset pointer.
1918 * Other parts of the kernel may not check if the zone is available.
1920 static struct per_cpu_pageset boot_pageset
[NR_CPUS
];
1923 * Dynamically allocate memory for the
1924 * per cpu pageset array in struct zone.
1926 static int __cpuinit
process_zones(int cpu
)
1928 struct zone
*zone
, *dzone
;
1930 for_each_zone(zone
) {
1932 zone_pcp(zone
, cpu
) = kmalloc_node(sizeof(struct per_cpu_pageset
),
1933 GFP_KERNEL
, cpu_to_node(cpu
));
1934 if (!zone_pcp(zone
, cpu
))
1937 setup_pageset(zone_pcp(zone
, cpu
), zone_batchsize(zone
));
1939 if (percpu_pagelist_fraction
)
1940 setup_pagelist_highmark(zone_pcp(zone
, cpu
),
1941 (zone
->present_pages
/ percpu_pagelist_fraction
));
1946 for_each_zone(dzone
) {
1949 kfree(zone_pcp(dzone
, cpu
));
1950 zone_pcp(dzone
, cpu
) = NULL
;
1955 static inline void free_zone_pagesets(int cpu
)
1959 for_each_zone(zone
) {
1960 struct per_cpu_pageset
*pset
= zone_pcp(zone
, cpu
);
1962 zone_pcp(zone
, cpu
) = NULL
;
1967 static int pageset_cpuup_callback(struct notifier_block
*nfb
,
1968 unsigned long action
,
1971 int cpu
= (long)hcpu
;
1972 int ret
= NOTIFY_OK
;
1975 case CPU_UP_PREPARE
:
1976 if (process_zones(cpu
))
1979 case CPU_UP_CANCELED
:
1981 free_zone_pagesets(cpu
);
1989 static struct notifier_block pageset_notifier
=
1990 { &pageset_cpuup_callback
, NULL
, 0 };
1992 void __init
setup_per_cpu_pageset(void)
1996 /* Initialize per_cpu_pageset for cpu 0.
1997 * A cpuup callback will do this for every cpu
1998 * as it comes online
2000 err
= process_zones(smp_processor_id());
2002 register_cpu_notifier(&pageset_notifier
);
2008 void zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
2011 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2014 * The per-page waitqueue mechanism uses hashed waitqueues
2017 zone
->wait_table_size
= wait_table_size(zone_size_pages
);
2018 zone
->wait_table_bits
= wait_table_bits(zone
->wait_table_size
);
2019 zone
->wait_table
= (wait_queue_head_t
*)
2020 alloc_bootmem_node(pgdat
, zone
->wait_table_size
2021 * sizeof(wait_queue_head_t
));
2023 for(i
= 0; i
< zone
->wait_table_size
; ++i
)
2024 init_waitqueue_head(zone
->wait_table
+ i
);
2027 static __meminit
void zone_pcp_init(struct zone
*zone
)
2030 unsigned long batch
= zone_batchsize(zone
);
2032 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
2034 /* Early boot. Slab allocator not functional yet */
2035 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
2036 setup_pageset(&boot_pageset
[cpu
],0);
2038 setup_pageset(zone_pcp(zone
,cpu
), batch
);
2041 if (zone
->present_pages
)
2042 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
2043 zone
->name
, zone
->present_pages
, batch
);
2046 static __meminit
void init_currently_empty_zone(struct zone
*zone
,
2047 unsigned long zone_start_pfn
, unsigned long size
)
2049 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2051 zone_wait_table_init(zone
, size
);
2052 pgdat
->nr_zones
= zone_idx(zone
) + 1;
2054 zone
->zone_start_pfn
= zone_start_pfn
;
2056 memmap_init(size
, pgdat
->node_id
, zone_idx(zone
), zone_start_pfn
);
2058 zone_init_free_lists(pgdat
, zone
, zone
->spanned_pages
);
2062 * Set up the zone data structures:
2063 * - mark all pages reserved
2064 * - mark all memory queues empty
2065 * - clear the memory bitmaps
2067 static void __init
free_area_init_core(struct pglist_data
*pgdat
,
2068 unsigned long *zones_size
, unsigned long *zholes_size
)
2071 int nid
= pgdat
->node_id
;
2072 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
2074 pgdat_resize_init(pgdat
);
2075 pgdat
->nr_zones
= 0;
2076 init_waitqueue_head(&pgdat
->kswapd_wait
);
2077 pgdat
->kswapd_max_order
= 0;
2079 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
2080 struct zone
*zone
= pgdat
->node_zones
+ j
;
2081 unsigned long size
, realsize
;
2083 realsize
= size
= zones_size
[j
];
2085 realsize
-= zholes_size
[j
];
2087 if (j
< ZONE_HIGHMEM
)
2088 nr_kernel_pages
+= realsize
;
2089 nr_all_pages
+= realsize
;
2091 zone
->spanned_pages
= size
;
2092 zone
->present_pages
= realsize
;
2093 zone
->name
= zone_names
[j
];
2094 spin_lock_init(&zone
->lock
);
2095 spin_lock_init(&zone
->lru_lock
);
2096 zone_seqlock_init(zone
);
2097 zone
->zone_pgdat
= pgdat
;
2098 zone
->free_pages
= 0;
2100 zone
->temp_priority
= zone
->prev_priority
= DEF_PRIORITY
;
2102 zone_pcp_init(zone
);
2103 INIT_LIST_HEAD(&zone
->active_list
);
2104 INIT_LIST_HEAD(&zone
->inactive_list
);
2105 zone
->nr_scan_active
= 0;
2106 zone
->nr_scan_inactive
= 0;
2107 zone
->nr_active
= 0;
2108 zone
->nr_inactive
= 0;
2109 atomic_set(&zone
->reclaim_in_progress
, 0);
2113 zonetable_add(zone
, nid
, j
, zone_start_pfn
, size
);
2114 init_currently_empty_zone(zone
, zone_start_pfn
, size
);
2115 zone_start_pfn
+= size
;
2119 static void __init
alloc_node_mem_map(struct pglist_data
*pgdat
)
2121 /* Skip empty nodes */
2122 if (!pgdat
->node_spanned_pages
)
2125 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2126 /* ia64 gets its own node_mem_map, before this, without bootmem */
2127 if (!pgdat
->node_mem_map
) {
2128 unsigned long size
, start
, end
;
2132 * The zone's endpoints aren't required to be MAX_ORDER
2133 * aligned but the node_mem_map endpoints must be in order
2134 * for the buddy allocator to function correctly.
2136 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
2137 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
2138 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
2139 size
= (end
- start
) * sizeof(struct page
);
2140 map
= alloc_remap(pgdat
->node_id
, size
);
2142 map
= alloc_bootmem_node(pgdat
, size
);
2143 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
2145 #ifdef CONFIG_FLATMEM
2147 * With no DISCONTIG, the global mem_map is just set as node 0's
2149 if (pgdat
== NODE_DATA(0))
2150 mem_map
= NODE_DATA(0)->node_mem_map
;
2152 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2155 void __init
free_area_init_node(int nid
, struct pglist_data
*pgdat
,
2156 unsigned long *zones_size
, unsigned long node_start_pfn
,
2157 unsigned long *zholes_size
)
2159 pgdat
->node_id
= nid
;
2160 pgdat
->node_start_pfn
= node_start_pfn
;
2161 calculate_zone_totalpages(pgdat
, zones_size
, zholes_size
);
2163 alloc_node_mem_map(pgdat
);
2165 free_area_init_core(pgdat
, zones_size
, zholes_size
);
2168 #ifndef CONFIG_NEED_MULTIPLE_NODES
2169 static bootmem_data_t contig_bootmem_data
;
2170 struct pglist_data contig_page_data
= { .bdata
= &contig_bootmem_data
};
2172 EXPORT_SYMBOL(contig_page_data
);
2175 void __init
free_area_init(unsigned long *zones_size
)
2177 free_area_init_node(0, NODE_DATA(0), zones_size
,
2178 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
2181 #ifdef CONFIG_PROC_FS
2183 #include <linux/seq_file.h>
2185 static void *frag_start(struct seq_file
*m
, loff_t
*pos
)
2189 for (pgdat
= first_online_pgdat();
2191 pgdat
= next_online_pgdat(pgdat
))
2197 static void *frag_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
2199 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
2202 return next_online_pgdat(pgdat
);
2205 static void frag_stop(struct seq_file
*m
, void *arg
)
2210 * This walks the free areas for each zone.
2212 static int frag_show(struct seq_file
*m
, void *arg
)
2214 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
2216 struct zone
*node_zones
= pgdat
->node_zones
;
2217 unsigned long flags
;
2220 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
2221 if (!populated_zone(zone
))
2224 spin_lock_irqsave(&zone
->lock
, flags
);
2225 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
2226 for (order
= 0; order
< MAX_ORDER
; ++order
)
2227 seq_printf(m
, "%6lu ", zone
->free_area
[order
].nr_free
);
2228 spin_unlock_irqrestore(&zone
->lock
, flags
);
2234 struct seq_operations fragmentation_op
= {
2235 .start
= frag_start
,
2242 * Output information about zones in @pgdat.
2244 static int zoneinfo_show(struct seq_file
*m
, void *arg
)
2246 pg_data_t
*pgdat
= arg
;
2248 struct zone
*node_zones
= pgdat
->node_zones
;
2249 unsigned long flags
;
2251 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; zone
++) {
2254 if (!populated_zone(zone
))
2257 spin_lock_irqsave(&zone
->lock
, flags
);
2258 seq_printf(m
, "Node %d, zone %8s", pgdat
->node_id
, zone
->name
);
2266 "\n scanned %lu (a: %lu i: %lu)"
2275 zone
->pages_scanned
,
2276 zone
->nr_scan_active
, zone
->nr_scan_inactive
,
2277 zone
->spanned_pages
,
2278 zone
->present_pages
);
2280 "\n protection: (%lu",
2281 zone
->lowmem_reserve
[0]);
2282 for (i
= 1; i
< ARRAY_SIZE(zone
->lowmem_reserve
); i
++)
2283 seq_printf(m
, ", %lu", zone
->lowmem_reserve
[i
]);
2287 for_each_online_cpu(i
) {
2288 struct per_cpu_pageset
*pageset
;
2291 pageset
= zone_pcp(zone
, i
);
2292 for (j
= 0; j
< ARRAY_SIZE(pageset
->pcp
); j
++) {
2293 if (pageset
->pcp
[j
].count
)
2296 if (j
== ARRAY_SIZE(pageset
->pcp
))
2298 for (j
= 0; j
< ARRAY_SIZE(pageset
->pcp
); j
++) {
2300 "\n cpu: %i pcp: %i"
2305 pageset
->pcp
[j
].count
,
2306 pageset
->pcp
[j
].high
,
2307 pageset
->pcp
[j
].batch
);
2313 "\n numa_foreign: %lu"
2314 "\n interleave_hit: %lu"
2315 "\n local_node: %lu"
2316 "\n other_node: %lu",
2319 pageset
->numa_foreign
,
2320 pageset
->interleave_hit
,
2321 pageset
->local_node
,
2322 pageset
->other_node
);
2326 "\n all_unreclaimable: %u"
2327 "\n prev_priority: %i"
2328 "\n temp_priority: %i"
2329 "\n start_pfn: %lu",
2330 zone
->all_unreclaimable
,
2331 zone
->prev_priority
,
2332 zone
->temp_priority
,
2333 zone
->zone_start_pfn
);
2334 spin_unlock_irqrestore(&zone
->lock
, flags
);
2340 struct seq_operations zoneinfo_op
= {
2341 .start
= frag_start
, /* iterate over all zones. The same as in
2345 .show
= zoneinfo_show
,
2348 static char *vmstat_text
[] = {
2352 "nr_page_table_pages",
2383 "pgscan_kswapd_high",
2384 "pgscan_kswapd_normal",
2385 "pgscan_kswapd_dma32",
2386 "pgscan_kswapd_dma",
2388 "pgscan_direct_high",
2389 "pgscan_direct_normal",
2390 "pgscan_direct_dma32",
2391 "pgscan_direct_dma",
2396 "kswapd_inodesteal",
2404 static void *vmstat_start(struct seq_file
*m
, loff_t
*pos
)
2406 struct page_state
*ps
;
2408 if (*pos
>= ARRAY_SIZE(vmstat_text
))
2411 ps
= kmalloc(sizeof(*ps
), GFP_KERNEL
);
2414 return ERR_PTR(-ENOMEM
);
2415 get_full_page_state(ps
);
2416 ps
->pgpgin
/= 2; /* sectors -> kbytes */
2418 return (unsigned long *)ps
+ *pos
;
2421 static void *vmstat_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
2424 if (*pos
>= ARRAY_SIZE(vmstat_text
))
2426 return (unsigned long *)m
->private + *pos
;
2429 static int vmstat_show(struct seq_file
*m
, void *arg
)
2431 unsigned long *l
= arg
;
2432 unsigned long off
= l
- (unsigned long *)m
->private;
2434 seq_printf(m
, "%s %lu\n", vmstat_text
[off
], *l
);
2438 static void vmstat_stop(struct seq_file
*m
, void *arg
)
2444 struct seq_operations vmstat_op
= {
2445 .start
= vmstat_start
,
2446 .next
= vmstat_next
,
2447 .stop
= vmstat_stop
,
2448 .show
= vmstat_show
,
2451 #endif /* CONFIG_PROC_FS */
2453 #ifdef CONFIG_HOTPLUG_CPU
2454 static int page_alloc_cpu_notify(struct notifier_block
*self
,
2455 unsigned long action
, void *hcpu
)
2457 int cpu
= (unsigned long)hcpu
;
2459 unsigned long *src
, *dest
;
2461 if (action
== CPU_DEAD
) {
2464 /* Drain local pagecache count. */
2465 count
= &per_cpu(nr_pagecache_local
, cpu
);
2466 atomic_add(*count
, &nr_pagecache
);
2468 local_irq_disable();
2471 /* Add dead cpu's page_states to our own. */
2472 dest
= (unsigned long *)&__get_cpu_var(page_states
);
2473 src
= (unsigned long *)&per_cpu(page_states
, cpu
);
2475 for (i
= 0; i
< sizeof(struct page_state
)/sizeof(unsigned long);
2485 #endif /* CONFIG_HOTPLUG_CPU */
2487 void __init
page_alloc_init(void)
2489 hotcpu_notifier(page_alloc_cpu_notify
, 0);
2493 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2494 * or min_free_kbytes changes.
2496 static void calculate_totalreserve_pages(void)
2498 struct pglist_data
*pgdat
;
2499 unsigned long reserve_pages
= 0;
2502 for_each_online_pgdat(pgdat
) {
2503 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
2504 struct zone
*zone
= pgdat
->node_zones
+ i
;
2505 unsigned long max
= 0;
2507 /* Find valid and maximum lowmem_reserve in the zone */
2508 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
2509 if (zone
->lowmem_reserve
[j
] > max
)
2510 max
= zone
->lowmem_reserve
[j
];
2513 /* we treat pages_high as reserved pages. */
2514 max
+= zone
->pages_high
;
2516 if (max
> zone
->present_pages
)
2517 max
= zone
->present_pages
;
2518 reserve_pages
+= max
;
2521 totalreserve_pages
= reserve_pages
;
2525 * setup_per_zone_lowmem_reserve - called whenever
2526 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2527 * has a correct pages reserved value, so an adequate number of
2528 * pages are left in the zone after a successful __alloc_pages().
2530 static void setup_per_zone_lowmem_reserve(void)
2532 struct pglist_data
*pgdat
;
2535 for_each_online_pgdat(pgdat
) {
2536 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
2537 struct zone
*zone
= pgdat
->node_zones
+ j
;
2538 unsigned long present_pages
= zone
->present_pages
;
2540 zone
->lowmem_reserve
[j
] = 0;
2542 for (idx
= j
-1; idx
>= 0; idx
--) {
2543 struct zone
*lower_zone
;
2545 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
2546 sysctl_lowmem_reserve_ratio
[idx
] = 1;
2548 lower_zone
= pgdat
->node_zones
+ idx
;
2549 lower_zone
->lowmem_reserve
[j
] = present_pages
/
2550 sysctl_lowmem_reserve_ratio
[idx
];
2551 present_pages
+= lower_zone
->present_pages
;
2556 /* update totalreserve_pages */
2557 calculate_totalreserve_pages();
2561 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2562 * that the pages_{min,low,high} values for each zone are set correctly
2563 * with respect to min_free_kbytes.
2565 void setup_per_zone_pages_min(void)
2567 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
2568 unsigned long lowmem_pages
= 0;
2570 unsigned long flags
;
2572 /* Calculate total number of !ZONE_HIGHMEM pages */
2573 for_each_zone(zone
) {
2574 if (!is_highmem(zone
))
2575 lowmem_pages
+= zone
->present_pages
;
2578 for_each_zone(zone
) {
2581 spin_lock_irqsave(&zone
->lru_lock
, flags
);
2582 tmp
= (u64
)pages_min
* zone
->present_pages
;
2583 do_div(tmp
, lowmem_pages
);
2584 if (is_highmem(zone
)) {
2586 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2587 * need highmem pages, so cap pages_min to a small
2590 * The (pages_high-pages_low) and (pages_low-pages_min)
2591 * deltas controls asynch page reclaim, and so should
2592 * not be capped for highmem.
2596 min_pages
= zone
->present_pages
/ 1024;
2597 if (min_pages
< SWAP_CLUSTER_MAX
)
2598 min_pages
= SWAP_CLUSTER_MAX
;
2599 if (min_pages
> 128)
2601 zone
->pages_min
= min_pages
;
2604 * If it's a lowmem zone, reserve a number of pages
2605 * proportionate to the zone's size.
2607 zone
->pages_min
= tmp
;
2610 zone
->pages_low
= zone
->pages_min
+ (tmp
>> 2);
2611 zone
->pages_high
= zone
->pages_min
+ (tmp
>> 1);
2612 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
2615 /* update totalreserve_pages */
2616 calculate_totalreserve_pages();
2620 * Initialise min_free_kbytes.
2622 * For small machines we want it small (128k min). For large machines
2623 * we want it large (64MB max). But it is not linear, because network
2624 * bandwidth does not increase linearly with machine size. We use
2626 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2627 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2643 static int __init
init_per_zone_pages_min(void)
2645 unsigned long lowmem_kbytes
;
2647 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
2649 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
2650 if (min_free_kbytes
< 128)
2651 min_free_kbytes
= 128;
2652 if (min_free_kbytes
> 65536)
2653 min_free_kbytes
= 65536;
2654 setup_per_zone_pages_min();
2655 setup_per_zone_lowmem_reserve();
2658 module_init(init_per_zone_pages_min
)
2661 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2662 * that we can call two helper functions whenever min_free_kbytes
2665 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
2666 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2668 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
2669 setup_per_zone_pages_min();
2674 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2675 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2676 * whenever sysctl_lowmem_reserve_ratio changes.
2678 * The reserve ratio obviously has absolutely no relation with the
2679 * pages_min watermarks. The lowmem reserve ratio can only make sense
2680 * if in function of the boot time zone sizes.
2682 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
2683 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2685 proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
2686 setup_per_zone_lowmem_reserve();
2691 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2692 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2693 * can have before it gets flushed back to buddy allocator.
2696 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
2697 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2703 ret
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
2704 if (!write
|| (ret
== -EINVAL
))
2706 for_each_zone(zone
) {
2707 for_each_online_cpu(cpu
) {
2709 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
2710 setup_pagelist_highmark(zone_pcp(zone
, cpu
), high
);
2716 __initdata
int hashdist
= HASHDIST_DEFAULT
;
2719 static int __init
set_hashdist(char *str
)
2723 hashdist
= simple_strtoul(str
, &str
, 0);
2726 __setup("hashdist=", set_hashdist
);
2730 * allocate a large system hash table from bootmem
2731 * - it is assumed that the hash table must contain an exact power-of-2
2732 * quantity of entries
2733 * - limit is the number of hash buckets, not the total allocation size
2735 void *__init
alloc_large_system_hash(const char *tablename
,
2736 unsigned long bucketsize
,
2737 unsigned long numentries
,
2740 unsigned int *_hash_shift
,
2741 unsigned int *_hash_mask
,
2742 unsigned long limit
)
2744 unsigned long long max
= limit
;
2745 unsigned long log2qty
, size
;
2748 /* allow the kernel cmdline to have a say */
2750 /* round applicable memory size up to nearest megabyte */
2751 numentries
= (flags
& HASH_HIGHMEM
) ? nr_all_pages
: nr_kernel_pages
;
2752 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
2753 numentries
>>= 20 - PAGE_SHIFT
;
2754 numentries
<<= 20 - PAGE_SHIFT
;
2756 /* limit to 1 bucket per 2^scale bytes of low memory */
2757 if (scale
> PAGE_SHIFT
)
2758 numentries
>>= (scale
- PAGE_SHIFT
);
2760 numentries
<<= (PAGE_SHIFT
- scale
);
2762 numentries
= roundup_pow_of_two(numentries
);
2764 /* limit allocation size to 1/16 total memory by default */
2766 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
2767 do_div(max
, bucketsize
);
2770 if (numentries
> max
)
2773 log2qty
= long_log2(numentries
);
2776 size
= bucketsize
<< log2qty
;
2777 if (flags
& HASH_EARLY
)
2778 table
= alloc_bootmem(size
);
2780 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
2782 unsigned long order
;
2783 for (order
= 0; ((1UL << order
) << PAGE_SHIFT
) < size
; order
++)
2785 table
= (void*) __get_free_pages(GFP_ATOMIC
, order
);
2787 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
2790 panic("Failed to allocate %s hash table\n", tablename
);
2792 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2795 long_log2(size
) - PAGE_SHIFT
,
2799 *_hash_shift
= log2qty
;
2801 *_hash_mask
= (1 << log2qty
) - 1;
2806 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
2808 * pfn <-> page translation. out-of-line version.
2809 * (see asm-generic/memory_model.h)
2811 #if defined(CONFIG_FLATMEM)
2812 struct page
*pfn_to_page(unsigned long pfn
)
2814 return mem_map
+ (pfn
- ARCH_PFN_OFFSET
);
2816 unsigned long page_to_pfn(struct page
*page
)
2818 return (page
- mem_map
) + ARCH_PFN_OFFSET
;
2820 #elif defined(CONFIG_DISCONTIGMEM)
2821 struct page
*pfn_to_page(unsigned long pfn
)
2823 int nid
= arch_pfn_to_nid(pfn
);
2824 return NODE_DATA(nid
)->node_mem_map
+ arch_local_page_offset(pfn
,nid
);
2826 unsigned long page_to_pfn(struct page
*page
)
2828 struct pglist_data
*pgdat
= NODE_DATA(page_to_nid(page
));
2829 return (page
- pgdat
->node_mem_map
) + pgdat
->node_start_pfn
;
2831 #elif defined(CONFIG_SPARSEMEM)
2832 struct page
*pfn_to_page(unsigned long pfn
)
2834 return __section_mem_map_addr(__pfn_to_section(pfn
)) + pfn
;
2837 unsigned long page_to_pfn(struct page
*page
)
2839 long section_id
= page_to_section(page
);
2840 return page
- __section_mem_map_addr(__nr_to_section(section_id
));
2842 #endif /* CONFIG_FLATMEM/DISCONTIGMME/SPARSEMEM */
2843 EXPORT_SYMBOL(pfn_to_page
);
2844 EXPORT_SYMBOL(page_to_pfn
);
2845 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */