USB: remove Makefile reference to obsolete OHCI_AT91
[linux-2.6/mini2440.git] / net / core / dev.c
blob4221dcda88d72c6ceb7435318da76b1c68355fa1
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/notifier.h>
94 #include <linux/skbuff.h>
95 #include <net/sock.h>
96 #include <linux/rtnetlink.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/stat.h>
100 #include <linux/if_bridge.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <linux/highmem.h>
105 #include <linux/init.h>
106 #include <linux/kmod.h>
107 #include <linux/module.h>
108 #include <linux/kallsyms.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/wext.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
122 * The list of packet types we will receive (as opposed to discard)
123 * and the routines to invoke.
125 * Why 16. Because with 16 the only overlap we get on a hash of the
126 * low nibble of the protocol value is RARP/SNAP/X.25.
128 * NOTE: That is no longer true with the addition of VLAN tags. Not
129 * sure which should go first, but I bet it won't make much
130 * difference if we are running VLANs. The good news is that
131 * this protocol won't be in the list unless compiled in, so
132 * the average user (w/out VLANs) will not be adversely affected.
133 * --BLG
135 * 0800 IP
136 * 8100 802.1Q VLAN
137 * 0001 802.3
138 * 0002 AX.25
139 * 0004 802.2
140 * 8035 RARP
141 * 0005 SNAP
142 * 0805 X.25
143 * 0806 ARP
144 * 8137 IPX
145 * 0009 Localtalk
146 * 86DD IPv6
149 static DEFINE_SPINLOCK(ptype_lock);
150 static struct list_head ptype_base[16] __read_mostly; /* 16 way hashed list */
151 static struct list_head ptype_all __read_mostly; /* Taps */
153 #ifdef CONFIG_NET_DMA
154 static struct dma_client *net_dma_client;
155 static unsigned int net_dma_count;
156 static spinlock_t net_dma_event_lock;
157 #endif
160 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
161 * semaphore.
163 * Pure readers hold dev_base_lock for reading.
165 * Writers must hold the rtnl semaphore while they loop through the
166 * dev_base_head list, and hold dev_base_lock for writing when they do the
167 * actual updates. This allows pure readers to access the list even
168 * while a writer is preparing to update it.
170 * To put it another way, dev_base_lock is held for writing only to
171 * protect against pure readers; the rtnl semaphore provides the
172 * protection against other writers.
174 * See, for example usages, register_netdevice() and
175 * unregister_netdevice(), which must be called with the rtnl
176 * semaphore held.
178 LIST_HEAD(dev_base_head);
179 DEFINE_RWLOCK(dev_base_lock);
181 EXPORT_SYMBOL(dev_base_head);
182 EXPORT_SYMBOL(dev_base_lock);
184 #define NETDEV_HASHBITS 8
185 static struct hlist_head dev_name_head[1<<NETDEV_HASHBITS];
186 static struct hlist_head dev_index_head[1<<NETDEV_HASHBITS];
188 static inline struct hlist_head *dev_name_hash(const char *name)
190 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
191 return &dev_name_head[hash & ((1<<NETDEV_HASHBITS)-1)];
194 static inline struct hlist_head *dev_index_hash(int ifindex)
196 return &dev_index_head[ifindex & ((1<<NETDEV_HASHBITS)-1)];
200 * Our notifier list
203 static RAW_NOTIFIER_HEAD(netdev_chain);
206 * Device drivers call our routines to queue packets here. We empty the
207 * queue in the local softnet handler.
209 DEFINE_PER_CPU(struct softnet_data, softnet_data) = { NULL };
211 #ifdef CONFIG_SYSFS
212 extern int netdev_sysfs_init(void);
213 extern int netdev_register_sysfs(struct net_device *);
214 extern void netdev_unregister_sysfs(struct net_device *);
215 #else
216 #define netdev_sysfs_init() (0)
217 #define netdev_register_sysfs(dev) (0)
218 #define netdev_unregister_sysfs(dev) do { } while(0)
219 #endif
221 #ifdef CONFIG_DEBUG_LOCK_ALLOC
223 * register_netdevice() inits dev->_xmit_lock and sets lockdep class
224 * according to dev->type
226 static const unsigned short netdev_lock_type[] =
227 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
228 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
229 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
230 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
231 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
232 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
233 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
234 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
235 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
236 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
237 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
238 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
239 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
240 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
241 ARPHRD_NONE};
243 static const char *netdev_lock_name[] =
244 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
245 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
246 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
247 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
248 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
249 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
250 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
251 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
252 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
253 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
254 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
255 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
256 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
257 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
258 "_xmit_NONE"};
260 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
262 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
264 int i;
266 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
267 if (netdev_lock_type[i] == dev_type)
268 return i;
269 /* the last key is used by default */
270 return ARRAY_SIZE(netdev_lock_type) - 1;
273 static inline void netdev_set_lockdep_class(spinlock_t *lock,
274 unsigned short dev_type)
276 int i;
278 i = netdev_lock_pos(dev_type);
279 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
280 netdev_lock_name[i]);
282 #else
283 static inline void netdev_set_lockdep_class(spinlock_t *lock,
284 unsigned short dev_type)
287 #endif
289 /*******************************************************************************
291 Protocol management and registration routines
293 *******************************************************************************/
296 * Add a protocol ID to the list. Now that the input handler is
297 * smarter we can dispense with all the messy stuff that used to be
298 * here.
300 * BEWARE!!! Protocol handlers, mangling input packets,
301 * MUST BE last in hash buckets and checking protocol handlers
302 * MUST start from promiscuous ptype_all chain in net_bh.
303 * It is true now, do not change it.
304 * Explanation follows: if protocol handler, mangling packet, will
305 * be the first on list, it is not able to sense, that packet
306 * is cloned and should be copied-on-write, so that it will
307 * change it and subsequent readers will get broken packet.
308 * --ANK (980803)
312 * dev_add_pack - add packet handler
313 * @pt: packet type declaration
315 * Add a protocol handler to the networking stack. The passed &packet_type
316 * is linked into kernel lists and may not be freed until it has been
317 * removed from the kernel lists.
319 * This call does not sleep therefore it can not
320 * guarantee all CPU's that are in middle of receiving packets
321 * will see the new packet type (until the next received packet).
324 void dev_add_pack(struct packet_type *pt)
326 int hash;
328 spin_lock_bh(&ptype_lock);
329 if (pt->type == htons(ETH_P_ALL))
330 list_add_rcu(&pt->list, &ptype_all);
331 else {
332 hash = ntohs(pt->type) & 15;
333 list_add_rcu(&pt->list, &ptype_base[hash]);
335 spin_unlock_bh(&ptype_lock);
339 * __dev_remove_pack - remove packet handler
340 * @pt: packet type declaration
342 * Remove a protocol handler that was previously added to the kernel
343 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
344 * from the kernel lists and can be freed or reused once this function
345 * returns.
347 * The packet type might still be in use by receivers
348 * and must not be freed until after all the CPU's have gone
349 * through a quiescent state.
351 void __dev_remove_pack(struct packet_type *pt)
353 struct list_head *head;
354 struct packet_type *pt1;
356 spin_lock_bh(&ptype_lock);
358 if (pt->type == htons(ETH_P_ALL))
359 head = &ptype_all;
360 else
361 head = &ptype_base[ntohs(pt->type) & 15];
363 list_for_each_entry(pt1, head, list) {
364 if (pt == pt1) {
365 list_del_rcu(&pt->list);
366 goto out;
370 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
371 out:
372 spin_unlock_bh(&ptype_lock);
375 * dev_remove_pack - remove packet handler
376 * @pt: packet type declaration
378 * Remove a protocol handler that was previously added to the kernel
379 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
380 * from the kernel lists and can be freed or reused once this function
381 * returns.
383 * This call sleeps to guarantee that no CPU is looking at the packet
384 * type after return.
386 void dev_remove_pack(struct packet_type *pt)
388 __dev_remove_pack(pt);
390 synchronize_net();
393 /******************************************************************************
395 Device Boot-time Settings Routines
397 *******************************************************************************/
399 /* Boot time configuration table */
400 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
403 * netdev_boot_setup_add - add new setup entry
404 * @name: name of the device
405 * @map: configured settings for the device
407 * Adds new setup entry to the dev_boot_setup list. The function
408 * returns 0 on error and 1 on success. This is a generic routine to
409 * all netdevices.
411 static int netdev_boot_setup_add(char *name, struct ifmap *map)
413 struct netdev_boot_setup *s;
414 int i;
416 s = dev_boot_setup;
417 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
418 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
419 memset(s[i].name, 0, sizeof(s[i].name));
420 strcpy(s[i].name, name);
421 memcpy(&s[i].map, map, sizeof(s[i].map));
422 break;
426 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
430 * netdev_boot_setup_check - check boot time settings
431 * @dev: the netdevice
433 * Check boot time settings for the device.
434 * The found settings are set for the device to be used
435 * later in the device probing.
436 * Returns 0 if no settings found, 1 if they are.
438 int netdev_boot_setup_check(struct net_device *dev)
440 struct netdev_boot_setup *s = dev_boot_setup;
441 int i;
443 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
444 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
445 !strncmp(dev->name, s[i].name, strlen(s[i].name))) {
446 dev->irq = s[i].map.irq;
447 dev->base_addr = s[i].map.base_addr;
448 dev->mem_start = s[i].map.mem_start;
449 dev->mem_end = s[i].map.mem_end;
450 return 1;
453 return 0;
458 * netdev_boot_base - get address from boot time settings
459 * @prefix: prefix for network device
460 * @unit: id for network device
462 * Check boot time settings for the base address of device.
463 * The found settings are set for the device to be used
464 * later in the device probing.
465 * Returns 0 if no settings found.
467 unsigned long netdev_boot_base(const char *prefix, int unit)
469 const struct netdev_boot_setup *s = dev_boot_setup;
470 char name[IFNAMSIZ];
471 int i;
473 sprintf(name, "%s%d", prefix, unit);
476 * If device already registered then return base of 1
477 * to indicate not to probe for this interface
479 if (__dev_get_by_name(name))
480 return 1;
482 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
483 if (!strcmp(name, s[i].name))
484 return s[i].map.base_addr;
485 return 0;
489 * Saves at boot time configured settings for any netdevice.
491 int __init netdev_boot_setup(char *str)
493 int ints[5];
494 struct ifmap map;
496 str = get_options(str, ARRAY_SIZE(ints), ints);
497 if (!str || !*str)
498 return 0;
500 /* Save settings */
501 memset(&map, 0, sizeof(map));
502 if (ints[0] > 0)
503 map.irq = ints[1];
504 if (ints[0] > 1)
505 map.base_addr = ints[2];
506 if (ints[0] > 2)
507 map.mem_start = ints[3];
508 if (ints[0] > 3)
509 map.mem_end = ints[4];
511 /* Add new entry to the list */
512 return netdev_boot_setup_add(str, &map);
515 __setup("netdev=", netdev_boot_setup);
517 /*******************************************************************************
519 Device Interface Subroutines
521 *******************************************************************************/
524 * __dev_get_by_name - find a device by its name
525 * @name: name to find
527 * Find an interface by name. Must be called under RTNL semaphore
528 * or @dev_base_lock. If the name is found a pointer to the device
529 * is returned. If the name is not found then %NULL is returned. The
530 * reference counters are not incremented so the caller must be
531 * careful with locks.
534 struct net_device *__dev_get_by_name(const char *name)
536 struct hlist_node *p;
538 hlist_for_each(p, dev_name_hash(name)) {
539 struct net_device *dev
540 = hlist_entry(p, struct net_device, name_hlist);
541 if (!strncmp(dev->name, name, IFNAMSIZ))
542 return dev;
544 return NULL;
548 * dev_get_by_name - find a device by its name
549 * @name: name to find
551 * Find an interface by name. This can be called from any
552 * context and does its own locking. The returned handle has
553 * the usage count incremented and the caller must use dev_put() to
554 * release it when it is no longer needed. %NULL is returned if no
555 * matching device is found.
558 struct net_device *dev_get_by_name(const char *name)
560 struct net_device *dev;
562 read_lock(&dev_base_lock);
563 dev = __dev_get_by_name(name);
564 if (dev)
565 dev_hold(dev);
566 read_unlock(&dev_base_lock);
567 return dev;
571 * __dev_get_by_index - find a device by its ifindex
572 * @ifindex: index of device
574 * Search for an interface by index. Returns %NULL if the device
575 * is not found or a pointer to the device. The device has not
576 * had its reference counter increased so the caller must be careful
577 * about locking. The caller must hold either the RTNL semaphore
578 * or @dev_base_lock.
581 struct net_device *__dev_get_by_index(int ifindex)
583 struct hlist_node *p;
585 hlist_for_each(p, dev_index_hash(ifindex)) {
586 struct net_device *dev
587 = hlist_entry(p, struct net_device, index_hlist);
588 if (dev->ifindex == ifindex)
589 return dev;
591 return NULL;
596 * dev_get_by_index - find a device by its ifindex
597 * @ifindex: index of device
599 * Search for an interface by index. Returns NULL if the device
600 * is not found or a pointer to the device. The device returned has
601 * had a reference added and the pointer is safe until the user calls
602 * dev_put to indicate they have finished with it.
605 struct net_device *dev_get_by_index(int ifindex)
607 struct net_device *dev;
609 read_lock(&dev_base_lock);
610 dev = __dev_get_by_index(ifindex);
611 if (dev)
612 dev_hold(dev);
613 read_unlock(&dev_base_lock);
614 return dev;
618 * dev_getbyhwaddr - find a device by its hardware address
619 * @type: media type of device
620 * @ha: hardware address
622 * Search for an interface by MAC address. Returns NULL if the device
623 * is not found or a pointer to the device. The caller must hold the
624 * rtnl semaphore. The returned device has not had its ref count increased
625 * and the caller must therefore be careful about locking
627 * BUGS:
628 * If the API was consistent this would be __dev_get_by_hwaddr
631 struct net_device *dev_getbyhwaddr(unsigned short type, char *ha)
633 struct net_device *dev;
635 ASSERT_RTNL();
637 for_each_netdev(dev)
638 if (dev->type == type &&
639 !memcmp(dev->dev_addr, ha, dev->addr_len))
640 return dev;
642 return NULL;
645 EXPORT_SYMBOL(dev_getbyhwaddr);
647 struct net_device *__dev_getfirstbyhwtype(unsigned short type)
649 struct net_device *dev;
651 ASSERT_RTNL();
652 for_each_netdev(dev)
653 if (dev->type == type)
654 return dev;
656 return NULL;
659 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
661 struct net_device *dev_getfirstbyhwtype(unsigned short type)
663 struct net_device *dev;
665 rtnl_lock();
666 dev = __dev_getfirstbyhwtype(type);
667 if (dev)
668 dev_hold(dev);
669 rtnl_unlock();
670 return dev;
673 EXPORT_SYMBOL(dev_getfirstbyhwtype);
676 * dev_get_by_flags - find any device with given flags
677 * @if_flags: IFF_* values
678 * @mask: bitmask of bits in if_flags to check
680 * Search for any interface with the given flags. Returns NULL if a device
681 * is not found or a pointer to the device. The device returned has
682 * had a reference added and the pointer is safe until the user calls
683 * dev_put to indicate they have finished with it.
686 struct net_device * dev_get_by_flags(unsigned short if_flags, unsigned short mask)
688 struct net_device *dev, *ret;
690 ret = NULL;
691 read_lock(&dev_base_lock);
692 for_each_netdev(dev) {
693 if (((dev->flags ^ if_flags) & mask) == 0) {
694 dev_hold(dev);
695 ret = dev;
696 break;
699 read_unlock(&dev_base_lock);
700 return ret;
704 * dev_valid_name - check if name is okay for network device
705 * @name: name string
707 * Network device names need to be valid file names to
708 * to allow sysfs to work. We also disallow any kind of
709 * whitespace.
711 int dev_valid_name(const char *name)
713 if (*name == '\0')
714 return 0;
715 if (strlen(name) >= IFNAMSIZ)
716 return 0;
717 if (!strcmp(name, ".") || !strcmp(name, ".."))
718 return 0;
720 while (*name) {
721 if (*name == '/' || isspace(*name))
722 return 0;
723 name++;
725 return 1;
729 * dev_alloc_name - allocate a name for a device
730 * @dev: device
731 * @name: name format string
733 * Passed a format string - eg "lt%d" it will try and find a suitable
734 * id. It scans list of devices to build up a free map, then chooses
735 * the first empty slot. The caller must hold the dev_base or rtnl lock
736 * while allocating the name and adding the device in order to avoid
737 * duplicates.
738 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
739 * Returns the number of the unit assigned or a negative errno code.
742 int dev_alloc_name(struct net_device *dev, const char *name)
744 int i = 0;
745 char buf[IFNAMSIZ];
746 const char *p;
747 const int max_netdevices = 8*PAGE_SIZE;
748 long *inuse;
749 struct net_device *d;
751 p = strnchr(name, IFNAMSIZ-1, '%');
752 if (p) {
754 * Verify the string as this thing may have come from
755 * the user. There must be either one "%d" and no other "%"
756 * characters.
758 if (p[1] != 'd' || strchr(p + 2, '%'))
759 return -EINVAL;
761 /* Use one page as a bit array of possible slots */
762 inuse = (long *) get_zeroed_page(GFP_ATOMIC);
763 if (!inuse)
764 return -ENOMEM;
766 for_each_netdev(d) {
767 if (!sscanf(d->name, name, &i))
768 continue;
769 if (i < 0 || i >= max_netdevices)
770 continue;
772 /* avoid cases where sscanf is not exact inverse of printf */
773 snprintf(buf, sizeof(buf), name, i);
774 if (!strncmp(buf, d->name, IFNAMSIZ))
775 set_bit(i, inuse);
778 i = find_first_zero_bit(inuse, max_netdevices);
779 free_page((unsigned long) inuse);
782 snprintf(buf, sizeof(buf), name, i);
783 if (!__dev_get_by_name(buf)) {
784 strlcpy(dev->name, buf, IFNAMSIZ);
785 return i;
788 /* It is possible to run out of possible slots
789 * when the name is long and there isn't enough space left
790 * for the digits, or if all bits are used.
792 return -ENFILE;
797 * dev_change_name - change name of a device
798 * @dev: device
799 * @newname: name (or format string) must be at least IFNAMSIZ
801 * Change name of a device, can pass format strings "eth%d".
802 * for wildcarding.
804 int dev_change_name(struct net_device *dev, char *newname)
806 int err = 0;
808 ASSERT_RTNL();
810 if (dev->flags & IFF_UP)
811 return -EBUSY;
813 if (!dev_valid_name(newname))
814 return -EINVAL;
816 if (strchr(newname, '%')) {
817 err = dev_alloc_name(dev, newname);
818 if (err < 0)
819 return err;
820 strcpy(newname, dev->name);
822 else if (__dev_get_by_name(newname))
823 return -EEXIST;
824 else
825 strlcpy(dev->name, newname, IFNAMSIZ);
827 device_rename(&dev->dev, dev->name);
828 hlist_del(&dev->name_hlist);
829 hlist_add_head(&dev->name_hlist, dev_name_hash(dev->name));
830 raw_notifier_call_chain(&netdev_chain, NETDEV_CHANGENAME, dev);
832 return err;
836 * netdev_features_change - device changes features
837 * @dev: device to cause notification
839 * Called to indicate a device has changed features.
841 void netdev_features_change(struct net_device *dev)
843 raw_notifier_call_chain(&netdev_chain, NETDEV_FEAT_CHANGE, dev);
845 EXPORT_SYMBOL(netdev_features_change);
848 * netdev_state_change - device changes state
849 * @dev: device to cause notification
851 * Called to indicate a device has changed state. This function calls
852 * the notifier chains for netdev_chain and sends a NEWLINK message
853 * to the routing socket.
855 void netdev_state_change(struct net_device *dev)
857 if (dev->flags & IFF_UP) {
858 raw_notifier_call_chain(&netdev_chain,
859 NETDEV_CHANGE, dev);
860 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
865 * dev_load - load a network module
866 * @name: name of interface
868 * If a network interface is not present and the process has suitable
869 * privileges this function loads the module. If module loading is not
870 * available in this kernel then it becomes a nop.
873 void dev_load(const char *name)
875 struct net_device *dev;
877 read_lock(&dev_base_lock);
878 dev = __dev_get_by_name(name);
879 read_unlock(&dev_base_lock);
881 if (!dev && capable(CAP_SYS_MODULE))
882 request_module("%s", name);
885 static int default_rebuild_header(struct sk_buff *skb)
887 printk(KERN_DEBUG "%s: default_rebuild_header called -- BUG!\n",
888 skb->dev ? skb->dev->name : "NULL!!!");
889 kfree_skb(skb);
890 return 1;
894 * dev_open - prepare an interface for use.
895 * @dev: device to open
897 * Takes a device from down to up state. The device's private open
898 * function is invoked and then the multicast lists are loaded. Finally
899 * the device is moved into the up state and a %NETDEV_UP message is
900 * sent to the netdev notifier chain.
902 * Calling this function on an active interface is a nop. On a failure
903 * a negative errno code is returned.
905 int dev_open(struct net_device *dev)
907 int ret = 0;
910 * Is it already up?
913 if (dev->flags & IFF_UP)
914 return 0;
917 * Is it even present?
919 if (!netif_device_present(dev))
920 return -ENODEV;
923 * Call device private open method
925 set_bit(__LINK_STATE_START, &dev->state);
926 if (dev->open) {
927 ret = dev->open(dev);
928 if (ret)
929 clear_bit(__LINK_STATE_START, &dev->state);
933 * If it went open OK then:
936 if (!ret) {
938 * Set the flags.
940 dev->flags |= IFF_UP;
943 * Initialize multicasting status
945 dev_set_rx_mode(dev);
948 * Wakeup transmit queue engine
950 dev_activate(dev);
953 * ... and announce new interface.
955 raw_notifier_call_chain(&netdev_chain, NETDEV_UP, dev);
957 return ret;
961 * dev_close - shutdown an interface.
962 * @dev: device to shutdown
964 * This function moves an active device into down state. A
965 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
966 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
967 * chain.
969 int dev_close(struct net_device *dev)
971 if (!(dev->flags & IFF_UP))
972 return 0;
975 * Tell people we are going down, so that they can
976 * prepare to death, when device is still operating.
978 raw_notifier_call_chain(&netdev_chain, NETDEV_GOING_DOWN, dev);
980 dev_deactivate(dev);
982 clear_bit(__LINK_STATE_START, &dev->state);
984 /* Synchronize to scheduled poll. We cannot touch poll list,
985 * it can be even on different cpu. So just clear netif_running(),
986 * and wait when poll really will happen. Actually, the best place
987 * for this is inside dev->stop() after device stopped its irq
988 * engine, but this requires more changes in devices. */
990 smp_mb__after_clear_bit(); /* Commit netif_running(). */
991 while (test_bit(__LINK_STATE_RX_SCHED, &dev->state)) {
992 /* No hurry. */
993 msleep(1);
997 * Call the device specific close. This cannot fail.
998 * Only if device is UP
1000 * We allow it to be called even after a DETACH hot-plug
1001 * event.
1003 if (dev->stop)
1004 dev->stop(dev);
1007 * Device is now down.
1010 dev->flags &= ~IFF_UP;
1013 * Tell people we are down
1015 raw_notifier_call_chain(&netdev_chain, NETDEV_DOWN, dev);
1017 return 0;
1022 * Device change register/unregister. These are not inline or static
1023 * as we export them to the world.
1027 * register_netdevice_notifier - register a network notifier block
1028 * @nb: notifier
1030 * Register a notifier to be called when network device events occur.
1031 * The notifier passed is linked into the kernel structures and must
1032 * not be reused until it has been unregistered. A negative errno code
1033 * is returned on a failure.
1035 * When registered all registration and up events are replayed
1036 * to the new notifier to allow device to have a race free
1037 * view of the network device list.
1040 int register_netdevice_notifier(struct notifier_block *nb)
1042 struct net_device *dev;
1043 int err;
1045 rtnl_lock();
1046 err = raw_notifier_chain_register(&netdev_chain, nb);
1047 if (!err) {
1048 for_each_netdev(dev) {
1049 nb->notifier_call(nb, NETDEV_REGISTER, dev);
1051 if (dev->flags & IFF_UP)
1052 nb->notifier_call(nb, NETDEV_UP, dev);
1055 rtnl_unlock();
1056 return err;
1060 * unregister_netdevice_notifier - unregister a network notifier block
1061 * @nb: notifier
1063 * Unregister a notifier previously registered by
1064 * register_netdevice_notifier(). The notifier is unlinked into the
1065 * kernel structures and may then be reused. A negative errno code
1066 * is returned on a failure.
1069 int unregister_netdevice_notifier(struct notifier_block *nb)
1071 int err;
1073 rtnl_lock();
1074 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1075 rtnl_unlock();
1076 return err;
1080 * call_netdevice_notifiers - call all network notifier blocks
1081 * @val: value passed unmodified to notifier function
1082 * @v: pointer passed unmodified to notifier function
1084 * Call all network notifier blocks. Parameters and return value
1085 * are as for raw_notifier_call_chain().
1088 int call_netdevice_notifiers(unsigned long val, void *v)
1090 return raw_notifier_call_chain(&netdev_chain, val, v);
1093 /* When > 0 there are consumers of rx skb time stamps */
1094 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1096 void net_enable_timestamp(void)
1098 atomic_inc(&netstamp_needed);
1101 void net_disable_timestamp(void)
1103 atomic_dec(&netstamp_needed);
1106 static inline void net_timestamp(struct sk_buff *skb)
1108 if (atomic_read(&netstamp_needed))
1109 __net_timestamp(skb);
1110 else
1111 skb->tstamp.tv64 = 0;
1115 * Support routine. Sends outgoing frames to any network
1116 * taps currently in use.
1119 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1121 struct packet_type *ptype;
1123 net_timestamp(skb);
1125 rcu_read_lock();
1126 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1127 /* Never send packets back to the socket
1128 * they originated from - MvS (miquels@drinkel.ow.org)
1130 if ((ptype->dev == dev || !ptype->dev) &&
1131 (ptype->af_packet_priv == NULL ||
1132 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1133 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1134 if (!skb2)
1135 break;
1137 /* skb->nh should be correctly
1138 set by sender, so that the second statement is
1139 just protection against buggy protocols.
1141 skb_reset_mac_header(skb2);
1143 if (skb_network_header(skb2) < skb2->data ||
1144 skb2->network_header > skb2->tail) {
1145 if (net_ratelimit())
1146 printk(KERN_CRIT "protocol %04x is "
1147 "buggy, dev %s\n",
1148 skb2->protocol, dev->name);
1149 skb_reset_network_header(skb2);
1152 skb2->transport_header = skb2->network_header;
1153 skb2->pkt_type = PACKET_OUTGOING;
1154 ptype->func(skb2, skb->dev, ptype, skb->dev);
1157 rcu_read_unlock();
1161 void __netif_schedule(struct net_device *dev)
1163 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
1164 unsigned long flags;
1165 struct softnet_data *sd;
1167 local_irq_save(flags);
1168 sd = &__get_cpu_var(softnet_data);
1169 dev->next_sched = sd->output_queue;
1170 sd->output_queue = dev;
1171 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1172 local_irq_restore(flags);
1175 EXPORT_SYMBOL(__netif_schedule);
1177 void __netif_rx_schedule(struct net_device *dev)
1179 unsigned long flags;
1181 local_irq_save(flags);
1182 dev_hold(dev);
1183 list_add_tail(&dev->poll_list, &__get_cpu_var(softnet_data).poll_list);
1184 if (dev->quota < 0)
1185 dev->quota += dev->weight;
1186 else
1187 dev->quota = dev->weight;
1188 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
1189 local_irq_restore(flags);
1191 EXPORT_SYMBOL(__netif_rx_schedule);
1193 void dev_kfree_skb_any(struct sk_buff *skb)
1195 if (in_irq() || irqs_disabled())
1196 dev_kfree_skb_irq(skb);
1197 else
1198 dev_kfree_skb(skb);
1200 EXPORT_SYMBOL(dev_kfree_skb_any);
1203 /* Hot-plugging. */
1204 void netif_device_detach(struct net_device *dev)
1206 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1207 netif_running(dev)) {
1208 netif_stop_queue(dev);
1211 EXPORT_SYMBOL(netif_device_detach);
1213 void netif_device_attach(struct net_device *dev)
1215 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1216 netif_running(dev)) {
1217 netif_wake_queue(dev);
1218 __netdev_watchdog_up(dev);
1221 EXPORT_SYMBOL(netif_device_attach);
1225 * Invalidate hardware checksum when packet is to be mangled, and
1226 * complete checksum manually on outgoing path.
1228 int skb_checksum_help(struct sk_buff *skb)
1230 __wsum csum;
1231 int ret = 0, offset;
1233 if (skb->ip_summed == CHECKSUM_COMPLETE)
1234 goto out_set_summed;
1236 if (unlikely(skb_shinfo(skb)->gso_size)) {
1237 /* Let GSO fix up the checksum. */
1238 goto out_set_summed;
1241 if (skb_cloned(skb)) {
1242 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1243 if (ret)
1244 goto out;
1247 offset = skb->csum_start - skb_headroom(skb);
1248 BUG_ON(offset > (int)skb->len);
1249 csum = skb_checksum(skb, offset, skb->len-offset, 0);
1251 offset = skb_headlen(skb) - offset;
1252 BUG_ON(offset <= 0);
1253 BUG_ON(skb->csum_offset + 2 > offset);
1255 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) =
1256 csum_fold(csum);
1257 out_set_summed:
1258 skb->ip_summed = CHECKSUM_NONE;
1259 out:
1260 return ret;
1264 * skb_gso_segment - Perform segmentation on skb.
1265 * @skb: buffer to segment
1266 * @features: features for the output path (see dev->features)
1268 * This function segments the given skb and returns a list of segments.
1270 * It may return NULL if the skb requires no segmentation. This is
1271 * only possible when GSO is used for verifying header integrity.
1273 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1275 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1276 struct packet_type *ptype;
1277 __be16 type = skb->protocol;
1278 int err;
1280 BUG_ON(skb_shinfo(skb)->frag_list);
1282 skb_reset_mac_header(skb);
1283 skb->mac_len = skb->network_header - skb->mac_header;
1284 __skb_pull(skb, skb->mac_len);
1286 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1287 if (skb_header_cloned(skb) &&
1288 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1289 return ERR_PTR(err);
1292 rcu_read_lock();
1293 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type) & 15], list) {
1294 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1295 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1296 err = ptype->gso_send_check(skb);
1297 segs = ERR_PTR(err);
1298 if (err || skb_gso_ok(skb, features))
1299 break;
1300 __skb_push(skb, (skb->data -
1301 skb_network_header(skb)));
1303 segs = ptype->gso_segment(skb, features);
1304 break;
1307 rcu_read_unlock();
1309 __skb_push(skb, skb->data - skb_mac_header(skb));
1311 return segs;
1314 EXPORT_SYMBOL(skb_gso_segment);
1316 /* Take action when hardware reception checksum errors are detected. */
1317 #ifdef CONFIG_BUG
1318 void netdev_rx_csum_fault(struct net_device *dev)
1320 if (net_ratelimit()) {
1321 printk(KERN_ERR "%s: hw csum failure.\n",
1322 dev ? dev->name : "<unknown>");
1323 dump_stack();
1326 EXPORT_SYMBOL(netdev_rx_csum_fault);
1327 #endif
1329 /* Actually, we should eliminate this check as soon as we know, that:
1330 * 1. IOMMU is present and allows to map all the memory.
1331 * 2. No high memory really exists on this machine.
1334 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1336 #ifdef CONFIG_HIGHMEM
1337 int i;
1339 if (dev->features & NETIF_F_HIGHDMA)
1340 return 0;
1342 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1343 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1344 return 1;
1346 #endif
1347 return 0;
1350 struct dev_gso_cb {
1351 void (*destructor)(struct sk_buff *skb);
1354 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1356 static void dev_gso_skb_destructor(struct sk_buff *skb)
1358 struct dev_gso_cb *cb;
1360 do {
1361 struct sk_buff *nskb = skb->next;
1363 skb->next = nskb->next;
1364 nskb->next = NULL;
1365 kfree_skb(nskb);
1366 } while (skb->next);
1368 cb = DEV_GSO_CB(skb);
1369 if (cb->destructor)
1370 cb->destructor(skb);
1374 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1375 * @skb: buffer to segment
1377 * This function segments the given skb and stores the list of segments
1378 * in skb->next.
1380 static int dev_gso_segment(struct sk_buff *skb)
1382 struct net_device *dev = skb->dev;
1383 struct sk_buff *segs;
1384 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1385 NETIF_F_SG : 0);
1387 segs = skb_gso_segment(skb, features);
1389 /* Verifying header integrity only. */
1390 if (!segs)
1391 return 0;
1393 if (unlikely(IS_ERR(segs)))
1394 return PTR_ERR(segs);
1396 skb->next = segs;
1397 DEV_GSO_CB(skb)->destructor = skb->destructor;
1398 skb->destructor = dev_gso_skb_destructor;
1400 return 0;
1403 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1405 if (likely(!skb->next)) {
1406 if (!list_empty(&ptype_all))
1407 dev_queue_xmit_nit(skb, dev);
1409 if (netif_needs_gso(dev, skb)) {
1410 if (unlikely(dev_gso_segment(skb)))
1411 goto out_kfree_skb;
1412 if (skb->next)
1413 goto gso;
1416 return dev->hard_start_xmit(skb, dev);
1419 gso:
1420 do {
1421 struct sk_buff *nskb = skb->next;
1422 int rc;
1424 skb->next = nskb->next;
1425 nskb->next = NULL;
1426 rc = dev->hard_start_xmit(nskb, dev);
1427 if (unlikely(rc)) {
1428 nskb->next = skb->next;
1429 skb->next = nskb;
1430 return rc;
1432 if (unlikely((netif_queue_stopped(dev) ||
1433 netif_subqueue_stopped(dev, skb->queue_mapping)) &&
1434 skb->next))
1435 return NETDEV_TX_BUSY;
1436 } while (skb->next);
1438 skb->destructor = DEV_GSO_CB(skb)->destructor;
1440 out_kfree_skb:
1441 kfree_skb(skb);
1442 return 0;
1445 #define HARD_TX_LOCK(dev, cpu) { \
1446 if ((dev->features & NETIF_F_LLTX) == 0) { \
1447 netif_tx_lock(dev); \
1451 #define HARD_TX_UNLOCK(dev) { \
1452 if ((dev->features & NETIF_F_LLTX) == 0) { \
1453 netif_tx_unlock(dev); \
1458 * dev_queue_xmit - transmit a buffer
1459 * @skb: buffer to transmit
1461 * Queue a buffer for transmission to a network device. The caller must
1462 * have set the device and priority and built the buffer before calling
1463 * this function. The function can be called from an interrupt.
1465 * A negative errno code is returned on a failure. A success does not
1466 * guarantee the frame will be transmitted as it may be dropped due
1467 * to congestion or traffic shaping.
1469 * -----------------------------------------------------------------------------------
1470 * I notice this method can also return errors from the queue disciplines,
1471 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1472 * be positive.
1474 * Regardless of the return value, the skb is consumed, so it is currently
1475 * difficult to retry a send to this method. (You can bump the ref count
1476 * before sending to hold a reference for retry if you are careful.)
1478 * When calling this method, interrupts MUST be enabled. This is because
1479 * the BH enable code must have IRQs enabled so that it will not deadlock.
1480 * --BLG
1483 int dev_queue_xmit(struct sk_buff *skb)
1485 struct net_device *dev = skb->dev;
1486 struct Qdisc *q;
1487 int rc = -ENOMEM;
1489 /* GSO will handle the following emulations directly. */
1490 if (netif_needs_gso(dev, skb))
1491 goto gso;
1493 if (skb_shinfo(skb)->frag_list &&
1494 !(dev->features & NETIF_F_FRAGLIST) &&
1495 __skb_linearize(skb))
1496 goto out_kfree_skb;
1498 /* Fragmented skb is linearized if device does not support SG,
1499 * or if at least one of fragments is in highmem and device
1500 * does not support DMA from it.
1502 if (skb_shinfo(skb)->nr_frags &&
1503 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1504 __skb_linearize(skb))
1505 goto out_kfree_skb;
1507 /* If packet is not checksummed and device does not support
1508 * checksumming for this protocol, complete checksumming here.
1510 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1511 skb_set_transport_header(skb, skb->csum_start -
1512 skb_headroom(skb));
1514 if (!(dev->features & NETIF_F_GEN_CSUM) &&
1515 !((dev->features & NETIF_F_IP_CSUM) &&
1516 skb->protocol == htons(ETH_P_IP)) &&
1517 !((dev->features & NETIF_F_IPV6_CSUM) &&
1518 skb->protocol == htons(ETH_P_IPV6)))
1519 if (skb_checksum_help(skb))
1520 goto out_kfree_skb;
1523 gso:
1524 spin_lock_prefetch(&dev->queue_lock);
1526 /* Disable soft irqs for various locks below. Also
1527 * stops preemption for RCU.
1529 rcu_read_lock_bh();
1531 /* Updates of qdisc are serialized by queue_lock.
1532 * The struct Qdisc which is pointed to by qdisc is now a
1533 * rcu structure - it may be accessed without acquiring
1534 * a lock (but the structure may be stale.) The freeing of the
1535 * qdisc will be deferred until it's known that there are no
1536 * more references to it.
1538 * If the qdisc has an enqueue function, we still need to
1539 * hold the queue_lock before calling it, since queue_lock
1540 * also serializes access to the device queue.
1543 q = rcu_dereference(dev->qdisc);
1544 #ifdef CONFIG_NET_CLS_ACT
1545 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1546 #endif
1547 if (q->enqueue) {
1548 /* Grab device queue */
1549 spin_lock(&dev->queue_lock);
1550 q = dev->qdisc;
1551 if (q->enqueue) {
1552 /* reset queue_mapping to zero */
1553 skb->queue_mapping = 0;
1554 rc = q->enqueue(skb, q);
1555 qdisc_run(dev);
1556 spin_unlock(&dev->queue_lock);
1558 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1559 goto out;
1561 spin_unlock(&dev->queue_lock);
1564 /* The device has no queue. Common case for software devices:
1565 loopback, all the sorts of tunnels...
1567 Really, it is unlikely that netif_tx_lock protection is necessary
1568 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1569 counters.)
1570 However, it is possible, that they rely on protection
1571 made by us here.
1573 Check this and shot the lock. It is not prone from deadlocks.
1574 Either shot noqueue qdisc, it is even simpler 8)
1576 if (dev->flags & IFF_UP) {
1577 int cpu = smp_processor_id(); /* ok because BHs are off */
1579 if (dev->xmit_lock_owner != cpu) {
1581 HARD_TX_LOCK(dev, cpu);
1583 if (!netif_queue_stopped(dev) &&
1584 !netif_subqueue_stopped(dev, skb->queue_mapping)) {
1585 rc = 0;
1586 if (!dev_hard_start_xmit(skb, dev)) {
1587 HARD_TX_UNLOCK(dev);
1588 goto out;
1591 HARD_TX_UNLOCK(dev);
1592 if (net_ratelimit())
1593 printk(KERN_CRIT "Virtual device %s asks to "
1594 "queue packet!\n", dev->name);
1595 } else {
1596 /* Recursion is detected! It is possible,
1597 * unfortunately */
1598 if (net_ratelimit())
1599 printk(KERN_CRIT "Dead loop on virtual device "
1600 "%s, fix it urgently!\n", dev->name);
1604 rc = -ENETDOWN;
1605 rcu_read_unlock_bh();
1607 out_kfree_skb:
1608 kfree_skb(skb);
1609 return rc;
1610 out:
1611 rcu_read_unlock_bh();
1612 return rc;
1616 /*=======================================================================
1617 Receiver routines
1618 =======================================================================*/
1620 int netdev_max_backlog __read_mostly = 1000;
1621 int netdev_budget __read_mostly = 300;
1622 int weight_p __read_mostly = 64; /* old backlog weight */
1624 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1628 * netif_rx - post buffer to the network code
1629 * @skb: buffer to post
1631 * This function receives a packet from a device driver and queues it for
1632 * the upper (protocol) levels to process. It always succeeds. The buffer
1633 * may be dropped during processing for congestion control or by the
1634 * protocol layers.
1636 * return values:
1637 * NET_RX_SUCCESS (no congestion)
1638 * NET_RX_CN_LOW (low congestion)
1639 * NET_RX_CN_MOD (moderate congestion)
1640 * NET_RX_CN_HIGH (high congestion)
1641 * NET_RX_DROP (packet was dropped)
1645 int netif_rx(struct sk_buff *skb)
1647 struct softnet_data *queue;
1648 unsigned long flags;
1650 /* if netpoll wants it, pretend we never saw it */
1651 if (netpoll_rx(skb))
1652 return NET_RX_DROP;
1654 if (!skb->tstamp.tv64)
1655 net_timestamp(skb);
1658 * The code is rearranged so that the path is the most
1659 * short when CPU is congested, but is still operating.
1661 local_irq_save(flags);
1662 queue = &__get_cpu_var(softnet_data);
1664 __get_cpu_var(netdev_rx_stat).total++;
1665 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1666 if (queue->input_pkt_queue.qlen) {
1667 enqueue:
1668 dev_hold(skb->dev);
1669 __skb_queue_tail(&queue->input_pkt_queue, skb);
1670 local_irq_restore(flags);
1671 return NET_RX_SUCCESS;
1674 netif_rx_schedule(&queue->backlog_dev);
1675 goto enqueue;
1678 __get_cpu_var(netdev_rx_stat).dropped++;
1679 local_irq_restore(flags);
1681 kfree_skb(skb);
1682 return NET_RX_DROP;
1685 int netif_rx_ni(struct sk_buff *skb)
1687 int err;
1689 preempt_disable();
1690 err = netif_rx(skb);
1691 if (local_softirq_pending())
1692 do_softirq();
1693 preempt_enable();
1695 return err;
1698 EXPORT_SYMBOL(netif_rx_ni);
1700 static inline struct net_device *skb_bond(struct sk_buff *skb)
1702 struct net_device *dev = skb->dev;
1704 if (dev->master) {
1705 if (skb_bond_should_drop(skb)) {
1706 kfree_skb(skb);
1707 return NULL;
1709 skb->dev = dev->master;
1712 return dev;
1715 static void net_tx_action(struct softirq_action *h)
1717 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1719 if (sd->completion_queue) {
1720 struct sk_buff *clist;
1722 local_irq_disable();
1723 clist = sd->completion_queue;
1724 sd->completion_queue = NULL;
1725 local_irq_enable();
1727 while (clist) {
1728 struct sk_buff *skb = clist;
1729 clist = clist->next;
1731 BUG_TRAP(!atomic_read(&skb->users));
1732 __kfree_skb(skb);
1736 if (sd->output_queue) {
1737 struct net_device *head;
1739 local_irq_disable();
1740 head = sd->output_queue;
1741 sd->output_queue = NULL;
1742 local_irq_enable();
1744 while (head) {
1745 struct net_device *dev = head;
1746 head = head->next_sched;
1748 smp_mb__before_clear_bit();
1749 clear_bit(__LINK_STATE_SCHED, &dev->state);
1751 if (spin_trylock(&dev->queue_lock)) {
1752 qdisc_run(dev);
1753 spin_unlock(&dev->queue_lock);
1754 } else {
1755 netif_schedule(dev);
1761 static inline int deliver_skb(struct sk_buff *skb,
1762 struct packet_type *pt_prev,
1763 struct net_device *orig_dev)
1765 atomic_inc(&skb->users);
1766 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1769 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
1770 /* These hooks defined here for ATM */
1771 struct net_bridge;
1772 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1773 unsigned char *addr);
1774 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
1777 * If bridge module is loaded call bridging hook.
1778 * returns NULL if packet was consumed.
1780 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
1781 struct sk_buff *skb) __read_mostly;
1782 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
1783 struct packet_type **pt_prev, int *ret,
1784 struct net_device *orig_dev)
1786 struct net_bridge_port *port;
1788 if (skb->pkt_type == PACKET_LOOPBACK ||
1789 (port = rcu_dereference(skb->dev->br_port)) == NULL)
1790 return skb;
1792 if (*pt_prev) {
1793 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1794 *pt_prev = NULL;
1797 return br_handle_frame_hook(port, skb);
1799 #else
1800 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
1801 #endif
1803 #ifdef CONFIG_NET_CLS_ACT
1804 /* TODO: Maybe we should just force sch_ingress to be compiled in
1805 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
1806 * a compare and 2 stores extra right now if we dont have it on
1807 * but have CONFIG_NET_CLS_ACT
1808 * NOTE: This doesnt stop any functionality; if you dont have
1809 * the ingress scheduler, you just cant add policies on ingress.
1812 static int ing_filter(struct sk_buff *skb)
1814 struct Qdisc *q;
1815 struct net_device *dev = skb->dev;
1816 int result = TC_ACT_OK;
1818 if (dev->qdisc_ingress) {
1819 __u32 ttl = (__u32) G_TC_RTTL(skb->tc_verd);
1820 if (MAX_RED_LOOP < ttl++) {
1821 printk(KERN_WARNING "Redir loop detected Dropping packet (%d->%d)\n",
1822 skb->iif, skb->dev->ifindex);
1823 return TC_ACT_SHOT;
1826 skb->tc_verd = SET_TC_RTTL(skb->tc_verd,ttl);
1828 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_INGRESS);
1830 spin_lock(&dev->ingress_lock);
1831 if ((q = dev->qdisc_ingress) != NULL)
1832 result = q->enqueue(skb, q);
1833 spin_unlock(&dev->ingress_lock);
1837 return result;
1839 #endif
1841 int netif_receive_skb(struct sk_buff *skb)
1843 struct packet_type *ptype, *pt_prev;
1844 struct net_device *orig_dev;
1845 int ret = NET_RX_DROP;
1846 __be16 type;
1848 /* if we've gotten here through NAPI, check netpoll */
1849 if (skb->dev->poll && netpoll_rx(skb))
1850 return NET_RX_DROP;
1852 if (!skb->tstamp.tv64)
1853 net_timestamp(skb);
1855 if (!skb->iif)
1856 skb->iif = skb->dev->ifindex;
1858 orig_dev = skb_bond(skb);
1860 if (!orig_dev)
1861 return NET_RX_DROP;
1863 __get_cpu_var(netdev_rx_stat).total++;
1865 skb_reset_network_header(skb);
1866 skb_reset_transport_header(skb);
1867 skb->mac_len = skb->network_header - skb->mac_header;
1869 pt_prev = NULL;
1871 rcu_read_lock();
1873 #ifdef CONFIG_NET_CLS_ACT
1874 if (skb->tc_verd & TC_NCLS) {
1875 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
1876 goto ncls;
1878 #endif
1880 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1881 if (!ptype->dev || ptype->dev == skb->dev) {
1882 if (pt_prev)
1883 ret = deliver_skb(skb, pt_prev, orig_dev);
1884 pt_prev = ptype;
1888 #ifdef CONFIG_NET_CLS_ACT
1889 if (pt_prev) {
1890 ret = deliver_skb(skb, pt_prev, orig_dev);
1891 pt_prev = NULL; /* noone else should process this after*/
1892 } else {
1893 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
1896 ret = ing_filter(skb);
1898 if (ret == TC_ACT_SHOT || (ret == TC_ACT_STOLEN)) {
1899 kfree_skb(skb);
1900 goto out;
1903 skb->tc_verd = 0;
1904 ncls:
1905 #endif
1907 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
1908 if (!skb)
1909 goto out;
1911 type = skb->protocol;
1912 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) {
1913 if (ptype->type == type &&
1914 (!ptype->dev || ptype->dev == skb->dev)) {
1915 if (pt_prev)
1916 ret = deliver_skb(skb, pt_prev, orig_dev);
1917 pt_prev = ptype;
1921 if (pt_prev) {
1922 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1923 } else {
1924 kfree_skb(skb);
1925 /* Jamal, now you will not able to escape explaining
1926 * me how you were going to use this. :-)
1928 ret = NET_RX_DROP;
1931 out:
1932 rcu_read_unlock();
1933 return ret;
1936 static int process_backlog(struct net_device *backlog_dev, int *budget)
1938 int work = 0;
1939 int quota = min(backlog_dev->quota, *budget);
1940 struct softnet_data *queue = &__get_cpu_var(softnet_data);
1941 unsigned long start_time = jiffies;
1943 backlog_dev->weight = weight_p;
1944 for (;;) {
1945 struct sk_buff *skb;
1946 struct net_device *dev;
1948 local_irq_disable();
1949 skb = __skb_dequeue(&queue->input_pkt_queue);
1950 if (!skb)
1951 goto job_done;
1952 local_irq_enable();
1954 dev = skb->dev;
1956 netif_receive_skb(skb);
1958 dev_put(dev);
1960 work++;
1962 if (work >= quota || jiffies - start_time > 1)
1963 break;
1967 backlog_dev->quota -= work;
1968 *budget -= work;
1969 return -1;
1971 job_done:
1972 backlog_dev->quota -= work;
1973 *budget -= work;
1975 list_del(&backlog_dev->poll_list);
1976 smp_mb__before_clear_bit();
1977 netif_poll_enable(backlog_dev);
1979 local_irq_enable();
1980 return 0;
1983 static void net_rx_action(struct softirq_action *h)
1985 struct softnet_data *queue = &__get_cpu_var(softnet_data);
1986 unsigned long start_time = jiffies;
1987 int budget = netdev_budget;
1988 void *have;
1990 local_irq_disable();
1992 while (!list_empty(&queue->poll_list)) {
1993 struct net_device *dev;
1995 if (budget <= 0 || jiffies - start_time > 1)
1996 goto softnet_break;
1998 local_irq_enable();
2000 dev = list_entry(queue->poll_list.next,
2001 struct net_device, poll_list);
2002 have = netpoll_poll_lock(dev);
2004 if (dev->quota <= 0 || dev->poll(dev, &budget)) {
2005 netpoll_poll_unlock(have);
2006 local_irq_disable();
2007 list_move_tail(&dev->poll_list, &queue->poll_list);
2008 if (dev->quota < 0)
2009 dev->quota += dev->weight;
2010 else
2011 dev->quota = dev->weight;
2012 } else {
2013 netpoll_poll_unlock(have);
2014 dev_put(dev);
2015 local_irq_disable();
2018 out:
2019 local_irq_enable();
2020 #ifdef CONFIG_NET_DMA
2022 * There may not be any more sk_buffs coming right now, so push
2023 * any pending DMA copies to hardware
2025 if (net_dma_client) {
2026 struct dma_chan *chan;
2027 rcu_read_lock();
2028 list_for_each_entry_rcu(chan, &net_dma_client->channels, client_node)
2029 dma_async_memcpy_issue_pending(chan);
2030 rcu_read_unlock();
2032 #endif
2033 return;
2035 softnet_break:
2036 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2037 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2038 goto out;
2041 static gifconf_func_t * gifconf_list [NPROTO];
2044 * register_gifconf - register a SIOCGIF handler
2045 * @family: Address family
2046 * @gifconf: Function handler
2048 * Register protocol dependent address dumping routines. The handler
2049 * that is passed must not be freed or reused until it has been replaced
2050 * by another handler.
2052 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2054 if (family >= NPROTO)
2055 return -EINVAL;
2056 gifconf_list[family] = gifconf;
2057 return 0;
2062 * Map an interface index to its name (SIOCGIFNAME)
2066 * We need this ioctl for efficient implementation of the
2067 * if_indextoname() function required by the IPv6 API. Without
2068 * it, we would have to search all the interfaces to find a
2069 * match. --pb
2072 static int dev_ifname(struct ifreq __user *arg)
2074 struct net_device *dev;
2075 struct ifreq ifr;
2078 * Fetch the caller's info block.
2081 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2082 return -EFAULT;
2084 read_lock(&dev_base_lock);
2085 dev = __dev_get_by_index(ifr.ifr_ifindex);
2086 if (!dev) {
2087 read_unlock(&dev_base_lock);
2088 return -ENODEV;
2091 strcpy(ifr.ifr_name, dev->name);
2092 read_unlock(&dev_base_lock);
2094 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2095 return -EFAULT;
2096 return 0;
2100 * Perform a SIOCGIFCONF call. This structure will change
2101 * size eventually, and there is nothing I can do about it.
2102 * Thus we will need a 'compatibility mode'.
2105 static int dev_ifconf(char __user *arg)
2107 struct ifconf ifc;
2108 struct net_device *dev;
2109 char __user *pos;
2110 int len;
2111 int total;
2112 int i;
2115 * Fetch the caller's info block.
2118 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2119 return -EFAULT;
2121 pos = ifc.ifc_buf;
2122 len = ifc.ifc_len;
2125 * Loop over the interfaces, and write an info block for each.
2128 total = 0;
2129 for_each_netdev(dev) {
2130 for (i = 0; i < NPROTO; i++) {
2131 if (gifconf_list[i]) {
2132 int done;
2133 if (!pos)
2134 done = gifconf_list[i](dev, NULL, 0);
2135 else
2136 done = gifconf_list[i](dev, pos + total,
2137 len - total);
2138 if (done < 0)
2139 return -EFAULT;
2140 total += done;
2146 * All done. Write the updated control block back to the caller.
2148 ifc.ifc_len = total;
2151 * Both BSD and Solaris return 0 here, so we do too.
2153 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2156 #ifdef CONFIG_PROC_FS
2158 * This is invoked by the /proc filesystem handler to display a device
2159 * in detail.
2161 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2163 loff_t off;
2164 struct net_device *dev;
2166 read_lock(&dev_base_lock);
2167 if (!*pos)
2168 return SEQ_START_TOKEN;
2170 off = 1;
2171 for_each_netdev(dev)
2172 if (off++ == *pos)
2173 return dev;
2175 return NULL;
2178 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2180 ++*pos;
2181 return v == SEQ_START_TOKEN ?
2182 first_net_device() : next_net_device((struct net_device *)v);
2185 void dev_seq_stop(struct seq_file *seq, void *v)
2187 read_unlock(&dev_base_lock);
2190 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2192 struct net_device_stats *stats = dev->get_stats(dev);
2194 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2195 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2196 dev->name, stats->rx_bytes, stats->rx_packets,
2197 stats->rx_errors,
2198 stats->rx_dropped + stats->rx_missed_errors,
2199 stats->rx_fifo_errors,
2200 stats->rx_length_errors + stats->rx_over_errors +
2201 stats->rx_crc_errors + stats->rx_frame_errors,
2202 stats->rx_compressed, stats->multicast,
2203 stats->tx_bytes, stats->tx_packets,
2204 stats->tx_errors, stats->tx_dropped,
2205 stats->tx_fifo_errors, stats->collisions,
2206 stats->tx_carrier_errors +
2207 stats->tx_aborted_errors +
2208 stats->tx_window_errors +
2209 stats->tx_heartbeat_errors,
2210 stats->tx_compressed);
2214 * Called from the PROCfs module. This now uses the new arbitrary sized
2215 * /proc/net interface to create /proc/net/dev
2217 static int dev_seq_show(struct seq_file *seq, void *v)
2219 if (v == SEQ_START_TOKEN)
2220 seq_puts(seq, "Inter-| Receive "
2221 " | Transmit\n"
2222 " face |bytes packets errs drop fifo frame "
2223 "compressed multicast|bytes packets errs "
2224 "drop fifo colls carrier compressed\n");
2225 else
2226 dev_seq_printf_stats(seq, v);
2227 return 0;
2230 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2232 struct netif_rx_stats *rc = NULL;
2234 while (*pos < NR_CPUS)
2235 if (cpu_online(*pos)) {
2236 rc = &per_cpu(netdev_rx_stat, *pos);
2237 break;
2238 } else
2239 ++*pos;
2240 return rc;
2243 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2245 return softnet_get_online(pos);
2248 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2250 ++*pos;
2251 return softnet_get_online(pos);
2254 static void softnet_seq_stop(struct seq_file *seq, void *v)
2258 static int softnet_seq_show(struct seq_file *seq, void *v)
2260 struct netif_rx_stats *s = v;
2262 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2263 s->total, s->dropped, s->time_squeeze, 0,
2264 0, 0, 0, 0, /* was fastroute */
2265 s->cpu_collision );
2266 return 0;
2269 static const struct seq_operations dev_seq_ops = {
2270 .start = dev_seq_start,
2271 .next = dev_seq_next,
2272 .stop = dev_seq_stop,
2273 .show = dev_seq_show,
2276 static int dev_seq_open(struct inode *inode, struct file *file)
2278 return seq_open(file, &dev_seq_ops);
2281 static const struct file_operations dev_seq_fops = {
2282 .owner = THIS_MODULE,
2283 .open = dev_seq_open,
2284 .read = seq_read,
2285 .llseek = seq_lseek,
2286 .release = seq_release,
2289 static const struct seq_operations softnet_seq_ops = {
2290 .start = softnet_seq_start,
2291 .next = softnet_seq_next,
2292 .stop = softnet_seq_stop,
2293 .show = softnet_seq_show,
2296 static int softnet_seq_open(struct inode *inode, struct file *file)
2298 return seq_open(file, &softnet_seq_ops);
2301 static const struct file_operations softnet_seq_fops = {
2302 .owner = THIS_MODULE,
2303 .open = softnet_seq_open,
2304 .read = seq_read,
2305 .llseek = seq_lseek,
2306 .release = seq_release,
2309 static void *ptype_get_idx(loff_t pos)
2311 struct packet_type *pt = NULL;
2312 loff_t i = 0;
2313 int t;
2315 list_for_each_entry_rcu(pt, &ptype_all, list) {
2316 if (i == pos)
2317 return pt;
2318 ++i;
2321 for (t = 0; t < 16; t++) {
2322 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2323 if (i == pos)
2324 return pt;
2325 ++i;
2328 return NULL;
2331 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2333 rcu_read_lock();
2334 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2337 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2339 struct packet_type *pt;
2340 struct list_head *nxt;
2341 int hash;
2343 ++*pos;
2344 if (v == SEQ_START_TOKEN)
2345 return ptype_get_idx(0);
2347 pt = v;
2348 nxt = pt->list.next;
2349 if (pt->type == htons(ETH_P_ALL)) {
2350 if (nxt != &ptype_all)
2351 goto found;
2352 hash = 0;
2353 nxt = ptype_base[0].next;
2354 } else
2355 hash = ntohs(pt->type) & 15;
2357 while (nxt == &ptype_base[hash]) {
2358 if (++hash >= 16)
2359 return NULL;
2360 nxt = ptype_base[hash].next;
2362 found:
2363 return list_entry(nxt, struct packet_type, list);
2366 static void ptype_seq_stop(struct seq_file *seq, void *v)
2368 rcu_read_unlock();
2371 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2373 #ifdef CONFIG_KALLSYMS
2374 unsigned long offset = 0, symsize;
2375 const char *symname;
2376 char *modname;
2377 char namebuf[128];
2379 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2380 &modname, namebuf);
2382 if (symname) {
2383 char *delim = ":";
2385 if (!modname)
2386 modname = delim = "";
2387 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2388 symname, offset);
2389 return;
2391 #endif
2393 seq_printf(seq, "[%p]", sym);
2396 static int ptype_seq_show(struct seq_file *seq, void *v)
2398 struct packet_type *pt = v;
2400 if (v == SEQ_START_TOKEN)
2401 seq_puts(seq, "Type Device Function\n");
2402 else {
2403 if (pt->type == htons(ETH_P_ALL))
2404 seq_puts(seq, "ALL ");
2405 else
2406 seq_printf(seq, "%04x", ntohs(pt->type));
2408 seq_printf(seq, " %-8s ",
2409 pt->dev ? pt->dev->name : "");
2410 ptype_seq_decode(seq, pt->func);
2411 seq_putc(seq, '\n');
2414 return 0;
2417 static const struct seq_operations ptype_seq_ops = {
2418 .start = ptype_seq_start,
2419 .next = ptype_seq_next,
2420 .stop = ptype_seq_stop,
2421 .show = ptype_seq_show,
2424 static int ptype_seq_open(struct inode *inode, struct file *file)
2426 return seq_open(file, &ptype_seq_ops);
2429 static const struct file_operations ptype_seq_fops = {
2430 .owner = THIS_MODULE,
2431 .open = ptype_seq_open,
2432 .read = seq_read,
2433 .llseek = seq_lseek,
2434 .release = seq_release,
2438 static int __init dev_proc_init(void)
2440 int rc = -ENOMEM;
2442 if (!proc_net_fops_create("dev", S_IRUGO, &dev_seq_fops))
2443 goto out;
2444 if (!proc_net_fops_create("softnet_stat", S_IRUGO, &softnet_seq_fops))
2445 goto out_dev;
2446 if (!proc_net_fops_create("ptype", S_IRUGO, &ptype_seq_fops))
2447 goto out_dev2;
2449 if (wext_proc_init())
2450 goto out_softnet;
2451 rc = 0;
2452 out:
2453 return rc;
2454 out_softnet:
2455 proc_net_remove("ptype");
2456 out_dev2:
2457 proc_net_remove("softnet_stat");
2458 out_dev:
2459 proc_net_remove("dev");
2460 goto out;
2462 #else
2463 #define dev_proc_init() 0
2464 #endif /* CONFIG_PROC_FS */
2468 * netdev_set_master - set up master/slave pair
2469 * @slave: slave device
2470 * @master: new master device
2472 * Changes the master device of the slave. Pass %NULL to break the
2473 * bonding. The caller must hold the RTNL semaphore. On a failure
2474 * a negative errno code is returned. On success the reference counts
2475 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2476 * function returns zero.
2478 int netdev_set_master(struct net_device *slave, struct net_device *master)
2480 struct net_device *old = slave->master;
2482 ASSERT_RTNL();
2484 if (master) {
2485 if (old)
2486 return -EBUSY;
2487 dev_hold(master);
2490 slave->master = master;
2492 synchronize_net();
2494 if (old)
2495 dev_put(old);
2497 if (master)
2498 slave->flags |= IFF_SLAVE;
2499 else
2500 slave->flags &= ~IFF_SLAVE;
2502 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2503 return 0;
2506 static void __dev_set_promiscuity(struct net_device *dev, int inc)
2508 unsigned short old_flags = dev->flags;
2510 if ((dev->promiscuity += inc) == 0)
2511 dev->flags &= ~IFF_PROMISC;
2512 else
2513 dev->flags |= IFF_PROMISC;
2514 if (dev->flags != old_flags) {
2515 printk(KERN_INFO "device %s %s promiscuous mode\n",
2516 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2517 "left");
2518 audit_log(current->audit_context, GFP_ATOMIC,
2519 AUDIT_ANOM_PROMISCUOUS,
2520 "dev=%s prom=%d old_prom=%d auid=%u",
2521 dev->name, (dev->flags & IFF_PROMISC),
2522 (old_flags & IFF_PROMISC),
2523 audit_get_loginuid(current->audit_context));
2528 * dev_set_promiscuity - update promiscuity count on a device
2529 * @dev: device
2530 * @inc: modifier
2532 * Add or remove promiscuity from a device. While the count in the device
2533 * remains above zero the interface remains promiscuous. Once it hits zero
2534 * the device reverts back to normal filtering operation. A negative inc
2535 * value is used to drop promiscuity on the device.
2537 void dev_set_promiscuity(struct net_device *dev, int inc)
2539 unsigned short old_flags = dev->flags;
2541 __dev_set_promiscuity(dev, inc);
2542 if (dev->flags != old_flags)
2543 dev_set_rx_mode(dev);
2547 * dev_set_allmulti - update allmulti count on a device
2548 * @dev: device
2549 * @inc: modifier
2551 * Add or remove reception of all multicast frames to a device. While the
2552 * count in the device remains above zero the interface remains listening
2553 * to all interfaces. Once it hits zero the device reverts back to normal
2554 * filtering operation. A negative @inc value is used to drop the counter
2555 * when releasing a resource needing all multicasts.
2558 void dev_set_allmulti(struct net_device *dev, int inc)
2560 unsigned short old_flags = dev->flags;
2562 dev->flags |= IFF_ALLMULTI;
2563 if ((dev->allmulti += inc) == 0)
2564 dev->flags &= ~IFF_ALLMULTI;
2565 if (dev->flags ^ old_flags)
2566 dev_set_rx_mode(dev);
2570 * Upload unicast and multicast address lists to device and
2571 * configure RX filtering. When the device doesn't support unicast
2572 * filtering it is put in promiscous mode while unicast addresses
2573 * are present.
2575 void __dev_set_rx_mode(struct net_device *dev)
2577 /* dev_open will call this function so the list will stay sane. */
2578 if (!(dev->flags&IFF_UP))
2579 return;
2581 if (!netif_device_present(dev))
2582 return;
2584 if (dev->set_rx_mode)
2585 dev->set_rx_mode(dev);
2586 else {
2587 /* Unicast addresses changes may only happen under the rtnl,
2588 * therefore calling __dev_set_promiscuity here is safe.
2590 if (dev->uc_count > 0 && !dev->uc_promisc) {
2591 __dev_set_promiscuity(dev, 1);
2592 dev->uc_promisc = 1;
2593 } else if (dev->uc_count == 0 && dev->uc_promisc) {
2594 __dev_set_promiscuity(dev, -1);
2595 dev->uc_promisc = 0;
2598 if (dev->set_multicast_list)
2599 dev->set_multicast_list(dev);
2603 void dev_set_rx_mode(struct net_device *dev)
2605 netif_tx_lock_bh(dev);
2606 __dev_set_rx_mode(dev);
2607 netif_tx_unlock_bh(dev);
2610 int __dev_addr_delete(struct dev_addr_list **list, int *count,
2611 void *addr, int alen, int glbl)
2613 struct dev_addr_list *da;
2615 for (; (da = *list) != NULL; list = &da->next) {
2616 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2617 alen == da->da_addrlen) {
2618 if (glbl) {
2619 int old_glbl = da->da_gusers;
2620 da->da_gusers = 0;
2621 if (old_glbl == 0)
2622 break;
2624 if (--da->da_users)
2625 return 0;
2627 *list = da->next;
2628 kfree(da);
2629 (*count)--;
2630 return 0;
2633 return -ENOENT;
2636 int __dev_addr_add(struct dev_addr_list **list, int *count,
2637 void *addr, int alen, int glbl)
2639 struct dev_addr_list *da;
2641 for (da = *list; da != NULL; da = da->next) {
2642 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2643 da->da_addrlen == alen) {
2644 if (glbl) {
2645 int old_glbl = da->da_gusers;
2646 da->da_gusers = 1;
2647 if (old_glbl)
2648 return 0;
2650 da->da_users++;
2651 return 0;
2655 da = kmalloc(sizeof(*da), GFP_ATOMIC);
2656 if (da == NULL)
2657 return -ENOMEM;
2658 memcpy(da->da_addr, addr, alen);
2659 da->da_addrlen = alen;
2660 da->da_users = 1;
2661 da->da_gusers = glbl ? 1 : 0;
2662 da->next = *list;
2663 *list = da;
2664 (*count)++;
2665 return 0;
2668 void __dev_addr_discard(struct dev_addr_list **list)
2670 struct dev_addr_list *tmp;
2672 while (*list != NULL) {
2673 tmp = *list;
2674 *list = tmp->next;
2675 if (tmp->da_users > tmp->da_gusers)
2676 printk("__dev_addr_discard: address leakage! "
2677 "da_users=%d\n", tmp->da_users);
2678 kfree(tmp);
2683 * dev_unicast_delete - Release secondary unicast address.
2684 * @dev: device
2686 * Release reference to a secondary unicast address and remove it
2687 * from the device if the reference count drop to zero.
2689 * The caller must hold the rtnl_mutex.
2691 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
2693 int err;
2695 ASSERT_RTNL();
2697 netif_tx_lock_bh(dev);
2698 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2699 if (!err)
2700 __dev_set_rx_mode(dev);
2701 netif_tx_unlock_bh(dev);
2702 return err;
2704 EXPORT_SYMBOL(dev_unicast_delete);
2707 * dev_unicast_add - add a secondary unicast address
2708 * @dev: device
2710 * Add a secondary unicast address to the device or increase
2711 * the reference count if it already exists.
2713 * The caller must hold the rtnl_mutex.
2715 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
2717 int err;
2719 ASSERT_RTNL();
2721 netif_tx_lock_bh(dev);
2722 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2723 if (!err)
2724 __dev_set_rx_mode(dev);
2725 netif_tx_unlock_bh(dev);
2726 return err;
2728 EXPORT_SYMBOL(dev_unicast_add);
2730 static void dev_unicast_discard(struct net_device *dev)
2732 netif_tx_lock_bh(dev);
2733 __dev_addr_discard(&dev->uc_list);
2734 dev->uc_count = 0;
2735 netif_tx_unlock_bh(dev);
2738 unsigned dev_get_flags(const struct net_device *dev)
2740 unsigned flags;
2742 flags = (dev->flags & ~(IFF_PROMISC |
2743 IFF_ALLMULTI |
2744 IFF_RUNNING |
2745 IFF_LOWER_UP |
2746 IFF_DORMANT)) |
2747 (dev->gflags & (IFF_PROMISC |
2748 IFF_ALLMULTI));
2750 if (netif_running(dev)) {
2751 if (netif_oper_up(dev))
2752 flags |= IFF_RUNNING;
2753 if (netif_carrier_ok(dev))
2754 flags |= IFF_LOWER_UP;
2755 if (netif_dormant(dev))
2756 flags |= IFF_DORMANT;
2759 return flags;
2762 int dev_change_flags(struct net_device *dev, unsigned flags)
2764 int ret, changes;
2765 int old_flags = dev->flags;
2768 * Set the flags on our device.
2771 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
2772 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
2773 IFF_AUTOMEDIA)) |
2774 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
2775 IFF_ALLMULTI));
2778 * Load in the correct multicast list now the flags have changed.
2781 dev_set_rx_mode(dev);
2784 * Have we downed the interface. We handle IFF_UP ourselves
2785 * according to user attempts to set it, rather than blindly
2786 * setting it.
2789 ret = 0;
2790 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
2791 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
2793 if (!ret)
2794 dev_set_rx_mode(dev);
2797 if (dev->flags & IFF_UP &&
2798 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
2799 IFF_VOLATILE)))
2800 raw_notifier_call_chain(&netdev_chain,
2801 NETDEV_CHANGE, dev);
2803 if ((flags ^ dev->gflags) & IFF_PROMISC) {
2804 int inc = (flags & IFF_PROMISC) ? +1 : -1;
2805 dev->gflags ^= IFF_PROMISC;
2806 dev_set_promiscuity(dev, inc);
2809 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
2810 is important. Some (broken) drivers set IFF_PROMISC, when
2811 IFF_ALLMULTI is requested not asking us and not reporting.
2813 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
2814 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
2815 dev->gflags ^= IFF_ALLMULTI;
2816 dev_set_allmulti(dev, inc);
2819 /* Exclude state transition flags, already notified */
2820 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
2821 if (changes)
2822 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
2824 return ret;
2827 int dev_set_mtu(struct net_device *dev, int new_mtu)
2829 int err;
2831 if (new_mtu == dev->mtu)
2832 return 0;
2834 /* MTU must be positive. */
2835 if (new_mtu < 0)
2836 return -EINVAL;
2838 if (!netif_device_present(dev))
2839 return -ENODEV;
2841 err = 0;
2842 if (dev->change_mtu)
2843 err = dev->change_mtu(dev, new_mtu);
2844 else
2845 dev->mtu = new_mtu;
2846 if (!err && dev->flags & IFF_UP)
2847 raw_notifier_call_chain(&netdev_chain,
2848 NETDEV_CHANGEMTU, dev);
2849 return err;
2852 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
2854 int err;
2856 if (!dev->set_mac_address)
2857 return -EOPNOTSUPP;
2858 if (sa->sa_family != dev->type)
2859 return -EINVAL;
2860 if (!netif_device_present(dev))
2861 return -ENODEV;
2862 err = dev->set_mac_address(dev, sa);
2863 if (!err)
2864 raw_notifier_call_chain(&netdev_chain,
2865 NETDEV_CHANGEADDR, dev);
2866 return err;
2870 * Perform the SIOCxIFxxx calls.
2872 static int dev_ifsioc(struct ifreq *ifr, unsigned int cmd)
2874 int err;
2875 struct net_device *dev = __dev_get_by_name(ifr->ifr_name);
2877 if (!dev)
2878 return -ENODEV;
2880 switch (cmd) {
2881 case SIOCGIFFLAGS: /* Get interface flags */
2882 ifr->ifr_flags = dev_get_flags(dev);
2883 return 0;
2885 case SIOCSIFFLAGS: /* Set interface flags */
2886 return dev_change_flags(dev, ifr->ifr_flags);
2888 case SIOCGIFMETRIC: /* Get the metric on the interface
2889 (currently unused) */
2890 ifr->ifr_metric = 0;
2891 return 0;
2893 case SIOCSIFMETRIC: /* Set the metric on the interface
2894 (currently unused) */
2895 return -EOPNOTSUPP;
2897 case SIOCGIFMTU: /* Get the MTU of a device */
2898 ifr->ifr_mtu = dev->mtu;
2899 return 0;
2901 case SIOCSIFMTU: /* Set the MTU of a device */
2902 return dev_set_mtu(dev, ifr->ifr_mtu);
2904 case SIOCGIFHWADDR:
2905 if (!dev->addr_len)
2906 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
2907 else
2908 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
2909 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
2910 ifr->ifr_hwaddr.sa_family = dev->type;
2911 return 0;
2913 case SIOCSIFHWADDR:
2914 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
2916 case SIOCSIFHWBROADCAST:
2917 if (ifr->ifr_hwaddr.sa_family != dev->type)
2918 return -EINVAL;
2919 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
2920 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
2921 raw_notifier_call_chain(&netdev_chain,
2922 NETDEV_CHANGEADDR, dev);
2923 return 0;
2925 case SIOCGIFMAP:
2926 ifr->ifr_map.mem_start = dev->mem_start;
2927 ifr->ifr_map.mem_end = dev->mem_end;
2928 ifr->ifr_map.base_addr = dev->base_addr;
2929 ifr->ifr_map.irq = dev->irq;
2930 ifr->ifr_map.dma = dev->dma;
2931 ifr->ifr_map.port = dev->if_port;
2932 return 0;
2934 case SIOCSIFMAP:
2935 if (dev->set_config) {
2936 if (!netif_device_present(dev))
2937 return -ENODEV;
2938 return dev->set_config(dev, &ifr->ifr_map);
2940 return -EOPNOTSUPP;
2942 case SIOCADDMULTI:
2943 if (!dev->set_multicast_list ||
2944 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
2945 return -EINVAL;
2946 if (!netif_device_present(dev))
2947 return -ENODEV;
2948 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
2949 dev->addr_len, 1);
2951 case SIOCDELMULTI:
2952 if (!dev->set_multicast_list ||
2953 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
2954 return -EINVAL;
2955 if (!netif_device_present(dev))
2956 return -ENODEV;
2957 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
2958 dev->addr_len, 1);
2960 case SIOCGIFINDEX:
2961 ifr->ifr_ifindex = dev->ifindex;
2962 return 0;
2964 case SIOCGIFTXQLEN:
2965 ifr->ifr_qlen = dev->tx_queue_len;
2966 return 0;
2968 case SIOCSIFTXQLEN:
2969 if (ifr->ifr_qlen < 0)
2970 return -EINVAL;
2971 dev->tx_queue_len = ifr->ifr_qlen;
2972 return 0;
2974 case SIOCSIFNAME:
2975 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
2976 return dev_change_name(dev, ifr->ifr_newname);
2979 * Unknown or private ioctl
2982 default:
2983 if ((cmd >= SIOCDEVPRIVATE &&
2984 cmd <= SIOCDEVPRIVATE + 15) ||
2985 cmd == SIOCBONDENSLAVE ||
2986 cmd == SIOCBONDRELEASE ||
2987 cmd == SIOCBONDSETHWADDR ||
2988 cmd == SIOCBONDSLAVEINFOQUERY ||
2989 cmd == SIOCBONDINFOQUERY ||
2990 cmd == SIOCBONDCHANGEACTIVE ||
2991 cmd == SIOCGMIIPHY ||
2992 cmd == SIOCGMIIREG ||
2993 cmd == SIOCSMIIREG ||
2994 cmd == SIOCBRADDIF ||
2995 cmd == SIOCBRDELIF ||
2996 cmd == SIOCWANDEV) {
2997 err = -EOPNOTSUPP;
2998 if (dev->do_ioctl) {
2999 if (netif_device_present(dev))
3000 err = dev->do_ioctl(dev, ifr,
3001 cmd);
3002 else
3003 err = -ENODEV;
3005 } else
3006 err = -EINVAL;
3009 return err;
3013 * This function handles all "interface"-type I/O control requests. The actual
3014 * 'doing' part of this is dev_ifsioc above.
3018 * dev_ioctl - network device ioctl
3019 * @cmd: command to issue
3020 * @arg: pointer to a struct ifreq in user space
3022 * Issue ioctl functions to devices. This is normally called by the
3023 * user space syscall interfaces but can sometimes be useful for
3024 * other purposes. The return value is the return from the syscall if
3025 * positive or a negative errno code on error.
3028 int dev_ioctl(unsigned int cmd, void __user *arg)
3030 struct ifreq ifr;
3031 int ret;
3032 char *colon;
3034 /* One special case: SIOCGIFCONF takes ifconf argument
3035 and requires shared lock, because it sleeps writing
3036 to user space.
3039 if (cmd == SIOCGIFCONF) {
3040 rtnl_lock();
3041 ret = dev_ifconf((char __user *) arg);
3042 rtnl_unlock();
3043 return ret;
3045 if (cmd == SIOCGIFNAME)
3046 return dev_ifname((struct ifreq __user *)arg);
3048 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3049 return -EFAULT;
3051 ifr.ifr_name[IFNAMSIZ-1] = 0;
3053 colon = strchr(ifr.ifr_name, ':');
3054 if (colon)
3055 *colon = 0;
3058 * See which interface the caller is talking about.
3061 switch (cmd) {
3063 * These ioctl calls:
3064 * - can be done by all.
3065 * - atomic and do not require locking.
3066 * - return a value
3068 case SIOCGIFFLAGS:
3069 case SIOCGIFMETRIC:
3070 case SIOCGIFMTU:
3071 case SIOCGIFHWADDR:
3072 case SIOCGIFSLAVE:
3073 case SIOCGIFMAP:
3074 case SIOCGIFINDEX:
3075 case SIOCGIFTXQLEN:
3076 dev_load(ifr.ifr_name);
3077 read_lock(&dev_base_lock);
3078 ret = dev_ifsioc(&ifr, cmd);
3079 read_unlock(&dev_base_lock);
3080 if (!ret) {
3081 if (colon)
3082 *colon = ':';
3083 if (copy_to_user(arg, &ifr,
3084 sizeof(struct ifreq)))
3085 ret = -EFAULT;
3087 return ret;
3089 case SIOCETHTOOL:
3090 dev_load(ifr.ifr_name);
3091 rtnl_lock();
3092 ret = dev_ethtool(&ifr);
3093 rtnl_unlock();
3094 if (!ret) {
3095 if (colon)
3096 *colon = ':';
3097 if (copy_to_user(arg, &ifr,
3098 sizeof(struct ifreq)))
3099 ret = -EFAULT;
3101 return ret;
3104 * These ioctl calls:
3105 * - require superuser power.
3106 * - require strict serialization.
3107 * - return a value
3109 case SIOCGMIIPHY:
3110 case SIOCGMIIREG:
3111 case SIOCSIFNAME:
3112 if (!capable(CAP_NET_ADMIN))
3113 return -EPERM;
3114 dev_load(ifr.ifr_name);
3115 rtnl_lock();
3116 ret = dev_ifsioc(&ifr, cmd);
3117 rtnl_unlock();
3118 if (!ret) {
3119 if (colon)
3120 *colon = ':';
3121 if (copy_to_user(arg, &ifr,
3122 sizeof(struct ifreq)))
3123 ret = -EFAULT;
3125 return ret;
3128 * These ioctl calls:
3129 * - require superuser power.
3130 * - require strict serialization.
3131 * - do not return a value
3133 case SIOCSIFFLAGS:
3134 case SIOCSIFMETRIC:
3135 case SIOCSIFMTU:
3136 case SIOCSIFMAP:
3137 case SIOCSIFHWADDR:
3138 case SIOCSIFSLAVE:
3139 case SIOCADDMULTI:
3140 case SIOCDELMULTI:
3141 case SIOCSIFHWBROADCAST:
3142 case SIOCSIFTXQLEN:
3143 case SIOCSMIIREG:
3144 case SIOCBONDENSLAVE:
3145 case SIOCBONDRELEASE:
3146 case SIOCBONDSETHWADDR:
3147 case SIOCBONDCHANGEACTIVE:
3148 case SIOCBRADDIF:
3149 case SIOCBRDELIF:
3150 if (!capable(CAP_NET_ADMIN))
3151 return -EPERM;
3152 /* fall through */
3153 case SIOCBONDSLAVEINFOQUERY:
3154 case SIOCBONDINFOQUERY:
3155 dev_load(ifr.ifr_name);
3156 rtnl_lock();
3157 ret = dev_ifsioc(&ifr, cmd);
3158 rtnl_unlock();
3159 return ret;
3161 case SIOCGIFMEM:
3162 /* Get the per device memory space. We can add this but
3163 * currently do not support it */
3164 case SIOCSIFMEM:
3165 /* Set the per device memory buffer space.
3166 * Not applicable in our case */
3167 case SIOCSIFLINK:
3168 return -EINVAL;
3171 * Unknown or private ioctl.
3173 default:
3174 if (cmd == SIOCWANDEV ||
3175 (cmd >= SIOCDEVPRIVATE &&
3176 cmd <= SIOCDEVPRIVATE + 15)) {
3177 dev_load(ifr.ifr_name);
3178 rtnl_lock();
3179 ret = dev_ifsioc(&ifr, cmd);
3180 rtnl_unlock();
3181 if (!ret && copy_to_user(arg, &ifr,
3182 sizeof(struct ifreq)))
3183 ret = -EFAULT;
3184 return ret;
3186 /* Take care of Wireless Extensions */
3187 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3188 return wext_handle_ioctl(&ifr, cmd, arg);
3189 return -EINVAL;
3195 * dev_new_index - allocate an ifindex
3197 * Returns a suitable unique value for a new device interface
3198 * number. The caller must hold the rtnl semaphore or the
3199 * dev_base_lock to be sure it remains unique.
3201 static int dev_new_index(void)
3203 static int ifindex;
3204 for (;;) {
3205 if (++ifindex <= 0)
3206 ifindex = 1;
3207 if (!__dev_get_by_index(ifindex))
3208 return ifindex;
3212 static int dev_boot_phase = 1;
3214 /* Delayed registration/unregisteration */
3215 static DEFINE_SPINLOCK(net_todo_list_lock);
3216 static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list);
3218 static void net_set_todo(struct net_device *dev)
3220 spin_lock(&net_todo_list_lock);
3221 list_add_tail(&dev->todo_list, &net_todo_list);
3222 spin_unlock(&net_todo_list_lock);
3226 * register_netdevice - register a network device
3227 * @dev: device to register
3229 * Take a completed network device structure and add it to the kernel
3230 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3231 * chain. 0 is returned on success. A negative errno code is returned
3232 * on a failure to set up the device, or if the name is a duplicate.
3234 * Callers must hold the rtnl semaphore. You may want
3235 * register_netdev() instead of this.
3237 * BUGS:
3238 * The locking appears insufficient to guarantee two parallel registers
3239 * will not get the same name.
3242 int register_netdevice(struct net_device *dev)
3244 struct hlist_head *head;
3245 struct hlist_node *p;
3246 int ret;
3248 BUG_ON(dev_boot_phase);
3249 ASSERT_RTNL();
3251 might_sleep();
3253 /* When net_device's are persistent, this will be fatal. */
3254 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3256 spin_lock_init(&dev->queue_lock);
3257 spin_lock_init(&dev->_xmit_lock);
3258 netdev_set_lockdep_class(&dev->_xmit_lock, dev->type);
3259 dev->xmit_lock_owner = -1;
3260 spin_lock_init(&dev->ingress_lock);
3262 dev->iflink = -1;
3264 /* Init, if this function is available */
3265 if (dev->init) {
3266 ret = dev->init(dev);
3267 if (ret) {
3268 if (ret > 0)
3269 ret = -EIO;
3270 goto out;
3274 if (!dev_valid_name(dev->name)) {
3275 ret = -EINVAL;
3276 goto out;
3279 dev->ifindex = dev_new_index();
3280 if (dev->iflink == -1)
3281 dev->iflink = dev->ifindex;
3283 /* Check for existence of name */
3284 head = dev_name_hash(dev->name);
3285 hlist_for_each(p, head) {
3286 struct net_device *d
3287 = hlist_entry(p, struct net_device, name_hlist);
3288 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3289 ret = -EEXIST;
3290 goto out;
3294 /* Fix illegal checksum combinations */
3295 if ((dev->features & NETIF_F_HW_CSUM) &&
3296 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3297 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3298 dev->name);
3299 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3302 if ((dev->features & NETIF_F_NO_CSUM) &&
3303 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3304 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3305 dev->name);
3306 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3310 /* Fix illegal SG+CSUM combinations. */
3311 if ((dev->features & NETIF_F_SG) &&
3312 !(dev->features & NETIF_F_ALL_CSUM)) {
3313 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3314 dev->name);
3315 dev->features &= ~NETIF_F_SG;
3318 /* TSO requires that SG is present as well. */
3319 if ((dev->features & NETIF_F_TSO) &&
3320 !(dev->features & NETIF_F_SG)) {
3321 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3322 dev->name);
3323 dev->features &= ~NETIF_F_TSO;
3325 if (dev->features & NETIF_F_UFO) {
3326 if (!(dev->features & NETIF_F_HW_CSUM)) {
3327 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3328 "NETIF_F_HW_CSUM feature.\n",
3329 dev->name);
3330 dev->features &= ~NETIF_F_UFO;
3332 if (!(dev->features & NETIF_F_SG)) {
3333 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3334 "NETIF_F_SG feature.\n",
3335 dev->name);
3336 dev->features &= ~NETIF_F_UFO;
3341 * nil rebuild_header routine,
3342 * that should be never called and used as just bug trap.
3345 if (!dev->rebuild_header)
3346 dev->rebuild_header = default_rebuild_header;
3348 ret = netdev_register_sysfs(dev);
3349 if (ret)
3350 goto out;
3351 dev->reg_state = NETREG_REGISTERED;
3354 * Default initial state at registry is that the
3355 * device is present.
3358 set_bit(__LINK_STATE_PRESENT, &dev->state);
3360 dev_init_scheduler(dev);
3361 write_lock_bh(&dev_base_lock);
3362 list_add_tail(&dev->dev_list, &dev_base_head);
3363 hlist_add_head(&dev->name_hlist, head);
3364 hlist_add_head(&dev->index_hlist, dev_index_hash(dev->ifindex));
3365 dev_hold(dev);
3366 write_unlock_bh(&dev_base_lock);
3368 /* Notify protocols, that a new device appeared. */
3369 raw_notifier_call_chain(&netdev_chain, NETDEV_REGISTER, dev);
3371 ret = 0;
3373 out:
3374 return ret;
3378 * register_netdev - register a network device
3379 * @dev: device to register
3381 * Take a completed network device structure and add it to the kernel
3382 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3383 * chain. 0 is returned on success. A negative errno code is returned
3384 * on a failure to set up the device, or if the name is a duplicate.
3386 * This is a wrapper around register_netdevice that takes the rtnl semaphore
3387 * and expands the device name if you passed a format string to
3388 * alloc_netdev.
3390 int register_netdev(struct net_device *dev)
3392 int err;
3394 rtnl_lock();
3397 * If the name is a format string the caller wants us to do a
3398 * name allocation.
3400 if (strchr(dev->name, '%')) {
3401 err = dev_alloc_name(dev, dev->name);
3402 if (err < 0)
3403 goto out;
3406 err = register_netdevice(dev);
3407 out:
3408 rtnl_unlock();
3409 return err;
3411 EXPORT_SYMBOL(register_netdev);
3414 * netdev_wait_allrefs - wait until all references are gone.
3416 * This is called when unregistering network devices.
3418 * Any protocol or device that holds a reference should register
3419 * for netdevice notification, and cleanup and put back the
3420 * reference if they receive an UNREGISTER event.
3421 * We can get stuck here if buggy protocols don't correctly
3422 * call dev_put.
3424 static void netdev_wait_allrefs(struct net_device *dev)
3426 unsigned long rebroadcast_time, warning_time;
3428 rebroadcast_time = warning_time = jiffies;
3429 while (atomic_read(&dev->refcnt) != 0) {
3430 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
3431 rtnl_lock();
3433 /* Rebroadcast unregister notification */
3434 raw_notifier_call_chain(&netdev_chain,
3435 NETDEV_UNREGISTER, dev);
3437 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
3438 &dev->state)) {
3439 /* We must not have linkwatch events
3440 * pending on unregister. If this
3441 * happens, we simply run the queue
3442 * unscheduled, resulting in a noop
3443 * for this device.
3445 linkwatch_run_queue();
3448 __rtnl_unlock();
3450 rebroadcast_time = jiffies;
3453 msleep(250);
3455 if (time_after(jiffies, warning_time + 10 * HZ)) {
3456 printk(KERN_EMERG "unregister_netdevice: "
3457 "waiting for %s to become free. Usage "
3458 "count = %d\n",
3459 dev->name, atomic_read(&dev->refcnt));
3460 warning_time = jiffies;
3465 /* The sequence is:
3467 * rtnl_lock();
3468 * ...
3469 * register_netdevice(x1);
3470 * register_netdevice(x2);
3471 * ...
3472 * unregister_netdevice(y1);
3473 * unregister_netdevice(y2);
3474 * ...
3475 * rtnl_unlock();
3476 * free_netdev(y1);
3477 * free_netdev(y2);
3479 * We are invoked by rtnl_unlock() after it drops the semaphore.
3480 * This allows us to deal with problems:
3481 * 1) We can delete sysfs objects which invoke hotplug
3482 * without deadlocking with linkwatch via keventd.
3483 * 2) Since we run with the RTNL semaphore not held, we can sleep
3484 * safely in order to wait for the netdev refcnt to drop to zero.
3486 static DEFINE_MUTEX(net_todo_run_mutex);
3487 void netdev_run_todo(void)
3489 struct list_head list;
3491 /* Need to guard against multiple cpu's getting out of order. */
3492 mutex_lock(&net_todo_run_mutex);
3494 /* Not safe to do outside the semaphore. We must not return
3495 * until all unregister events invoked by the local processor
3496 * have been completed (either by this todo run, or one on
3497 * another cpu).
3499 if (list_empty(&net_todo_list))
3500 goto out;
3502 /* Snapshot list, allow later requests */
3503 spin_lock(&net_todo_list_lock);
3504 list_replace_init(&net_todo_list, &list);
3505 spin_unlock(&net_todo_list_lock);
3507 while (!list_empty(&list)) {
3508 struct net_device *dev
3509 = list_entry(list.next, struct net_device, todo_list);
3510 list_del(&dev->todo_list);
3512 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
3513 printk(KERN_ERR "network todo '%s' but state %d\n",
3514 dev->name, dev->reg_state);
3515 dump_stack();
3516 continue;
3519 dev->reg_state = NETREG_UNREGISTERED;
3521 netdev_wait_allrefs(dev);
3523 /* paranoia */
3524 BUG_ON(atomic_read(&dev->refcnt));
3525 BUG_TRAP(!dev->ip_ptr);
3526 BUG_TRAP(!dev->ip6_ptr);
3527 BUG_TRAP(!dev->dn_ptr);
3529 if (dev->destructor)
3530 dev->destructor(dev);
3532 /* Free network device */
3533 kobject_put(&dev->dev.kobj);
3536 out:
3537 mutex_unlock(&net_todo_run_mutex);
3540 static struct net_device_stats *internal_stats(struct net_device *dev)
3542 return &dev->stats;
3546 * alloc_netdev_mq - allocate network device
3547 * @sizeof_priv: size of private data to allocate space for
3548 * @name: device name format string
3549 * @setup: callback to initialize device
3550 * @queue_count: the number of subqueues to allocate
3552 * Allocates a struct net_device with private data area for driver use
3553 * and performs basic initialization. Also allocates subquue structs
3554 * for each queue on the device at the end of the netdevice.
3556 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
3557 void (*setup)(struct net_device *), unsigned int queue_count)
3559 void *p;
3560 struct net_device *dev;
3561 int alloc_size;
3563 BUG_ON(strlen(name) >= sizeof(dev->name));
3565 /* ensure 32-byte alignment of both the device and private area */
3566 alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST +
3567 (sizeof(struct net_device_subqueue) * queue_count)) &
3568 ~NETDEV_ALIGN_CONST;
3569 alloc_size += sizeof_priv + NETDEV_ALIGN_CONST;
3571 p = kzalloc(alloc_size, GFP_KERNEL);
3572 if (!p) {
3573 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
3574 return NULL;
3577 dev = (struct net_device *)
3578 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
3579 dev->padded = (char *)dev - (char *)p;
3581 if (sizeof_priv) {
3582 dev->priv = ((char *)dev +
3583 ((sizeof(struct net_device) +
3584 (sizeof(struct net_device_subqueue) *
3585 queue_count) + NETDEV_ALIGN_CONST)
3586 & ~NETDEV_ALIGN_CONST));
3589 dev->egress_subqueue_count = queue_count;
3591 dev->get_stats = internal_stats;
3592 setup(dev);
3593 strcpy(dev->name, name);
3594 return dev;
3596 EXPORT_SYMBOL(alloc_netdev_mq);
3599 * free_netdev - free network device
3600 * @dev: device
3602 * This function does the last stage of destroying an allocated device
3603 * interface. The reference to the device object is released.
3604 * If this is the last reference then it will be freed.
3606 void free_netdev(struct net_device *dev)
3608 #ifdef CONFIG_SYSFS
3609 /* Compatibility with error handling in drivers */
3610 if (dev->reg_state == NETREG_UNINITIALIZED) {
3611 kfree((char *)dev - dev->padded);
3612 return;
3615 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
3616 dev->reg_state = NETREG_RELEASED;
3618 /* will free via device release */
3619 put_device(&dev->dev);
3620 #else
3621 kfree((char *)dev - dev->padded);
3622 #endif
3625 /* Synchronize with packet receive processing. */
3626 void synchronize_net(void)
3628 might_sleep();
3629 synchronize_rcu();
3633 * unregister_netdevice - remove device from the kernel
3634 * @dev: device
3636 * This function shuts down a device interface and removes it
3637 * from the kernel tables. On success 0 is returned, on a failure
3638 * a negative errno code is returned.
3640 * Callers must hold the rtnl semaphore. You may want
3641 * unregister_netdev() instead of this.
3644 void unregister_netdevice(struct net_device *dev)
3646 BUG_ON(dev_boot_phase);
3647 ASSERT_RTNL();
3649 /* Some devices call without registering for initialization unwind. */
3650 if (dev->reg_state == NETREG_UNINITIALIZED) {
3651 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3652 "was registered\n", dev->name, dev);
3654 WARN_ON(1);
3655 return;
3658 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3660 /* If device is running, close it first. */
3661 if (dev->flags & IFF_UP)
3662 dev_close(dev);
3664 /* And unlink it from device chain. */
3665 write_lock_bh(&dev_base_lock);
3666 list_del(&dev->dev_list);
3667 hlist_del(&dev->name_hlist);
3668 hlist_del(&dev->index_hlist);
3669 write_unlock_bh(&dev_base_lock);
3671 dev->reg_state = NETREG_UNREGISTERING;
3673 synchronize_net();
3675 /* Shutdown queueing discipline. */
3676 dev_shutdown(dev);
3679 /* Notify protocols, that we are about to destroy
3680 this device. They should clean all the things.
3682 raw_notifier_call_chain(&netdev_chain, NETDEV_UNREGISTER, dev);
3685 * Flush the unicast and multicast chains
3687 dev_unicast_discard(dev);
3688 dev_mc_discard(dev);
3690 if (dev->uninit)
3691 dev->uninit(dev);
3693 /* Notifier chain MUST detach us from master device. */
3694 BUG_TRAP(!dev->master);
3696 /* Remove entries from sysfs */
3697 netdev_unregister_sysfs(dev);
3699 /* Finish processing unregister after unlock */
3700 net_set_todo(dev);
3702 synchronize_net();
3704 dev_put(dev);
3708 * unregister_netdev - remove device from the kernel
3709 * @dev: device
3711 * This function shuts down a device interface and removes it
3712 * from the kernel tables. On success 0 is returned, on a failure
3713 * a negative errno code is returned.
3715 * This is just a wrapper for unregister_netdevice that takes
3716 * the rtnl semaphore. In general you want to use this and not
3717 * unregister_netdevice.
3719 void unregister_netdev(struct net_device *dev)
3721 rtnl_lock();
3722 unregister_netdevice(dev);
3723 rtnl_unlock();
3726 EXPORT_SYMBOL(unregister_netdev);
3728 static int dev_cpu_callback(struct notifier_block *nfb,
3729 unsigned long action,
3730 void *ocpu)
3732 struct sk_buff **list_skb;
3733 struct net_device **list_net;
3734 struct sk_buff *skb;
3735 unsigned int cpu, oldcpu = (unsigned long)ocpu;
3736 struct softnet_data *sd, *oldsd;
3738 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
3739 return NOTIFY_OK;
3741 local_irq_disable();
3742 cpu = smp_processor_id();
3743 sd = &per_cpu(softnet_data, cpu);
3744 oldsd = &per_cpu(softnet_data, oldcpu);
3746 /* Find end of our completion_queue. */
3747 list_skb = &sd->completion_queue;
3748 while (*list_skb)
3749 list_skb = &(*list_skb)->next;
3750 /* Append completion queue from offline CPU. */
3751 *list_skb = oldsd->completion_queue;
3752 oldsd->completion_queue = NULL;
3754 /* Find end of our output_queue. */
3755 list_net = &sd->output_queue;
3756 while (*list_net)
3757 list_net = &(*list_net)->next_sched;
3758 /* Append output queue from offline CPU. */
3759 *list_net = oldsd->output_queue;
3760 oldsd->output_queue = NULL;
3762 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3763 local_irq_enable();
3765 /* Process offline CPU's input_pkt_queue */
3766 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
3767 netif_rx(skb);
3769 return NOTIFY_OK;
3772 #ifdef CONFIG_NET_DMA
3774 * net_dma_rebalance -
3775 * This is called when the number of channels allocated to the net_dma_client
3776 * changes. The net_dma_client tries to have one DMA channel per CPU.
3778 static void net_dma_rebalance(void)
3780 unsigned int cpu, i, n;
3781 struct dma_chan *chan;
3783 if (net_dma_count == 0) {
3784 for_each_online_cpu(cpu)
3785 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
3786 return;
3789 i = 0;
3790 cpu = first_cpu(cpu_online_map);
3792 rcu_read_lock();
3793 list_for_each_entry(chan, &net_dma_client->channels, client_node) {
3794 n = ((num_online_cpus() / net_dma_count)
3795 + (i < (num_online_cpus() % net_dma_count) ? 1 : 0));
3797 while(n) {
3798 per_cpu(softnet_data, cpu).net_dma = chan;
3799 cpu = next_cpu(cpu, cpu_online_map);
3800 n--;
3802 i++;
3804 rcu_read_unlock();
3808 * netdev_dma_event - event callback for the net_dma_client
3809 * @client: should always be net_dma_client
3810 * @chan: DMA channel for the event
3811 * @event: event type
3813 static void netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
3814 enum dma_event event)
3816 spin_lock(&net_dma_event_lock);
3817 switch (event) {
3818 case DMA_RESOURCE_ADDED:
3819 net_dma_count++;
3820 net_dma_rebalance();
3821 break;
3822 case DMA_RESOURCE_REMOVED:
3823 net_dma_count--;
3824 net_dma_rebalance();
3825 break;
3826 default:
3827 break;
3829 spin_unlock(&net_dma_event_lock);
3833 * netdev_dma_regiser - register the networking subsystem as a DMA client
3835 static int __init netdev_dma_register(void)
3837 spin_lock_init(&net_dma_event_lock);
3838 net_dma_client = dma_async_client_register(netdev_dma_event);
3839 if (net_dma_client == NULL)
3840 return -ENOMEM;
3842 dma_async_client_chan_request(net_dma_client, num_online_cpus());
3843 return 0;
3846 #else
3847 static int __init netdev_dma_register(void) { return -ENODEV; }
3848 #endif /* CONFIG_NET_DMA */
3851 * Initialize the DEV module. At boot time this walks the device list and
3852 * unhooks any devices that fail to initialise (normally hardware not
3853 * present) and leaves us with a valid list of present and active devices.
3858 * This is called single threaded during boot, so no need
3859 * to take the rtnl semaphore.
3861 static int __init net_dev_init(void)
3863 int i, rc = -ENOMEM;
3865 BUG_ON(!dev_boot_phase);
3867 if (dev_proc_init())
3868 goto out;
3870 if (netdev_sysfs_init())
3871 goto out;
3873 INIT_LIST_HEAD(&ptype_all);
3874 for (i = 0; i < 16; i++)
3875 INIT_LIST_HEAD(&ptype_base[i]);
3877 for (i = 0; i < ARRAY_SIZE(dev_name_head); i++)
3878 INIT_HLIST_HEAD(&dev_name_head[i]);
3880 for (i = 0; i < ARRAY_SIZE(dev_index_head); i++)
3881 INIT_HLIST_HEAD(&dev_index_head[i]);
3884 * Initialise the packet receive queues.
3887 for_each_possible_cpu(i) {
3888 struct softnet_data *queue;
3890 queue = &per_cpu(softnet_data, i);
3891 skb_queue_head_init(&queue->input_pkt_queue);
3892 queue->completion_queue = NULL;
3893 INIT_LIST_HEAD(&queue->poll_list);
3894 set_bit(__LINK_STATE_START, &queue->backlog_dev.state);
3895 queue->backlog_dev.weight = weight_p;
3896 queue->backlog_dev.poll = process_backlog;
3897 atomic_set(&queue->backlog_dev.refcnt, 1);
3900 netdev_dma_register();
3902 dev_boot_phase = 0;
3904 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
3905 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
3907 hotcpu_notifier(dev_cpu_callback, 0);
3908 dst_init();
3909 dev_mcast_init();
3910 rc = 0;
3911 out:
3912 return rc;
3915 subsys_initcall(net_dev_init);
3917 EXPORT_SYMBOL(__dev_get_by_index);
3918 EXPORT_SYMBOL(__dev_get_by_name);
3919 EXPORT_SYMBOL(__dev_remove_pack);
3920 EXPORT_SYMBOL(dev_valid_name);
3921 EXPORT_SYMBOL(dev_add_pack);
3922 EXPORT_SYMBOL(dev_alloc_name);
3923 EXPORT_SYMBOL(dev_close);
3924 EXPORT_SYMBOL(dev_get_by_flags);
3925 EXPORT_SYMBOL(dev_get_by_index);
3926 EXPORT_SYMBOL(dev_get_by_name);
3927 EXPORT_SYMBOL(dev_open);
3928 EXPORT_SYMBOL(dev_queue_xmit);
3929 EXPORT_SYMBOL(dev_remove_pack);
3930 EXPORT_SYMBOL(dev_set_allmulti);
3931 EXPORT_SYMBOL(dev_set_promiscuity);
3932 EXPORT_SYMBOL(dev_change_flags);
3933 EXPORT_SYMBOL(dev_set_mtu);
3934 EXPORT_SYMBOL(dev_set_mac_address);
3935 EXPORT_SYMBOL(free_netdev);
3936 EXPORT_SYMBOL(netdev_boot_setup_check);
3937 EXPORT_SYMBOL(netdev_set_master);
3938 EXPORT_SYMBOL(netdev_state_change);
3939 EXPORT_SYMBOL(netif_receive_skb);
3940 EXPORT_SYMBOL(netif_rx);
3941 EXPORT_SYMBOL(register_gifconf);
3942 EXPORT_SYMBOL(register_netdevice);
3943 EXPORT_SYMBOL(register_netdevice_notifier);
3944 EXPORT_SYMBOL(skb_checksum_help);
3945 EXPORT_SYMBOL(synchronize_net);
3946 EXPORT_SYMBOL(unregister_netdevice);
3947 EXPORT_SYMBOL(unregister_netdevice_notifier);
3948 EXPORT_SYMBOL(net_enable_timestamp);
3949 EXPORT_SYMBOL(net_disable_timestamp);
3950 EXPORT_SYMBOL(dev_get_flags);
3952 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
3953 EXPORT_SYMBOL(br_handle_frame_hook);
3954 EXPORT_SYMBOL(br_fdb_get_hook);
3955 EXPORT_SYMBOL(br_fdb_put_hook);
3956 #endif
3958 #ifdef CONFIG_KMOD
3959 EXPORT_SYMBOL(dev_load);
3960 #endif
3962 EXPORT_PER_CPU_SYMBOL(softnet_data);