Use physical addresses at the interface level, letting drivers remap
[linux-2.6/mini2440.git] / drivers / scsi / libata-core.c
blobf53d7b8ac33f41fcd488cdfb34ec88b3b0658339
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <scsi/scsi.h>
53 #include "scsi.h"
54 #include "scsi_priv.h"
55 #include <scsi/scsi_host.h>
56 #include <linux/libata.h>
57 #include <asm/io.h>
58 #include <asm/semaphore.h>
59 #include <asm/byteorder.h>
61 #include "libata.h"
63 static unsigned int ata_busy_sleep (struct ata_port *ap,
64 unsigned long tmout_pat,
65 unsigned long tmout);
66 static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev);
67 static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev);
68 static void ata_set_mode(struct ata_port *ap);
69 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev);
70 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift);
71 static int fgb(u32 bitmap);
72 static int ata_choose_xfer_mode(const struct ata_port *ap,
73 u8 *xfer_mode_out,
74 unsigned int *xfer_shift_out);
75 static void __ata_qc_complete(struct ata_queued_cmd *qc);
77 static unsigned int ata_unique_id = 1;
78 static struct workqueue_struct *ata_wq;
80 int atapi_enabled = 0;
81 module_param(atapi_enabled, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84 MODULE_AUTHOR("Jeff Garzik");
85 MODULE_DESCRIPTION("Library module for ATA devices");
86 MODULE_LICENSE("GPL");
87 MODULE_VERSION(DRV_VERSION);
89 /**
90 * ata_tf_load_pio - send taskfile registers to host controller
91 * @ap: Port to which output is sent
92 * @tf: ATA taskfile register set
94 * Outputs ATA taskfile to standard ATA host controller.
96 * LOCKING:
97 * Inherited from caller.
100 static void ata_tf_load_pio(struct ata_port *ap, const struct ata_taskfile *tf)
102 struct ata_ioports *ioaddr = &ap->ioaddr;
103 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
105 if (tf->ctl != ap->last_ctl) {
106 outb(tf->ctl, ioaddr->ctl_addr);
107 ap->last_ctl = tf->ctl;
108 ata_wait_idle(ap);
111 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
112 outb(tf->hob_feature, ioaddr->feature_addr);
113 outb(tf->hob_nsect, ioaddr->nsect_addr);
114 outb(tf->hob_lbal, ioaddr->lbal_addr);
115 outb(tf->hob_lbam, ioaddr->lbam_addr);
116 outb(tf->hob_lbah, ioaddr->lbah_addr);
117 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
118 tf->hob_feature,
119 tf->hob_nsect,
120 tf->hob_lbal,
121 tf->hob_lbam,
122 tf->hob_lbah);
125 if (is_addr) {
126 outb(tf->feature, ioaddr->feature_addr);
127 outb(tf->nsect, ioaddr->nsect_addr);
128 outb(tf->lbal, ioaddr->lbal_addr);
129 outb(tf->lbam, ioaddr->lbam_addr);
130 outb(tf->lbah, ioaddr->lbah_addr);
131 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
132 tf->feature,
133 tf->nsect,
134 tf->lbal,
135 tf->lbam,
136 tf->lbah);
139 if (tf->flags & ATA_TFLAG_DEVICE) {
140 outb(tf->device, ioaddr->device_addr);
141 VPRINTK("device 0x%X\n", tf->device);
144 ata_wait_idle(ap);
148 * ata_tf_load_mmio - send taskfile registers to host controller
149 * @ap: Port to which output is sent
150 * @tf: ATA taskfile register set
152 * Outputs ATA taskfile to standard ATA host controller using MMIO.
154 * LOCKING:
155 * Inherited from caller.
158 static void ata_tf_load_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
160 struct ata_ioports *ioaddr = &ap->ioaddr;
161 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
163 if (tf->ctl != ap->last_ctl) {
164 writeb(tf->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
165 ap->last_ctl = tf->ctl;
166 ata_wait_idle(ap);
169 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
170 writeb(tf->hob_feature, (void __iomem *) ioaddr->feature_addr);
171 writeb(tf->hob_nsect, (void __iomem *) ioaddr->nsect_addr);
172 writeb(tf->hob_lbal, (void __iomem *) ioaddr->lbal_addr);
173 writeb(tf->hob_lbam, (void __iomem *) ioaddr->lbam_addr);
174 writeb(tf->hob_lbah, (void __iomem *) ioaddr->lbah_addr);
175 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
176 tf->hob_feature,
177 tf->hob_nsect,
178 tf->hob_lbal,
179 tf->hob_lbam,
180 tf->hob_lbah);
183 if (is_addr) {
184 writeb(tf->feature, (void __iomem *) ioaddr->feature_addr);
185 writeb(tf->nsect, (void __iomem *) ioaddr->nsect_addr);
186 writeb(tf->lbal, (void __iomem *) ioaddr->lbal_addr);
187 writeb(tf->lbam, (void __iomem *) ioaddr->lbam_addr);
188 writeb(tf->lbah, (void __iomem *) ioaddr->lbah_addr);
189 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
190 tf->feature,
191 tf->nsect,
192 tf->lbal,
193 tf->lbam,
194 tf->lbah);
197 if (tf->flags & ATA_TFLAG_DEVICE) {
198 writeb(tf->device, (void __iomem *) ioaddr->device_addr);
199 VPRINTK("device 0x%X\n", tf->device);
202 ata_wait_idle(ap);
207 * ata_tf_load - send taskfile registers to host controller
208 * @ap: Port to which output is sent
209 * @tf: ATA taskfile register set
211 * Outputs ATA taskfile to standard ATA host controller using MMIO
212 * or PIO as indicated by the ATA_FLAG_MMIO flag.
213 * Writes the control, feature, nsect, lbal, lbam, and lbah registers.
214 * Optionally (ATA_TFLAG_LBA48) writes hob_feature, hob_nsect,
215 * hob_lbal, hob_lbam, and hob_lbah.
217 * This function waits for idle (!BUSY and !DRQ) after writing
218 * registers. If the control register has a new value, this
219 * function also waits for idle after writing control and before
220 * writing the remaining registers.
222 * May be used as the tf_load() entry in ata_port_operations.
224 * LOCKING:
225 * Inherited from caller.
227 void ata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
229 if (ap->flags & ATA_FLAG_MMIO)
230 ata_tf_load_mmio(ap, tf);
231 else
232 ata_tf_load_pio(ap, tf);
236 * ata_exec_command_pio - issue ATA command to host controller
237 * @ap: port to which command is being issued
238 * @tf: ATA taskfile register set
240 * Issues PIO write to ATA command register, with proper
241 * synchronization with interrupt handler / other threads.
243 * LOCKING:
244 * spin_lock_irqsave(host_set lock)
247 static void ata_exec_command_pio(struct ata_port *ap, const struct ata_taskfile *tf)
249 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
251 outb(tf->command, ap->ioaddr.command_addr);
252 ata_pause(ap);
257 * ata_exec_command_mmio - issue ATA command to host controller
258 * @ap: port to which command is being issued
259 * @tf: ATA taskfile register set
261 * Issues MMIO write to ATA command register, with proper
262 * synchronization with interrupt handler / other threads.
264 * LOCKING:
265 * spin_lock_irqsave(host_set lock)
268 static void ata_exec_command_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
270 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
272 writeb(tf->command, (void __iomem *) ap->ioaddr.command_addr);
273 ata_pause(ap);
278 * ata_exec_command - issue ATA command to host controller
279 * @ap: port to which command is being issued
280 * @tf: ATA taskfile register set
282 * Issues PIO/MMIO write to ATA command register, with proper
283 * synchronization with interrupt handler / other threads.
285 * LOCKING:
286 * spin_lock_irqsave(host_set lock)
288 void ata_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
290 if (ap->flags & ATA_FLAG_MMIO)
291 ata_exec_command_mmio(ap, tf);
292 else
293 ata_exec_command_pio(ap, tf);
297 * ata_exec - issue ATA command to host controller
298 * @ap: port to which command is being issued
299 * @tf: ATA taskfile register set
301 * Issues PIO/MMIO write to ATA command register, with proper
302 * synchronization with interrupt handler / other threads.
304 * LOCKING:
305 * Obtains host_set lock.
308 static inline void ata_exec(struct ata_port *ap, const struct ata_taskfile *tf)
310 unsigned long flags;
312 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
313 spin_lock_irqsave(&ap->host_set->lock, flags);
314 ap->ops->exec_command(ap, tf);
315 spin_unlock_irqrestore(&ap->host_set->lock, flags);
319 * ata_tf_to_host - issue ATA taskfile to host controller
320 * @ap: port to which command is being issued
321 * @tf: ATA taskfile register set
323 * Issues ATA taskfile register set to ATA host controller,
324 * with proper synchronization with interrupt handler and
325 * other threads.
327 * LOCKING:
328 * Obtains host_set lock.
331 static void ata_tf_to_host(struct ata_port *ap, const struct ata_taskfile *tf)
333 ap->ops->tf_load(ap, tf);
335 ata_exec(ap, tf);
339 * ata_tf_to_host_nolock - issue ATA taskfile to host controller
340 * @ap: port to which command is being issued
341 * @tf: ATA taskfile register set
343 * Issues ATA taskfile register set to ATA host controller,
344 * with proper synchronization with interrupt handler and
345 * other threads.
347 * LOCKING:
348 * spin_lock_irqsave(host_set lock)
351 void ata_tf_to_host_nolock(struct ata_port *ap, const struct ata_taskfile *tf)
353 ap->ops->tf_load(ap, tf);
354 ap->ops->exec_command(ap, tf);
358 * ata_tf_read_pio - input device's ATA taskfile shadow registers
359 * @ap: Port from which input is read
360 * @tf: ATA taskfile register set for storing input
362 * Reads ATA taskfile registers for currently-selected device
363 * into @tf.
365 * LOCKING:
366 * Inherited from caller.
369 static void ata_tf_read_pio(struct ata_port *ap, struct ata_taskfile *tf)
371 struct ata_ioports *ioaddr = &ap->ioaddr;
373 tf->nsect = inb(ioaddr->nsect_addr);
374 tf->lbal = inb(ioaddr->lbal_addr);
375 tf->lbam = inb(ioaddr->lbam_addr);
376 tf->lbah = inb(ioaddr->lbah_addr);
377 tf->device = inb(ioaddr->device_addr);
379 if (tf->flags & ATA_TFLAG_LBA48) {
380 outb(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
381 tf->hob_feature = inb(ioaddr->error_addr);
382 tf->hob_nsect = inb(ioaddr->nsect_addr);
383 tf->hob_lbal = inb(ioaddr->lbal_addr);
384 tf->hob_lbam = inb(ioaddr->lbam_addr);
385 tf->hob_lbah = inb(ioaddr->lbah_addr);
390 * ata_tf_read_mmio - input device's ATA taskfile shadow registers
391 * @ap: Port from which input is read
392 * @tf: ATA taskfile register set for storing input
394 * Reads ATA taskfile registers for currently-selected device
395 * into @tf via MMIO.
397 * LOCKING:
398 * Inherited from caller.
401 static void ata_tf_read_mmio(struct ata_port *ap, struct ata_taskfile *tf)
403 struct ata_ioports *ioaddr = &ap->ioaddr;
405 tf->nsect = readb((void __iomem *)ioaddr->nsect_addr);
406 tf->lbal = readb((void __iomem *)ioaddr->lbal_addr);
407 tf->lbam = readb((void __iomem *)ioaddr->lbam_addr);
408 tf->lbah = readb((void __iomem *)ioaddr->lbah_addr);
409 tf->device = readb((void __iomem *)ioaddr->device_addr);
411 if (tf->flags & ATA_TFLAG_LBA48) {
412 writeb(tf->ctl | ATA_HOB, (void __iomem *) ap->ioaddr.ctl_addr);
413 tf->hob_feature = readb((void __iomem *)ioaddr->error_addr);
414 tf->hob_nsect = readb((void __iomem *)ioaddr->nsect_addr);
415 tf->hob_lbal = readb((void __iomem *)ioaddr->lbal_addr);
416 tf->hob_lbam = readb((void __iomem *)ioaddr->lbam_addr);
417 tf->hob_lbah = readb((void __iomem *)ioaddr->lbah_addr);
423 * ata_tf_read - input device's ATA taskfile shadow registers
424 * @ap: Port from which input is read
425 * @tf: ATA taskfile register set for storing input
427 * Reads ATA taskfile registers for currently-selected device
428 * into @tf.
430 * Reads nsect, lbal, lbam, lbah, and device. If ATA_TFLAG_LBA48
431 * is set, also reads the hob registers.
433 * May be used as the tf_read() entry in ata_port_operations.
435 * LOCKING:
436 * Inherited from caller.
438 void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
440 if (ap->flags & ATA_FLAG_MMIO)
441 ata_tf_read_mmio(ap, tf);
442 else
443 ata_tf_read_pio(ap, tf);
447 * ata_check_status_pio - Read device status reg & clear interrupt
448 * @ap: port where the device is
450 * Reads ATA taskfile status register for currently-selected device
451 * and return its value. This also clears pending interrupts
452 * from this device
454 * LOCKING:
455 * Inherited from caller.
457 static u8 ata_check_status_pio(struct ata_port *ap)
459 return inb(ap->ioaddr.status_addr);
463 * ata_check_status_mmio - Read device status reg & clear interrupt
464 * @ap: port where the device is
466 * Reads ATA taskfile status register for currently-selected device
467 * via MMIO and return its value. This also clears pending interrupts
468 * from this device
470 * LOCKING:
471 * Inherited from caller.
473 static u8 ata_check_status_mmio(struct ata_port *ap)
475 return readb((void __iomem *) ap->ioaddr.status_addr);
480 * ata_check_status - Read device status reg & clear interrupt
481 * @ap: port where the device is
483 * Reads ATA taskfile status register for currently-selected device
484 * and return its value. This also clears pending interrupts
485 * from this device
487 * May be used as the check_status() entry in ata_port_operations.
489 * LOCKING:
490 * Inherited from caller.
492 u8 ata_check_status(struct ata_port *ap)
494 if (ap->flags & ATA_FLAG_MMIO)
495 return ata_check_status_mmio(ap);
496 return ata_check_status_pio(ap);
501 * ata_altstatus - Read device alternate status reg
502 * @ap: port where the device is
504 * Reads ATA taskfile alternate status register for
505 * currently-selected device and return its value.
507 * Note: may NOT be used as the check_altstatus() entry in
508 * ata_port_operations.
510 * LOCKING:
511 * Inherited from caller.
513 u8 ata_altstatus(struct ata_port *ap)
515 if (ap->ops->check_altstatus)
516 return ap->ops->check_altstatus(ap);
518 if (ap->flags & ATA_FLAG_MMIO)
519 return readb((void __iomem *)ap->ioaddr.altstatus_addr);
520 return inb(ap->ioaddr.altstatus_addr);
525 * ata_chk_err - Read device error reg
526 * @ap: port where the device is
528 * Reads ATA taskfile error register for
529 * currently-selected device and return its value.
531 * Note: may NOT be used as the check_err() entry in
532 * ata_port_operations.
534 * LOCKING:
535 * Inherited from caller.
537 u8 ata_chk_err(struct ata_port *ap)
539 if (ap->ops->check_err)
540 return ap->ops->check_err(ap);
542 if (ap->flags & ATA_FLAG_MMIO) {
543 return readb((void __iomem *) ap->ioaddr.error_addr);
545 return inb(ap->ioaddr.error_addr);
549 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
550 * @tf: Taskfile to convert
551 * @fis: Buffer into which data will output
552 * @pmp: Port multiplier port
554 * Converts a standard ATA taskfile to a Serial ATA
555 * FIS structure (Register - Host to Device).
557 * LOCKING:
558 * Inherited from caller.
561 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
563 fis[0] = 0x27; /* Register - Host to Device FIS */
564 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
565 bit 7 indicates Command FIS */
566 fis[2] = tf->command;
567 fis[3] = tf->feature;
569 fis[4] = tf->lbal;
570 fis[5] = tf->lbam;
571 fis[6] = tf->lbah;
572 fis[7] = tf->device;
574 fis[8] = tf->hob_lbal;
575 fis[9] = tf->hob_lbam;
576 fis[10] = tf->hob_lbah;
577 fis[11] = tf->hob_feature;
579 fis[12] = tf->nsect;
580 fis[13] = tf->hob_nsect;
581 fis[14] = 0;
582 fis[15] = tf->ctl;
584 fis[16] = 0;
585 fis[17] = 0;
586 fis[18] = 0;
587 fis[19] = 0;
591 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
592 * @fis: Buffer from which data will be input
593 * @tf: Taskfile to output
595 * Converts a standard ATA taskfile to a Serial ATA
596 * FIS structure (Register - Host to Device).
598 * LOCKING:
599 * Inherited from caller.
602 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
604 tf->command = fis[2]; /* status */
605 tf->feature = fis[3]; /* error */
607 tf->lbal = fis[4];
608 tf->lbam = fis[5];
609 tf->lbah = fis[6];
610 tf->device = fis[7];
612 tf->hob_lbal = fis[8];
613 tf->hob_lbam = fis[9];
614 tf->hob_lbah = fis[10];
616 tf->nsect = fis[12];
617 tf->hob_nsect = fis[13];
620 static const u8 ata_rw_cmds[] = {
621 /* pio multi */
622 ATA_CMD_READ_MULTI,
623 ATA_CMD_WRITE_MULTI,
624 ATA_CMD_READ_MULTI_EXT,
625 ATA_CMD_WRITE_MULTI_EXT,
626 /* pio */
627 ATA_CMD_PIO_READ,
628 ATA_CMD_PIO_WRITE,
629 ATA_CMD_PIO_READ_EXT,
630 ATA_CMD_PIO_WRITE_EXT,
631 /* dma */
632 ATA_CMD_READ,
633 ATA_CMD_WRITE,
634 ATA_CMD_READ_EXT,
635 ATA_CMD_WRITE_EXT
639 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
640 * @qc: command to examine and configure
642 * Examine the device configuration and tf->flags to calculate
643 * the proper read/write commands and protocol to use.
645 * LOCKING:
646 * caller.
648 void ata_rwcmd_protocol(struct ata_queued_cmd *qc)
650 struct ata_taskfile *tf = &qc->tf;
651 struct ata_device *dev = qc->dev;
653 int index, lba48, write;
655 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
656 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
658 if (dev->flags & ATA_DFLAG_PIO) {
659 tf->protocol = ATA_PROT_PIO;
660 index = dev->multi_count ? 0 : 4;
661 } else {
662 tf->protocol = ATA_PROT_DMA;
663 index = 8;
666 tf->command = ata_rw_cmds[index + lba48 + write];
669 static const char * xfer_mode_str[] = {
670 "UDMA/16",
671 "UDMA/25",
672 "UDMA/33",
673 "UDMA/44",
674 "UDMA/66",
675 "UDMA/100",
676 "UDMA/133",
677 "UDMA7",
678 "MWDMA0",
679 "MWDMA1",
680 "MWDMA2",
681 "PIO0",
682 "PIO1",
683 "PIO2",
684 "PIO3",
685 "PIO4",
689 * ata_udma_string - convert UDMA bit offset to string
690 * @mask: mask of bits supported; only highest bit counts.
692 * Determine string which represents the highest speed
693 * (highest bit in @udma_mask).
695 * LOCKING:
696 * None.
698 * RETURNS:
699 * Constant C string representing highest speed listed in
700 * @udma_mask, or the constant C string "<n/a>".
703 static const char *ata_mode_string(unsigned int mask)
705 int i;
707 for (i = 7; i >= 0; i--)
708 if (mask & (1 << i))
709 goto out;
710 for (i = ATA_SHIFT_MWDMA + 2; i >= ATA_SHIFT_MWDMA; i--)
711 if (mask & (1 << i))
712 goto out;
713 for (i = ATA_SHIFT_PIO + 4; i >= ATA_SHIFT_PIO; i--)
714 if (mask & (1 << i))
715 goto out;
717 return "<n/a>";
719 out:
720 return xfer_mode_str[i];
724 * ata_pio_devchk - PATA device presence detection
725 * @ap: ATA channel to examine
726 * @device: Device to examine (starting at zero)
728 * This technique was originally described in
729 * Hale Landis's ATADRVR (www.ata-atapi.com), and
730 * later found its way into the ATA/ATAPI spec.
732 * Write a pattern to the ATA shadow registers,
733 * and if a device is present, it will respond by
734 * correctly storing and echoing back the
735 * ATA shadow register contents.
737 * LOCKING:
738 * caller.
741 static unsigned int ata_pio_devchk(struct ata_port *ap,
742 unsigned int device)
744 struct ata_ioports *ioaddr = &ap->ioaddr;
745 u8 nsect, lbal;
747 ap->ops->dev_select(ap, device);
749 outb(0x55, ioaddr->nsect_addr);
750 outb(0xaa, ioaddr->lbal_addr);
752 outb(0xaa, ioaddr->nsect_addr);
753 outb(0x55, ioaddr->lbal_addr);
755 outb(0x55, ioaddr->nsect_addr);
756 outb(0xaa, ioaddr->lbal_addr);
758 nsect = inb(ioaddr->nsect_addr);
759 lbal = inb(ioaddr->lbal_addr);
761 if ((nsect == 0x55) && (lbal == 0xaa))
762 return 1; /* we found a device */
764 return 0; /* nothing found */
768 * ata_mmio_devchk - PATA device presence detection
769 * @ap: ATA channel to examine
770 * @device: Device to examine (starting at zero)
772 * This technique was originally described in
773 * Hale Landis's ATADRVR (www.ata-atapi.com), and
774 * later found its way into the ATA/ATAPI spec.
776 * Write a pattern to the ATA shadow registers,
777 * and if a device is present, it will respond by
778 * correctly storing and echoing back the
779 * ATA shadow register contents.
781 * LOCKING:
782 * caller.
785 static unsigned int ata_mmio_devchk(struct ata_port *ap,
786 unsigned int device)
788 struct ata_ioports *ioaddr = &ap->ioaddr;
789 u8 nsect, lbal;
791 ap->ops->dev_select(ap, device);
793 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
794 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
796 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
797 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
799 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
800 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
802 nsect = readb((void __iomem *) ioaddr->nsect_addr);
803 lbal = readb((void __iomem *) ioaddr->lbal_addr);
805 if ((nsect == 0x55) && (lbal == 0xaa))
806 return 1; /* we found a device */
808 return 0; /* nothing found */
812 * ata_devchk - PATA device presence detection
813 * @ap: ATA channel to examine
814 * @device: Device to examine (starting at zero)
816 * Dispatch ATA device presence detection, depending
817 * on whether we are using PIO or MMIO to talk to the
818 * ATA shadow registers.
820 * LOCKING:
821 * caller.
824 static unsigned int ata_devchk(struct ata_port *ap,
825 unsigned int device)
827 if (ap->flags & ATA_FLAG_MMIO)
828 return ata_mmio_devchk(ap, device);
829 return ata_pio_devchk(ap, device);
833 * ata_dev_classify - determine device type based on ATA-spec signature
834 * @tf: ATA taskfile register set for device to be identified
836 * Determine from taskfile register contents whether a device is
837 * ATA or ATAPI, as per "Signature and persistence" section
838 * of ATA/PI spec (volume 1, sect 5.14).
840 * LOCKING:
841 * None.
843 * RETURNS:
844 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
845 * the event of failure.
848 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
850 /* Apple's open source Darwin code hints that some devices only
851 * put a proper signature into the LBA mid/high registers,
852 * So, we only check those. It's sufficient for uniqueness.
855 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
856 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
857 DPRINTK("found ATA device by sig\n");
858 return ATA_DEV_ATA;
861 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
862 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
863 DPRINTK("found ATAPI device by sig\n");
864 return ATA_DEV_ATAPI;
867 DPRINTK("unknown device\n");
868 return ATA_DEV_UNKNOWN;
872 * ata_dev_try_classify - Parse returned ATA device signature
873 * @ap: ATA channel to examine
874 * @device: Device to examine (starting at zero)
876 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
877 * an ATA/ATAPI-defined set of values is placed in the ATA
878 * shadow registers, indicating the results of device detection
879 * and diagnostics.
881 * Select the ATA device, and read the values from the ATA shadow
882 * registers. Then parse according to the Error register value,
883 * and the spec-defined values examined by ata_dev_classify().
885 * LOCKING:
886 * caller.
889 static u8 ata_dev_try_classify(struct ata_port *ap, unsigned int device)
891 struct ata_device *dev = &ap->device[device];
892 struct ata_taskfile tf;
893 unsigned int class;
894 u8 err;
896 ap->ops->dev_select(ap, device);
898 memset(&tf, 0, sizeof(tf));
900 err = ata_chk_err(ap);
901 ap->ops->tf_read(ap, &tf);
903 dev->class = ATA_DEV_NONE;
905 /* see if device passed diags */
906 if (err == 1)
907 /* do nothing */ ;
908 else if ((device == 0) && (err == 0x81))
909 /* do nothing */ ;
910 else
911 return err;
913 /* determine if device if ATA or ATAPI */
914 class = ata_dev_classify(&tf);
915 if (class == ATA_DEV_UNKNOWN)
916 return err;
917 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
918 return err;
920 dev->class = class;
922 return err;
926 * ata_dev_id_string - Convert IDENTIFY DEVICE page into string
927 * @id: IDENTIFY DEVICE results we will examine
928 * @s: string into which data is output
929 * @ofs: offset into identify device page
930 * @len: length of string to return. must be an even number.
932 * The strings in the IDENTIFY DEVICE page are broken up into
933 * 16-bit chunks. Run through the string, and output each
934 * 8-bit chunk linearly, regardless of platform.
936 * LOCKING:
937 * caller.
940 void ata_dev_id_string(const u16 *id, unsigned char *s,
941 unsigned int ofs, unsigned int len)
943 unsigned int c;
945 while (len > 0) {
946 c = id[ofs] >> 8;
947 *s = c;
948 s++;
950 c = id[ofs] & 0xff;
951 *s = c;
952 s++;
954 ofs++;
955 len -= 2;
961 * ata_noop_dev_select - Select device 0/1 on ATA bus
962 * @ap: ATA channel to manipulate
963 * @device: ATA device (numbered from zero) to select
965 * This function performs no actual function.
967 * May be used as the dev_select() entry in ata_port_operations.
969 * LOCKING:
970 * caller.
972 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
978 * ata_std_dev_select - Select device 0/1 on ATA bus
979 * @ap: ATA channel to manipulate
980 * @device: ATA device (numbered from zero) to select
982 * Use the method defined in the ATA specification to
983 * make either device 0, or device 1, active on the
984 * ATA channel. Works with both PIO and MMIO.
986 * May be used as the dev_select() entry in ata_port_operations.
988 * LOCKING:
989 * caller.
992 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
994 u8 tmp;
996 if (device == 0)
997 tmp = ATA_DEVICE_OBS;
998 else
999 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1001 if (ap->flags & ATA_FLAG_MMIO) {
1002 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
1003 } else {
1004 outb(tmp, ap->ioaddr.device_addr);
1006 ata_pause(ap); /* needed; also flushes, for mmio */
1010 * ata_dev_select - Select device 0/1 on ATA bus
1011 * @ap: ATA channel to manipulate
1012 * @device: ATA device (numbered from zero) to select
1013 * @wait: non-zero to wait for Status register BSY bit to clear
1014 * @can_sleep: non-zero if context allows sleeping
1016 * Use the method defined in the ATA specification to
1017 * make either device 0, or device 1, active on the
1018 * ATA channel.
1020 * This is a high-level version of ata_std_dev_select(),
1021 * which additionally provides the services of inserting
1022 * the proper pauses and status polling, where needed.
1024 * LOCKING:
1025 * caller.
1028 void ata_dev_select(struct ata_port *ap, unsigned int device,
1029 unsigned int wait, unsigned int can_sleep)
1031 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
1032 ap->id, device, wait);
1034 if (wait)
1035 ata_wait_idle(ap);
1037 ap->ops->dev_select(ap, device);
1039 if (wait) {
1040 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1041 msleep(150);
1042 ata_wait_idle(ap);
1047 * ata_dump_id - IDENTIFY DEVICE info debugging output
1048 * @dev: Device whose IDENTIFY DEVICE page we will dump
1050 * Dump selected 16-bit words from a detected device's
1051 * IDENTIFY PAGE page.
1053 * LOCKING:
1054 * caller.
1057 static inline void ata_dump_id(const struct ata_device *dev)
1059 DPRINTK("49==0x%04x "
1060 "53==0x%04x "
1061 "63==0x%04x "
1062 "64==0x%04x "
1063 "75==0x%04x \n",
1064 dev->id[49],
1065 dev->id[53],
1066 dev->id[63],
1067 dev->id[64],
1068 dev->id[75]);
1069 DPRINTK("80==0x%04x "
1070 "81==0x%04x "
1071 "82==0x%04x "
1072 "83==0x%04x "
1073 "84==0x%04x \n",
1074 dev->id[80],
1075 dev->id[81],
1076 dev->id[82],
1077 dev->id[83],
1078 dev->id[84]);
1079 DPRINTK("88==0x%04x "
1080 "93==0x%04x\n",
1081 dev->id[88],
1082 dev->id[93]);
1086 * Compute the PIO modes available for this device. This is not as
1087 * trivial as it seems if we must consider early devices correctly.
1089 * FIXME: pre IDE drive timing (do we care ?).
1092 static unsigned int ata_pio_modes(const struct ata_device *adev)
1094 u16 modes;
1096 /* Usual case. Word 53 indicates word 88 is valid */
1097 if (adev->id[ATA_ID_FIELD_VALID] & (1 << 2)) {
1098 modes = adev->id[ATA_ID_PIO_MODES] & 0x03;
1099 modes <<= 3;
1100 modes |= 0x7;
1101 return modes;
1104 /* If word 88 isn't valid then Word 51 holds the PIO timing number
1105 for the maximum. Turn it into a mask and return it */
1106 modes = (2 << (adev->id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
1107 return modes;
1111 * ata_dev_identify - obtain IDENTIFY x DEVICE page
1112 * @ap: port on which device we wish to probe resides
1113 * @device: device bus address, starting at zero
1115 * Following bus reset, we issue the IDENTIFY [PACKET] DEVICE
1116 * command, and read back the 512-byte device information page.
1117 * The device information page is fed to us via the standard
1118 * PIO-IN protocol, but we hand-code it here. (TODO: investigate
1119 * using standard PIO-IN paths)
1121 * After reading the device information page, we use several
1122 * bits of information from it to initialize data structures
1123 * that will be used during the lifetime of the ata_device.
1124 * Other data from the info page is used to disqualify certain
1125 * older ATA devices we do not wish to support.
1127 * LOCKING:
1128 * Inherited from caller. Some functions called by this function
1129 * obtain the host_set lock.
1132 static void ata_dev_identify(struct ata_port *ap, unsigned int device)
1134 struct ata_device *dev = &ap->device[device];
1135 unsigned int major_version;
1136 u16 tmp;
1137 unsigned long xfer_modes;
1138 u8 status;
1139 unsigned int using_edd;
1140 DECLARE_COMPLETION(wait);
1141 struct ata_queued_cmd *qc;
1142 unsigned long flags;
1143 int rc;
1145 if (!ata_dev_present(dev)) {
1146 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1147 ap->id, device);
1148 return;
1151 if (ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
1152 using_edd = 0;
1153 else
1154 using_edd = 1;
1156 DPRINTK("ENTER, host %u, dev %u\n", ap->id, device);
1158 assert (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ATAPI ||
1159 dev->class == ATA_DEV_NONE);
1161 ata_dev_select(ap, device, 1, 1); /* select device 0/1 */
1163 qc = ata_qc_new_init(ap, dev);
1164 BUG_ON(qc == NULL);
1166 ata_sg_init_one(qc, dev->id, sizeof(dev->id));
1167 qc->dma_dir = DMA_FROM_DEVICE;
1168 qc->tf.protocol = ATA_PROT_PIO;
1169 qc->nsect = 1;
1171 retry:
1172 if (dev->class == ATA_DEV_ATA) {
1173 qc->tf.command = ATA_CMD_ID_ATA;
1174 DPRINTK("do ATA identify\n");
1175 } else {
1176 qc->tf.command = ATA_CMD_ID_ATAPI;
1177 DPRINTK("do ATAPI identify\n");
1180 qc->waiting = &wait;
1181 qc->complete_fn = ata_qc_complete_noop;
1183 spin_lock_irqsave(&ap->host_set->lock, flags);
1184 rc = ata_qc_issue(qc);
1185 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1187 if (rc)
1188 goto err_out;
1189 else
1190 wait_for_completion(&wait);
1192 status = ata_chk_status(ap);
1193 if (status & ATA_ERR) {
1195 * arg! EDD works for all test cases, but seems to return
1196 * the ATA signature for some ATAPI devices. Until the
1197 * reason for this is found and fixed, we fix up the mess
1198 * here. If IDENTIFY DEVICE returns command aborted
1199 * (as ATAPI devices do), then we issue an
1200 * IDENTIFY PACKET DEVICE.
1202 * ATA software reset (SRST, the default) does not appear
1203 * to have this problem.
1205 if ((using_edd) && (qc->tf.command == ATA_CMD_ID_ATA)) {
1206 u8 err = ata_chk_err(ap);
1207 if (err & ATA_ABORTED) {
1208 dev->class = ATA_DEV_ATAPI;
1209 qc->cursg = 0;
1210 qc->cursg_ofs = 0;
1211 qc->cursect = 0;
1212 qc->nsect = 1;
1213 goto retry;
1216 goto err_out;
1219 swap_buf_le16(dev->id, ATA_ID_WORDS);
1221 /* print device capabilities */
1222 printk(KERN_DEBUG "ata%u: dev %u cfg "
1223 "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1224 ap->id, device, dev->id[49],
1225 dev->id[82], dev->id[83], dev->id[84],
1226 dev->id[85], dev->id[86], dev->id[87],
1227 dev->id[88]);
1230 * common ATA, ATAPI feature tests
1233 /* we require DMA support (bits 8 of word 49) */
1234 if (!ata_id_has_dma(dev->id)) {
1235 printk(KERN_DEBUG "ata%u: no dma\n", ap->id);
1236 goto err_out_nosup;
1239 /* quick-n-dirty find max transfer mode; for printk only */
1240 xfer_modes = dev->id[ATA_ID_UDMA_MODES];
1241 if (!xfer_modes)
1242 xfer_modes = (dev->id[ATA_ID_MWDMA_MODES]) << ATA_SHIFT_MWDMA;
1243 if (!xfer_modes)
1244 xfer_modes = ata_pio_modes(dev);
1246 ata_dump_id(dev);
1248 /* ATA-specific feature tests */
1249 if (dev->class == ATA_DEV_ATA) {
1250 if (!ata_id_is_ata(dev->id)) /* sanity check */
1251 goto err_out_nosup;
1253 /* get major version */
1254 tmp = dev->id[ATA_ID_MAJOR_VER];
1255 for (major_version = 14; major_version >= 1; major_version--)
1256 if (tmp & (1 << major_version))
1257 break;
1260 * The exact sequence expected by certain pre-ATA4 drives is:
1261 * SRST RESET
1262 * IDENTIFY
1263 * INITIALIZE DEVICE PARAMETERS
1264 * anything else..
1265 * Some drives were very specific about that exact sequence.
1267 if (major_version < 4 || (!ata_id_has_lba(dev->id))) {
1268 ata_dev_init_params(ap, dev);
1270 /* current CHS translation info (id[53-58]) might be
1271 * changed. reread the identify device info.
1273 ata_dev_reread_id(ap, dev);
1276 if (ata_id_has_lba(dev->id)) {
1277 dev->flags |= ATA_DFLAG_LBA;
1279 if (ata_id_has_lba48(dev->id)) {
1280 dev->flags |= ATA_DFLAG_LBA48;
1281 dev->n_sectors = ata_id_u64(dev->id, 100);
1282 } else {
1283 dev->n_sectors = ata_id_u32(dev->id, 60);
1286 /* print device info to dmesg */
1287 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors:%s\n",
1288 ap->id, device,
1289 major_version,
1290 ata_mode_string(xfer_modes),
1291 (unsigned long long)dev->n_sectors,
1292 dev->flags & ATA_DFLAG_LBA48 ? " LBA48" : " LBA");
1293 } else {
1294 /* CHS */
1296 /* Default translation */
1297 dev->cylinders = dev->id[1];
1298 dev->heads = dev->id[3];
1299 dev->sectors = dev->id[6];
1300 dev->n_sectors = dev->cylinders * dev->heads * dev->sectors;
1302 if (ata_id_current_chs_valid(dev->id)) {
1303 /* Current CHS translation is valid. */
1304 dev->cylinders = dev->id[54];
1305 dev->heads = dev->id[55];
1306 dev->sectors = dev->id[56];
1308 dev->n_sectors = ata_id_u32(dev->id, 57);
1311 /* print device info to dmesg */
1312 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors: CHS %d/%d/%d\n",
1313 ap->id, device,
1314 major_version,
1315 ata_mode_string(xfer_modes),
1316 (unsigned long long)dev->n_sectors,
1317 (int)dev->cylinders, (int)dev->heads, (int)dev->sectors);
1321 ap->host->max_cmd_len = 16;
1324 /* ATAPI-specific feature tests */
1325 else {
1326 if (ata_id_is_ata(dev->id)) /* sanity check */
1327 goto err_out_nosup;
1329 rc = atapi_cdb_len(dev->id);
1330 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1331 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1332 goto err_out_nosup;
1334 ap->cdb_len = (unsigned int) rc;
1335 ap->host->max_cmd_len = (unsigned char) ap->cdb_len;
1337 /* print device info to dmesg */
1338 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1339 ap->id, device,
1340 ata_mode_string(xfer_modes));
1343 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1344 return;
1346 err_out_nosup:
1347 printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n",
1348 ap->id, device);
1349 err_out:
1350 dev->class++; /* converts ATA_DEV_xxx into ATA_DEV_xxx_UNSUP */
1351 DPRINTK("EXIT, err\n");
1355 static inline u8 ata_dev_knobble(const struct ata_port *ap)
1357 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(ap->device->id)));
1361 * ata_dev_config - Run device specific handlers and check for
1362 * SATA->PATA bridges
1363 * @ap: Bus
1364 * @i: Device
1366 * LOCKING:
1369 void ata_dev_config(struct ata_port *ap, unsigned int i)
1371 /* limit bridge transfers to udma5, 200 sectors */
1372 if (ata_dev_knobble(ap)) {
1373 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1374 ap->id, ap->device->devno);
1375 ap->udma_mask &= ATA_UDMA5;
1376 ap->host->max_sectors = ATA_MAX_SECTORS;
1377 ap->host->hostt->max_sectors = ATA_MAX_SECTORS;
1378 ap->device->flags |= ATA_DFLAG_LOCK_SECTORS;
1381 if (ap->ops->dev_config)
1382 ap->ops->dev_config(ap, &ap->device[i]);
1386 * ata_bus_probe - Reset and probe ATA bus
1387 * @ap: Bus to probe
1389 * Master ATA bus probing function. Initiates a hardware-dependent
1390 * bus reset, then attempts to identify any devices found on
1391 * the bus.
1393 * LOCKING:
1394 * PCI/etc. bus probe sem.
1396 * RETURNS:
1397 * Zero on success, non-zero on error.
1400 static int ata_bus_probe(struct ata_port *ap)
1402 unsigned int i, found = 0;
1404 ap->ops->phy_reset(ap);
1405 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1406 goto err_out;
1408 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1409 ata_dev_identify(ap, i);
1410 if (ata_dev_present(&ap->device[i])) {
1411 found = 1;
1412 ata_dev_config(ap,i);
1416 if ((!found) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1417 goto err_out_disable;
1419 ata_set_mode(ap);
1420 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1421 goto err_out_disable;
1423 return 0;
1425 err_out_disable:
1426 ap->ops->port_disable(ap);
1427 err_out:
1428 return -1;
1432 * ata_port_probe - Mark port as enabled
1433 * @ap: Port for which we indicate enablement
1435 * Modify @ap data structure such that the system
1436 * thinks that the entire port is enabled.
1438 * LOCKING: host_set lock, or some other form of
1439 * serialization.
1442 void ata_port_probe(struct ata_port *ap)
1444 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1448 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1449 * @ap: SATA port associated with target SATA PHY.
1451 * This function issues commands to standard SATA Sxxx
1452 * PHY registers, to wake up the phy (and device), and
1453 * clear any reset condition.
1455 * LOCKING:
1456 * PCI/etc. bus probe sem.
1459 void __sata_phy_reset(struct ata_port *ap)
1461 u32 sstatus;
1462 unsigned long timeout = jiffies + (HZ * 5);
1464 if (ap->flags & ATA_FLAG_SATA_RESET) {
1465 /* issue phy wake/reset */
1466 scr_write_flush(ap, SCR_CONTROL, 0x301);
1467 /* Couldn't find anything in SATA I/II specs, but
1468 * AHCI-1.1 10.4.2 says at least 1 ms. */
1469 mdelay(1);
1471 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1473 /* wait for phy to become ready, if necessary */
1474 do {
1475 msleep(200);
1476 sstatus = scr_read(ap, SCR_STATUS);
1477 if ((sstatus & 0xf) != 1)
1478 break;
1479 } while (time_before(jiffies, timeout));
1481 /* TODO: phy layer with polling, timeouts, etc. */
1482 if (sata_dev_present(ap))
1483 ata_port_probe(ap);
1484 else {
1485 sstatus = scr_read(ap, SCR_STATUS);
1486 printk(KERN_INFO "ata%u: no device found (phy stat %08x)\n",
1487 ap->id, sstatus);
1488 ata_port_disable(ap);
1491 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1492 return;
1494 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1495 ata_port_disable(ap);
1496 return;
1499 ap->cbl = ATA_CBL_SATA;
1503 * sata_phy_reset - Reset SATA bus.
1504 * @ap: SATA port associated with target SATA PHY.
1506 * This function resets the SATA bus, and then probes
1507 * the bus for devices.
1509 * LOCKING:
1510 * PCI/etc. bus probe sem.
1513 void sata_phy_reset(struct ata_port *ap)
1515 __sata_phy_reset(ap);
1516 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1517 return;
1518 ata_bus_reset(ap);
1522 * ata_port_disable - Disable port.
1523 * @ap: Port to be disabled.
1525 * Modify @ap data structure such that the system
1526 * thinks that the entire port is disabled, and should
1527 * never attempt to probe or communicate with devices
1528 * on this port.
1530 * LOCKING: host_set lock, or some other form of
1531 * serialization.
1534 void ata_port_disable(struct ata_port *ap)
1536 ap->device[0].class = ATA_DEV_NONE;
1537 ap->device[1].class = ATA_DEV_NONE;
1538 ap->flags |= ATA_FLAG_PORT_DISABLED;
1542 * This mode timing computation functionality is ported over from
1543 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1546 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1547 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1548 * for PIO 5, which is a nonstandard extension and UDMA6, which
1549 * is currently supported only by Maxtor drives.
1552 static const struct ata_timing ata_timing[] = {
1554 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1555 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1556 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1557 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1559 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1560 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1561 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1563 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1565 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1566 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1567 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1569 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1570 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1571 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1573 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1574 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1575 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1577 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1578 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1579 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1581 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1583 { 0xFF }
1586 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1587 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1589 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1591 q->setup = EZ(t->setup * 1000, T);
1592 q->act8b = EZ(t->act8b * 1000, T);
1593 q->rec8b = EZ(t->rec8b * 1000, T);
1594 q->cyc8b = EZ(t->cyc8b * 1000, T);
1595 q->active = EZ(t->active * 1000, T);
1596 q->recover = EZ(t->recover * 1000, T);
1597 q->cycle = EZ(t->cycle * 1000, T);
1598 q->udma = EZ(t->udma * 1000, UT);
1601 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1602 struct ata_timing *m, unsigned int what)
1604 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1605 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1606 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1607 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1608 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1609 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1610 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1611 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1614 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1616 const struct ata_timing *t;
1618 for (t = ata_timing; t->mode != speed; t++)
1619 if (t->mode == 0xFF)
1620 return NULL;
1621 return t;
1624 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1625 struct ata_timing *t, int T, int UT)
1627 const struct ata_timing *s;
1628 struct ata_timing p;
1631 * Find the mode.
1634 if (!(s = ata_timing_find_mode(speed)))
1635 return -EINVAL;
1638 * If the drive is an EIDE drive, it can tell us it needs extended
1639 * PIO/MW_DMA cycle timing.
1642 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1643 memset(&p, 0, sizeof(p));
1644 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1645 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1646 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1647 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1648 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1650 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1654 * Convert the timing to bus clock counts.
1657 ata_timing_quantize(s, t, T, UT);
1660 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, S.M.A.R.T
1661 * and some other commands. We have to ensure that the DMA cycle timing is
1662 * slower/equal than the fastest PIO timing.
1665 if (speed > XFER_PIO_4) {
1666 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1667 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1671 * Lenghten active & recovery time so that cycle time is correct.
1674 if (t->act8b + t->rec8b < t->cyc8b) {
1675 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1676 t->rec8b = t->cyc8b - t->act8b;
1679 if (t->active + t->recover < t->cycle) {
1680 t->active += (t->cycle - (t->active + t->recover)) / 2;
1681 t->recover = t->cycle - t->active;
1684 return 0;
1687 static const struct {
1688 unsigned int shift;
1689 u8 base;
1690 } xfer_mode_classes[] = {
1691 { ATA_SHIFT_UDMA, XFER_UDMA_0 },
1692 { ATA_SHIFT_MWDMA, XFER_MW_DMA_0 },
1693 { ATA_SHIFT_PIO, XFER_PIO_0 },
1696 static inline u8 base_from_shift(unsigned int shift)
1698 int i;
1700 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++)
1701 if (xfer_mode_classes[i].shift == shift)
1702 return xfer_mode_classes[i].base;
1704 return 0xff;
1707 static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1709 int ofs, idx;
1710 u8 base;
1712 if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1713 return;
1715 if (dev->xfer_shift == ATA_SHIFT_PIO)
1716 dev->flags |= ATA_DFLAG_PIO;
1718 ata_dev_set_xfermode(ap, dev);
1720 base = base_from_shift(dev->xfer_shift);
1721 ofs = dev->xfer_mode - base;
1722 idx = ofs + dev->xfer_shift;
1723 WARN_ON(idx >= ARRAY_SIZE(xfer_mode_str));
1725 DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n",
1726 idx, dev->xfer_shift, (int)dev->xfer_mode, (int)base, ofs);
1728 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1729 ap->id, dev->devno, xfer_mode_str[idx]);
1732 static int ata_host_set_pio(struct ata_port *ap)
1734 unsigned int mask;
1735 int x, i;
1736 u8 base, xfer_mode;
1738 mask = ata_get_mode_mask(ap, ATA_SHIFT_PIO);
1739 x = fgb(mask);
1740 if (x < 0) {
1741 printk(KERN_WARNING "ata%u: no PIO support\n", ap->id);
1742 return -1;
1745 base = base_from_shift(ATA_SHIFT_PIO);
1746 xfer_mode = base + x;
1748 DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n",
1749 (int)base, (int)xfer_mode, mask, x);
1751 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1752 struct ata_device *dev = &ap->device[i];
1753 if (ata_dev_present(dev)) {
1754 dev->pio_mode = xfer_mode;
1755 dev->xfer_mode = xfer_mode;
1756 dev->xfer_shift = ATA_SHIFT_PIO;
1757 if (ap->ops->set_piomode)
1758 ap->ops->set_piomode(ap, dev);
1762 return 0;
1765 static void ata_host_set_dma(struct ata_port *ap, u8 xfer_mode,
1766 unsigned int xfer_shift)
1768 int i;
1770 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1771 struct ata_device *dev = &ap->device[i];
1772 if (ata_dev_present(dev)) {
1773 dev->dma_mode = xfer_mode;
1774 dev->xfer_mode = xfer_mode;
1775 dev->xfer_shift = xfer_shift;
1776 if (ap->ops->set_dmamode)
1777 ap->ops->set_dmamode(ap, dev);
1783 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1784 * @ap: port on which timings will be programmed
1786 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1788 * LOCKING:
1789 * PCI/etc. bus probe sem.
1792 static void ata_set_mode(struct ata_port *ap)
1794 unsigned int xfer_shift;
1795 u8 xfer_mode;
1796 int rc;
1798 /* step 1: always set host PIO timings */
1799 rc = ata_host_set_pio(ap);
1800 if (rc)
1801 goto err_out;
1803 /* step 2: choose the best data xfer mode */
1804 xfer_mode = xfer_shift = 0;
1805 rc = ata_choose_xfer_mode(ap, &xfer_mode, &xfer_shift);
1806 if (rc)
1807 goto err_out;
1809 /* step 3: if that xfer mode isn't PIO, set host DMA timings */
1810 if (xfer_shift != ATA_SHIFT_PIO)
1811 ata_host_set_dma(ap, xfer_mode, xfer_shift);
1813 /* step 4: update devices' xfer mode */
1814 ata_dev_set_mode(ap, &ap->device[0]);
1815 ata_dev_set_mode(ap, &ap->device[1]);
1817 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1818 return;
1820 if (ap->ops->post_set_mode)
1821 ap->ops->post_set_mode(ap);
1823 return;
1825 err_out:
1826 ata_port_disable(ap);
1830 * ata_busy_sleep - sleep until BSY clears, or timeout
1831 * @ap: port containing status register to be polled
1832 * @tmout_pat: impatience timeout
1833 * @tmout: overall timeout
1835 * Sleep until ATA Status register bit BSY clears,
1836 * or a timeout occurs.
1838 * LOCKING: None.
1842 static unsigned int ata_busy_sleep (struct ata_port *ap,
1843 unsigned long tmout_pat,
1844 unsigned long tmout)
1846 unsigned long timer_start, timeout;
1847 u8 status;
1849 status = ata_busy_wait(ap, ATA_BUSY, 300);
1850 timer_start = jiffies;
1851 timeout = timer_start + tmout_pat;
1852 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1853 msleep(50);
1854 status = ata_busy_wait(ap, ATA_BUSY, 3);
1857 if (status & ATA_BUSY)
1858 printk(KERN_WARNING "ata%u is slow to respond, "
1859 "please be patient\n", ap->id);
1861 timeout = timer_start + tmout;
1862 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1863 msleep(50);
1864 status = ata_chk_status(ap);
1867 if (status & ATA_BUSY) {
1868 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1869 ap->id, tmout / HZ);
1870 return 1;
1873 return 0;
1876 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1878 struct ata_ioports *ioaddr = &ap->ioaddr;
1879 unsigned int dev0 = devmask & (1 << 0);
1880 unsigned int dev1 = devmask & (1 << 1);
1881 unsigned long timeout;
1883 /* if device 0 was found in ata_devchk, wait for its
1884 * BSY bit to clear
1886 if (dev0)
1887 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1889 /* if device 1 was found in ata_devchk, wait for
1890 * register access, then wait for BSY to clear
1892 timeout = jiffies + ATA_TMOUT_BOOT;
1893 while (dev1) {
1894 u8 nsect, lbal;
1896 ap->ops->dev_select(ap, 1);
1897 if (ap->flags & ATA_FLAG_MMIO) {
1898 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1899 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1900 } else {
1901 nsect = inb(ioaddr->nsect_addr);
1902 lbal = inb(ioaddr->lbal_addr);
1904 if ((nsect == 1) && (lbal == 1))
1905 break;
1906 if (time_after(jiffies, timeout)) {
1907 dev1 = 0;
1908 break;
1910 msleep(50); /* give drive a breather */
1912 if (dev1)
1913 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1915 /* is all this really necessary? */
1916 ap->ops->dev_select(ap, 0);
1917 if (dev1)
1918 ap->ops->dev_select(ap, 1);
1919 if (dev0)
1920 ap->ops->dev_select(ap, 0);
1924 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
1925 * @ap: Port to reset and probe
1927 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
1928 * probe the bus. Not often used these days.
1930 * LOCKING:
1931 * PCI/etc. bus probe sem.
1935 static unsigned int ata_bus_edd(struct ata_port *ap)
1937 struct ata_taskfile tf;
1939 /* set up execute-device-diag (bus reset) taskfile */
1940 /* also, take interrupts to a known state (disabled) */
1941 DPRINTK("execute-device-diag\n");
1942 ata_tf_init(ap, &tf, 0);
1943 tf.ctl |= ATA_NIEN;
1944 tf.command = ATA_CMD_EDD;
1945 tf.protocol = ATA_PROT_NODATA;
1947 /* do bus reset */
1948 ata_tf_to_host(ap, &tf);
1950 /* spec says at least 2ms. but who knows with those
1951 * crazy ATAPI devices...
1953 msleep(150);
1955 return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1958 static unsigned int ata_bus_softreset(struct ata_port *ap,
1959 unsigned int devmask)
1961 struct ata_ioports *ioaddr = &ap->ioaddr;
1963 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
1965 /* software reset. causes dev0 to be selected */
1966 if (ap->flags & ATA_FLAG_MMIO) {
1967 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1968 udelay(20); /* FIXME: flush */
1969 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
1970 udelay(20); /* FIXME: flush */
1971 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1972 } else {
1973 outb(ap->ctl, ioaddr->ctl_addr);
1974 udelay(10);
1975 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1976 udelay(10);
1977 outb(ap->ctl, ioaddr->ctl_addr);
1980 /* spec mandates ">= 2ms" before checking status.
1981 * We wait 150ms, because that was the magic delay used for
1982 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
1983 * between when the ATA command register is written, and then
1984 * status is checked. Because waiting for "a while" before
1985 * checking status is fine, post SRST, we perform this magic
1986 * delay here as well.
1988 msleep(150);
1990 ata_bus_post_reset(ap, devmask);
1992 return 0;
1996 * ata_bus_reset - reset host port and associated ATA channel
1997 * @ap: port to reset
1999 * This is typically the first time we actually start issuing
2000 * commands to the ATA channel. We wait for BSY to clear, then
2001 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2002 * result. Determine what devices, if any, are on the channel
2003 * by looking at the device 0/1 error register. Look at the signature
2004 * stored in each device's taskfile registers, to determine if
2005 * the device is ATA or ATAPI.
2007 * LOCKING:
2008 * PCI/etc. bus probe sem.
2009 * Obtains host_set lock.
2011 * SIDE EFFECTS:
2012 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
2015 void ata_bus_reset(struct ata_port *ap)
2017 struct ata_ioports *ioaddr = &ap->ioaddr;
2018 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2019 u8 err;
2020 unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
2022 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2024 /* determine if device 0/1 are present */
2025 if (ap->flags & ATA_FLAG_SATA_RESET)
2026 dev0 = 1;
2027 else {
2028 dev0 = ata_devchk(ap, 0);
2029 if (slave_possible)
2030 dev1 = ata_devchk(ap, 1);
2033 if (dev0)
2034 devmask |= (1 << 0);
2035 if (dev1)
2036 devmask |= (1 << 1);
2038 /* select device 0 again */
2039 ap->ops->dev_select(ap, 0);
2041 /* issue bus reset */
2042 if (ap->flags & ATA_FLAG_SRST)
2043 rc = ata_bus_softreset(ap, devmask);
2044 else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
2045 /* set up device control */
2046 if (ap->flags & ATA_FLAG_MMIO)
2047 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2048 else
2049 outb(ap->ctl, ioaddr->ctl_addr);
2050 rc = ata_bus_edd(ap);
2053 if (rc)
2054 goto err_out;
2057 * determine by signature whether we have ATA or ATAPI devices
2059 err = ata_dev_try_classify(ap, 0);
2060 if ((slave_possible) && (err != 0x81))
2061 ata_dev_try_classify(ap, 1);
2063 /* re-enable interrupts */
2064 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2065 ata_irq_on(ap);
2067 /* is double-select really necessary? */
2068 if (ap->device[1].class != ATA_DEV_NONE)
2069 ap->ops->dev_select(ap, 1);
2070 if (ap->device[0].class != ATA_DEV_NONE)
2071 ap->ops->dev_select(ap, 0);
2073 /* if no devices were detected, disable this port */
2074 if ((ap->device[0].class == ATA_DEV_NONE) &&
2075 (ap->device[1].class == ATA_DEV_NONE))
2076 goto err_out;
2078 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2079 /* set up device control for ATA_FLAG_SATA_RESET */
2080 if (ap->flags & ATA_FLAG_MMIO)
2081 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2082 else
2083 outb(ap->ctl, ioaddr->ctl_addr);
2086 DPRINTK("EXIT\n");
2087 return;
2089 err_out:
2090 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2091 ap->ops->port_disable(ap);
2093 DPRINTK("EXIT\n");
2096 static void ata_pr_blacklisted(const struct ata_port *ap,
2097 const struct ata_device *dev)
2099 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, disabling DMA\n",
2100 ap->id, dev->devno);
2103 static const char * ata_dma_blacklist [] = {
2104 "WDC AC11000H",
2105 "WDC AC22100H",
2106 "WDC AC32500H",
2107 "WDC AC33100H",
2108 "WDC AC31600H",
2109 "WDC AC32100H",
2110 "WDC AC23200L",
2111 "Compaq CRD-8241B",
2112 "CRD-8400B",
2113 "CRD-8480B",
2114 "CRD-8482B",
2115 "CRD-84",
2116 "SanDisk SDP3B",
2117 "SanDisk SDP3B-64",
2118 "SANYO CD-ROM CRD",
2119 "HITACHI CDR-8",
2120 "HITACHI CDR-8335",
2121 "HITACHI CDR-8435",
2122 "Toshiba CD-ROM XM-6202B",
2123 "TOSHIBA CD-ROM XM-1702BC",
2124 "CD-532E-A",
2125 "E-IDE CD-ROM CR-840",
2126 "CD-ROM Drive/F5A",
2127 "WPI CDD-820",
2128 "SAMSUNG CD-ROM SC-148C",
2129 "SAMSUNG CD-ROM SC",
2130 "SanDisk SDP3B-64",
2131 "ATAPI CD-ROM DRIVE 40X MAXIMUM",
2132 "_NEC DV5800A",
2135 static int ata_dma_blacklisted(const struct ata_device *dev)
2137 unsigned char model_num[40];
2138 char *s;
2139 unsigned int len;
2140 int i;
2142 ata_dev_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2143 sizeof(model_num));
2144 s = &model_num[0];
2145 len = strnlen(s, sizeof(model_num));
2147 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2148 while ((len > 0) && (s[len - 1] == ' ')) {
2149 len--;
2150 s[len] = 0;
2153 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++)
2154 if (!strncmp(ata_dma_blacklist[i], s, len))
2155 return 1;
2157 return 0;
2160 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift)
2162 const struct ata_device *master, *slave;
2163 unsigned int mask;
2165 master = &ap->device[0];
2166 slave = &ap->device[1];
2168 assert (ata_dev_present(master) || ata_dev_present(slave));
2170 if (shift == ATA_SHIFT_UDMA) {
2171 mask = ap->udma_mask;
2172 if (ata_dev_present(master)) {
2173 mask &= (master->id[ATA_ID_UDMA_MODES] & 0xff);
2174 if (ata_dma_blacklisted(master)) {
2175 mask = 0;
2176 ata_pr_blacklisted(ap, master);
2179 if (ata_dev_present(slave)) {
2180 mask &= (slave->id[ATA_ID_UDMA_MODES] & 0xff);
2181 if (ata_dma_blacklisted(slave)) {
2182 mask = 0;
2183 ata_pr_blacklisted(ap, slave);
2187 else if (shift == ATA_SHIFT_MWDMA) {
2188 mask = ap->mwdma_mask;
2189 if (ata_dev_present(master)) {
2190 mask &= (master->id[ATA_ID_MWDMA_MODES] & 0x07);
2191 if (ata_dma_blacklisted(master)) {
2192 mask = 0;
2193 ata_pr_blacklisted(ap, master);
2196 if (ata_dev_present(slave)) {
2197 mask &= (slave->id[ATA_ID_MWDMA_MODES] & 0x07);
2198 if (ata_dma_blacklisted(slave)) {
2199 mask = 0;
2200 ata_pr_blacklisted(ap, slave);
2204 else if (shift == ATA_SHIFT_PIO) {
2205 mask = ap->pio_mask;
2206 if (ata_dev_present(master)) {
2207 /* spec doesn't return explicit support for
2208 * PIO0-2, so we fake it
2210 u16 tmp_mode = master->id[ATA_ID_PIO_MODES] & 0x03;
2211 tmp_mode <<= 3;
2212 tmp_mode |= 0x7;
2213 mask &= tmp_mode;
2215 if (ata_dev_present(slave)) {
2216 /* spec doesn't return explicit support for
2217 * PIO0-2, so we fake it
2219 u16 tmp_mode = slave->id[ATA_ID_PIO_MODES] & 0x03;
2220 tmp_mode <<= 3;
2221 tmp_mode |= 0x7;
2222 mask &= tmp_mode;
2225 else {
2226 mask = 0xffffffff; /* shut up compiler warning */
2227 BUG();
2230 return mask;
2233 /* find greatest bit */
2234 static int fgb(u32 bitmap)
2236 unsigned int i;
2237 int x = -1;
2239 for (i = 0; i < 32; i++)
2240 if (bitmap & (1 << i))
2241 x = i;
2243 return x;
2247 * ata_choose_xfer_mode - attempt to find best transfer mode
2248 * @ap: Port for which an xfer mode will be selected
2249 * @xfer_mode_out: (output) SET FEATURES - XFER MODE code
2250 * @xfer_shift_out: (output) bit shift that selects this mode
2252 * Based on host and device capabilities, determine the
2253 * maximum transfer mode that is amenable to all.
2255 * LOCKING:
2256 * PCI/etc. bus probe sem.
2258 * RETURNS:
2259 * Zero on success, negative on error.
2262 static int ata_choose_xfer_mode(const struct ata_port *ap,
2263 u8 *xfer_mode_out,
2264 unsigned int *xfer_shift_out)
2266 unsigned int mask, shift;
2267 int x, i;
2269 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) {
2270 shift = xfer_mode_classes[i].shift;
2271 mask = ata_get_mode_mask(ap, shift);
2273 x = fgb(mask);
2274 if (x >= 0) {
2275 *xfer_mode_out = xfer_mode_classes[i].base + x;
2276 *xfer_shift_out = shift;
2277 return 0;
2281 return -1;
2285 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2286 * @ap: Port associated with device @dev
2287 * @dev: Device to which command will be sent
2289 * Issue SET FEATURES - XFER MODE command to device @dev
2290 * on port @ap.
2292 * LOCKING:
2293 * PCI/etc. bus probe sem.
2296 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev)
2298 DECLARE_COMPLETION(wait);
2299 struct ata_queued_cmd *qc;
2300 int rc;
2301 unsigned long flags;
2303 /* set up set-features taskfile */
2304 DPRINTK("set features - xfer mode\n");
2306 qc = ata_qc_new_init(ap, dev);
2307 BUG_ON(qc == NULL);
2309 qc->tf.command = ATA_CMD_SET_FEATURES;
2310 qc->tf.feature = SETFEATURES_XFER;
2311 qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2312 qc->tf.protocol = ATA_PROT_NODATA;
2313 qc->tf.nsect = dev->xfer_mode;
2315 qc->waiting = &wait;
2316 qc->complete_fn = ata_qc_complete_noop;
2318 spin_lock_irqsave(&ap->host_set->lock, flags);
2319 rc = ata_qc_issue(qc);
2320 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2322 if (rc)
2323 ata_port_disable(ap);
2324 else
2325 wait_for_completion(&wait);
2327 DPRINTK("EXIT\n");
2331 * ata_dev_reread_id - Reread the device identify device info
2332 * @ap: port where the device is
2333 * @dev: device to reread the identify device info
2335 * LOCKING:
2338 static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev)
2340 DECLARE_COMPLETION(wait);
2341 struct ata_queued_cmd *qc;
2342 unsigned long flags;
2343 int rc;
2345 qc = ata_qc_new_init(ap, dev);
2346 BUG_ON(qc == NULL);
2348 ata_sg_init_one(qc, dev->id, sizeof(dev->id));
2349 qc->dma_dir = DMA_FROM_DEVICE;
2351 if (dev->class == ATA_DEV_ATA) {
2352 qc->tf.command = ATA_CMD_ID_ATA;
2353 DPRINTK("do ATA identify\n");
2354 } else {
2355 qc->tf.command = ATA_CMD_ID_ATAPI;
2356 DPRINTK("do ATAPI identify\n");
2359 qc->tf.flags |= ATA_TFLAG_DEVICE;
2360 qc->tf.protocol = ATA_PROT_PIO;
2361 qc->nsect = 1;
2363 qc->waiting = &wait;
2364 qc->complete_fn = ata_qc_complete_noop;
2366 spin_lock_irqsave(&ap->host_set->lock, flags);
2367 rc = ata_qc_issue(qc);
2368 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2370 if (rc)
2371 goto err_out;
2373 wait_for_completion(&wait);
2375 swap_buf_le16(dev->id, ATA_ID_WORDS);
2377 ata_dump_id(dev);
2379 DPRINTK("EXIT\n");
2381 return;
2382 err_out:
2383 ata_port_disable(ap);
2387 * ata_dev_init_params - Issue INIT DEV PARAMS command
2388 * @ap: Port associated with device @dev
2389 * @dev: Device to which command will be sent
2391 * LOCKING:
2394 static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev)
2396 DECLARE_COMPLETION(wait);
2397 struct ata_queued_cmd *qc;
2398 int rc;
2399 unsigned long flags;
2400 u16 sectors = dev->id[6];
2401 u16 heads = dev->id[3];
2403 /* Number of sectors per track 1-255. Number of heads 1-16 */
2404 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
2405 return;
2407 /* set up init dev params taskfile */
2408 DPRINTK("init dev params \n");
2410 qc = ata_qc_new_init(ap, dev);
2411 BUG_ON(qc == NULL);
2413 qc->tf.command = ATA_CMD_INIT_DEV_PARAMS;
2414 qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2415 qc->tf.protocol = ATA_PROT_NODATA;
2416 qc->tf.nsect = sectors;
2417 qc->tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
2419 qc->waiting = &wait;
2420 qc->complete_fn = ata_qc_complete_noop;
2422 spin_lock_irqsave(&ap->host_set->lock, flags);
2423 rc = ata_qc_issue(qc);
2424 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2426 if (rc)
2427 ata_port_disable(ap);
2428 else
2429 wait_for_completion(&wait);
2431 DPRINTK("EXIT\n");
2435 * ata_sg_clean - Unmap DMA memory associated with command
2436 * @qc: Command containing DMA memory to be released
2438 * Unmap all mapped DMA memory associated with this command.
2440 * LOCKING:
2441 * spin_lock_irqsave(host_set lock)
2444 static void ata_sg_clean(struct ata_queued_cmd *qc)
2446 struct ata_port *ap = qc->ap;
2447 struct scatterlist *sg = qc->sg;
2448 int dir = qc->dma_dir;
2450 assert(qc->flags & ATA_QCFLAG_DMAMAP);
2451 assert(sg != NULL);
2453 if (qc->flags & ATA_QCFLAG_SINGLE)
2454 assert(qc->n_elem == 1);
2456 DPRINTK("unmapping %u sg elements\n", qc->n_elem);
2458 if (qc->flags & ATA_QCFLAG_SG)
2459 dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir);
2460 else
2461 dma_unmap_single(ap->host_set->dev, sg_dma_address(&sg[0]),
2462 sg_dma_len(&sg[0]), dir);
2464 qc->flags &= ~ATA_QCFLAG_DMAMAP;
2465 qc->sg = NULL;
2469 * ata_fill_sg - Fill PCI IDE PRD table
2470 * @qc: Metadata associated with taskfile to be transferred
2472 * Fill PCI IDE PRD (scatter-gather) table with segments
2473 * associated with the current disk command.
2475 * LOCKING:
2476 * spin_lock_irqsave(host_set lock)
2479 static void ata_fill_sg(struct ata_queued_cmd *qc)
2481 struct scatterlist *sg = qc->sg;
2482 struct ata_port *ap = qc->ap;
2483 unsigned int idx, nelem;
2485 assert(sg != NULL);
2486 assert(qc->n_elem > 0);
2488 idx = 0;
2489 for (nelem = qc->n_elem; nelem; nelem--,sg++) {
2490 u32 addr, offset;
2491 u32 sg_len, len;
2493 /* determine if physical DMA addr spans 64K boundary.
2494 * Note h/w doesn't support 64-bit, so we unconditionally
2495 * truncate dma_addr_t to u32.
2497 addr = (u32) sg_dma_address(sg);
2498 sg_len = sg_dma_len(sg);
2500 while (sg_len) {
2501 offset = addr & 0xffff;
2502 len = sg_len;
2503 if ((offset + sg_len) > 0x10000)
2504 len = 0x10000 - offset;
2506 ap->prd[idx].addr = cpu_to_le32(addr);
2507 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2508 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2510 idx++;
2511 sg_len -= len;
2512 addr += len;
2516 if (idx)
2517 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2520 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2521 * @qc: Metadata associated with taskfile to check
2523 * Allow low-level driver to filter ATA PACKET commands, returning
2524 * a status indicating whether or not it is OK to use DMA for the
2525 * supplied PACKET command.
2527 * LOCKING:
2528 * spin_lock_irqsave(host_set lock)
2530 * RETURNS: 0 when ATAPI DMA can be used
2531 * nonzero otherwise
2533 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2535 struct ata_port *ap = qc->ap;
2536 int rc = 0; /* Assume ATAPI DMA is OK by default */
2538 if (ap->ops->check_atapi_dma)
2539 rc = ap->ops->check_atapi_dma(qc);
2541 return rc;
2544 * ata_qc_prep - Prepare taskfile for submission
2545 * @qc: Metadata associated with taskfile to be prepared
2547 * Prepare ATA taskfile for submission.
2549 * LOCKING:
2550 * spin_lock_irqsave(host_set lock)
2552 void ata_qc_prep(struct ata_queued_cmd *qc)
2554 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2555 return;
2557 ata_fill_sg(qc);
2561 * ata_sg_init_one - Associate command with memory buffer
2562 * @qc: Command to be associated
2563 * @buf: Memory buffer
2564 * @buflen: Length of memory buffer, in bytes.
2566 * Initialize the data-related elements of queued_cmd @qc
2567 * to point to a single memory buffer, @buf of byte length @buflen.
2569 * LOCKING:
2570 * spin_lock_irqsave(host_set lock)
2573 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2575 struct scatterlist *sg;
2577 qc->flags |= ATA_QCFLAG_SINGLE;
2579 memset(&qc->sgent, 0, sizeof(qc->sgent));
2580 qc->sg = &qc->sgent;
2581 qc->n_elem = 1;
2582 qc->buf_virt = buf;
2584 sg = qc->sg;
2585 sg->page = virt_to_page(buf);
2586 sg->offset = (unsigned long) buf & ~PAGE_MASK;
2587 sg->length = buflen;
2591 * ata_sg_init - Associate command with scatter-gather table.
2592 * @qc: Command to be associated
2593 * @sg: Scatter-gather table.
2594 * @n_elem: Number of elements in s/g table.
2596 * Initialize the data-related elements of queued_cmd @qc
2597 * to point to a scatter-gather table @sg, containing @n_elem
2598 * elements.
2600 * LOCKING:
2601 * spin_lock_irqsave(host_set lock)
2604 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2605 unsigned int n_elem)
2607 qc->flags |= ATA_QCFLAG_SG;
2608 qc->sg = sg;
2609 qc->n_elem = n_elem;
2613 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2614 * @qc: Command with memory buffer to be mapped.
2616 * DMA-map the memory buffer associated with queued_cmd @qc.
2618 * LOCKING:
2619 * spin_lock_irqsave(host_set lock)
2621 * RETURNS:
2622 * Zero on success, negative on error.
2625 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
2627 struct ata_port *ap = qc->ap;
2628 int dir = qc->dma_dir;
2629 struct scatterlist *sg = qc->sg;
2630 dma_addr_t dma_address;
2632 dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt,
2633 sg->length, dir);
2634 if (dma_mapping_error(dma_address))
2635 return -1;
2637 sg_dma_address(sg) = dma_address;
2638 sg_dma_len(sg) = sg->length;
2640 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
2641 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2643 return 0;
2647 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
2648 * @qc: Command with scatter-gather table to be mapped.
2650 * DMA-map the scatter-gather table associated with queued_cmd @qc.
2652 * LOCKING:
2653 * spin_lock_irqsave(host_set lock)
2655 * RETURNS:
2656 * Zero on success, negative on error.
2660 static int ata_sg_setup(struct ata_queued_cmd *qc)
2662 struct ata_port *ap = qc->ap;
2663 struct scatterlist *sg = qc->sg;
2664 int n_elem, dir;
2666 VPRINTK("ENTER, ata%u\n", ap->id);
2667 assert(qc->flags & ATA_QCFLAG_SG);
2669 dir = qc->dma_dir;
2670 n_elem = dma_map_sg(ap->host_set->dev, sg, qc->n_elem, dir);
2671 if (n_elem < 1)
2672 return -1;
2674 DPRINTK("%d sg elements mapped\n", n_elem);
2676 qc->n_elem = n_elem;
2678 return 0;
2682 * ata_poll_qc_complete - turn irq back on and finish qc
2683 * @qc: Command to complete
2684 * @drv_stat: ATA status register content
2686 * LOCKING:
2687 * None. (grabs host lock)
2690 void ata_poll_qc_complete(struct ata_queued_cmd *qc, u8 drv_stat)
2692 struct ata_port *ap = qc->ap;
2693 unsigned long flags;
2695 spin_lock_irqsave(&ap->host_set->lock, flags);
2696 ap->flags &= ~ATA_FLAG_NOINTR;
2697 ata_irq_on(ap);
2698 ata_qc_complete(qc, drv_stat);
2699 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2703 * ata_pio_poll -
2704 * @ap: the target ata_port
2706 * LOCKING:
2707 * None. (executing in kernel thread context)
2709 * RETURNS:
2710 * timeout value to use
2713 static unsigned long ata_pio_poll(struct ata_port *ap)
2715 u8 status;
2716 unsigned int poll_state = HSM_ST_UNKNOWN;
2717 unsigned int reg_state = HSM_ST_UNKNOWN;
2718 const unsigned int tmout_state = HSM_ST_TMOUT;
2720 switch (ap->hsm_task_state) {
2721 case HSM_ST:
2722 case HSM_ST_POLL:
2723 poll_state = HSM_ST_POLL;
2724 reg_state = HSM_ST;
2725 break;
2726 case HSM_ST_LAST:
2727 case HSM_ST_LAST_POLL:
2728 poll_state = HSM_ST_LAST_POLL;
2729 reg_state = HSM_ST_LAST;
2730 break;
2731 default:
2732 BUG();
2733 break;
2736 status = ata_chk_status(ap);
2737 if (status & ATA_BUSY) {
2738 if (time_after(jiffies, ap->pio_task_timeout)) {
2739 ap->hsm_task_state = tmout_state;
2740 return 0;
2742 ap->hsm_task_state = poll_state;
2743 return ATA_SHORT_PAUSE;
2746 ap->hsm_task_state = reg_state;
2747 return 0;
2751 * ata_pio_complete - check if drive is busy or idle
2752 * @ap: the target ata_port
2754 * LOCKING:
2755 * None. (executing in kernel thread context)
2757 * RETURNS:
2758 * Non-zero if qc completed, zero otherwise.
2761 static int ata_pio_complete (struct ata_port *ap)
2763 struct ata_queued_cmd *qc;
2764 u8 drv_stat;
2767 * This is purely heuristic. This is a fast path. Sometimes when
2768 * we enter, BSY will be cleared in a chk-status or two. If not,
2769 * the drive is probably seeking or something. Snooze for a couple
2770 * msecs, then chk-status again. If still busy, fall back to
2771 * HSM_ST_POLL state.
2773 drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 10);
2774 if (drv_stat & (ATA_BUSY | ATA_DRQ)) {
2775 msleep(2);
2776 drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 10);
2777 if (drv_stat & (ATA_BUSY | ATA_DRQ)) {
2778 ap->hsm_task_state = HSM_ST_LAST_POLL;
2779 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
2780 return 0;
2784 drv_stat = ata_wait_idle(ap);
2785 if (!ata_ok(drv_stat)) {
2786 ap->hsm_task_state = HSM_ST_ERR;
2787 return 0;
2790 qc = ata_qc_from_tag(ap, ap->active_tag);
2791 assert(qc != NULL);
2793 ap->hsm_task_state = HSM_ST_IDLE;
2795 ata_poll_qc_complete(qc, drv_stat);
2797 /* another command may start at this point */
2799 return 1;
2804 * swap_buf_le16 - swap halves of 16-words in place
2805 * @buf: Buffer to swap
2806 * @buf_words: Number of 16-bit words in buffer.
2808 * Swap halves of 16-bit words if needed to convert from
2809 * little-endian byte order to native cpu byte order, or
2810 * vice-versa.
2812 * LOCKING:
2813 * Inherited from caller.
2815 void swap_buf_le16(u16 *buf, unsigned int buf_words)
2817 #ifdef __BIG_ENDIAN
2818 unsigned int i;
2820 for (i = 0; i < buf_words; i++)
2821 buf[i] = le16_to_cpu(buf[i]);
2822 #endif /* __BIG_ENDIAN */
2826 * ata_mmio_data_xfer - Transfer data by MMIO
2827 * @ap: port to read/write
2828 * @buf: data buffer
2829 * @buflen: buffer length
2830 * @write_data: read/write
2832 * Transfer data from/to the device data register by MMIO.
2834 * LOCKING:
2835 * Inherited from caller.
2838 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
2839 unsigned int buflen, int write_data)
2841 unsigned int i;
2842 unsigned int words = buflen >> 1;
2843 u16 *buf16 = (u16 *) buf;
2844 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
2846 /* Transfer multiple of 2 bytes */
2847 if (write_data) {
2848 for (i = 0; i < words; i++)
2849 writew(le16_to_cpu(buf16[i]), mmio);
2850 } else {
2851 for (i = 0; i < words; i++)
2852 buf16[i] = cpu_to_le16(readw(mmio));
2855 /* Transfer trailing 1 byte, if any. */
2856 if (unlikely(buflen & 0x01)) {
2857 u16 align_buf[1] = { 0 };
2858 unsigned char *trailing_buf = buf + buflen - 1;
2860 if (write_data) {
2861 memcpy(align_buf, trailing_buf, 1);
2862 writew(le16_to_cpu(align_buf[0]), mmio);
2863 } else {
2864 align_buf[0] = cpu_to_le16(readw(mmio));
2865 memcpy(trailing_buf, align_buf, 1);
2871 * ata_pio_data_xfer - Transfer data by PIO
2872 * @ap: port to read/write
2873 * @buf: data buffer
2874 * @buflen: buffer length
2875 * @write_data: read/write
2877 * Transfer data from/to the device data register by PIO.
2879 * LOCKING:
2880 * Inherited from caller.
2883 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
2884 unsigned int buflen, int write_data)
2886 unsigned int words = buflen >> 1;
2888 /* Transfer multiple of 2 bytes */
2889 if (write_data)
2890 outsw(ap->ioaddr.data_addr, buf, words);
2891 else
2892 insw(ap->ioaddr.data_addr, buf, words);
2894 /* Transfer trailing 1 byte, if any. */
2895 if (unlikely(buflen & 0x01)) {
2896 u16 align_buf[1] = { 0 };
2897 unsigned char *trailing_buf = buf + buflen - 1;
2899 if (write_data) {
2900 memcpy(align_buf, trailing_buf, 1);
2901 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
2902 } else {
2903 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
2904 memcpy(trailing_buf, align_buf, 1);
2910 * ata_data_xfer - Transfer data from/to the data register.
2911 * @ap: port to read/write
2912 * @buf: data buffer
2913 * @buflen: buffer length
2914 * @do_write: read/write
2916 * Transfer data from/to the device data register.
2918 * LOCKING:
2919 * Inherited from caller.
2922 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
2923 unsigned int buflen, int do_write)
2925 if (ap->flags & ATA_FLAG_MMIO)
2926 ata_mmio_data_xfer(ap, buf, buflen, do_write);
2927 else
2928 ata_pio_data_xfer(ap, buf, buflen, do_write);
2932 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
2933 * @qc: Command on going
2935 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
2937 * LOCKING:
2938 * Inherited from caller.
2941 static void ata_pio_sector(struct ata_queued_cmd *qc)
2943 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
2944 struct scatterlist *sg = qc->sg;
2945 struct ata_port *ap = qc->ap;
2946 struct page *page;
2947 unsigned int offset;
2948 unsigned char *buf;
2950 if (qc->cursect == (qc->nsect - 1))
2951 ap->hsm_task_state = HSM_ST_LAST;
2953 page = sg[qc->cursg].page;
2954 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
2956 /* get the current page and offset */
2957 page = nth_page(page, (offset >> PAGE_SHIFT));
2958 offset %= PAGE_SIZE;
2960 buf = kmap(page) + offset;
2962 qc->cursect++;
2963 qc->cursg_ofs++;
2965 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
2966 qc->cursg++;
2967 qc->cursg_ofs = 0;
2970 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2972 /* do the actual data transfer */
2973 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
2974 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
2976 kunmap(page);
2980 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
2981 * @qc: Command on going
2982 * @bytes: number of bytes
2984 * Transfer Transfer data from/to the ATAPI device.
2986 * LOCKING:
2987 * Inherited from caller.
2991 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
2993 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
2994 struct scatterlist *sg = qc->sg;
2995 struct ata_port *ap = qc->ap;
2996 struct page *page;
2997 unsigned char *buf;
2998 unsigned int offset, count;
3000 if (qc->curbytes + bytes >= qc->nbytes)
3001 ap->hsm_task_state = HSM_ST_LAST;
3003 next_sg:
3004 if (unlikely(qc->cursg >= qc->n_elem)) {
3006 * The end of qc->sg is reached and the device expects
3007 * more data to transfer. In order not to overrun qc->sg
3008 * and fulfill length specified in the byte count register,
3009 * - for read case, discard trailing data from the device
3010 * - for write case, padding zero data to the device
3012 u16 pad_buf[1] = { 0 };
3013 unsigned int words = bytes >> 1;
3014 unsigned int i;
3016 if (words) /* warning if bytes > 1 */
3017 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
3018 ap->id, bytes);
3020 for (i = 0; i < words; i++)
3021 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3023 ap->hsm_task_state = HSM_ST_LAST;
3024 return;
3027 sg = &qc->sg[qc->cursg];
3029 page = sg->page;
3030 offset = sg->offset + qc->cursg_ofs;
3032 /* get the current page and offset */
3033 page = nth_page(page, (offset >> PAGE_SHIFT));
3034 offset %= PAGE_SIZE;
3036 /* don't overrun current sg */
3037 count = min(sg->length - qc->cursg_ofs, bytes);
3039 /* don't cross page boundaries */
3040 count = min(count, (unsigned int)PAGE_SIZE - offset);
3042 buf = kmap(page) + offset;
3044 bytes -= count;
3045 qc->curbytes += count;
3046 qc->cursg_ofs += count;
3048 if (qc->cursg_ofs == sg->length) {
3049 qc->cursg++;
3050 qc->cursg_ofs = 0;
3053 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3055 /* do the actual data transfer */
3056 ata_data_xfer(ap, buf, count, do_write);
3058 kunmap(page);
3060 if (bytes)
3061 goto next_sg;
3065 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3066 * @qc: Command on going
3068 * Transfer Transfer data from/to the ATAPI device.
3070 * LOCKING:
3071 * Inherited from caller.
3074 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3076 struct ata_port *ap = qc->ap;
3077 struct ata_device *dev = qc->dev;
3078 unsigned int ireason, bc_lo, bc_hi, bytes;
3079 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3081 ap->ops->tf_read(ap, &qc->tf);
3082 ireason = qc->tf.nsect;
3083 bc_lo = qc->tf.lbam;
3084 bc_hi = qc->tf.lbah;
3085 bytes = (bc_hi << 8) | bc_lo;
3087 /* shall be cleared to zero, indicating xfer of data */
3088 if (ireason & (1 << 0))
3089 goto err_out;
3091 /* make sure transfer direction matches expected */
3092 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3093 if (do_write != i_write)
3094 goto err_out;
3096 __atapi_pio_bytes(qc, bytes);
3098 return;
3100 err_out:
3101 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3102 ap->id, dev->devno);
3103 ap->hsm_task_state = HSM_ST_ERR;
3107 * ata_pio_block - start PIO on a block
3108 * @ap: the target ata_port
3110 * LOCKING:
3111 * None. (executing in kernel thread context)
3114 static void ata_pio_block(struct ata_port *ap)
3116 struct ata_queued_cmd *qc;
3117 u8 status;
3120 * This is purely heuristic. This is a fast path.
3121 * Sometimes when we enter, BSY will be cleared in
3122 * a chk-status or two. If not, the drive is probably seeking
3123 * or something. Snooze for a couple msecs, then
3124 * chk-status again. If still busy, fall back to
3125 * HSM_ST_POLL state.
3127 status = ata_busy_wait(ap, ATA_BUSY, 5);
3128 if (status & ATA_BUSY) {
3129 msleep(2);
3130 status = ata_busy_wait(ap, ATA_BUSY, 10);
3131 if (status & ATA_BUSY) {
3132 ap->hsm_task_state = HSM_ST_POLL;
3133 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3134 return;
3138 qc = ata_qc_from_tag(ap, ap->active_tag);
3139 assert(qc != NULL);
3141 if (is_atapi_taskfile(&qc->tf)) {
3142 /* no more data to transfer or unsupported ATAPI command */
3143 if ((status & ATA_DRQ) == 0) {
3144 ap->hsm_task_state = HSM_ST_LAST;
3145 return;
3148 atapi_pio_bytes(qc);
3149 } else {
3150 /* handle BSY=0, DRQ=0 as error */
3151 if ((status & ATA_DRQ) == 0) {
3152 ap->hsm_task_state = HSM_ST_ERR;
3153 return;
3156 ata_pio_sector(qc);
3160 static void ata_pio_error(struct ata_port *ap)
3162 struct ata_queued_cmd *qc;
3163 u8 drv_stat;
3165 qc = ata_qc_from_tag(ap, ap->active_tag);
3166 assert(qc != NULL);
3168 drv_stat = ata_chk_status(ap);
3169 printk(KERN_WARNING "ata%u: PIO error, drv_stat 0x%x\n",
3170 ap->id, drv_stat);
3172 ap->hsm_task_state = HSM_ST_IDLE;
3174 ata_poll_qc_complete(qc, drv_stat | ATA_ERR);
3177 static void ata_pio_task(void *_data)
3179 struct ata_port *ap = _data;
3180 unsigned long timeout;
3181 int qc_completed;
3183 fsm_start:
3184 timeout = 0;
3185 qc_completed = 0;
3187 switch (ap->hsm_task_state) {
3188 case HSM_ST_IDLE:
3189 return;
3191 case HSM_ST:
3192 ata_pio_block(ap);
3193 break;
3195 case HSM_ST_LAST:
3196 qc_completed = ata_pio_complete(ap);
3197 break;
3199 case HSM_ST_POLL:
3200 case HSM_ST_LAST_POLL:
3201 timeout = ata_pio_poll(ap);
3202 break;
3204 case HSM_ST_TMOUT:
3205 case HSM_ST_ERR:
3206 ata_pio_error(ap);
3207 return;
3210 if (timeout)
3211 queue_delayed_work(ata_wq, &ap->pio_task, timeout);
3212 else if (!qc_completed)
3213 goto fsm_start;
3217 * ata_qc_timeout - Handle timeout of queued command
3218 * @qc: Command that timed out
3220 * Some part of the kernel (currently, only the SCSI layer)
3221 * has noticed that the active command on port @ap has not
3222 * completed after a specified length of time. Handle this
3223 * condition by disabling DMA (if necessary) and completing
3224 * transactions, with error if necessary.
3226 * This also handles the case of the "lost interrupt", where
3227 * for some reason (possibly hardware bug, possibly driver bug)
3228 * an interrupt was not delivered to the driver, even though the
3229 * transaction completed successfully.
3231 * LOCKING:
3232 * Inherited from SCSI layer (none, can sleep)
3235 static void ata_qc_timeout(struct ata_queued_cmd *qc)
3237 struct ata_port *ap = qc->ap;
3238 struct ata_host_set *host_set = ap->host_set;
3239 struct ata_device *dev = qc->dev;
3240 u8 host_stat = 0, drv_stat;
3241 unsigned long flags;
3243 DPRINTK("ENTER\n");
3245 /* FIXME: doesn't this conflict with timeout handling? */
3246 if (qc->dev->class == ATA_DEV_ATAPI && qc->scsicmd) {
3247 struct scsi_cmnd *cmd = qc->scsicmd;
3249 if (!(cmd->eh_eflags & SCSI_EH_CANCEL_CMD)) {
3251 /* finish completing original command */
3252 spin_lock_irqsave(&host_set->lock, flags);
3253 __ata_qc_complete(qc);
3254 spin_unlock_irqrestore(&host_set->lock, flags);
3256 atapi_request_sense(ap, dev, cmd);
3258 cmd->result = (CHECK_CONDITION << 1) | (DID_OK << 16);
3259 scsi_finish_command(cmd);
3261 goto out;
3265 spin_lock_irqsave(&host_set->lock, flags);
3267 /* hack alert! We cannot use the supplied completion
3268 * function from inside the ->eh_strategy_handler() thread.
3269 * libata is the only user of ->eh_strategy_handler() in
3270 * any kernel, so the default scsi_done() assumes it is
3271 * not being called from the SCSI EH.
3273 qc->scsidone = scsi_finish_command;
3275 switch (qc->tf.protocol) {
3277 case ATA_PROT_DMA:
3278 case ATA_PROT_ATAPI_DMA:
3279 host_stat = ap->ops->bmdma_status(ap);
3281 /* before we do anything else, clear DMA-Start bit */
3282 ap->ops->bmdma_stop(qc);
3284 /* fall through */
3286 default:
3287 ata_altstatus(ap);
3288 drv_stat = ata_chk_status(ap);
3290 /* ack bmdma irq events */
3291 ap->ops->irq_clear(ap);
3293 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3294 ap->id, qc->tf.command, drv_stat, host_stat);
3296 /* complete taskfile transaction */
3297 ata_qc_complete(qc, drv_stat);
3298 break;
3301 spin_unlock_irqrestore(&host_set->lock, flags);
3303 out:
3304 DPRINTK("EXIT\n");
3308 * ata_eng_timeout - Handle timeout of queued command
3309 * @ap: Port on which timed-out command is active
3311 * Some part of the kernel (currently, only the SCSI layer)
3312 * has noticed that the active command on port @ap has not
3313 * completed after a specified length of time. Handle this
3314 * condition by disabling DMA (if necessary) and completing
3315 * transactions, with error if necessary.
3317 * This also handles the case of the "lost interrupt", where
3318 * for some reason (possibly hardware bug, possibly driver bug)
3319 * an interrupt was not delivered to the driver, even though the
3320 * transaction completed successfully.
3322 * LOCKING:
3323 * Inherited from SCSI layer (none, can sleep)
3326 void ata_eng_timeout(struct ata_port *ap)
3328 struct ata_queued_cmd *qc;
3330 DPRINTK("ENTER\n");
3332 qc = ata_qc_from_tag(ap, ap->active_tag);
3333 if (qc)
3334 ata_qc_timeout(qc);
3335 else {
3336 printk(KERN_ERR "ata%u: BUG: timeout without command\n",
3337 ap->id);
3338 goto out;
3341 out:
3342 DPRINTK("EXIT\n");
3346 * ata_qc_new - Request an available ATA command, for queueing
3347 * @ap: Port associated with device @dev
3348 * @dev: Device from whom we request an available command structure
3350 * LOCKING:
3351 * None.
3354 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3356 struct ata_queued_cmd *qc = NULL;
3357 unsigned int i;
3359 for (i = 0; i < ATA_MAX_QUEUE; i++)
3360 if (!test_and_set_bit(i, &ap->qactive)) {
3361 qc = ata_qc_from_tag(ap, i);
3362 break;
3365 if (qc)
3366 qc->tag = i;
3368 return qc;
3372 * ata_qc_new_init - Request an available ATA command, and initialize it
3373 * @ap: Port associated with device @dev
3374 * @dev: Device from whom we request an available command structure
3376 * LOCKING:
3377 * None.
3380 struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3381 struct ata_device *dev)
3383 struct ata_queued_cmd *qc;
3385 qc = ata_qc_new(ap);
3386 if (qc) {
3387 qc->sg = NULL;
3388 qc->flags = 0;
3389 qc->scsicmd = NULL;
3390 qc->ap = ap;
3391 qc->dev = dev;
3392 qc->cursect = qc->cursg = qc->cursg_ofs = 0;
3393 qc->nsect = 0;
3394 qc->nbytes = qc->curbytes = 0;
3396 ata_tf_init(ap, &qc->tf, dev->devno);
3399 return qc;
3402 int ata_qc_complete_noop(struct ata_queued_cmd *qc, u8 drv_stat)
3404 return 0;
3407 static void __ata_qc_complete(struct ata_queued_cmd *qc)
3409 struct ata_port *ap = qc->ap;
3410 unsigned int tag, do_clear = 0;
3412 qc->flags = 0;
3413 tag = qc->tag;
3414 if (likely(ata_tag_valid(tag))) {
3415 if (tag == ap->active_tag)
3416 ap->active_tag = ATA_TAG_POISON;
3417 qc->tag = ATA_TAG_POISON;
3418 do_clear = 1;
3421 if (qc->waiting) {
3422 struct completion *waiting = qc->waiting;
3423 qc->waiting = NULL;
3424 complete(waiting);
3427 if (likely(do_clear))
3428 clear_bit(tag, &ap->qactive);
3432 * ata_qc_free - free unused ata_queued_cmd
3433 * @qc: Command to complete
3435 * Designed to free unused ata_queued_cmd object
3436 * in case something prevents using it.
3438 * LOCKING:
3439 * spin_lock_irqsave(host_set lock)
3441 void ata_qc_free(struct ata_queued_cmd *qc)
3443 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3444 assert(qc->waiting == NULL); /* nothing should be waiting */
3446 __ata_qc_complete(qc);
3450 * ata_qc_complete - Complete an active ATA command
3451 * @qc: Command to complete
3452 * @drv_stat: ATA Status register contents
3454 * Indicate to the mid and upper layers that an ATA
3455 * command has completed, with either an ok or not-ok status.
3457 * LOCKING:
3458 * spin_lock_irqsave(host_set lock)
3461 void ata_qc_complete(struct ata_queued_cmd *qc, u8 drv_stat)
3463 int rc;
3465 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3466 assert(qc->flags & ATA_QCFLAG_ACTIVE);
3468 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3469 ata_sg_clean(qc);
3471 /* atapi: mark qc as inactive to prevent the interrupt handler
3472 * from completing the command twice later, before the error handler
3473 * is called. (when rc != 0 and atapi request sense is needed)
3475 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3477 /* call completion callback */
3478 rc = qc->complete_fn(qc, drv_stat);
3480 /* if callback indicates not to complete command (non-zero),
3481 * return immediately
3483 if (rc != 0)
3484 return;
3486 __ata_qc_complete(qc);
3488 VPRINTK("EXIT\n");
3491 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3493 struct ata_port *ap = qc->ap;
3495 switch (qc->tf.protocol) {
3496 case ATA_PROT_DMA:
3497 case ATA_PROT_ATAPI_DMA:
3498 return 1;
3500 case ATA_PROT_ATAPI:
3501 case ATA_PROT_PIO:
3502 case ATA_PROT_PIO_MULT:
3503 if (ap->flags & ATA_FLAG_PIO_DMA)
3504 return 1;
3506 /* fall through */
3508 default:
3509 return 0;
3512 /* never reached */
3516 * ata_qc_issue - issue taskfile to device
3517 * @qc: command to issue to device
3519 * Prepare an ATA command to submission to device.
3520 * This includes mapping the data into a DMA-able
3521 * area, filling in the S/G table, and finally
3522 * writing the taskfile to hardware, starting the command.
3524 * LOCKING:
3525 * spin_lock_irqsave(host_set lock)
3527 * RETURNS:
3528 * Zero on success, negative on error.
3531 int ata_qc_issue(struct ata_queued_cmd *qc)
3533 struct ata_port *ap = qc->ap;
3535 if (ata_should_dma_map(qc)) {
3536 if (qc->flags & ATA_QCFLAG_SG) {
3537 if (ata_sg_setup(qc))
3538 goto err_out;
3539 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
3540 if (ata_sg_setup_one(qc))
3541 goto err_out;
3543 } else {
3544 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3547 ap->ops->qc_prep(qc);
3549 qc->ap->active_tag = qc->tag;
3550 qc->flags |= ATA_QCFLAG_ACTIVE;
3552 return ap->ops->qc_issue(qc);
3554 err_out:
3555 return -1;
3560 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
3561 * @qc: command to issue to device
3563 * Using various libata functions and hooks, this function
3564 * starts an ATA command. ATA commands are grouped into
3565 * classes called "protocols", and issuing each type of protocol
3566 * is slightly different.
3568 * May be used as the qc_issue() entry in ata_port_operations.
3570 * LOCKING:
3571 * spin_lock_irqsave(host_set lock)
3573 * RETURNS:
3574 * Zero on success, negative on error.
3577 int ata_qc_issue_prot(struct ata_queued_cmd *qc)
3579 struct ata_port *ap = qc->ap;
3581 ata_dev_select(ap, qc->dev->devno, 1, 0);
3583 switch (qc->tf.protocol) {
3584 case ATA_PROT_NODATA:
3585 ata_tf_to_host_nolock(ap, &qc->tf);
3586 break;
3588 case ATA_PROT_DMA:
3589 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3590 ap->ops->bmdma_setup(qc); /* set up bmdma */
3591 ap->ops->bmdma_start(qc); /* initiate bmdma */
3592 break;
3594 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
3595 ata_qc_set_polling(qc);
3596 ata_tf_to_host_nolock(ap, &qc->tf);
3597 ap->hsm_task_state = HSM_ST;
3598 queue_work(ata_wq, &ap->pio_task);
3599 break;
3601 case ATA_PROT_ATAPI:
3602 ata_qc_set_polling(qc);
3603 ata_tf_to_host_nolock(ap, &qc->tf);
3604 queue_work(ata_wq, &ap->packet_task);
3605 break;
3607 case ATA_PROT_ATAPI_NODATA:
3608 ap->flags |= ATA_FLAG_NOINTR;
3609 ata_tf_to_host_nolock(ap, &qc->tf);
3610 queue_work(ata_wq, &ap->packet_task);
3611 break;
3613 case ATA_PROT_ATAPI_DMA:
3614 ap->flags |= ATA_FLAG_NOINTR;
3615 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3616 ap->ops->bmdma_setup(qc); /* set up bmdma */
3617 queue_work(ata_wq, &ap->packet_task);
3618 break;
3620 default:
3621 WARN_ON(1);
3622 return -1;
3625 return 0;
3629 * ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction
3630 * @qc: Info associated with this ATA transaction.
3632 * LOCKING:
3633 * spin_lock_irqsave(host_set lock)
3636 static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc)
3638 struct ata_port *ap = qc->ap;
3639 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3640 u8 dmactl;
3641 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3643 /* load PRD table addr. */
3644 mb(); /* make sure PRD table writes are visible to controller */
3645 writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS);
3647 /* specify data direction, triple-check start bit is clear */
3648 dmactl = readb(mmio + ATA_DMA_CMD);
3649 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3650 if (!rw)
3651 dmactl |= ATA_DMA_WR;
3652 writeb(dmactl, mmio + ATA_DMA_CMD);
3654 /* issue r/w command */
3655 ap->ops->exec_command(ap, &qc->tf);
3659 * ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction
3660 * @qc: Info associated with this ATA transaction.
3662 * LOCKING:
3663 * spin_lock_irqsave(host_set lock)
3666 static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc)
3668 struct ata_port *ap = qc->ap;
3669 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3670 u8 dmactl;
3672 /* start host DMA transaction */
3673 dmactl = readb(mmio + ATA_DMA_CMD);
3674 writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD);
3676 /* Strictly, one may wish to issue a readb() here, to
3677 * flush the mmio write. However, control also passes
3678 * to the hardware at this point, and it will interrupt
3679 * us when we are to resume control. So, in effect,
3680 * we don't care when the mmio write flushes.
3681 * Further, a read of the DMA status register _immediately_
3682 * following the write may not be what certain flaky hardware
3683 * is expected, so I think it is best to not add a readb()
3684 * without first all the MMIO ATA cards/mobos.
3685 * Or maybe I'm just being paranoid.
3690 * ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO)
3691 * @qc: Info associated with this ATA transaction.
3693 * LOCKING:
3694 * spin_lock_irqsave(host_set lock)
3697 static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc)
3699 struct ata_port *ap = qc->ap;
3700 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3701 u8 dmactl;
3703 /* load PRD table addr. */
3704 outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3706 /* specify data direction, triple-check start bit is clear */
3707 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3708 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3709 if (!rw)
3710 dmactl |= ATA_DMA_WR;
3711 outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3713 /* issue r/w command */
3714 ap->ops->exec_command(ap, &qc->tf);
3718 * ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO)
3719 * @qc: Info associated with this ATA transaction.
3721 * LOCKING:
3722 * spin_lock_irqsave(host_set lock)
3725 static void ata_bmdma_start_pio (struct ata_queued_cmd *qc)
3727 struct ata_port *ap = qc->ap;
3728 u8 dmactl;
3730 /* start host DMA transaction */
3731 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3732 outb(dmactl | ATA_DMA_START,
3733 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3738 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3739 * @qc: Info associated with this ATA transaction.
3741 * Writes the ATA_DMA_START flag to the DMA command register.
3743 * May be used as the bmdma_start() entry in ata_port_operations.
3745 * LOCKING:
3746 * spin_lock_irqsave(host_set lock)
3748 void ata_bmdma_start(struct ata_queued_cmd *qc)
3750 if (qc->ap->flags & ATA_FLAG_MMIO)
3751 ata_bmdma_start_mmio(qc);
3752 else
3753 ata_bmdma_start_pio(qc);
3758 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3759 * @qc: Info associated with this ATA transaction.
3761 * Writes address of PRD table to device's PRD Table Address
3762 * register, sets the DMA control register, and calls
3763 * ops->exec_command() to start the transfer.
3765 * May be used as the bmdma_setup() entry in ata_port_operations.
3767 * LOCKING:
3768 * spin_lock_irqsave(host_set lock)
3770 void ata_bmdma_setup(struct ata_queued_cmd *qc)
3772 if (qc->ap->flags & ATA_FLAG_MMIO)
3773 ata_bmdma_setup_mmio(qc);
3774 else
3775 ata_bmdma_setup_pio(qc);
3780 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
3781 * @ap: Port associated with this ATA transaction.
3783 * Clear interrupt and error flags in DMA status register.
3785 * May be used as the irq_clear() entry in ata_port_operations.
3787 * LOCKING:
3788 * spin_lock_irqsave(host_set lock)
3791 void ata_bmdma_irq_clear(struct ata_port *ap)
3793 if (ap->flags & ATA_FLAG_MMIO) {
3794 void __iomem *mmio = ((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS;
3795 writeb(readb(mmio), mmio);
3796 } else {
3797 unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS;
3798 outb(inb(addr), addr);
3805 * ata_bmdma_status - Read PCI IDE BMDMA status
3806 * @ap: Port associated with this ATA transaction.
3808 * Read and return BMDMA status register.
3810 * May be used as the bmdma_status() entry in ata_port_operations.
3812 * LOCKING:
3813 * spin_lock_irqsave(host_set lock)
3816 u8 ata_bmdma_status(struct ata_port *ap)
3818 u8 host_stat;
3819 if (ap->flags & ATA_FLAG_MMIO) {
3820 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3821 host_stat = readb(mmio + ATA_DMA_STATUS);
3822 } else
3823 host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3824 return host_stat;
3829 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3830 * @qc: Command we are ending DMA for
3832 * Clears the ATA_DMA_START flag in the dma control register
3834 * May be used as the bmdma_stop() entry in ata_port_operations.
3836 * LOCKING:
3837 * spin_lock_irqsave(host_set lock)
3840 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3842 struct ata_port *ap = qc->ap;
3843 if (ap->flags & ATA_FLAG_MMIO) {
3844 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3846 /* clear start/stop bit */
3847 writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3848 mmio + ATA_DMA_CMD);
3849 } else {
3850 /* clear start/stop bit */
3851 outb(inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD) & ~ATA_DMA_START,
3852 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3855 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3856 ata_altstatus(ap); /* dummy read */
3860 * ata_host_intr - Handle host interrupt for given (port, task)
3861 * @ap: Port on which interrupt arrived (possibly...)
3862 * @qc: Taskfile currently active in engine
3864 * Handle host interrupt for given queued command. Currently,
3865 * only DMA interrupts are handled. All other commands are
3866 * handled via polling with interrupts disabled (nIEN bit).
3868 * LOCKING:
3869 * spin_lock_irqsave(host_set lock)
3871 * RETURNS:
3872 * One if interrupt was handled, zero if not (shared irq).
3875 inline unsigned int ata_host_intr (struct ata_port *ap,
3876 struct ata_queued_cmd *qc)
3878 u8 status, host_stat;
3880 switch (qc->tf.protocol) {
3882 case ATA_PROT_DMA:
3883 case ATA_PROT_ATAPI_DMA:
3884 case ATA_PROT_ATAPI:
3885 /* check status of DMA engine */
3886 host_stat = ap->ops->bmdma_status(ap);
3887 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
3889 /* if it's not our irq... */
3890 if (!(host_stat & ATA_DMA_INTR))
3891 goto idle_irq;
3893 /* before we do anything else, clear DMA-Start bit */
3894 ap->ops->bmdma_stop(qc);
3896 /* fall through */
3898 case ATA_PROT_ATAPI_NODATA:
3899 case ATA_PROT_NODATA:
3900 /* check altstatus */
3901 status = ata_altstatus(ap);
3902 if (status & ATA_BUSY)
3903 goto idle_irq;
3905 /* check main status, clearing INTRQ */
3906 status = ata_chk_status(ap);
3907 if (unlikely(status & ATA_BUSY))
3908 goto idle_irq;
3909 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
3910 ap->id, qc->tf.protocol, status);
3912 /* ack bmdma irq events */
3913 ap->ops->irq_clear(ap);
3915 /* complete taskfile transaction */
3916 ata_qc_complete(qc, status);
3917 break;
3919 default:
3920 goto idle_irq;
3923 return 1; /* irq handled */
3925 idle_irq:
3926 ap->stats.idle_irq++;
3928 #ifdef ATA_IRQ_TRAP
3929 if ((ap->stats.idle_irq % 1000) == 0) {
3930 handled = 1;
3931 ata_irq_ack(ap, 0); /* debug trap */
3932 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
3934 #endif
3935 return 0; /* irq not handled */
3939 * ata_interrupt - Default ATA host interrupt handler
3940 * @irq: irq line (unused)
3941 * @dev_instance: pointer to our ata_host_set information structure
3942 * @regs: unused
3944 * Default interrupt handler for PCI IDE devices. Calls
3945 * ata_host_intr() for each port that is not disabled.
3947 * LOCKING:
3948 * Obtains host_set lock during operation.
3950 * RETURNS:
3951 * IRQ_NONE or IRQ_HANDLED.
3954 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
3956 struct ata_host_set *host_set = dev_instance;
3957 unsigned int i;
3958 unsigned int handled = 0;
3959 unsigned long flags;
3961 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
3962 spin_lock_irqsave(&host_set->lock, flags);
3964 for (i = 0; i < host_set->n_ports; i++) {
3965 struct ata_port *ap;
3967 ap = host_set->ports[i];
3968 if (ap &&
3969 !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
3970 struct ata_queued_cmd *qc;
3972 qc = ata_qc_from_tag(ap, ap->active_tag);
3973 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
3974 (qc->flags & ATA_QCFLAG_ACTIVE))
3975 handled |= ata_host_intr(ap, qc);
3979 spin_unlock_irqrestore(&host_set->lock, flags);
3981 return IRQ_RETVAL(handled);
3985 * atapi_packet_task - Write CDB bytes to hardware
3986 * @_data: Port to which ATAPI device is attached.
3988 * When device has indicated its readiness to accept
3989 * a CDB, this function is called. Send the CDB.
3990 * If DMA is to be performed, exit immediately.
3991 * Otherwise, we are in polling mode, so poll
3992 * status under operation succeeds or fails.
3994 * LOCKING:
3995 * Kernel thread context (may sleep)
3998 static void atapi_packet_task(void *_data)
4000 struct ata_port *ap = _data;
4001 struct ata_queued_cmd *qc;
4002 u8 status;
4004 qc = ata_qc_from_tag(ap, ap->active_tag);
4005 assert(qc != NULL);
4006 assert(qc->flags & ATA_QCFLAG_ACTIVE);
4008 /* sleep-wait for BSY to clear */
4009 DPRINTK("busy wait\n");
4010 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB))
4011 goto err_out;
4013 /* make sure DRQ is set */
4014 status = ata_chk_status(ap);
4015 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ)
4016 goto err_out;
4018 /* send SCSI cdb */
4019 DPRINTK("send cdb\n");
4020 assert(ap->cdb_len >= 12);
4022 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
4023 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
4024 unsigned long flags;
4026 /* Once we're done issuing command and kicking bmdma,
4027 * irq handler takes over. To not lose irq, we need
4028 * to clear NOINTR flag before sending cdb, but
4029 * interrupt handler shouldn't be invoked before we're
4030 * finished. Hence, the following locking.
4032 spin_lock_irqsave(&ap->host_set->lock, flags);
4033 ap->flags &= ~ATA_FLAG_NOINTR;
4034 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
4035 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
4036 ap->ops->bmdma_start(qc); /* initiate bmdma */
4037 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4038 } else {
4039 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
4041 /* PIO commands are handled by polling */
4042 ap->hsm_task_state = HSM_ST;
4043 queue_work(ata_wq, &ap->pio_task);
4046 return;
4048 err_out:
4049 ata_poll_qc_complete(qc, ATA_ERR);
4054 * ata_port_start - Set port up for dma.
4055 * @ap: Port to initialize
4057 * Called just after data structures for each port are
4058 * initialized. Allocates space for PRD table.
4060 * May be used as the port_start() entry in ata_port_operations.
4062 * LOCKING:
4063 * Inherited from caller.
4066 int ata_port_start (struct ata_port *ap)
4068 struct device *dev = ap->host_set->dev;
4070 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4071 if (!ap->prd)
4072 return -ENOMEM;
4074 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4076 return 0;
4081 * ata_port_stop - Undo ata_port_start()
4082 * @ap: Port to shut down
4084 * Frees the PRD table.
4086 * May be used as the port_stop() entry in ata_port_operations.
4088 * LOCKING:
4089 * Inherited from caller.
4092 void ata_port_stop (struct ata_port *ap)
4094 struct device *dev = ap->host_set->dev;
4096 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4099 void ata_host_stop (struct ata_host_set *host_set)
4101 if (host_set->mmio_base)
4102 iounmap(host_set->mmio_base);
4107 * ata_host_remove - Unregister SCSI host structure with upper layers
4108 * @ap: Port to unregister
4109 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4111 * LOCKING:
4112 * Inherited from caller.
4115 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4117 struct Scsi_Host *sh = ap->host;
4119 DPRINTK("ENTER\n");
4121 if (do_unregister)
4122 scsi_remove_host(sh);
4124 ap->ops->port_stop(ap);
4128 * ata_host_init - Initialize an ata_port structure
4129 * @ap: Structure to initialize
4130 * @host: associated SCSI mid-layer structure
4131 * @host_set: Collection of hosts to which @ap belongs
4132 * @ent: Probe information provided by low-level driver
4133 * @port_no: Port number associated with this ata_port
4135 * Initialize a new ata_port structure, and its associated
4136 * scsi_host.
4138 * LOCKING:
4139 * Inherited from caller.
4142 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4143 struct ata_host_set *host_set,
4144 const struct ata_probe_ent *ent, unsigned int port_no)
4146 unsigned int i;
4148 host->max_id = 16;
4149 host->max_lun = 1;
4150 host->max_channel = 1;
4151 host->unique_id = ata_unique_id++;
4152 host->max_cmd_len = 12;
4154 scsi_assign_lock(host, &host_set->lock);
4156 ap->flags = ATA_FLAG_PORT_DISABLED;
4157 ap->id = host->unique_id;
4158 ap->host = host;
4159 ap->ctl = ATA_DEVCTL_OBS;
4160 ap->host_set = host_set;
4161 ap->port_no = port_no;
4162 ap->hard_port_no =
4163 ent->legacy_mode ? ent->hard_port_no : port_no;
4164 ap->pio_mask = ent->pio_mask;
4165 ap->mwdma_mask = ent->mwdma_mask;
4166 ap->udma_mask = ent->udma_mask;
4167 ap->flags |= ent->host_flags;
4168 ap->ops = ent->port_ops;
4169 ap->cbl = ATA_CBL_NONE;
4170 ap->active_tag = ATA_TAG_POISON;
4171 ap->last_ctl = 0xFF;
4173 INIT_WORK(&ap->packet_task, atapi_packet_task, ap);
4174 INIT_WORK(&ap->pio_task, ata_pio_task, ap);
4176 for (i = 0; i < ATA_MAX_DEVICES; i++)
4177 ap->device[i].devno = i;
4179 #ifdef ATA_IRQ_TRAP
4180 ap->stats.unhandled_irq = 1;
4181 ap->stats.idle_irq = 1;
4182 #endif
4184 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4188 * ata_host_add - Attach low-level ATA driver to system
4189 * @ent: Information provided by low-level driver
4190 * @host_set: Collections of ports to which we add
4191 * @port_no: Port number associated with this host
4193 * Attach low-level ATA driver to system.
4195 * LOCKING:
4196 * PCI/etc. bus probe sem.
4198 * RETURNS:
4199 * New ata_port on success, for NULL on error.
4202 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
4203 struct ata_host_set *host_set,
4204 unsigned int port_no)
4206 struct Scsi_Host *host;
4207 struct ata_port *ap;
4208 int rc;
4210 DPRINTK("ENTER\n");
4211 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4212 if (!host)
4213 return NULL;
4215 ap = (struct ata_port *) &host->hostdata[0];
4217 ata_host_init(ap, host, host_set, ent, port_no);
4219 rc = ap->ops->port_start(ap);
4220 if (rc)
4221 goto err_out;
4223 return ap;
4225 err_out:
4226 scsi_host_put(host);
4227 return NULL;
4231 * ata_device_add - Register hardware device with ATA and SCSI layers
4232 * @ent: Probe information describing hardware device to be registered
4234 * This function processes the information provided in the probe
4235 * information struct @ent, allocates the necessary ATA and SCSI
4236 * host information structures, initializes them, and registers
4237 * everything with requisite kernel subsystems.
4239 * This function requests irqs, probes the ATA bus, and probes
4240 * the SCSI bus.
4242 * LOCKING:
4243 * PCI/etc. bus probe sem.
4245 * RETURNS:
4246 * Number of ports registered. Zero on error (no ports registered).
4249 int ata_device_add(const struct ata_probe_ent *ent)
4251 unsigned int count = 0, i;
4252 struct device *dev = ent->dev;
4253 struct ata_host_set *host_set;
4255 DPRINTK("ENTER\n");
4256 /* alloc a container for our list of ATA ports (buses) */
4257 host_set = kmalloc(sizeof(struct ata_host_set) +
4258 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4259 if (!host_set)
4260 return 0;
4261 memset(host_set, 0, sizeof(struct ata_host_set) + (ent->n_ports * sizeof(void *)));
4262 spin_lock_init(&host_set->lock);
4264 host_set->dev = dev;
4265 host_set->n_ports = ent->n_ports;
4266 host_set->irq = ent->irq;
4267 host_set->mmio_base = ent->mmio_base;
4268 host_set->private_data = ent->private_data;
4269 host_set->ops = ent->port_ops;
4271 /* register each port bound to this device */
4272 for (i = 0; i < ent->n_ports; i++) {
4273 struct ata_port *ap;
4274 unsigned long xfer_mode_mask;
4276 ap = ata_host_add(ent, host_set, i);
4277 if (!ap)
4278 goto err_out;
4280 host_set->ports[i] = ap;
4281 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4282 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4283 (ap->pio_mask << ATA_SHIFT_PIO);
4285 /* print per-port info to dmesg */
4286 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4287 "bmdma 0x%lX irq %lu\n",
4288 ap->id,
4289 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4290 ata_mode_string(xfer_mode_mask),
4291 ap->ioaddr.cmd_addr,
4292 ap->ioaddr.ctl_addr,
4293 ap->ioaddr.bmdma_addr,
4294 ent->irq);
4296 ata_chk_status(ap);
4297 host_set->ops->irq_clear(ap);
4298 count++;
4301 if (!count) {
4302 kfree(host_set);
4303 return 0;
4306 /* obtain irq, that is shared between channels */
4307 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4308 DRV_NAME, host_set))
4309 goto err_out;
4311 /* perform each probe synchronously */
4312 DPRINTK("probe begin\n");
4313 for (i = 0; i < count; i++) {
4314 struct ata_port *ap;
4315 int rc;
4317 ap = host_set->ports[i];
4319 DPRINTK("ata%u: probe begin\n", ap->id);
4320 rc = ata_bus_probe(ap);
4321 DPRINTK("ata%u: probe end\n", ap->id);
4323 if (rc) {
4324 /* FIXME: do something useful here?
4325 * Current libata behavior will
4326 * tear down everything when
4327 * the module is removed
4328 * or the h/w is unplugged.
4332 rc = scsi_add_host(ap->host, dev);
4333 if (rc) {
4334 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4335 ap->id);
4336 /* FIXME: do something useful here */
4337 /* FIXME: handle unconditional calls to
4338 * scsi_scan_host and ata_host_remove, below,
4339 * at the very least
4344 /* probes are done, now scan each port's disk(s) */
4345 DPRINTK("probe begin\n");
4346 for (i = 0; i < count; i++) {
4347 struct ata_port *ap = host_set->ports[i];
4349 ata_scsi_scan_host(ap);
4352 dev_set_drvdata(dev, host_set);
4354 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4355 return ent->n_ports; /* success */
4357 err_out:
4358 for (i = 0; i < count; i++) {
4359 ata_host_remove(host_set->ports[i], 1);
4360 scsi_host_put(host_set->ports[i]->host);
4362 kfree(host_set);
4363 VPRINTK("EXIT, returning 0\n");
4364 return 0;
4368 * ata_host_set_remove - PCI layer callback for device removal
4369 * @host_set: ATA host set that was removed
4371 * Unregister all objects associated with this host set. Free those
4372 * objects.
4374 * LOCKING:
4375 * Inherited from calling layer (may sleep).
4378 void ata_host_set_remove(struct ata_host_set *host_set)
4380 struct ata_port *ap;
4381 unsigned int i;
4383 for (i = 0; i < host_set->n_ports; i++) {
4384 ap = host_set->ports[i];
4385 scsi_remove_host(ap->host);
4388 free_irq(host_set->irq, host_set);
4390 for (i = 0; i < host_set->n_ports; i++) {
4391 ap = host_set->ports[i];
4393 ata_scsi_release(ap->host);
4395 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4396 struct ata_ioports *ioaddr = &ap->ioaddr;
4398 if (ioaddr->cmd_addr == 0x1f0)
4399 release_region(0x1f0, 8);
4400 else if (ioaddr->cmd_addr == 0x170)
4401 release_region(0x170, 8);
4404 scsi_host_put(ap->host);
4407 if (host_set->ops->host_stop)
4408 host_set->ops->host_stop(host_set);
4410 kfree(host_set);
4414 * ata_scsi_release - SCSI layer callback hook for host unload
4415 * @host: libata host to be unloaded
4417 * Performs all duties necessary to shut down a libata port...
4418 * Kill port kthread, disable port, and release resources.
4420 * LOCKING:
4421 * Inherited from SCSI layer.
4423 * RETURNS:
4424 * One.
4427 int ata_scsi_release(struct Scsi_Host *host)
4429 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
4431 DPRINTK("ENTER\n");
4433 ap->ops->port_disable(ap);
4434 ata_host_remove(ap, 0);
4436 DPRINTK("EXIT\n");
4437 return 1;
4441 * ata_std_ports - initialize ioaddr with standard port offsets.
4442 * @ioaddr: IO address structure to be initialized
4444 * Utility function which initializes data_addr, error_addr,
4445 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4446 * device_addr, status_addr, and command_addr to standard offsets
4447 * relative to cmd_addr.
4449 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
4452 void ata_std_ports(struct ata_ioports *ioaddr)
4454 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4455 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4456 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4457 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4458 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4459 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4460 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4461 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4462 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4463 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4466 static struct ata_probe_ent *
4467 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
4469 struct ata_probe_ent *probe_ent;
4471 probe_ent = kmalloc(sizeof(*probe_ent), GFP_KERNEL);
4472 if (!probe_ent) {
4473 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
4474 kobject_name(&(dev->kobj)));
4475 return NULL;
4478 memset(probe_ent, 0, sizeof(*probe_ent));
4480 INIT_LIST_HEAD(&probe_ent->node);
4481 probe_ent->dev = dev;
4483 probe_ent->sht = port->sht;
4484 probe_ent->host_flags = port->host_flags;
4485 probe_ent->pio_mask = port->pio_mask;
4486 probe_ent->mwdma_mask = port->mwdma_mask;
4487 probe_ent->udma_mask = port->udma_mask;
4488 probe_ent->port_ops = port->port_ops;
4490 return probe_ent;
4495 #ifdef CONFIG_PCI
4497 void ata_pci_host_stop (struct ata_host_set *host_set)
4499 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4501 pci_iounmap(pdev, host_set->mmio_base);
4505 * ata_pci_init_native_mode - Initialize native-mode driver
4506 * @pdev: pci device to be initialized
4507 * @port: array[2] of pointers to port info structures.
4508 * @ports: bitmap of ports present
4510 * Utility function which allocates and initializes an
4511 * ata_probe_ent structure for a standard dual-port
4512 * PIO-based IDE controller. The returned ata_probe_ent
4513 * structure can be passed to ata_device_add(). The returned
4514 * ata_probe_ent structure should then be freed with kfree().
4516 * The caller need only pass the address of the primary port, the
4517 * secondary will be deduced automatically. If the device has non
4518 * standard secondary port mappings this function can be called twice,
4519 * once for each interface.
4522 struct ata_probe_ent *
4523 ata_pci_init_native_mode(struct pci_dev *pdev, struct ata_port_info **port, int ports)
4525 struct ata_probe_ent *probe_ent =
4526 ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]);
4527 int p = 0;
4529 if (!probe_ent)
4530 return NULL;
4532 probe_ent->irq = pdev->irq;
4533 probe_ent->irq_flags = SA_SHIRQ;
4535 if (ports & ATA_PORT_PRIMARY) {
4536 probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 0);
4537 probe_ent->port[p].altstatus_addr =
4538 probe_ent->port[p].ctl_addr =
4539 pci_resource_start(pdev, 1) | ATA_PCI_CTL_OFS;
4540 probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4);
4541 ata_std_ports(&probe_ent->port[p]);
4542 p++;
4545 if (ports & ATA_PORT_SECONDARY) {
4546 probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 2);
4547 probe_ent->port[p].altstatus_addr =
4548 probe_ent->port[p].ctl_addr =
4549 pci_resource_start(pdev, 3) | ATA_PCI_CTL_OFS;
4550 probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4) + 8;
4551 ata_std_ports(&probe_ent->port[p]);
4552 p++;
4555 probe_ent->n_ports = p;
4556 return probe_ent;
4559 static struct ata_probe_ent *ata_pci_init_legacy_port(struct pci_dev *pdev, struct ata_port_info **port, int port_num)
4561 struct ata_probe_ent *probe_ent;
4563 probe_ent = ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]);
4564 if (!probe_ent)
4565 return NULL;
4567 probe_ent->legacy_mode = 1;
4568 probe_ent->n_ports = 1;
4569 probe_ent->hard_port_no = port_num;
4571 switch(port_num)
4573 case 0:
4574 probe_ent->irq = 14;
4575 probe_ent->port[0].cmd_addr = 0x1f0;
4576 probe_ent->port[0].altstatus_addr =
4577 probe_ent->port[0].ctl_addr = 0x3f6;
4578 break;
4579 case 1:
4580 probe_ent->irq = 15;
4581 probe_ent->port[0].cmd_addr = 0x170;
4582 probe_ent->port[0].altstatus_addr =
4583 probe_ent->port[0].ctl_addr = 0x376;
4584 break;
4586 probe_ent->port[0].bmdma_addr = pci_resource_start(pdev, 4) + 8 * port_num;
4587 ata_std_ports(&probe_ent->port[0]);
4588 return probe_ent;
4592 * ata_pci_init_one - Initialize/register PCI IDE host controller
4593 * @pdev: Controller to be initialized
4594 * @port_info: Information from low-level host driver
4595 * @n_ports: Number of ports attached to host controller
4597 * This is a helper function which can be called from a driver's
4598 * xxx_init_one() probe function if the hardware uses traditional
4599 * IDE taskfile registers.
4601 * This function calls pci_enable_device(), reserves its register
4602 * regions, sets the dma mask, enables bus master mode, and calls
4603 * ata_device_add()
4605 * LOCKING:
4606 * Inherited from PCI layer (may sleep).
4608 * RETURNS:
4609 * Zero on success, negative on errno-based value on error.
4612 int ata_pci_init_one (struct pci_dev *pdev, struct ata_port_info **port_info,
4613 unsigned int n_ports)
4615 struct ata_probe_ent *probe_ent = NULL, *probe_ent2 = NULL;
4616 struct ata_port_info *port[2];
4617 u8 tmp8, mask;
4618 unsigned int legacy_mode = 0;
4619 int disable_dev_on_err = 1;
4620 int rc;
4622 DPRINTK("ENTER\n");
4624 port[0] = port_info[0];
4625 if (n_ports > 1)
4626 port[1] = port_info[1];
4627 else
4628 port[1] = port[0];
4630 if ((port[0]->host_flags & ATA_FLAG_NO_LEGACY) == 0
4631 && (pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
4632 /* TODO: What if one channel is in native mode ... */
4633 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
4634 mask = (1 << 2) | (1 << 0);
4635 if ((tmp8 & mask) != mask)
4636 legacy_mode = (1 << 3);
4639 /* FIXME... */
4640 if ((!legacy_mode) && (n_ports > 2)) {
4641 printk(KERN_ERR "ata: BUG: native mode, n_ports > 2\n");
4642 n_ports = 2;
4643 /* For now */
4646 /* FIXME: Really for ATA it isn't safe because the device may be
4647 multi-purpose and we want to leave it alone if it was already
4648 enabled. Secondly for shared use as Arjan says we want refcounting
4650 Checking dev->is_enabled is insufficient as this is not set at
4651 boot for the primary video which is BIOS enabled
4654 rc = pci_enable_device(pdev);
4655 if (rc)
4656 return rc;
4658 rc = pci_request_regions(pdev, DRV_NAME);
4659 if (rc) {
4660 disable_dev_on_err = 0;
4661 goto err_out;
4664 /* FIXME: Should use platform specific mappers for legacy port ranges */
4665 if (legacy_mode) {
4666 if (!request_region(0x1f0, 8, "libata")) {
4667 struct resource *conflict, res;
4668 res.start = 0x1f0;
4669 res.end = 0x1f0 + 8 - 1;
4670 conflict = ____request_resource(&ioport_resource, &res);
4671 if (!strcmp(conflict->name, "libata"))
4672 legacy_mode |= (1 << 0);
4673 else {
4674 disable_dev_on_err = 0;
4675 printk(KERN_WARNING "ata: 0x1f0 IDE port busy\n");
4677 } else
4678 legacy_mode |= (1 << 0);
4680 if (!request_region(0x170, 8, "libata")) {
4681 struct resource *conflict, res;
4682 res.start = 0x170;
4683 res.end = 0x170 + 8 - 1;
4684 conflict = ____request_resource(&ioport_resource, &res);
4685 if (!strcmp(conflict->name, "libata"))
4686 legacy_mode |= (1 << 1);
4687 else {
4688 disable_dev_on_err = 0;
4689 printk(KERN_WARNING "ata: 0x170 IDE port busy\n");
4691 } else
4692 legacy_mode |= (1 << 1);
4695 /* we have legacy mode, but all ports are unavailable */
4696 if (legacy_mode == (1 << 3)) {
4697 rc = -EBUSY;
4698 goto err_out_regions;
4701 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
4702 if (rc)
4703 goto err_out_regions;
4704 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
4705 if (rc)
4706 goto err_out_regions;
4708 if (legacy_mode) {
4709 if (legacy_mode & (1 << 0))
4710 probe_ent = ata_pci_init_legacy_port(pdev, port, 0);
4711 if (legacy_mode & (1 << 1))
4712 probe_ent2 = ata_pci_init_legacy_port(pdev, port, 1);
4713 } else {
4714 if (n_ports == 2)
4715 probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY | ATA_PORT_SECONDARY);
4716 else
4717 probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY);
4719 if (!probe_ent && !probe_ent2) {
4720 rc = -ENOMEM;
4721 goto err_out_regions;
4724 pci_set_master(pdev);
4726 /* FIXME: check ata_device_add return */
4727 if (legacy_mode) {
4728 if (legacy_mode & (1 << 0))
4729 ata_device_add(probe_ent);
4730 if (legacy_mode & (1 << 1))
4731 ata_device_add(probe_ent2);
4732 } else
4733 ata_device_add(probe_ent);
4735 kfree(probe_ent);
4736 kfree(probe_ent2);
4738 return 0;
4740 err_out_regions:
4741 if (legacy_mode & (1 << 0))
4742 release_region(0x1f0, 8);
4743 if (legacy_mode & (1 << 1))
4744 release_region(0x170, 8);
4745 pci_release_regions(pdev);
4746 err_out:
4747 if (disable_dev_on_err)
4748 pci_disable_device(pdev);
4749 return rc;
4753 * ata_pci_remove_one - PCI layer callback for device removal
4754 * @pdev: PCI device that was removed
4756 * PCI layer indicates to libata via this hook that
4757 * hot-unplug or module unload event has occurred.
4758 * Handle this by unregistering all objects associated
4759 * with this PCI device. Free those objects. Then finally
4760 * release PCI resources and disable device.
4762 * LOCKING:
4763 * Inherited from PCI layer (may sleep).
4766 void ata_pci_remove_one (struct pci_dev *pdev)
4768 struct device *dev = pci_dev_to_dev(pdev);
4769 struct ata_host_set *host_set = dev_get_drvdata(dev);
4771 ata_host_set_remove(host_set);
4772 pci_release_regions(pdev);
4773 pci_disable_device(pdev);
4774 dev_set_drvdata(dev, NULL);
4777 /* move to PCI subsystem */
4778 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
4780 unsigned long tmp = 0;
4782 switch (bits->width) {
4783 case 1: {
4784 u8 tmp8 = 0;
4785 pci_read_config_byte(pdev, bits->reg, &tmp8);
4786 tmp = tmp8;
4787 break;
4789 case 2: {
4790 u16 tmp16 = 0;
4791 pci_read_config_word(pdev, bits->reg, &tmp16);
4792 tmp = tmp16;
4793 break;
4795 case 4: {
4796 u32 tmp32 = 0;
4797 pci_read_config_dword(pdev, bits->reg, &tmp32);
4798 tmp = tmp32;
4799 break;
4802 default:
4803 return -EINVAL;
4806 tmp &= bits->mask;
4808 return (tmp == bits->val) ? 1 : 0;
4810 #endif /* CONFIG_PCI */
4813 static int __init ata_init(void)
4815 ata_wq = create_workqueue("ata");
4816 if (!ata_wq)
4817 return -ENOMEM;
4819 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
4820 return 0;
4823 static void __exit ata_exit(void)
4825 destroy_workqueue(ata_wq);
4828 module_init(ata_init);
4829 module_exit(ata_exit);
4831 static unsigned long ratelimit_time;
4832 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
4834 int ata_ratelimit(void)
4836 int rc;
4837 unsigned long flags;
4839 spin_lock_irqsave(&ata_ratelimit_lock, flags);
4841 if (time_after(jiffies, ratelimit_time)) {
4842 rc = 1;
4843 ratelimit_time = jiffies + (HZ/5);
4844 } else
4845 rc = 0;
4847 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
4849 return rc;
4853 * libata is essentially a library of internal helper functions for
4854 * low-level ATA host controller drivers. As such, the API/ABI is
4855 * likely to change as new drivers are added and updated.
4856 * Do not depend on ABI/API stability.
4859 EXPORT_SYMBOL_GPL(ata_std_bios_param);
4860 EXPORT_SYMBOL_GPL(ata_std_ports);
4861 EXPORT_SYMBOL_GPL(ata_device_add);
4862 EXPORT_SYMBOL_GPL(ata_host_set_remove);
4863 EXPORT_SYMBOL_GPL(ata_sg_init);
4864 EXPORT_SYMBOL_GPL(ata_sg_init_one);
4865 EXPORT_SYMBOL_GPL(ata_qc_complete);
4866 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
4867 EXPORT_SYMBOL_GPL(ata_eng_timeout);
4868 EXPORT_SYMBOL_GPL(ata_tf_load);
4869 EXPORT_SYMBOL_GPL(ata_tf_read);
4870 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
4871 EXPORT_SYMBOL_GPL(ata_std_dev_select);
4872 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
4873 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
4874 EXPORT_SYMBOL_GPL(ata_check_status);
4875 EXPORT_SYMBOL_GPL(ata_altstatus);
4876 EXPORT_SYMBOL_GPL(ata_chk_err);
4877 EXPORT_SYMBOL_GPL(ata_exec_command);
4878 EXPORT_SYMBOL_GPL(ata_port_start);
4879 EXPORT_SYMBOL_GPL(ata_port_stop);
4880 EXPORT_SYMBOL_GPL(ata_host_stop);
4881 EXPORT_SYMBOL_GPL(ata_interrupt);
4882 EXPORT_SYMBOL_GPL(ata_qc_prep);
4883 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
4884 EXPORT_SYMBOL_GPL(ata_bmdma_start);
4885 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
4886 EXPORT_SYMBOL_GPL(ata_bmdma_status);
4887 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
4888 EXPORT_SYMBOL_GPL(ata_port_probe);
4889 EXPORT_SYMBOL_GPL(sata_phy_reset);
4890 EXPORT_SYMBOL_GPL(__sata_phy_reset);
4891 EXPORT_SYMBOL_GPL(ata_bus_reset);
4892 EXPORT_SYMBOL_GPL(ata_port_disable);
4893 EXPORT_SYMBOL_GPL(ata_ratelimit);
4894 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
4895 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
4896 EXPORT_SYMBOL_GPL(ata_scsi_error);
4897 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
4898 EXPORT_SYMBOL_GPL(ata_scsi_release);
4899 EXPORT_SYMBOL_GPL(ata_host_intr);
4900 EXPORT_SYMBOL_GPL(ata_dev_classify);
4901 EXPORT_SYMBOL_GPL(ata_dev_id_string);
4902 EXPORT_SYMBOL_GPL(ata_dev_config);
4903 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
4905 EXPORT_SYMBOL_GPL(ata_timing_compute);
4906 EXPORT_SYMBOL_GPL(ata_timing_merge);
4908 #ifdef CONFIG_PCI
4909 EXPORT_SYMBOL_GPL(pci_test_config_bits);
4910 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
4911 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
4912 EXPORT_SYMBOL_GPL(ata_pci_init_one);
4913 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
4914 #endif /* CONFIG_PCI */