2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
40 #include <linux/sort.h>
41 #include <linux/pfn.h>
42 #include <linux/backing-dev.h>
43 #include <linux/fault-inject.h>
44 #include <linux/page-isolation.h>
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
51 * Array of node states.
53 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
54 [N_POSSIBLE
] = NODE_MASK_ALL
,
55 [N_ONLINE
] = { { [0] = 1UL } },
57 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
59 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
61 [N_CPU
] = { { [0] = 1UL } },
64 EXPORT_SYMBOL(node_states
);
66 unsigned long totalram_pages __read_mostly
;
67 unsigned long totalreserve_pages __read_mostly
;
69 int percpu_pagelist_fraction
;
71 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
72 int pageblock_order __read_mostly
;
75 static void __free_pages_ok(struct page
*page
, unsigned int order
);
78 * results with 256, 32 in the lowmem_reserve sysctl:
79 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
80 * 1G machine -> (16M dma, 784M normal, 224M high)
81 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
82 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
83 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
85 * TBD: should special case ZONE_DMA32 machines here - in those we normally
86 * don't need any ZONE_NORMAL reservation
88 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
89 #ifdef CONFIG_ZONE_DMA
92 #ifdef CONFIG_ZONE_DMA32
101 EXPORT_SYMBOL(totalram_pages
);
103 static char * const zone_names
[MAX_NR_ZONES
] = {
104 #ifdef CONFIG_ZONE_DMA
107 #ifdef CONFIG_ZONE_DMA32
111 #ifdef CONFIG_HIGHMEM
117 int min_free_kbytes
= 1024;
119 unsigned long __meminitdata nr_kernel_pages
;
120 unsigned long __meminitdata nr_all_pages
;
121 static unsigned long __meminitdata dma_reserve
;
123 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
125 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
126 * ranges of memory (RAM) that may be registered with add_active_range().
127 * Ranges passed to add_active_range() will be merged if possible
128 * so the number of times add_active_range() can be called is
129 * related to the number of nodes and the number of holes
131 #ifdef CONFIG_MAX_ACTIVE_REGIONS
132 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
133 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
135 #if MAX_NUMNODES >= 32
136 /* If there can be many nodes, allow up to 50 holes per node */
137 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
139 /* By default, allow up to 256 distinct regions */
140 #define MAX_ACTIVE_REGIONS 256
144 static struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
145 static int __meminitdata nr_nodemap_entries
;
146 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
147 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
148 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
149 static unsigned long __meminitdata node_boundary_start_pfn
[MAX_NUMNODES
];
150 static unsigned long __meminitdata node_boundary_end_pfn
[MAX_NUMNODES
];
151 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
152 unsigned long __initdata required_kernelcore
;
153 static unsigned long __initdata required_movablecore
;
154 unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
156 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
158 EXPORT_SYMBOL(movable_zone
);
159 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
162 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
163 EXPORT_SYMBOL(nr_node_ids
);
166 int page_group_by_mobility_disabled __read_mostly
;
168 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
170 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
171 PB_migrate
, PB_migrate_end
);
174 #ifdef CONFIG_DEBUG_VM
175 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
179 unsigned long pfn
= page_to_pfn(page
);
182 seq
= zone_span_seqbegin(zone
);
183 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
185 else if (pfn
< zone
->zone_start_pfn
)
187 } while (zone_span_seqretry(zone
, seq
));
192 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
194 if (!pfn_valid_within(page_to_pfn(page
)))
196 if (zone
!= page_zone(page
))
202 * Temporary debugging check for pages not lying within a given zone.
204 static int bad_range(struct zone
*zone
, struct page
*page
)
206 if (page_outside_zone_boundaries(zone
, page
))
208 if (!page_is_consistent(zone
, page
))
214 static inline int bad_range(struct zone
*zone
, struct page
*page
)
220 static void bad_page(struct page
*page
)
222 printk(KERN_EMERG
"Bad page state in process '%s'\n"
223 KERN_EMERG
"page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
224 KERN_EMERG
"Trying to fix it up, but a reboot is needed\n"
225 KERN_EMERG
"Backtrace:\n",
226 current
->comm
, page
, (int)(2*sizeof(unsigned long)),
227 (unsigned long)page
->flags
, page
->mapping
,
228 page_mapcount(page
), page_count(page
));
230 page
->flags
&= ~(1 << PG_lru
|
240 set_page_count(page
, 0);
241 reset_page_mapcount(page
);
242 page
->mapping
= NULL
;
243 add_taint(TAINT_BAD_PAGE
);
247 * Higher-order pages are called "compound pages". They are structured thusly:
249 * The first PAGE_SIZE page is called the "head page".
251 * The remaining PAGE_SIZE pages are called "tail pages".
253 * All pages have PG_compound set. All pages have their ->private pointing at
254 * the head page (even the head page has this).
256 * The first tail page's ->lru.next holds the address of the compound page's
257 * put_page() function. Its ->lru.prev holds the order of allocation.
258 * This usage means that zero-order pages may not be compound.
261 static void free_compound_page(struct page
*page
)
263 __free_pages_ok(page
, compound_order(page
));
266 static void prep_compound_page(struct page
*page
, unsigned long order
)
269 int nr_pages
= 1 << order
;
271 set_compound_page_dtor(page
, free_compound_page
);
272 set_compound_order(page
, order
);
274 for (i
= 1; i
< nr_pages
; i
++) {
275 struct page
*p
= page
+ i
;
278 p
->first_page
= page
;
282 static void destroy_compound_page(struct page
*page
, unsigned long order
)
285 int nr_pages
= 1 << order
;
287 if (unlikely(compound_order(page
) != order
))
290 if (unlikely(!PageHead(page
)))
292 __ClearPageHead(page
);
293 for (i
= 1; i
< nr_pages
; i
++) {
294 struct page
*p
= page
+ i
;
296 if (unlikely(!PageTail(p
) |
297 (p
->first_page
!= page
)))
303 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
307 VM_BUG_ON((gfp_flags
& (__GFP_WAIT
| __GFP_HIGHMEM
)) == __GFP_HIGHMEM
);
309 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
310 * and __GFP_HIGHMEM from hard or soft interrupt context.
312 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
313 for (i
= 0; i
< (1 << order
); i
++)
314 clear_highpage(page
+ i
);
317 static inline void set_page_order(struct page
*page
, int order
)
319 set_page_private(page
, order
);
320 __SetPageBuddy(page
);
323 static inline void rmv_page_order(struct page
*page
)
325 __ClearPageBuddy(page
);
326 set_page_private(page
, 0);
330 * Locate the struct page for both the matching buddy in our
331 * pair (buddy1) and the combined O(n+1) page they form (page).
333 * 1) Any buddy B1 will have an order O twin B2 which satisfies
334 * the following equation:
336 * For example, if the starting buddy (buddy2) is #8 its order
338 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
340 * 2) Any buddy B will have an order O+1 parent P which
341 * satisfies the following equation:
344 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
346 static inline struct page
*
347 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
349 unsigned long buddy_idx
= page_idx
^ (1 << order
);
351 return page
+ (buddy_idx
- page_idx
);
354 static inline unsigned long
355 __find_combined_index(unsigned long page_idx
, unsigned int order
)
357 return (page_idx
& ~(1 << order
));
361 * This function checks whether a page is free && is the buddy
362 * we can do coalesce a page and its buddy if
363 * (a) the buddy is not in a hole &&
364 * (b) the buddy is in the buddy system &&
365 * (c) a page and its buddy have the same order &&
366 * (d) a page and its buddy are in the same zone.
368 * For recording whether a page is in the buddy system, we use PG_buddy.
369 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
371 * For recording page's order, we use page_private(page).
373 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
376 if (!pfn_valid_within(page_to_pfn(buddy
)))
379 if (page_zone_id(page
) != page_zone_id(buddy
))
382 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
383 BUG_ON(page_count(buddy
) != 0);
390 * Freeing function for a buddy system allocator.
392 * The concept of a buddy system is to maintain direct-mapped table
393 * (containing bit values) for memory blocks of various "orders".
394 * The bottom level table contains the map for the smallest allocatable
395 * units of memory (here, pages), and each level above it describes
396 * pairs of units from the levels below, hence, "buddies".
397 * At a high level, all that happens here is marking the table entry
398 * at the bottom level available, and propagating the changes upward
399 * as necessary, plus some accounting needed to play nicely with other
400 * parts of the VM system.
401 * At each level, we keep a list of pages, which are heads of continuous
402 * free pages of length of (1 << order) and marked with PG_buddy. Page's
403 * order is recorded in page_private(page) field.
404 * So when we are allocating or freeing one, we can derive the state of the
405 * other. That is, if we allocate a small block, and both were
406 * free, the remainder of the region must be split into blocks.
407 * If a block is freed, and its buddy is also free, then this
408 * triggers coalescing into a block of larger size.
413 static inline void __free_one_page(struct page
*page
,
414 struct zone
*zone
, unsigned int order
)
416 unsigned long page_idx
;
417 int order_size
= 1 << order
;
418 int migratetype
= get_pageblock_migratetype(page
);
420 if (unlikely(PageCompound(page
)))
421 destroy_compound_page(page
, order
);
423 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
425 VM_BUG_ON(page_idx
& (order_size
- 1));
426 VM_BUG_ON(bad_range(zone
, page
));
428 __mod_zone_page_state(zone
, NR_FREE_PAGES
, order_size
);
429 while (order
< MAX_ORDER
-1) {
430 unsigned long combined_idx
;
433 buddy
= __page_find_buddy(page
, page_idx
, order
);
434 if (!page_is_buddy(page
, buddy
, order
))
435 break; /* Move the buddy up one level. */
437 list_del(&buddy
->lru
);
438 zone
->free_area
[order
].nr_free
--;
439 rmv_page_order(buddy
);
440 combined_idx
= __find_combined_index(page_idx
, order
);
441 page
= page
+ (combined_idx
- page_idx
);
442 page_idx
= combined_idx
;
445 set_page_order(page
, order
);
447 &zone
->free_area
[order
].free_list
[migratetype
]);
448 zone
->free_area
[order
].nr_free
++;
451 static inline int free_pages_check(struct page
*page
)
453 if (unlikely(page_mapcount(page
) |
454 (page
->mapping
!= NULL
) |
455 (page_count(page
) != 0) |
468 __ClearPageDirty(page
);
470 * For now, we report if PG_reserved was found set, but do not
471 * clear it, and do not free the page. But we shall soon need
472 * to do more, for when the ZERO_PAGE count wraps negative.
474 return PageReserved(page
);
478 * Frees a list of pages.
479 * Assumes all pages on list are in same zone, and of same order.
480 * count is the number of pages to free.
482 * If the zone was previously in an "all pages pinned" state then look to
483 * see if this freeing clears that state.
485 * And clear the zone's pages_scanned counter, to hold off the "all pages are
486 * pinned" detection logic.
488 static void free_pages_bulk(struct zone
*zone
, int count
,
489 struct list_head
*list
, int order
)
491 spin_lock(&zone
->lock
);
492 zone
->all_unreclaimable
= 0;
493 zone
->pages_scanned
= 0;
497 VM_BUG_ON(list_empty(list
));
498 page
= list_entry(list
->prev
, struct page
, lru
);
499 /* have to delete it as __free_one_page list manipulates */
500 list_del(&page
->lru
);
501 __free_one_page(page
, zone
, order
);
503 spin_unlock(&zone
->lock
);
506 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
)
508 spin_lock(&zone
->lock
);
509 zone
->all_unreclaimable
= 0;
510 zone
->pages_scanned
= 0;
511 __free_one_page(page
, zone
, order
);
512 spin_unlock(&zone
->lock
);
515 static void __free_pages_ok(struct page
*page
, unsigned int order
)
521 for (i
= 0 ; i
< (1 << order
) ; ++i
)
522 reserved
+= free_pages_check(page
+ i
);
526 if (!PageHighMem(page
))
527 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
528 arch_free_page(page
, order
);
529 kernel_map_pages(page
, 1 << order
, 0);
531 local_irq_save(flags
);
532 __count_vm_events(PGFREE
, 1 << order
);
533 free_one_page(page_zone(page
), page
, order
);
534 local_irq_restore(flags
);
538 * permit the bootmem allocator to evade page validation on high-order frees
540 void fastcall __init
__free_pages_bootmem(struct page
*page
, unsigned int order
)
543 __ClearPageReserved(page
);
544 set_page_count(page
, 0);
545 set_page_refcounted(page
);
551 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
552 struct page
*p
= &page
[loop
];
554 if (loop
+ 1 < BITS_PER_LONG
)
556 __ClearPageReserved(p
);
557 set_page_count(p
, 0);
560 set_page_refcounted(page
);
561 __free_pages(page
, order
);
567 * The order of subdivision here is critical for the IO subsystem.
568 * Please do not alter this order without good reasons and regression
569 * testing. Specifically, as large blocks of memory are subdivided,
570 * the order in which smaller blocks are delivered depends on the order
571 * they're subdivided in this function. This is the primary factor
572 * influencing the order in which pages are delivered to the IO
573 * subsystem according to empirical testing, and this is also justified
574 * by considering the behavior of a buddy system containing a single
575 * large block of memory acted on by a series of small allocations.
576 * This behavior is a critical factor in sglist merging's success.
580 static inline void expand(struct zone
*zone
, struct page
*page
,
581 int low
, int high
, struct free_area
*area
,
584 unsigned long size
= 1 << high
;
590 VM_BUG_ON(bad_range(zone
, &page
[size
]));
591 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
593 set_page_order(&page
[size
], high
);
598 * This page is about to be returned from the page allocator
600 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
602 if (unlikely(page_mapcount(page
) |
603 (page
->mapping
!= NULL
) |
604 (page_count(page
) != 0) |
619 * For now, we report if PG_reserved was found set, but do not
620 * clear it, and do not allocate the page: as a safety net.
622 if (PageReserved(page
))
625 page
->flags
&= ~(1 << PG_uptodate
| 1 << PG_error
| 1 << PG_readahead
|
626 1 << PG_referenced
| 1 << PG_arch_1
|
627 1 << PG_owner_priv_1
| 1 << PG_mappedtodisk
);
628 set_page_private(page
, 0);
629 set_page_refcounted(page
);
631 arch_alloc_page(page
, order
);
632 kernel_map_pages(page
, 1 << order
, 1);
634 if (gfp_flags
& __GFP_ZERO
)
635 prep_zero_page(page
, order
, gfp_flags
);
637 if (order
&& (gfp_flags
& __GFP_COMP
))
638 prep_compound_page(page
, order
);
644 * Go through the free lists for the given migratetype and remove
645 * the smallest available page from the freelists
647 static struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
650 unsigned int current_order
;
651 struct free_area
* area
;
654 /* Find a page of the appropriate size in the preferred list */
655 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
656 area
= &(zone
->free_area
[current_order
]);
657 if (list_empty(&area
->free_list
[migratetype
]))
660 page
= list_entry(area
->free_list
[migratetype
].next
,
662 list_del(&page
->lru
);
663 rmv_page_order(page
);
665 __mod_zone_page_state(zone
, NR_FREE_PAGES
, - (1UL << order
));
666 expand(zone
, page
, order
, current_order
, area
, migratetype
);
675 * This array describes the order lists are fallen back to when
676 * the free lists for the desirable migrate type are depleted
678 static int fallbacks
[MIGRATE_TYPES
][MIGRATE_TYPES
-1] = {
679 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
680 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
681 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
682 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
, MIGRATE_RESERVE
, MIGRATE_RESERVE
}, /* Never used */
686 * Move the free pages in a range to the free lists of the requested type.
687 * Note that start_page and end_pages are not aligned on a pageblock
688 * boundary. If alignment is required, use move_freepages_block()
690 int move_freepages(struct zone
*zone
,
691 struct page
*start_page
, struct page
*end_page
,
698 #ifndef CONFIG_HOLES_IN_ZONE
700 * page_zone is not safe to call in this context when
701 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
702 * anyway as we check zone boundaries in move_freepages_block().
703 * Remove at a later date when no bug reports exist related to
704 * grouping pages by mobility
706 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
709 for (page
= start_page
; page
<= end_page
;) {
710 if (!pfn_valid_within(page_to_pfn(page
))) {
715 if (!PageBuddy(page
)) {
720 order
= page_order(page
);
721 list_del(&page
->lru
);
723 &zone
->free_area
[order
].free_list
[migratetype
]);
725 pages_moved
+= 1 << order
;
731 int move_freepages_block(struct zone
*zone
, struct page
*page
, int migratetype
)
733 unsigned long start_pfn
, end_pfn
;
734 struct page
*start_page
, *end_page
;
736 start_pfn
= page_to_pfn(page
);
737 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
738 start_page
= pfn_to_page(start_pfn
);
739 end_page
= start_page
+ pageblock_nr_pages
- 1;
740 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
742 /* Do not cross zone boundaries */
743 if (start_pfn
< zone
->zone_start_pfn
)
745 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
748 return move_freepages(zone
, start_page
, end_page
, migratetype
);
751 /* Return the page with the lowest PFN in the list */
752 static struct page
*min_page(struct list_head
*list
)
754 unsigned long min_pfn
= -1UL;
755 struct page
*min_page
= NULL
, *page
;;
757 list_for_each_entry(page
, list
, lru
) {
758 unsigned long pfn
= page_to_pfn(page
);
768 /* Remove an element from the buddy allocator from the fallback list */
769 static struct page
*__rmqueue_fallback(struct zone
*zone
, int order
,
770 int start_migratetype
)
772 struct free_area
* area
;
777 /* Find the largest possible block of pages in the other list */
778 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
780 for (i
= 0; i
< MIGRATE_TYPES
- 1; i
++) {
781 migratetype
= fallbacks
[start_migratetype
][i
];
783 /* MIGRATE_RESERVE handled later if necessary */
784 if (migratetype
== MIGRATE_RESERVE
)
787 area
= &(zone
->free_area
[current_order
]);
788 if (list_empty(&area
->free_list
[migratetype
]))
791 /* Bias kernel allocations towards low pfns */
792 page
= list_entry(area
->free_list
[migratetype
].next
,
794 if (unlikely(start_migratetype
!= MIGRATE_MOVABLE
))
795 page
= min_page(&area
->free_list
[migratetype
]);
799 * If breaking a large block of pages, move all free
800 * pages to the preferred allocation list. If falling
801 * back for a reclaimable kernel allocation, be more
802 * agressive about taking ownership of free pages
804 if (unlikely(current_order
>= (pageblock_order
>> 1)) ||
805 start_migratetype
== MIGRATE_RECLAIMABLE
) {
807 pages
= move_freepages_block(zone
, page
,
810 /* Claim the whole block if over half of it is free */
811 if (pages
>= (1 << (pageblock_order
-1)))
812 set_pageblock_migratetype(page
,
815 migratetype
= start_migratetype
;
818 /* Remove the page from the freelists */
819 list_del(&page
->lru
);
820 rmv_page_order(page
);
821 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
824 if (current_order
== pageblock_order
)
825 set_pageblock_migratetype(page
,
828 expand(zone
, page
, order
, current_order
, area
, migratetype
);
833 /* Use MIGRATE_RESERVE rather than fail an allocation */
834 return __rmqueue_smallest(zone
, order
, MIGRATE_RESERVE
);
838 * Do the hard work of removing an element from the buddy allocator.
839 * Call me with the zone->lock already held.
841 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
846 page
= __rmqueue_smallest(zone
, order
, migratetype
);
849 page
= __rmqueue_fallback(zone
, order
, migratetype
);
855 * Obtain a specified number of elements from the buddy allocator, all under
856 * a single hold of the lock, for efficiency. Add them to the supplied list.
857 * Returns the number of new pages which were placed at *list.
859 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
860 unsigned long count
, struct list_head
*list
,
865 spin_lock(&zone
->lock
);
866 for (i
= 0; i
< count
; ++i
) {
867 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
868 if (unlikely(page
== NULL
))
870 list_add(&page
->lru
, list
);
871 set_page_private(page
, migratetype
);
873 spin_unlock(&zone
->lock
);
879 * Called from the vmstat counter updater to drain pagesets of this
880 * currently executing processor on remote nodes after they have
883 * Note that this function must be called with the thread pinned to
884 * a single processor.
886 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
891 local_irq_save(flags
);
892 if (pcp
->count
>= pcp
->batch
)
893 to_drain
= pcp
->batch
;
895 to_drain
= pcp
->count
;
896 free_pages_bulk(zone
, to_drain
, &pcp
->list
, 0);
897 pcp
->count
-= to_drain
;
898 local_irq_restore(flags
);
902 static void __drain_pages(unsigned int cpu
)
908 for_each_zone(zone
) {
909 struct per_cpu_pageset
*pset
;
911 if (!populated_zone(zone
))
914 pset
= zone_pcp(zone
, cpu
);
915 for (i
= 0; i
< ARRAY_SIZE(pset
->pcp
); i
++) {
916 struct per_cpu_pages
*pcp
;
919 local_irq_save(flags
);
920 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
922 local_irq_restore(flags
);
927 #ifdef CONFIG_HIBERNATION
929 void mark_free_pages(struct zone
*zone
)
931 unsigned long pfn
, max_zone_pfn
;
934 struct list_head
*curr
;
936 if (!zone
->spanned_pages
)
939 spin_lock_irqsave(&zone
->lock
, flags
);
941 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
942 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
943 if (pfn_valid(pfn
)) {
944 struct page
*page
= pfn_to_page(pfn
);
946 if (!swsusp_page_is_forbidden(page
))
947 swsusp_unset_page_free(page
);
950 for_each_migratetype_order(order
, t
) {
951 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
954 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
955 for (i
= 0; i
< (1UL << order
); i
++)
956 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
959 spin_unlock_irqrestore(&zone
->lock
, flags
);
961 #endif /* CONFIG_PM */
964 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
966 void drain_local_pages(void)
970 local_irq_save(flags
);
971 __drain_pages(smp_processor_id());
972 local_irq_restore(flags
);
975 void smp_drain_local_pages(void *arg
)
981 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
983 void drain_all_local_pages(void)
987 local_irq_save(flags
);
988 __drain_pages(smp_processor_id());
989 local_irq_restore(flags
);
991 smp_call_function(smp_drain_local_pages
, NULL
, 0, 1);
995 * Free a 0-order page
997 static void fastcall
free_hot_cold_page(struct page
*page
, int cold
)
999 struct zone
*zone
= page_zone(page
);
1000 struct per_cpu_pages
*pcp
;
1001 unsigned long flags
;
1004 page
->mapping
= NULL
;
1005 if (free_pages_check(page
))
1008 if (!PageHighMem(page
))
1009 debug_check_no_locks_freed(page_address(page
), PAGE_SIZE
);
1010 arch_free_page(page
, 0);
1011 kernel_map_pages(page
, 1, 0);
1013 pcp
= &zone_pcp(zone
, get_cpu())->pcp
[cold
];
1014 local_irq_save(flags
);
1015 __count_vm_event(PGFREE
);
1016 list_add(&page
->lru
, &pcp
->list
);
1017 set_page_private(page
, get_pageblock_migratetype(page
));
1019 if (pcp
->count
>= pcp
->high
) {
1020 free_pages_bulk(zone
, pcp
->batch
, &pcp
->list
, 0);
1021 pcp
->count
-= pcp
->batch
;
1023 local_irq_restore(flags
);
1027 void fastcall
free_hot_page(struct page
*page
)
1029 free_hot_cold_page(page
, 0);
1032 void fastcall
free_cold_page(struct page
*page
)
1034 free_hot_cold_page(page
, 1);
1038 * split_page takes a non-compound higher-order page, and splits it into
1039 * n (1<<order) sub-pages: page[0..n]
1040 * Each sub-page must be freed individually.
1042 * Note: this is probably too low level an operation for use in drivers.
1043 * Please consult with lkml before using this in your driver.
1045 void split_page(struct page
*page
, unsigned int order
)
1049 VM_BUG_ON(PageCompound(page
));
1050 VM_BUG_ON(!page_count(page
));
1051 for (i
= 1; i
< (1 << order
); i
++)
1052 set_page_refcounted(page
+ i
);
1056 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1057 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1060 static struct page
*buffered_rmqueue(struct zonelist
*zonelist
,
1061 struct zone
*zone
, int order
, gfp_t gfp_flags
)
1063 unsigned long flags
;
1065 int cold
= !!(gfp_flags
& __GFP_COLD
);
1067 int migratetype
= allocflags_to_migratetype(gfp_flags
);
1071 if (likely(order
== 0)) {
1072 struct per_cpu_pages
*pcp
;
1074 pcp
= &zone_pcp(zone
, cpu
)->pcp
[cold
];
1075 local_irq_save(flags
);
1077 pcp
->count
= rmqueue_bulk(zone
, 0,
1078 pcp
->batch
, &pcp
->list
, migratetype
);
1079 if (unlikely(!pcp
->count
))
1083 /* Find a page of the appropriate migrate type */
1084 list_for_each_entry(page
, &pcp
->list
, lru
)
1085 if (page_private(page
) == migratetype
)
1088 /* Allocate more to the pcp list if necessary */
1089 if (unlikely(&page
->lru
== &pcp
->list
)) {
1090 pcp
->count
+= rmqueue_bulk(zone
, 0,
1091 pcp
->batch
, &pcp
->list
, migratetype
);
1092 page
= list_entry(pcp
->list
.next
, struct page
, lru
);
1095 list_del(&page
->lru
);
1098 spin_lock_irqsave(&zone
->lock
, flags
);
1099 page
= __rmqueue(zone
, order
, migratetype
);
1100 spin_unlock(&zone
->lock
);
1105 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1106 zone_statistics(zonelist
, zone
);
1107 local_irq_restore(flags
);
1110 VM_BUG_ON(bad_range(zone
, page
));
1111 if (prep_new_page(page
, order
, gfp_flags
))
1116 local_irq_restore(flags
);
1121 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1122 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1123 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1124 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1125 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1126 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1127 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1129 #ifdef CONFIG_FAIL_PAGE_ALLOC
1131 static struct fail_page_alloc_attr
{
1132 struct fault_attr attr
;
1134 u32 ignore_gfp_highmem
;
1135 u32 ignore_gfp_wait
;
1138 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1140 struct dentry
*ignore_gfp_highmem_file
;
1141 struct dentry
*ignore_gfp_wait_file
;
1142 struct dentry
*min_order_file
;
1144 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1146 } fail_page_alloc
= {
1147 .attr
= FAULT_ATTR_INITIALIZER
,
1148 .ignore_gfp_wait
= 1,
1149 .ignore_gfp_highmem
= 1,
1153 static int __init
setup_fail_page_alloc(char *str
)
1155 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1157 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1159 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1161 if (order
< fail_page_alloc
.min_order
)
1163 if (gfp_mask
& __GFP_NOFAIL
)
1165 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1167 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1170 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1173 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1175 static int __init
fail_page_alloc_debugfs(void)
1177 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1181 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
1185 dir
= fail_page_alloc
.attr
.dentries
.dir
;
1187 fail_page_alloc
.ignore_gfp_wait_file
=
1188 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1189 &fail_page_alloc
.ignore_gfp_wait
);
1191 fail_page_alloc
.ignore_gfp_highmem_file
=
1192 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1193 &fail_page_alloc
.ignore_gfp_highmem
);
1194 fail_page_alloc
.min_order_file
=
1195 debugfs_create_u32("min-order", mode
, dir
,
1196 &fail_page_alloc
.min_order
);
1198 if (!fail_page_alloc
.ignore_gfp_wait_file
||
1199 !fail_page_alloc
.ignore_gfp_highmem_file
||
1200 !fail_page_alloc
.min_order_file
) {
1202 debugfs_remove(fail_page_alloc
.ignore_gfp_wait_file
);
1203 debugfs_remove(fail_page_alloc
.ignore_gfp_highmem_file
);
1204 debugfs_remove(fail_page_alloc
.min_order_file
);
1205 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
1211 late_initcall(fail_page_alloc_debugfs
);
1213 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1215 #else /* CONFIG_FAIL_PAGE_ALLOC */
1217 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1222 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1225 * Return 1 if free pages are above 'mark'. This takes into account the order
1226 * of the allocation.
1228 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1229 int classzone_idx
, int alloc_flags
)
1231 /* free_pages my go negative - that's OK */
1233 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
) - (1 << order
) + 1;
1236 if (alloc_flags
& ALLOC_HIGH
)
1238 if (alloc_flags
& ALLOC_HARDER
)
1241 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1243 for (o
= 0; o
< order
; o
++) {
1244 /* At the next order, this order's pages become unavailable */
1245 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1247 /* Require fewer higher order pages to be free */
1250 if (free_pages
<= min
)
1258 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1259 * skip over zones that are not allowed by the cpuset, or that have
1260 * been recently (in last second) found to be nearly full. See further
1261 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1262 * that have to skip over alot of full or unallowed zones.
1264 * If the zonelist cache is present in the passed in zonelist, then
1265 * returns a pointer to the allowed node mask (either the current
1266 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1268 * If the zonelist cache is not available for this zonelist, does
1269 * nothing and returns NULL.
1271 * If the fullzones BITMAP in the zonelist cache is stale (more than
1272 * a second since last zap'd) then we zap it out (clear its bits.)
1274 * We hold off even calling zlc_setup, until after we've checked the
1275 * first zone in the zonelist, on the theory that most allocations will
1276 * be satisfied from that first zone, so best to examine that zone as
1277 * quickly as we can.
1279 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1281 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1282 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1284 zlc
= zonelist
->zlcache_ptr
;
1288 if (jiffies
- zlc
->last_full_zap
> 1 * HZ
) {
1289 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1290 zlc
->last_full_zap
= jiffies
;
1293 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1294 &cpuset_current_mems_allowed
:
1295 &node_states
[N_HIGH_MEMORY
];
1296 return allowednodes
;
1300 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1301 * if it is worth looking at further for free memory:
1302 * 1) Check that the zone isn't thought to be full (doesn't have its
1303 * bit set in the zonelist_cache fullzones BITMAP).
1304 * 2) Check that the zones node (obtained from the zonelist_cache
1305 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1306 * Return true (non-zero) if zone is worth looking at further, or
1307 * else return false (zero) if it is not.
1309 * This check -ignores- the distinction between various watermarks,
1310 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1311 * found to be full for any variation of these watermarks, it will
1312 * be considered full for up to one second by all requests, unless
1313 * we are so low on memory on all allowed nodes that we are forced
1314 * into the second scan of the zonelist.
1316 * In the second scan we ignore this zonelist cache and exactly
1317 * apply the watermarks to all zones, even it is slower to do so.
1318 * We are low on memory in the second scan, and should leave no stone
1319 * unturned looking for a free page.
1321 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zone
**z
,
1322 nodemask_t
*allowednodes
)
1324 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1325 int i
; /* index of *z in zonelist zones */
1326 int n
; /* node that zone *z is on */
1328 zlc
= zonelist
->zlcache_ptr
;
1332 i
= z
- zonelist
->zones
;
1335 /* This zone is worth trying if it is allowed but not full */
1336 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1340 * Given 'z' scanning a zonelist, set the corresponding bit in
1341 * zlc->fullzones, so that subsequent attempts to allocate a page
1342 * from that zone don't waste time re-examining it.
1344 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zone
**z
)
1346 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1347 int i
; /* index of *z in zonelist zones */
1349 zlc
= zonelist
->zlcache_ptr
;
1353 i
= z
- zonelist
->zones
;
1355 set_bit(i
, zlc
->fullzones
);
1358 #else /* CONFIG_NUMA */
1360 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1365 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zone
**z
,
1366 nodemask_t
*allowednodes
)
1371 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zone
**z
)
1374 #endif /* CONFIG_NUMA */
1377 * get_page_from_freelist goes through the zonelist trying to allocate
1380 static struct page
*
1381 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
,
1382 struct zonelist
*zonelist
, int alloc_flags
)
1385 struct page
*page
= NULL
;
1386 int classzone_idx
= zone_idx(zonelist
->zones
[0]);
1388 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1389 int zlc_active
= 0; /* set if using zonelist_cache */
1390 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1391 enum zone_type highest_zoneidx
= -1; /* Gets set for policy zonelists */
1395 * Scan zonelist, looking for a zone with enough free.
1396 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1398 z
= zonelist
->zones
;
1402 * In NUMA, this could be a policy zonelist which contains
1403 * zones that may not be allowed by the current gfp_mask.
1404 * Check the zone is allowed by the current flags
1406 if (unlikely(alloc_should_filter_zonelist(zonelist
))) {
1407 if (highest_zoneidx
== -1)
1408 highest_zoneidx
= gfp_zone(gfp_mask
);
1409 if (zone_idx(*z
) > highest_zoneidx
)
1413 if (NUMA_BUILD
&& zlc_active
&&
1414 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1417 if ((alloc_flags
& ALLOC_CPUSET
) &&
1418 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1421 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1423 if (alloc_flags
& ALLOC_WMARK_MIN
)
1424 mark
= zone
->pages_min
;
1425 else if (alloc_flags
& ALLOC_WMARK_LOW
)
1426 mark
= zone
->pages_low
;
1428 mark
= zone
->pages_high
;
1429 if (!zone_watermark_ok(zone
, order
, mark
,
1430 classzone_idx
, alloc_flags
)) {
1431 if (!zone_reclaim_mode
||
1432 !zone_reclaim(zone
, gfp_mask
, order
))
1433 goto this_zone_full
;
1437 page
= buffered_rmqueue(zonelist
, zone
, order
, gfp_mask
);
1442 zlc_mark_zone_full(zonelist
, z
);
1444 if (NUMA_BUILD
&& !did_zlc_setup
) {
1445 /* we do zlc_setup after the first zone is tried */
1446 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1450 } while (*(++z
) != NULL
);
1452 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1453 /* Disable zlc cache for second zonelist scan */
1461 * This is the 'heart' of the zoned buddy allocator.
1463 struct page
* fastcall
1464 __alloc_pages(gfp_t gfp_mask
, unsigned int order
,
1465 struct zonelist
*zonelist
)
1467 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1470 struct reclaim_state reclaim_state
;
1471 struct task_struct
*p
= current
;
1474 int did_some_progress
;
1476 might_sleep_if(wait
);
1478 if (should_fail_alloc_page(gfp_mask
, order
))
1482 z
= zonelist
->zones
; /* the list of zones suitable for gfp_mask */
1484 if (unlikely(*z
== NULL
)) {
1486 * Happens if we have an empty zonelist as a result of
1487 * GFP_THISNODE being used on a memoryless node
1492 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
1493 zonelist
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
);
1498 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1499 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1500 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1501 * using a larger set of nodes after it has established that the
1502 * allowed per node queues are empty and that nodes are
1505 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
1508 for (z
= zonelist
->zones
; *z
; z
++)
1509 wakeup_kswapd(*z
, order
);
1512 * OK, we're below the kswapd watermark and have kicked background
1513 * reclaim. Now things get more complex, so set up alloc_flags according
1514 * to how we want to proceed.
1516 * The caller may dip into page reserves a bit more if the caller
1517 * cannot run direct reclaim, or if the caller has realtime scheduling
1518 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1519 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1521 alloc_flags
= ALLOC_WMARK_MIN
;
1522 if ((unlikely(rt_task(p
)) && !in_interrupt()) || !wait
)
1523 alloc_flags
|= ALLOC_HARDER
;
1524 if (gfp_mask
& __GFP_HIGH
)
1525 alloc_flags
|= ALLOC_HIGH
;
1527 alloc_flags
|= ALLOC_CPUSET
;
1530 * Go through the zonelist again. Let __GFP_HIGH and allocations
1531 * coming from realtime tasks go deeper into reserves.
1533 * This is the last chance, in general, before the goto nopage.
1534 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1535 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1537 page
= get_page_from_freelist(gfp_mask
, order
, zonelist
, alloc_flags
);
1541 /* This allocation should allow future memory freeing. */
1544 if (((p
->flags
& PF_MEMALLOC
) || unlikely(test_thread_flag(TIF_MEMDIE
)))
1545 && !in_interrupt()) {
1546 if (!(gfp_mask
& __GFP_NOMEMALLOC
)) {
1548 /* go through the zonelist yet again, ignoring mins */
1549 page
= get_page_from_freelist(gfp_mask
, order
,
1550 zonelist
, ALLOC_NO_WATERMARKS
);
1553 if (gfp_mask
& __GFP_NOFAIL
) {
1554 congestion_wait(WRITE
, HZ
/50);
1561 /* Atomic allocations - we can't balance anything */
1567 /* We now go into synchronous reclaim */
1568 cpuset_memory_pressure_bump();
1569 p
->flags
|= PF_MEMALLOC
;
1570 reclaim_state
.reclaimed_slab
= 0;
1571 p
->reclaim_state
= &reclaim_state
;
1573 did_some_progress
= try_to_free_pages(zonelist
->zones
, order
, gfp_mask
);
1575 p
->reclaim_state
= NULL
;
1576 p
->flags
&= ~PF_MEMALLOC
;
1581 drain_all_local_pages();
1583 if (likely(did_some_progress
)) {
1584 page
= get_page_from_freelist(gfp_mask
, order
,
1585 zonelist
, alloc_flags
);
1588 } else if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
1590 * Go through the zonelist yet one more time, keep
1591 * very high watermark here, this is only to catch
1592 * a parallel oom killing, we must fail if we're still
1593 * under heavy pressure.
1595 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
1596 zonelist
, ALLOC_WMARK_HIGH
|ALLOC_CPUSET
);
1600 /* The OOM killer will not help higher order allocs so fail */
1601 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
1604 out_of_memory(zonelist
, gfp_mask
, order
);
1609 * Don't let big-order allocations loop unless the caller explicitly
1610 * requests that. Wait for some write requests to complete then retry.
1612 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1613 * <= 3, but that may not be true in other implementations.
1616 if (!(gfp_mask
& __GFP_NORETRY
)) {
1617 if ((order
<= PAGE_ALLOC_COSTLY_ORDER
) ||
1618 (gfp_mask
& __GFP_REPEAT
))
1620 if (gfp_mask
& __GFP_NOFAIL
)
1624 congestion_wait(WRITE
, HZ
/50);
1629 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
1630 printk(KERN_WARNING
"%s: page allocation failure."
1631 " order:%d, mode:0x%x\n",
1632 p
->comm
, order
, gfp_mask
);
1640 EXPORT_SYMBOL(__alloc_pages
);
1643 * Common helper functions.
1645 fastcall
unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
1648 page
= alloc_pages(gfp_mask
, order
);
1651 return (unsigned long) page_address(page
);
1654 EXPORT_SYMBOL(__get_free_pages
);
1656 fastcall
unsigned long get_zeroed_page(gfp_t gfp_mask
)
1661 * get_zeroed_page() returns a 32-bit address, which cannot represent
1664 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
1666 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, 0);
1668 return (unsigned long) page_address(page
);
1672 EXPORT_SYMBOL(get_zeroed_page
);
1674 void __pagevec_free(struct pagevec
*pvec
)
1676 int i
= pagevec_count(pvec
);
1679 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
1682 fastcall
void __free_pages(struct page
*page
, unsigned int order
)
1684 if (put_page_testzero(page
)) {
1686 free_hot_page(page
);
1688 __free_pages_ok(page
, order
);
1692 EXPORT_SYMBOL(__free_pages
);
1694 fastcall
void free_pages(unsigned long addr
, unsigned int order
)
1697 VM_BUG_ON(!virt_addr_valid((void *)addr
));
1698 __free_pages(virt_to_page((void *)addr
), order
);
1702 EXPORT_SYMBOL(free_pages
);
1704 static unsigned int nr_free_zone_pages(int offset
)
1706 /* Just pick one node, since fallback list is circular */
1707 pg_data_t
*pgdat
= NODE_DATA(numa_node_id());
1708 unsigned int sum
= 0;
1710 struct zonelist
*zonelist
= pgdat
->node_zonelists
+ offset
;
1711 struct zone
**zonep
= zonelist
->zones
;
1714 for (zone
= *zonep
++; zone
; zone
= *zonep
++) {
1715 unsigned long size
= zone
->present_pages
;
1716 unsigned long high
= zone
->pages_high
;
1725 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1727 unsigned int nr_free_buffer_pages(void)
1729 return nr_free_zone_pages(gfp_zone(GFP_USER
));
1731 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
1734 * Amount of free RAM allocatable within all zones
1736 unsigned int nr_free_pagecache_pages(void)
1738 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
1741 static inline void show_node(struct zone
*zone
)
1744 printk("Node %d ", zone_to_nid(zone
));
1747 void si_meminfo(struct sysinfo
*val
)
1749 val
->totalram
= totalram_pages
;
1751 val
->freeram
= global_page_state(NR_FREE_PAGES
);
1752 val
->bufferram
= nr_blockdev_pages();
1753 val
->totalhigh
= totalhigh_pages
;
1754 val
->freehigh
= nr_free_highpages();
1755 val
->mem_unit
= PAGE_SIZE
;
1758 EXPORT_SYMBOL(si_meminfo
);
1761 void si_meminfo_node(struct sysinfo
*val
, int nid
)
1763 pg_data_t
*pgdat
= NODE_DATA(nid
);
1765 val
->totalram
= pgdat
->node_present_pages
;
1766 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
1767 #ifdef CONFIG_HIGHMEM
1768 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
1769 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
1775 val
->mem_unit
= PAGE_SIZE
;
1779 #define K(x) ((x) << (PAGE_SHIFT-10))
1782 * Show free area list (used inside shift_scroll-lock stuff)
1783 * We also calculate the percentage fragmentation. We do this by counting the
1784 * memory on each free list with the exception of the first item on the list.
1786 void show_free_areas(void)
1791 for_each_zone(zone
) {
1792 if (!populated_zone(zone
))
1796 printk("%s per-cpu:\n", zone
->name
);
1798 for_each_online_cpu(cpu
) {
1799 struct per_cpu_pageset
*pageset
;
1801 pageset
= zone_pcp(zone
, cpu
);
1803 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1804 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1805 cpu
, pageset
->pcp
[0].high
,
1806 pageset
->pcp
[0].batch
, pageset
->pcp
[0].count
,
1807 pageset
->pcp
[1].high
, pageset
->pcp
[1].batch
,
1808 pageset
->pcp
[1].count
);
1812 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1813 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1814 global_page_state(NR_ACTIVE
),
1815 global_page_state(NR_INACTIVE
),
1816 global_page_state(NR_FILE_DIRTY
),
1817 global_page_state(NR_WRITEBACK
),
1818 global_page_state(NR_UNSTABLE_NFS
),
1819 global_page_state(NR_FREE_PAGES
),
1820 global_page_state(NR_SLAB_RECLAIMABLE
) +
1821 global_page_state(NR_SLAB_UNRECLAIMABLE
),
1822 global_page_state(NR_FILE_MAPPED
),
1823 global_page_state(NR_PAGETABLE
),
1824 global_page_state(NR_BOUNCE
));
1826 for_each_zone(zone
) {
1829 if (!populated_zone(zone
))
1841 " pages_scanned:%lu"
1842 " all_unreclaimable? %s"
1845 K(zone_page_state(zone
, NR_FREE_PAGES
)),
1848 K(zone
->pages_high
),
1849 K(zone_page_state(zone
, NR_ACTIVE
)),
1850 K(zone_page_state(zone
, NR_INACTIVE
)),
1851 K(zone
->present_pages
),
1852 zone
->pages_scanned
,
1853 (zone
->all_unreclaimable
? "yes" : "no")
1855 printk("lowmem_reserve[]:");
1856 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1857 printk(" %lu", zone
->lowmem_reserve
[i
]);
1861 for_each_zone(zone
) {
1862 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
1864 if (!populated_zone(zone
))
1868 printk("%s: ", zone
->name
);
1870 spin_lock_irqsave(&zone
->lock
, flags
);
1871 for (order
= 0; order
< MAX_ORDER
; order
++) {
1872 nr
[order
] = zone
->free_area
[order
].nr_free
;
1873 total
+= nr
[order
] << order
;
1875 spin_unlock_irqrestore(&zone
->lock
, flags
);
1876 for (order
= 0; order
< MAX_ORDER
; order
++)
1877 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
1878 printk("= %lukB\n", K(total
));
1881 show_swap_cache_info();
1885 * Builds allocation fallback zone lists.
1887 * Add all populated zones of a node to the zonelist.
1889 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
1890 int nr_zones
, enum zone_type zone_type
)
1894 BUG_ON(zone_type
>= MAX_NR_ZONES
);
1899 zone
= pgdat
->node_zones
+ zone_type
;
1900 if (populated_zone(zone
)) {
1901 zonelist
->zones
[nr_zones
++] = zone
;
1902 check_highest_zone(zone_type
);
1905 } while (zone_type
);
1912 * 0 = automatic detection of better ordering.
1913 * 1 = order by ([node] distance, -zonetype)
1914 * 2 = order by (-zonetype, [node] distance)
1916 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1917 * the same zonelist. So only NUMA can configure this param.
1919 #define ZONELIST_ORDER_DEFAULT 0
1920 #define ZONELIST_ORDER_NODE 1
1921 #define ZONELIST_ORDER_ZONE 2
1923 /* zonelist order in the kernel.
1924 * set_zonelist_order() will set this to NODE or ZONE.
1926 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1927 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
1931 /* The value user specified ....changed by config */
1932 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1933 /* string for sysctl */
1934 #define NUMA_ZONELIST_ORDER_LEN 16
1935 char numa_zonelist_order
[16] = "default";
1938 * interface for configure zonelist ordering.
1939 * command line option "numa_zonelist_order"
1940 * = "[dD]efault - default, automatic configuration.
1941 * = "[nN]ode - order by node locality, then by zone within node
1942 * = "[zZ]one - order by zone, then by locality within zone
1945 static int __parse_numa_zonelist_order(char *s
)
1947 if (*s
== 'd' || *s
== 'D') {
1948 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1949 } else if (*s
== 'n' || *s
== 'N') {
1950 user_zonelist_order
= ZONELIST_ORDER_NODE
;
1951 } else if (*s
== 'z' || *s
== 'Z') {
1952 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
1955 "Ignoring invalid numa_zonelist_order value: "
1962 static __init
int setup_numa_zonelist_order(char *s
)
1965 return __parse_numa_zonelist_order(s
);
1968 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
1971 * sysctl handler for numa_zonelist_order
1973 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
1974 struct file
*file
, void __user
*buffer
, size_t *length
,
1977 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
1981 strncpy(saved_string
, (char*)table
->data
,
1982 NUMA_ZONELIST_ORDER_LEN
);
1983 ret
= proc_dostring(table
, write
, file
, buffer
, length
, ppos
);
1987 int oldval
= user_zonelist_order
;
1988 if (__parse_numa_zonelist_order((char*)table
->data
)) {
1990 * bogus value. restore saved string
1992 strncpy((char*)table
->data
, saved_string
,
1993 NUMA_ZONELIST_ORDER_LEN
);
1994 user_zonelist_order
= oldval
;
1995 } else if (oldval
!= user_zonelist_order
)
1996 build_all_zonelists();
2002 #define MAX_NODE_LOAD (num_online_nodes())
2003 static int node_load
[MAX_NUMNODES
];
2006 * find_next_best_node - find the next node that should appear in a given node's fallback list
2007 * @node: node whose fallback list we're appending
2008 * @used_node_mask: nodemask_t of already used nodes
2010 * We use a number of factors to determine which is the next node that should
2011 * appear on a given node's fallback list. The node should not have appeared
2012 * already in @node's fallback list, and it should be the next closest node
2013 * according to the distance array (which contains arbitrary distance values
2014 * from each node to each node in the system), and should also prefer nodes
2015 * with no CPUs, since presumably they'll have very little allocation pressure
2016 * on them otherwise.
2017 * It returns -1 if no node is found.
2019 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
2022 int min_val
= INT_MAX
;
2025 /* Use the local node if we haven't already */
2026 if (!node_isset(node
, *used_node_mask
)) {
2027 node_set(node
, *used_node_mask
);
2031 for_each_node_state(n
, N_HIGH_MEMORY
) {
2034 /* Don't want a node to appear more than once */
2035 if (node_isset(n
, *used_node_mask
))
2038 /* Use the distance array to find the distance */
2039 val
= node_distance(node
, n
);
2041 /* Penalize nodes under us ("prefer the next node") */
2044 /* Give preference to headless and unused nodes */
2045 tmp
= node_to_cpumask(n
);
2046 if (!cpus_empty(tmp
))
2047 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
2049 /* Slight preference for less loaded node */
2050 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
2051 val
+= node_load
[n
];
2053 if (val
< min_val
) {
2060 node_set(best_node
, *used_node_mask
);
2067 * Build zonelists ordered by node and zones within node.
2068 * This results in maximum locality--normal zone overflows into local
2069 * DMA zone, if any--but risks exhausting DMA zone.
2071 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
2075 struct zonelist
*zonelist
;
2077 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
2078 zonelist
= pgdat
->node_zonelists
+ i
;
2079 for (j
= 0; zonelist
->zones
[j
] != NULL
; j
++)
2081 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, i
);
2082 zonelist
->zones
[j
] = NULL
;
2087 * Build gfp_thisnode zonelists
2089 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
2093 struct zonelist
*zonelist
;
2095 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
2096 zonelist
= pgdat
->node_zonelists
+ MAX_NR_ZONES
+ i
;
2097 j
= build_zonelists_node(pgdat
, zonelist
, 0, i
);
2098 zonelist
->zones
[j
] = NULL
;
2103 * Build zonelists ordered by zone and nodes within zones.
2104 * This results in conserving DMA zone[s] until all Normal memory is
2105 * exhausted, but results in overflowing to remote node while memory
2106 * may still exist in local DMA zone.
2108 static int node_order
[MAX_NUMNODES
];
2110 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
2114 int zone_type
; /* needs to be signed */
2116 struct zonelist
*zonelist
;
2118 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
2119 zonelist
= pgdat
->node_zonelists
+ i
;
2121 for (zone_type
= i
; zone_type
>= 0; zone_type
--) {
2122 for (j
= 0; j
< nr_nodes
; j
++) {
2123 node
= node_order
[j
];
2124 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
2125 if (populated_zone(z
)) {
2126 zonelist
->zones
[pos
++] = z
;
2127 check_highest_zone(zone_type
);
2131 zonelist
->zones
[pos
] = NULL
;
2135 static int default_zonelist_order(void)
2138 unsigned long low_kmem_size
,total_size
;
2142 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2143 * If they are really small and used heavily, the system can fall
2144 * into OOM very easily.
2145 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2147 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2150 for_each_online_node(nid
) {
2151 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2152 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2153 if (populated_zone(z
)) {
2154 if (zone_type
< ZONE_NORMAL
)
2155 low_kmem_size
+= z
->present_pages
;
2156 total_size
+= z
->present_pages
;
2160 if (!low_kmem_size
|| /* there are no DMA area. */
2161 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
2162 return ZONELIST_ORDER_NODE
;
2164 * look into each node's config.
2165 * If there is a node whose DMA/DMA32 memory is very big area on
2166 * local memory, NODE_ORDER may be suitable.
2168 average_size
= total_size
/
2169 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
2170 for_each_online_node(nid
) {
2173 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2174 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2175 if (populated_zone(z
)) {
2176 if (zone_type
< ZONE_NORMAL
)
2177 low_kmem_size
+= z
->present_pages
;
2178 total_size
+= z
->present_pages
;
2181 if (low_kmem_size
&&
2182 total_size
> average_size
&& /* ignore small node */
2183 low_kmem_size
> total_size
* 70/100)
2184 return ZONELIST_ORDER_NODE
;
2186 return ZONELIST_ORDER_ZONE
;
2189 static void set_zonelist_order(void)
2191 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
2192 current_zonelist_order
= default_zonelist_order();
2194 current_zonelist_order
= user_zonelist_order
;
2197 static void build_zonelists(pg_data_t
*pgdat
)
2201 nodemask_t used_mask
;
2202 int local_node
, prev_node
;
2203 struct zonelist
*zonelist
;
2204 int order
= current_zonelist_order
;
2206 /* initialize zonelists */
2207 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
2208 zonelist
= pgdat
->node_zonelists
+ i
;
2209 zonelist
->zones
[0] = NULL
;
2212 /* NUMA-aware ordering of nodes */
2213 local_node
= pgdat
->node_id
;
2214 load
= num_online_nodes();
2215 prev_node
= local_node
;
2216 nodes_clear(used_mask
);
2218 memset(node_load
, 0, sizeof(node_load
));
2219 memset(node_order
, 0, sizeof(node_order
));
2222 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
2223 int distance
= node_distance(local_node
, node
);
2226 * If another node is sufficiently far away then it is better
2227 * to reclaim pages in a zone before going off node.
2229 if (distance
> RECLAIM_DISTANCE
)
2230 zone_reclaim_mode
= 1;
2233 * We don't want to pressure a particular node.
2234 * So adding penalty to the first node in same
2235 * distance group to make it round-robin.
2237 if (distance
!= node_distance(local_node
, prev_node
))
2238 node_load
[node
] = load
;
2242 if (order
== ZONELIST_ORDER_NODE
)
2243 build_zonelists_in_node_order(pgdat
, node
);
2245 node_order
[j
++] = node
; /* remember order */
2248 if (order
== ZONELIST_ORDER_ZONE
) {
2249 /* calculate node order -- i.e., DMA last! */
2250 build_zonelists_in_zone_order(pgdat
, j
);
2253 build_thisnode_zonelists(pgdat
);
2256 /* Construct the zonelist performance cache - see further mmzone.h */
2257 static void build_zonelist_cache(pg_data_t
*pgdat
)
2261 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
2262 struct zonelist
*zonelist
;
2263 struct zonelist_cache
*zlc
;
2266 zonelist
= pgdat
->node_zonelists
+ i
;
2267 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
2268 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
2269 for (z
= zonelist
->zones
; *z
; z
++)
2270 zlc
->z_to_n
[z
- zonelist
->zones
] = zone_to_nid(*z
);
2275 #else /* CONFIG_NUMA */
2277 static void set_zonelist_order(void)
2279 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
2282 static void build_zonelists(pg_data_t
*pgdat
)
2284 int node
, local_node
;
2287 local_node
= pgdat
->node_id
;
2288 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
2289 struct zonelist
*zonelist
;
2291 zonelist
= pgdat
->node_zonelists
+ i
;
2293 j
= build_zonelists_node(pgdat
, zonelist
, 0, i
);
2295 * Now we build the zonelist so that it contains the zones
2296 * of all the other nodes.
2297 * We don't want to pressure a particular node, so when
2298 * building the zones for node N, we make sure that the
2299 * zones coming right after the local ones are those from
2300 * node N+1 (modulo N)
2302 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
2303 if (!node_online(node
))
2305 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, i
);
2307 for (node
= 0; node
< local_node
; node
++) {
2308 if (!node_online(node
))
2310 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, i
);
2313 zonelist
->zones
[j
] = NULL
;
2317 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2318 static void build_zonelist_cache(pg_data_t
*pgdat
)
2322 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2323 pgdat
->node_zonelists
[i
].zlcache_ptr
= NULL
;
2326 #endif /* CONFIG_NUMA */
2328 /* return values int ....just for stop_machine_run() */
2329 static int __build_all_zonelists(void *dummy
)
2333 for_each_online_node(nid
) {
2334 pg_data_t
*pgdat
= NODE_DATA(nid
);
2336 build_zonelists(pgdat
);
2337 build_zonelist_cache(pgdat
);
2342 void build_all_zonelists(void)
2344 set_zonelist_order();
2346 if (system_state
== SYSTEM_BOOTING
) {
2347 __build_all_zonelists(NULL
);
2348 cpuset_init_current_mems_allowed();
2350 /* we have to stop all cpus to guaranntee there is no user
2352 stop_machine_run(__build_all_zonelists
, NULL
, NR_CPUS
);
2353 /* cpuset refresh routine should be here */
2355 vm_total_pages
= nr_free_pagecache_pages();
2357 * Disable grouping by mobility if the number of pages in the
2358 * system is too low to allow the mechanism to work. It would be
2359 * more accurate, but expensive to check per-zone. This check is
2360 * made on memory-hotadd so a system can start with mobility
2361 * disabled and enable it later
2363 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
2364 page_group_by_mobility_disabled
= 1;
2366 page_group_by_mobility_disabled
= 0;
2368 printk("Built %i zonelists in %s order, mobility grouping %s. "
2369 "Total pages: %ld\n",
2371 zonelist_order_name
[current_zonelist_order
],
2372 page_group_by_mobility_disabled
? "off" : "on",
2375 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
2380 * Helper functions to size the waitqueue hash table.
2381 * Essentially these want to choose hash table sizes sufficiently
2382 * large so that collisions trying to wait on pages are rare.
2383 * But in fact, the number of active page waitqueues on typical
2384 * systems is ridiculously low, less than 200. So this is even
2385 * conservative, even though it seems large.
2387 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2388 * waitqueues, i.e. the size of the waitq table given the number of pages.
2390 #define PAGES_PER_WAITQUEUE 256
2392 #ifndef CONFIG_MEMORY_HOTPLUG
2393 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2395 unsigned long size
= 1;
2397 pages
/= PAGES_PER_WAITQUEUE
;
2399 while (size
< pages
)
2403 * Once we have dozens or even hundreds of threads sleeping
2404 * on IO we've got bigger problems than wait queue collision.
2405 * Limit the size of the wait table to a reasonable size.
2407 size
= min(size
, 4096UL);
2409 return max(size
, 4UL);
2413 * A zone's size might be changed by hot-add, so it is not possible to determine
2414 * a suitable size for its wait_table. So we use the maximum size now.
2416 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2418 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2419 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2420 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2422 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2423 * or more by the traditional way. (See above). It equals:
2425 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2426 * ia64(16K page size) : = ( 8G + 4M)byte.
2427 * powerpc (64K page size) : = (32G +16M)byte.
2429 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2436 * This is an integer logarithm so that shifts can be used later
2437 * to extract the more random high bits from the multiplicative
2438 * hash function before the remainder is taken.
2440 static inline unsigned long wait_table_bits(unsigned long size
)
2445 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2448 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2449 * of blocks reserved is based on zone->pages_min. The memory within the
2450 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2451 * higher will lead to a bigger reserve which will get freed as contiguous
2452 * blocks as reclaim kicks in
2454 static void setup_zone_migrate_reserve(struct zone
*zone
)
2456 unsigned long start_pfn
, pfn
, end_pfn
;
2458 unsigned long reserve
, block_migratetype
;
2460 /* Get the start pfn, end pfn and the number of blocks to reserve */
2461 start_pfn
= zone
->zone_start_pfn
;
2462 end_pfn
= start_pfn
+ zone
->spanned_pages
;
2463 reserve
= roundup(zone
->pages_min
, pageblock_nr_pages
) >>
2466 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
2467 if (!pfn_valid(pfn
))
2469 page
= pfn_to_page(pfn
);
2471 /* Blocks with reserved pages will never free, skip them. */
2472 if (PageReserved(page
))
2475 block_migratetype
= get_pageblock_migratetype(page
);
2477 /* If this block is reserved, account for it */
2478 if (reserve
> 0 && block_migratetype
== MIGRATE_RESERVE
) {
2483 /* Suitable for reserving if this block is movable */
2484 if (reserve
> 0 && block_migratetype
== MIGRATE_MOVABLE
) {
2485 set_pageblock_migratetype(page
, MIGRATE_RESERVE
);
2486 move_freepages_block(zone
, page
, MIGRATE_RESERVE
);
2492 * If the reserve is met and this is a previous reserved block,
2495 if (block_migratetype
== MIGRATE_RESERVE
) {
2496 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2497 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
2503 * Initially all pages are reserved - free ones are freed
2504 * up by free_all_bootmem() once the early boot process is
2505 * done. Non-atomic initialization, single-pass.
2507 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
2508 unsigned long start_pfn
, enum memmap_context context
)
2511 unsigned long end_pfn
= start_pfn
+ size
;
2514 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
2516 * There can be holes in boot-time mem_map[]s
2517 * handed to this function. They do not
2518 * exist on hotplugged memory.
2520 if (context
== MEMMAP_EARLY
) {
2521 if (!early_pfn_valid(pfn
))
2523 if (!early_pfn_in_nid(pfn
, nid
))
2526 page
= pfn_to_page(pfn
);
2527 set_page_links(page
, zone
, nid
, pfn
);
2528 init_page_count(page
);
2529 reset_page_mapcount(page
);
2530 SetPageReserved(page
);
2533 * Mark the block movable so that blocks are reserved for
2534 * movable at startup. This will force kernel allocations
2535 * to reserve their blocks rather than leaking throughout
2536 * the address space during boot when many long-lived
2537 * kernel allocations are made. Later some blocks near
2538 * the start are marked MIGRATE_RESERVE by
2539 * setup_zone_migrate_reserve()
2541 if ((pfn
& (pageblock_nr_pages
-1)))
2542 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2544 INIT_LIST_HEAD(&page
->lru
);
2545 #ifdef WANT_PAGE_VIRTUAL
2546 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2547 if (!is_highmem_idx(zone
))
2548 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
2553 static void __meminit
zone_init_free_lists(struct pglist_data
*pgdat
,
2554 struct zone
*zone
, unsigned long size
)
2557 for_each_migratetype_order(order
, t
) {
2558 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
2559 zone
->free_area
[order
].nr_free
= 0;
2563 #ifndef __HAVE_ARCH_MEMMAP_INIT
2564 #define memmap_init(size, nid, zone, start_pfn) \
2565 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2568 static int __devinit
zone_batchsize(struct zone
*zone
)
2573 * The per-cpu-pages pools are set to around 1000th of the
2574 * size of the zone. But no more than 1/2 of a meg.
2576 * OK, so we don't know how big the cache is. So guess.
2578 batch
= zone
->present_pages
/ 1024;
2579 if (batch
* PAGE_SIZE
> 512 * 1024)
2580 batch
= (512 * 1024) / PAGE_SIZE
;
2581 batch
/= 4; /* We effectively *= 4 below */
2586 * Clamp the batch to a 2^n - 1 value. Having a power
2587 * of 2 value was found to be more likely to have
2588 * suboptimal cache aliasing properties in some cases.
2590 * For example if 2 tasks are alternately allocating
2591 * batches of pages, one task can end up with a lot
2592 * of pages of one half of the possible page colors
2593 * and the other with pages of the other colors.
2595 batch
= (1 << (fls(batch
+ batch
/2)-1)) - 1;
2600 inline void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
2602 struct per_cpu_pages
*pcp
;
2604 memset(p
, 0, sizeof(*p
));
2606 pcp
= &p
->pcp
[0]; /* hot */
2608 pcp
->high
= 6 * batch
;
2609 pcp
->batch
= max(1UL, 1 * batch
);
2610 INIT_LIST_HEAD(&pcp
->list
);
2612 pcp
= &p
->pcp
[1]; /* cold*/
2614 pcp
->high
= 2 * batch
;
2615 pcp
->batch
= max(1UL, batch
/2);
2616 INIT_LIST_HEAD(&pcp
->list
);
2620 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2621 * to the value high for the pageset p.
2624 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
2627 struct per_cpu_pages
*pcp
;
2629 pcp
= &p
->pcp
[0]; /* hot list */
2631 pcp
->batch
= max(1UL, high
/4);
2632 if ((high
/4) > (PAGE_SHIFT
* 8))
2633 pcp
->batch
= PAGE_SHIFT
* 8;
2639 * Boot pageset table. One per cpu which is going to be used for all
2640 * zones and all nodes. The parameters will be set in such a way
2641 * that an item put on a list will immediately be handed over to
2642 * the buddy list. This is safe since pageset manipulation is done
2643 * with interrupts disabled.
2645 * Some NUMA counter updates may also be caught by the boot pagesets.
2647 * The boot_pagesets must be kept even after bootup is complete for
2648 * unused processors and/or zones. They do play a role for bootstrapping
2649 * hotplugged processors.
2651 * zoneinfo_show() and maybe other functions do
2652 * not check if the processor is online before following the pageset pointer.
2653 * Other parts of the kernel may not check if the zone is available.
2655 static struct per_cpu_pageset boot_pageset
[NR_CPUS
];
2658 * Dynamically allocate memory for the
2659 * per cpu pageset array in struct zone.
2661 static int __cpuinit
process_zones(int cpu
)
2663 struct zone
*zone
, *dzone
;
2664 int node
= cpu_to_node(cpu
);
2666 node_set_state(node
, N_CPU
); /* this node has a cpu */
2668 for_each_zone(zone
) {
2670 if (!populated_zone(zone
))
2673 zone_pcp(zone
, cpu
) = kmalloc_node(sizeof(struct per_cpu_pageset
),
2675 if (!zone_pcp(zone
, cpu
))
2678 setup_pageset(zone_pcp(zone
, cpu
), zone_batchsize(zone
));
2680 if (percpu_pagelist_fraction
)
2681 setup_pagelist_highmark(zone_pcp(zone
, cpu
),
2682 (zone
->present_pages
/ percpu_pagelist_fraction
));
2687 for_each_zone(dzone
) {
2688 if (!populated_zone(dzone
))
2692 kfree(zone_pcp(dzone
, cpu
));
2693 zone_pcp(dzone
, cpu
) = NULL
;
2698 static inline void free_zone_pagesets(int cpu
)
2702 for_each_zone(zone
) {
2703 struct per_cpu_pageset
*pset
= zone_pcp(zone
, cpu
);
2705 /* Free per_cpu_pageset if it is slab allocated */
2706 if (pset
!= &boot_pageset
[cpu
])
2708 zone_pcp(zone
, cpu
) = NULL
;
2712 static int __cpuinit
pageset_cpuup_callback(struct notifier_block
*nfb
,
2713 unsigned long action
,
2716 int cpu
= (long)hcpu
;
2717 int ret
= NOTIFY_OK
;
2720 case CPU_UP_PREPARE
:
2721 case CPU_UP_PREPARE_FROZEN
:
2722 if (process_zones(cpu
))
2725 case CPU_UP_CANCELED
:
2726 case CPU_UP_CANCELED_FROZEN
:
2728 case CPU_DEAD_FROZEN
:
2729 free_zone_pagesets(cpu
);
2737 static struct notifier_block __cpuinitdata pageset_notifier
=
2738 { &pageset_cpuup_callback
, NULL
, 0 };
2740 void __init
setup_per_cpu_pageset(void)
2744 /* Initialize per_cpu_pageset for cpu 0.
2745 * A cpuup callback will do this for every cpu
2746 * as it comes online
2748 err
= process_zones(smp_processor_id());
2750 register_cpu_notifier(&pageset_notifier
);
2755 static noinline __init_refok
2756 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
2759 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2763 * The per-page waitqueue mechanism uses hashed waitqueues
2766 zone
->wait_table_hash_nr_entries
=
2767 wait_table_hash_nr_entries(zone_size_pages
);
2768 zone
->wait_table_bits
=
2769 wait_table_bits(zone
->wait_table_hash_nr_entries
);
2770 alloc_size
= zone
->wait_table_hash_nr_entries
2771 * sizeof(wait_queue_head_t
);
2773 if (system_state
== SYSTEM_BOOTING
) {
2774 zone
->wait_table
= (wait_queue_head_t
*)
2775 alloc_bootmem_node(pgdat
, alloc_size
);
2778 * This case means that a zone whose size was 0 gets new memory
2779 * via memory hot-add.
2780 * But it may be the case that a new node was hot-added. In
2781 * this case vmalloc() will not be able to use this new node's
2782 * memory - this wait_table must be initialized to use this new
2783 * node itself as well.
2784 * To use this new node's memory, further consideration will be
2787 zone
->wait_table
= vmalloc(alloc_size
);
2789 if (!zone
->wait_table
)
2792 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
2793 init_waitqueue_head(zone
->wait_table
+ i
);
2798 static __meminit
void zone_pcp_init(struct zone
*zone
)
2801 unsigned long batch
= zone_batchsize(zone
);
2803 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
2805 /* Early boot. Slab allocator not functional yet */
2806 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
2807 setup_pageset(&boot_pageset
[cpu
],0);
2809 setup_pageset(zone_pcp(zone
,cpu
), batch
);
2812 if (zone
->present_pages
)
2813 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
2814 zone
->name
, zone
->present_pages
, batch
);
2817 __meminit
int init_currently_empty_zone(struct zone
*zone
,
2818 unsigned long zone_start_pfn
,
2820 enum memmap_context context
)
2822 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2824 ret
= zone_wait_table_init(zone
, size
);
2827 pgdat
->nr_zones
= zone_idx(zone
) + 1;
2829 zone
->zone_start_pfn
= zone_start_pfn
;
2831 memmap_init(size
, pgdat
->node_id
, zone_idx(zone
), zone_start_pfn
);
2833 zone_init_free_lists(pgdat
, zone
, zone
->spanned_pages
);
2838 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2840 * Basic iterator support. Return the first range of PFNs for a node
2841 * Note: nid == MAX_NUMNODES returns first region regardless of node
2843 static int __meminit
first_active_region_index_in_nid(int nid
)
2847 for (i
= 0; i
< nr_nodemap_entries
; i
++)
2848 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
2855 * Basic iterator support. Return the next active range of PFNs for a node
2856 * Note: nid == MAX_NUMNODES returns next region regardles of node
2858 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
2860 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
2861 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
2867 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2869 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2870 * Architectures may implement their own version but if add_active_range()
2871 * was used and there are no special requirements, this is a convenient
2874 int __meminit
early_pfn_to_nid(unsigned long pfn
)
2878 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
2879 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
2880 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
2882 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
2883 return early_node_map
[i
].nid
;
2888 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2890 /* Basic iterator support to walk early_node_map[] */
2891 #define for_each_active_range_index_in_nid(i, nid) \
2892 for (i = first_active_region_index_in_nid(nid); i != -1; \
2893 i = next_active_region_index_in_nid(i, nid))
2896 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2897 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2898 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2900 * If an architecture guarantees that all ranges registered with
2901 * add_active_ranges() contain no holes and may be freed, this
2902 * this function may be used instead of calling free_bootmem() manually.
2904 void __init
free_bootmem_with_active_regions(int nid
,
2905 unsigned long max_low_pfn
)
2909 for_each_active_range_index_in_nid(i
, nid
) {
2910 unsigned long size_pages
= 0;
2911 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
2913 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
2916 if (end_pfn
> max_low_pfn
)
2917 end_pfn
= max_low_pfn
;
2919 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
2920 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
2921 PFN_PHYS(early_node_map
[i
].start_pfn
),
2922 size_pages
<< PAGE_SHIFT
);
2927 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2928 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2930 * If an architecture guarantees that all ranges registered with
2931 * add_active_ranges() contain no holes and may be freed, this
2932 * function may be used instead of calling memory_present() manually.
2934 void __init
sparse_memory_present_with_active_regions(int nid
)
2938 for_each_active_range_index_in_nid(i
, nid
)
2939 memory_present(early_node_map
[i
].nid
,
2940 early_node_map
[i
].start_pfn
,
2941 early_node_map
[i
].end_pfn
);
2945 * push_node_boundaries - Push node boundaries to at least the requested boundary
2946 * @nid: The nid of the node to push the boundary for
2947 * @start_pfn: The start pfn of the node
2948 * @end_pfn: The end pfn of the node
2950 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2951 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2952 * be hotplugged even though no physical memory exists. This function allows
2953 * an arch to push out the node boundaries so mem_map is allocated that can
2956 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2957 void __init
push_node_boundaries(unsigned int nid
,
2958 unsigned long start_pfn
, unsigned long end_pfn
)
2960 printk(KERN_DEBUG
"Entering push_node_boundaries(%u, %lu, %lu)\n",
2961 nid
, start_pfn
, end_pfn
);
2963 /* Initialise the boundary for this node if necessary */
2964 if (node_boundary_end_pfn
[nid
] == 0)
2965 node_boundary_start_pfn
[nid
] = -1UL;
2967 /* Update the boundaries */
2968 if (node_boundary_start_pfn
[nid
] > start_pfn
)
2969 node_boundary_start_pfn
[nid
] = start_pfn
;
2970 if (node_boundary_end_pfn
[nid
] < end_pfn
)
2971 node_boundary_end_pfn
[nid
] = end_pfn
;
2974 /* If necessary, push the node boundary out for reserve hotadd */
2975 static void __meminit
account_node_boundary(unsigned int nid
,
2976 unsigned long *start_pfn
, unsigned long *end_pfn
)
2978 printk(KERN_DEBUG
"Entering account_node_boundary(%u, %lu, %lu)\n",
2979 nid
, *start_pfn
, *end_pfn
);
2981 /* Return if boundary information has not been provided */
2982 if (node_boundary_end_pfn
[nid
] == 0)
2985 /* Check the boundaries and update if necessary */
2986 if (node_boundary_start_pfn
[nid
] < *start_pfn
)
2987 *start_pfn
= node_boundary_start_pfn
[nid
];
2988 if (node_boundary_end_pfn
[nid
] > *end_pfn
)
2989 *end_pfn
= node_boundary_end_pfn
[nid
];
2992 void __init
push_node_boundaries(unsigned int nid
,
2993 unsigned long start_pfn
, unsigned long end_pfn
) {}
2995 static void __meminit
account_node_boundary(unsigned int nid
,
2996 unsigned long *start_pfn
, unsigned long *end_pfn
) {}
3001 * get_pfn_range_for_nid - Return the start and end page frames for a node
3002 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3003 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3004 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3006 * It returns the start and end page frame of a node based on information
3007 * provided by an arch calling add_active_range(). If called for a node
3008 * with no available memory, a warning is printed and the start and end
3011 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
3012 unsigned long *start_pfn
, unsigned long *end_pfn
)
3018 for_each_active_range_index_in_nid(i
, nid
) {
3019 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
3020 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
3023 if (*start_pfn
== -1UL)
3026 /* Push the node boundaries out if requested */
3027 account_node_boundary(nid
, start_pfn
, end_pfn
);
3031 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3032 * assumption is made that zones within a node are ordered in monotonic
3033 * increasing memory addresses so that the "highest" populated zone is used
3035 void __init
find_usable_zone_for_movable(void)
3038 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
3039 if (zone_index
== ZONE_MOVABLE
)
3042 if (arch_zone_highest_possible_pfn
[zone_index
] >
3043 arch_zone_lowest_possible_pfn
[zone_index
])
3047 VM_BUG_ON(zone_index
== -1);
3048 movable_zone
= zone_index
;
3052 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3053 * because it is sized independant of architecture. Unlike the other zones,
3054 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3055 * in each node depending on the size of each node and how evenly kernelcore
3056 * is distributed. This helper function adjusts the zone ranges
3057 * provided by the architecture for a given node by using the end of the
3058 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3059 * zones within a node are in order of monotonic increases memory addresses
3061 void __meminit
adjust_zone_range_for_zone_movable(int nid
,
3062 unsigned long zone_type
,
3063 unsigned long node_start_pfn
,
3064 unsigned long node_end_pfn
,
3065 unsigned long *zone_start_pfn
,
3066 unsigned long *zone_end_pfn
)
3068 /* Only adjust if ZONE_MOVABLE is on this node */
3069 if (zone_movable_pfn
[nid
]) {
3070 /* Size ZONE_MOVABLE */
3071 if (zone_type
== ZONE_MOVABLE
) {
3072 *zone_start_pfn
= zone_movable_pfn
[nid
];
3073 *zone_end_pfn
= min(node_end_pfn
,
3074 arch_zone_highest_possible_pfn
[movable_zone
]);
3076 /* Adjust for ZONE_MOVABLE starting within this range */
3077 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
3078 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
3079 *zone_end_pfn
= zone_movable_pfn
[nid
];
3081 /* Check if this whole range is within ZONE_MOVABLE */
3082 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
3083 *zone_start_pfn
= *zone_end_pfn
;
3088 * Return the number of pages a zone spans in a node, including holes
3089 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3091 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3092 unsigned long zone_type
,
3093 unsigned long *ignored
)
3095 unsigned long node_start_pfn
, node_end_pfn
;
3096 unsigned long zone_start_pfn
, zone_end_pfn
;
3098 /* Get the start and end of the node and zone */
3099 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3100 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
3101 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
3102 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3103 node_start_pfn
, node_end_pfn
,
3104 &zone_start_pfn
, &zone_end_pfn
);
3106 /* Check that this node has pages within the zone's required range */
3107 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
3110 /* Move the zone boundaries inside the node if necessary */
3111 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
3112 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
3114 /* Return the spanned pages */
3115 return zone_end_pfn
- zone_start_pfn
;
3119 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3120 * then all holes in the requested range will be accounted for.
3122 unsigned long __meminit
__absent_pages_in_range(int nid
,
3123 unsigned long range_start_pfn
,
3124 unsigned long range_end_pfn
)
3127 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
3128 unsigned long start_pfn
;
3130 /* Find the end_pfn of the first active range of pfns in the node */
3131 i
= first_active_region_index_in_nid(nid
);
3135 prev_end_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3137 /* Account for ranges before physical memory on this node */
3138 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
3139 hole_pages
= prev_end_pfn
- range_start_pfn
;
3141 /* Find all holes for the zone within the node */
3142 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
3144 /* No need to continue if prev_end_pfn is outside the zone */
3145 if (prev_end_pfn
>= range_end_pfn
)
3148 /* Make sure the end of the zone is not within the hole */
3149 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3150 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
3152 /* Update the hole size cound and move on */
3153 if (start_pfn
> range_start_pfn
) {
3154 BUG_ON(prev_end_pfn
> start_pfn
);
3155 hole_pages
+= start_pfn
- prev_end_pfn
;
3157 prev_end_pfn
= early_node_map
[i
].end_pfn
;
3160 /* Account for ranges past physical memory on this node */
3161 if (range_end_pfn
> prev_end_pfn
)
3162 hole_pages
+= range_end_pfn
-
3163 max(range_start_pfn
, prev_end_pfn
);
3169 * absent_pages_in_range - Return number of page frames in holes within a range
3170 * @start_pfn: The start PFN to start searching for holes
3171 * @end_pfn: The end PFN to stop searching for holes
3173 * It returns the number of pages frames in memory holes within a range.
3175 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
3176 unsigned long end_pfn
)
3178 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
3181 /* Return the number of page frames in holes in a zone on a node */
3182 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3183 unsigned long zone_type
,
3184 unsigned long *ignored
)
3186 unsigned long node_start_pfn
, node_end_pfn
;
3187 unsigned long zone_start_pfn
, zone_end_pfn
;
3189 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3190 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
3192 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
3195 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3196 node_start_pfn
, node_end_pfn
,
3197 &zone_start_pfn
, &zone_end_pfn
);
3198 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
3202 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3203 unsigned long zone_type
,
3204 unsigned long *zones_size
)
3206 return zones_size
[zone_type
];
3209 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3210 unsigned long zone_type
,
3211 unsigned long *zholes_size
)
3216 return zholes_size
[zone_type
];
3221 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
3222 unsigned long *zones_size
, unsigned long *zholes_size
)
3224 unsigned long realtotalpages
, totalpages
= 0;
3227 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3228 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
3230 pgdat
->node_spanned_pages
= totalpages
;
3232 realtotalpages
= totalpages
;
3233 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3235 zone_absent_pages_in_node(pgdat
->node_id
, i
,
3237 pgdat
->node_present_pages
= realtotalpages
;
3238 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
3242 #ifndef CONFIG_SPARSEMEM
3244 * Calculate the size of the zone->blockflags rounded to an unsigned long
3245 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3246 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3247 * round what is now in bits to nearest long in bits, then return it in
3250 static unsigned long __init
usemap_size(unsigned long zonesize
)
3252 unsigned long usemapsize
;
3254 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
3255 usemapsize
= usemapsize
>> pageblock_order
;
3256 usemapsize
*= NR_PAGEBLOCK_BITS
;
3257 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
3259 return usemapsize
/ 8;
3262 static void __init
setup_usemap(struct pglist_data
*pgdat
,
3263 struct zone
*zone
, unsigned long zonesize
)
3265 unsigned long usemapsize
= usemap_size(zonesize
);
3266 zone
->pageblock_flags
= NULL
;
3268 zone
->pageblock_flags
= alloc_bootmem_node(pgdat
, usemapsize
);
3269 memset(zone
->pageblock_flags
, 0, usemapsize
);
3273 static void inline setup_usemap(struct pglist_data
*pgdat
,
3274 struct zone
*zone
, unsigned long zonesize
) {}
3275 #endif /* CONFIG_SPARSEMEM */
3277 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3278 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3279 static inline void __init
set_pageblock_order(unsigned int order
)
3281 /* Check that pageblock_nr_pages has not already been setup */
3282 if (pageblock_order
)
3286 * Assume the largest contiguous order of interest is a huge page.
3287 * This value may be variable depending on boot parameters on IA64
3289 pageblock_order
= order
;
3291 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3293 /* Defined this way to avoid accidently referencing HUGETLB_PAGE_ORDER */
3294 #define set_pageblock_order(x) do {} while (0)
3296 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3299 * Set up the zone data structures:
3300 * - mark all pages reserved
3301 * - mark all memory queues empty
3302 * - clear the memory bitmaps
3304 static void __meminit
free_area_init_core(struct pglist_data
*pgdat
,
3305 unsigned long *zones_size
, unsigned long *zholes_size
)
3308 int nid
= pgdat
->node_id
;
3309 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
3312 pgdat_resize_init(pgdat
);
3313 pgdat
->nr_zones
= 0;
3314 init_waitqueue_head(&pgdat
->kswapd_wait
);
3315 pgdat
->kswapd_max_order
= 0;
3317 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
3318 struct zone
*zone
= pgdat
->node_zones
+ j
;
3319 unsigned long size
, realsize
, memmap_pages
;
3321 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
3322 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
3326 * Adjust realsize so that it accounts for how much memory
3327 * is used by this zone for memmap. This affects the watermark
3328 * and per-cpu initialisations
3330 memmap_pages
= (size
* sizeof(struct page
)) >> PAGE_SHIFT
;
3331 if (realsize
>= memmap_pages
) {
3332 realsize
-= memmap_pages
;
3334 " %s zone: %lu pages used for memmap\n",
3335 zone_names
[j
], memmap_pages
);
3338 " %s zone: %lu pages exceeds realsize %lu\n",
3339 zone_names
[j
], memmap_pages
, realsize
);
3341 /* Account for reserved pages */
3342 if (j
== 0 && realsize
> dma_reserve
) {
3343 realsize
-= dma_reserve
;
3344 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
3345 zone_names
[0], dma_reserve
);
3348 if (!is_highmem_idx(j
))
3349 nr_kernel_pages
+= realsize
;
3350 nr_all_pages
+= realsize
;
3352 zone
->spanned_pages
= size
;
3353 zone
->present_pages
= realsize
;
3356 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
3358 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
3360 zone
->name
= zone_names
[j
];
3361 spin_lock_init(&zone
->lock
);
3362 spin_lock_init(&zone
->lru_lock
);
3363 zone_seqlock_init(zone
);
3364 zone
->zone_pgdat
= pgdat
;
3366 zone
->prev_priority
= DEF_PRIORITY
;
3368 zone_pcp_init(zone
);
3369 INIT_LIST_HEAD(&zone
->active_list
);
3370 INIT_LIST_HEAD(&zone
->inactive_list
);
3371 zone
->nr_scan_active
= 0;
3372 zone
->nr_scan_inactive
= 0;
3373 zap_zone_vm_stats(zone
);
3374 atomic_set(&zone
->reclaim_in_progress
, 0);
3378 set_pageblock_order(HUGETLB_PAGE_ORDER
);
3379 setup_usemap(pgdat
, zone
, size
);
3380 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
3381 size
, MEMMAP_EARLY
);
3383 zone_start_pfn
+= size
;
3387 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
3389 /* Skip empty nodes */
3390 if (!pgdat
->node_spanned_pages
)
3393 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3394 /* ia64 gets its own node_mem_map, before this, without bootmem */
3395 if (!pgdat
->node_mem_map
) {
3396 unsigned long size
, start
, end
;
3400 * The zone's endpoints aren't required to be MAX_ORDER
3401 * aligned but the node_mem_map endpoints must be in order
3402 * for the buddy allocator to function correctly.
3404 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
3405 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
3406 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
3407 size
= (end
- start
) * sizeof(struct page
);
3408 map
= alloc_remap(pgdat
->node_id
, size
);
3410 map
= alloc_bootmem_node(pgdat
, size
);
3411 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
3413 #ifndef CONFIG_NEED_MULTIPLE_NODES
3415 * With no DISCONTIG, the global mem_map is just set as node 0's
3417 if (pgdat
== NODE_DATA(0)) {
3418 mem_map
= NODE_DATA(0)->node_mem_map
;
3419 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3420 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
3421 mem_map
-= pgdat
->node_start_pfn
;
3422 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3425 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3428 void __meminit
free_area_init_node(int nid
, struct pglist_data
*pgdat
,
3429 unsigned long *zones_size
, unsigned long node_start_pfn
,
3430 unsigned long *zholes_size
)
3432 pgdat
->node_id
= nid
;
3433 pgdat
->node_start_pfn
= node_start_pfn
;
3434 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
3436 alloc_node_mem_map(pgdat
);
3438 free_area_init_core(pgdat
, zones_size
, zholes_size
);
3441 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3443 #if MAX_NUMNODES > 1
3445 * Figure out the number of possible node ids.
3447 static void __init
setup_nr_node_ids(void)
3450 unsigned int highest
= 0;
3452 for_each_node_mask(node
, node_possible_map
)
3454 nr_node_ids
= highest
+ 1;
3457 static inline void setup_nr_node_ids(void)
3463 * add_active_range - Register a range of PFNs backed by physical memory
3464 * @nid: The node ID the range resides on
3465 * @start_pfn: The start PFN of the available physical memory
3466 * @end_pfn: The end PFN of the available physical memory
3468 * These ranges are stored in an early_node_map[] and later used by
3469 * free_area_init_nodes() to calculate zone sizes and holes. If the
3470 * range spans a memory hole, it is up to the architecture to ensure
3471 * the memory is not freed by the bootmem allocator. If possible
3472 * the range being registered will be merged with existing ranges.
3474 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
3475 unsigned long end_pfn
)
3479 printk(KERN_DEBUG
"Entering add_active_range(%d, %lu, %lu) "
3480 "%d entries of %d used\n",
3481 nid
, start_pfn
, end_pfn
,
3482 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
3484 /* Merge with existing active regions if possible */
3485 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3486 if (early_node_map
[i
].nid
!= nid
)
3489 /* Skip if an existing region covers this new one */
3490 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
3491 end_pfn
<= early_node_map
[i
].end_pfn
)
3494 /* Merge forward if suitable */
3495 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
3496 end_pfn
> early_node_map
[i
].end_pfn
) {
3497 early_node_map
[i
].end_pfn
= end_pfn
;
3501 /* Merge backward if suitable */
3502 if (start_pfn
< early_node_map
[i
].end_pfn
&&
3503 end_pfn
>= early_node_map
[i
].start_pfn
) {
3504 early_node_map
[i
].start_pfn
= start_pfn
;
3509 /* Check that early_node_map is large enough */
3510 if (i
>= MAX_ACTIVE_REGIONS
) {
3511 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
3512 MAX_ACTIVE_REGIONS
);
3516 early_node_map
[i
].nid
= nid
;
3517 early_node_map
[i
].start_pfn
= start_pfn
;
3518 early_node_map
[i
].end_pfn
= end_pfn
;
3519 nr_nodemap_entries
= i
+ 1;
3523 * shrink_active_range - Shrink an existing registered range of PFNs
3524 * @nid: The node id the range is on that should be shrunk
3525 * @old_end_pfn: The old end PFN of the range
3526 * @new_end_pfn: The new PFN of the range
3528 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3529 * The map is kept at the end physical page range that has already been
3530 * registered with add_active_range(). This function allows an arch to shrink
3531 * an existing registered range.
3533 void __init
shrink_active_range(unsigned int nid
, unsigned long old_end_pfn
,
3534 unsigned long new_end_pfn
)
3538 /* Find the old active region end and shrink */
3539 for_each_active_range_index_in_nid(i
, nid
)
3540 if (early_node_map
[i
].end_pfn
== old_end_pfn
) {
3541 early_node_map
[i
].end_pfn
= new_end_pfn
;
3547 * remove_all_active_ranges - Remove all currently registered regions
3549 * During discovery, it may be found that a table like SRAT is invalid
3550 * and an alternative discovery method must be used. This function removes
3551 * all currently registered regions.
3553 void __init
remove_all_active_ranges(void)
3555 memset(early_node_map
, 0, sizeof(early_node_map
));
3556 nr_nodemap_entries
= 0;
3557 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3558 memset(node_boundary_start_pfn
, 0, sizeof(node_boundary_start_pfn
));
3559 memset(node_boundary_end_pfn
, 0, sizeof(node_boundary_end_pfn
));
3560 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3563 /* Compare two active node_active_regions */
3564 static int __init
cmp_node_active_region(const void *a
, const void *b
)
3566 struct node_active_region
*arange
= (struct node_active_region
*)a
;
3567 struct node_active_region
*brange
= (struct node_active_region
*)b
;
3569 /* Done this way to avoid overflows */
3570 if (arange
->start_pfn
> brange
->start_pfn
)
3572 if (arange
->start_pfn
< brange
->start_pfn
)
3578 /* sort the node_map by start_pfn */
3579 static void __init
sort_node_map(void)
3581 sort(early_node_map
, (size_t)nr_nodemap_entries
,
3582 sizeof(struct node_active_region
),
3583 cmp_node_active_region
, NULL
);
3586 /* Find the lowest pfn for a node */
3587 unsigned long __init
find_min_pfn_for_node(unsigned long nid
)
3590 unsigned long min_pfn
= ULONG_MAX
;
3592 /* Assuming a sorted map, the first range found has the starting pfn */
3593 for_each_active_range_index_in_nid(i
, nid
)
3594 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
3596 if (min_pfn
== ULONG_MAX
) {
3598 "Could not find start_pfn for node %lu\n", nid
);
3606 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3608 * It returns the minimum PFN based on information provided via
3609 * add_active_range().
3611 unsigned long __init
find_min_pfn_with_active_regions(void)
3613 return find_min_pfn_for_node(MAX_NUMNODES
);
3617 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3619 * It returns the maximum PFN based on information provided via
3620 * add_active_range().
3622 unsigned long __init
find_max_pfn_with_active_regions(void)
3625 unsigned long max_pfn
= 0;
3627 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3628 max_pfn
= max(max_pfn
, early_node_map
[i
].end_pfn
);
3634 * early_calculate_totalpages()
3635 * Sum pages in active regions for movable zone.
3636 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3638 static unsigned long __init
early_calculate_totalpages(void)
3641 unsigned long totalpages
= 0;
3643 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3644 unsigned long pages
= early_node_map
[i
].end_pfn
-
3645 early_node_map
[i
].start_pfn
;
3646 totalpages
+= pages
;
3648 node_set_state(early_node_map
[i
].nid
, N_HIGH_MEMORY
);
3654 * Find the PFN the Movable zone begins in each node. Kernel memory
3655 * is spread evenly between nodes as long as the nodes have enough
3656 * memory. When they don't, some nodes will have more kernelcore than
3659 void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
3662 unsigned long usable_startpfn
;
3663 unsigned long kernelcore_node
, kernelcore_remaining
;
3664 unsigned long totalpages
= early_calculate_totalpages();
3665 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
3668 * If movablecore was specified, calculate what size of
3669 * kernelcore that corresponds so that memory usable for
3670 * any allocation type is evenly spread. If both kernelcore
3671 * and movablecore are specified, then the value of kernelcore
3672 * will be used for required_kernelcore if it's greater than
3673 * what movablecore would have allowed.
3675 if (required_movablecore
) {
3676 unsigned long corepages
;
3679 * Round-up so that ZONE_MOVABLE is at least as large as what
3680 * was requested by the user
3682 required_movablecore
=
3683 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
3684 corepages
= totalpages
- required_movablecore
;
3686 required_kernelcore
= max(required_kernelcore
, corepages
);
3689 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3690 if (!required_kernelcore
)
3693 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3694 find_usable_zone_for_movable();
3695 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
3698 /* Spread kernelcore memory as evenly as possible throughout nodes */
3699 kernelcore_node
= required_kernelcore
/ usable_nodes
;
3700 for_each_node_state(nid
, N_HIGH_MEMORY
) {
3702 * Recalculate kernelcore_node if the division per node
3703 * now exceeds what is necessary to satisfy the requested
3704 * amount of memory for the kernel
3706 if (required_kernelcore
< kernelcore_node
)
3707 kernelcore_node
= required_kernelcore
/ usable_nodes
;
3710 * As the map is walked, we track how much memory is usable
3711 * by the kernel using kernelcore_remaining. When it is
3712 * 0, the rest of the node is usable by ZONE_MOVABLE
3714 kernelcore_remaining
= kernelcore_node
;
3716 /* Go through each range of PFNs within this node */
3717 for_each_active_range_index_in_nid(i
, nid
) {
3718 unsigned long start_pfn
, end_pfn
;
3719 unsigned long size_pages
;
3721 start_pfn
= max(early_node_map
[i
].start_pfn
,
3722 zone_movable_pfn
[nid
]);
3723 end_pfn
= early_node_map
[i
].end_pfn
;
3724 if (start_pfn
>= end_pfn
)
3727 /* Account for what is only usable for kernelcore */
3728 if (start_pfn
< usable_startpfn
) {
3729 unsigned long kernel_pages
;
3730 kernel_pages
= min(end_pfn
, usable_startpfn
)
3733 kernelcore_remaining
-= min(kernel_pages
,
3734 kernelcore_remaining
);
3735 required_kernelcore
-= min(kernel_pages
,
3736 required_kernelcore
);
3738 /* Continue if range is now fully accounted */
3739 if (end_pfn
<= usable_startpfn
) {
3742 * Push zone_movable_pfn to the end so
3743 * that if we have to rebalance
3744 * kernelcore across nodes, we will
3745 * not double account here
3747 zone_movable_pfn
[nid
] = end_pfn
;
3750 start_pfn
= usable_startpfn
;
3754 * The usable PFN range for ZONE_MOVABLE is from
3755 * start_pfn->end_pfn. Calculate size_pages as the
3756 * number of pages used as kernelcore
3758 size_pages
= end_pfn
- start_pfn
;
3759 if (size_pages
> kernelcore_remaining
)
3760 size_pages
= kernelcore_remaining
;
3761 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
3764 * Some kernelcore has been met, update counts and
3765 * break if the kernelcore for this node has been
3768 required_kernelcore
-= min(required_kernelcore
,
3770 kernelcore_remaining
-= size_pages
;
3771 if (!kernelcore_remaining
)
3777 * If there is still required_kernelcore, we do another pass with one
3778 * less node in the count. This will push zone_movable_pfn[nid] further
3779 * along on the nodes that still have memory until kernelcore is
3783 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
3786 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3787 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
3788 zone_movable_pfn
[nid
] =
3789 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
3792 /* Any regular memory on that node ? */
3793 static void check_for_regular_memory(pg_data_t
*pgdat
)
3795 #ifdef CONFIG_HIGHMEM
3796 enum zone_type zone_type
;
3798 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
3799 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
3800 if (zone
->present_pages
)
3801 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
3807 * free_area_init_nodes - Initialise all pg_data_t and zone data
3808 * @max_zone_pfn: an array of max PFNs for each zone
3810 * This will call free_area_init_node() for each active node in the system.
3811 * Using the page ranges provided by add_active_range(), the size of each
3812 * zone in each node and their holes is calculated. If the maximum PFN
3813 * between two adjacent zones match, it is assumed that the zone is empty.
3814 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3815 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3816 * starts where the previous one ended. For example, ZONE_DMA32 starts
3817 * at arch_max_dma_pfn.
3819 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
3824 /* Sort early_node_map as initialisation assumes it is sorted */
3827 /* Record where the zone boundaries are */
3828 memset(arch_zone_lowest_possible_pfn
, 0,
3829 sizeof(arch_zone_lowest_possible_pfn
));
3830 memset(arch_zone_highest_possible_pfn
, 0,
3831 sizeof(arch_zone_highest_possible_pfn
));
3832 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
3833 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
3834 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
3835 if (i
== ZONE_MOVABLE
)
3837 arch_zone_lowest_possible_pfn
[i
] =
3838 arch_zone_highest_possible_pfn
[i
-1];
3839 arch_zone_highest_possible_pfn
[i
] =
3840 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
3842 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
3843 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
3845 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3846 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
3847 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
3849 /* Print out the zone ranges */
3850 printk("Zone PFN ranges:\n");
3851 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
3852 if (i
== ZONE_MOVABLE
)
3854 printk(" %-8s %8lu -> %8lu\n",
3856 arch_zone_lowest_possible_pfn
[i
],
3857 arch_zone_highest_possible_pfn
[i
]);
3860 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3861 printk("Movable zone start PFN for each node\n");
3862 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
3863 if (zone_movable_pfn
[i
])
3864 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
3867 /* Print out the early_node_map[] */
3868 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
3869 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3870 printk(" %3d: %8lu -> %8lu\n", early_node_map
[i
].nid
,
3871 early_node_map
[i
].start_pfn
,
3872 early_node_map
[i
].end_pfn
);
3874 /* Initialise every node */
3875 setup_nr_node_ids();
3876 for_each_online_node(nid
) {
3877 pg_data_t
*pgdat
= NODE_DATA(nid
);
3878 free_area_init_node(nid
, pgdat
, NULL
,
3879 find_min_pfn_for_node(nid
), NULL
);
3881 /* Any memory on that node */
3882 if (pgdat
->node_present_pages
)
3883 node_set_state(nid
, N_HIGH_MEMORY
);
3884 check_for_regular_memory(pgdat
);
3888 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
3890 unsigned long long coremem
;
3894 coremem
= memparse(p
, &p
);
3895 *core
= coremem
>> PAGE_SHIFT
;
3897 /* Paranoid check that UL is enough for the coremem value */
3898 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
3904 * kernelcore=size sets the amount of memory for use for allocations that
3905 * cannot be reclaimed or migrated.
3907 static int __init
cmdline_parse_kernelcore(char *p
)
3909 return cmdline_parse_core(p
, &required_kernelcore
);
3913 * movablecore=size sets the amount of memory for use for allocations that
3914 * can be reclaimed or migrated.
3916 static int __init
cmdline_parse_movablecore(char *p
)
3918 return cmdline_parse_core(p
, &required_movablecore
);
3921 early_param("kernelcore", cmdline_parse_kernelcore
);
3922 early_param("movablecore", cmdline_parse_movablecore
);
3924 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3927 * set_dma_reserve - set the specified number of pages reserved in the first zone
3928 * @new_dma_reserve: The number of pages to mark reserved
3930 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3931 * In the DMA zone, a significant percentage may be consumed by kernel image
3932 * and other unfreeable allocations which can skew the watermarks badly. This
3933 * function may optionally be used to account for unfreeable pages in the
3934 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3935 * smaller per-cpu batchsize.
3937 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
3939 dma_reserve
= new_dma_reserve
;
3942 #ifndef CONFIG_NEED_MULTIPLE_NODES
3943 static bootmem_data_t contig_bootmem_data
;
3944 struct pglist_data contig_page_data
= { .bdata
= &contig_bootmem_data
};
3946 EXPORT_SYMBOL(contig_page_data
);
3949 void __init
free_area_init(unsigned long *zones_size
)
3951 free_area_init_node(0, NODE_DATA(0), zones_size
,
3952 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
3955 static int page_alloc_cpu_notify(struct notifier_block
*self
,
3956 unsigned long action
, void *hcpu
)
3958 int cpu
= (unsigned long)hcpu
;
3960 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
3961 local_irq_disable();
3963 vm_events_fold_cpu(cpu
);
3965 refresh_cpu_vm_stats(cpu
);
3970 void __init
page_alloc_init(void)
3972 hotcpu_notifier(page_alloc_cpu_notify
, 0);
3976 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3977 * or min_free_kbytes changes.
3979 static void calculate_totalreserve_pages(void)
3981 struct pglist_data
*pgdat
;
3982 unsigned long reserve_pages
= 0;
3983 enum zone_type i
, j
;
3985 for_each_online_pgdat(pgdat
) {
3986 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
3987 struct zone
*zone
= pgdat
->node_zones
+ i
;
3988 unsigned long max
= 0;
3990 /* Find valid and maximum lowmem_reserve in the zone */
3991 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
3992 if (zone
->lowmem_reserve
[j
] > max
)
3993 max
= zone
->lowmem_reserve
[j
];
3996 /* we treat pages_high as reserved pages. */
3997 max
+= zone
->pages_high
;
3999 if (max
> zone
->present_pages
)
4000 max
= zone
->present_pages
;
4001 reserve_pages
+= max
;
4004 totalreserve_pages
= reserve_pages
;
4008 * setup_per_zone_lowmem_reserve - called whenever
4009 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4010 * has a correct pages reserved value, so an adequate number of
4011 * pages are left in the zone after a successful __alloc_pages().
4013 static void setup_per_zone_lowmem_reserve(void)
4015 struct pglist_data
*pgdat
;
4016 enum zone_type j
, idx
;
4018 for_each_online_pgdat(pgdat
) {
4019 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4020 struct zone
*zone
= pgdat
->node_zones
+ j
;
4021 unsigned long present_pages
= zone
->present_pages
;
4023 zone
->lowmem_reserve
[j
] = 0;
4027 struct zone
*lower_zone
;
4031 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
4032 sysctl_lowmem_reserve_ratio
[idx
] = 1;
4034 lower_zone
= pgdat
->node_zones
+ idx
;
4035 lower_zone
->lowmem_reserve
[j
] = present_pages
/
4036 sysctl_lowmem_reserve_ratio
[idx
];
4037 present_pages
+= lower_zone
->present_pages
;
4042 /* update totalreserve_pages */
4043 calculate_totalreserve_pages();
4047 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4049 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4050 * with respect to min_free_kbytes.
4052 void setup_per_zone_pages_min(void)
4054 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
4055 unsigned long lowmem_pages
= 0;
4057 unsigned long flags
;
4059 /* Calculate total number of !ZONE_HIGHMEM pages */
4060 for_each_zone(zone
) {
4061 if (!is_highmem(zone
))
4062 lowmem_pages
+= zone
->present_pages
;
4065 for_each_zone(zone
) {
4068 spin_lock_irqsave(&zone
->lru_lock
, flags
);
4069 tmp
= (u64
)pages_min
* zone
->present_pages
;
4070 do_div(tmp
, lowmem_pages
);
4071 if (is_highmem(zone
)) {
4073 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4074 * need highmem pages, so cap pages_min to a small
4077 * The (pages_high-pages_low) and (pages_low-pages_min)
4078 * deltas controls asynch page reclaim, and so should
4079 * not be capped for highmem.
4083 min_pages
= zone
->present_pages
/ 1024;
4084 if (min_pages
< SWAP_CLUSTER_MAX
)
4085 min_pages
= SWAP_CLUSTER_MAX
;
4086 if (min_pages
> 128)
4088 zone
->pages_min
= min_pages
;
4091 * If it's a lowmem zone, reserve a number of pages
4092 * proportionate to the zone's size.
4094 zone
->pages_min
= tmp
;
4097 zone
->pages_low
= zone
->pages_min
+ (tmp
>> 2);
4098 zone
->pages_high
= zone
->pages_min
+ (tmp
>> 1);
4099 setup_zone_migrate_reserve(zone
);
4100 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
4103 /* update totalreserve_pages */
4104 calculate_totalreserve_pages();
4108 * Initialise min_free_kbytes.
4110 * For small machines we want it small (128k min). For large machines
4111 * we want it large (64MB max). But it is not linear, because network
4112 * bandwidth does not increase linearly with machine size. We use
4114 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4115 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4131 static int __init
init_per_zone_pages_min(void)
4133 unsigned long lowmem_kbytes
;
4135 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
4137 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
4138 if (min_free_kbytes
< 128)
4139 min_free_kbytes
= 128;
4140 if (min_free_kbytes
> 65536)
4141 min_free_kbytes
= 65536;
4142 setup_per_zone_pages_min();
4143 setup_per_zone_lowmem_reserve();
4146 module_init(init_per_zone_pages_min
)
4149 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4150 * that we can call two helper functions whenever min_free_kbytes
4153 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
4154 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4156 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
4158 setup_per_zone_pages_min();
4163 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
4164 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4169 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4174 zone
->min_unmapped_pages
= (zone
->present_pages
*
4175 sysctl_min_unmapped_ratio
) / 100;
4179 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
4180 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4185 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4190 zone
->min_slab_pages
= (zone
->present_pages
*
4191 sysctl_min_slab_ratio
) / 100;
4197 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4198 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4199 * whenever sysctl_lowmem_reserve_ratio changes.
4201 * The reserve ratio obviously has absolutely no relation with the
4202 * pages_min watermarks. The lowmem reserve ratio can only make sense
4203 * if in function of the boot time zone sizes.
4205 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
4206 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4208 proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4209 setup_per_zone_lowmem_reserve();
4214 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4215 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4216 * can have before it gets flushed back to buddy allocator.
4219 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
4220 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4226 ret
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4227 if (!write
|| (ret
== -EINVAL
))
4229 for_each_zone(zone
) {
4230 for_each_online_cpu(cpu
) {
4232 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
4233 setup_pagelist_highmark(zone_pcp(zone
, cpu
), high
);
4239 int hashdist
= HASHDIST_DEFAULT
;
4242 static int __init
set_hashdist(char *str
)
4246 hashdist
= simple_strtoul(str
, &str
, 0);
4249 __setup("hashdist=", set_hashdist
);
4253 * allocate a large system hash table from bootmem
4254 * - it is assumed that the hash table must contain an exact power-of-2
4255 * quantity of entries
4256 * - limit is the number of hash buckets, not the total allocation size
4258 void *__init
alloc_large_system_hash(const char *tablename
,
4259 unsigned long bucketsize
,
4260 unsigned long numentries
,
4263 unsigned int *_hash_shift
,
4264 unsigned int *_hash_mask
,
4265 unsigned long limit
)
4267 unsigned long long max
= limit
;
4268 unsigned long log2qty
, size
;
4271 /* allow the kernel cmdline to have a say */
4273 /* round applicable memory size up to nearest megabyte */
4274 numentries
= nr_kernel_pages
;
4275 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
4276 numentries
>>= 20 - PAGE_SHIFT
;
4277 numentries
<<= 20 - PAGE_SHIFT
;
4279 /* limit to 1 bucket per 2^scale bytes of low memory */
4280 if (scale
> PAGE_SHIFT
)
4281 numentries
>>= (scale
- PAGE_SHIFT
);
4283 numentries
<<= (PAGE_SHIFT
- scale
);
4285 /* Make sure we've got at least a 0-order allocation.. */
4286 if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
4287 numentries
= PAGE_SIZE
/ bucketsize
;
4289 numentries
= roundup_pow_of_two(numentries
);
4291 /* limit allocation size to 1/16 total memory by default */
4293 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
4294 do_div(max
, bucketsize
);
4297 if (numentries
> max
)
4300 log2qty
= ilog2(numentries
);
4303 size
= bucketsize
<< log2qty
;
4304 if (flags
& HASH_EARLY
)
4305 table
= alloc_bootmem(size
);
4307 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
4309 unsigned long order
;
4310 for (order
= 0; ((1UL << order
) << PAGE_SHIFT
) < size
; order
++)
4312 table
= (void*) __get_free_pages(GFP_ATOMIC
, order
);
4314 * If bucketsize is not a power-of-two, we may free
4315 * some pages at the end of hash table.
4318 unsigned long alloc_end
= (unsigned long)table
+
4319 (PAGE_SIZE
<< order
);
4320 unsigned long used
= (unsigned long)table
+
4322 split_page(virt_to_page(table
), order
);
4323 while (used
< alloc_end
) {
4329 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
4332 panic("Failed to allocate %s hash table\n", tablename
);
4334 printk(KERN_INFO
"%s hash table entries: %d (order: %d, %lu bytes)\n",
4337 ilog2(size
) - PAGE_SHIFT
,
4341 *_hash_shift
= log2qty
;
4343 *_hash_mask
= (1 << log2qty
) - 1;
4348 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4349 struct page
*pfn_to_page(unsigned long pfn
)
4351 return __pfn_to_page(pfn
);
4353 unsigned long page_to_pfn(struct page
*page
)
4355 return __page_to_pfn(page
);
4357 EXPORT_SYMBOL(pfn_to_page
);
4358 EXPORT_SYMBOL(page_to_pfn
);
4359 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4361 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4362 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
4365 #ifdef CONFIG_SPARSEMEM
4366 return __pfn_to_section(pfn
)->pageblock_flags
;
4368 return zone
->pageblock_flags
;
4369 #endif /* CONFIG_SPARSEMEM */
4372 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
4374 #ifdef CONFIG_SPARSEMEM
4375 pfn
&= (PAGES_PER_SECTION
-1);
4376 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4378 pfn
= pfn
- zone
->zone_start_pfn
;
4379 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4380 #endif /* CONFIG_SPARSEMEM */
4384 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4385 * @page: The page within the block of interest
4386 * @start_bitidx: The first bit of interest to retrieve
4387 * @end_bitidx: The last bit of interest
4388 * returns pageblock_bits flags
4390 unsigned long get_pageblock_flags_group(struct page
*page
,
4391 int start_bitidx
, int end_bitidx
)
4394 unsigned long *bitmap
;
4395 unsigned long pfn
, bitidx
;
4396 unsigned long flags
= 0;
4397 unsigned long value
= 1;
4399 zone
= page_zone(page
);
4400 pfn
= page_to_pfn(page
);
4401 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4402 bitidx
= pfn_to_bitidx(zone
, pfn
);
4404 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4405 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
4412 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4413 * @page: The page within the block of interest
4414 * @start_bitidx: The first bit of interest
4415 * @end_bitidx: The last bit of interest
4416 * @flags: The flags to set
4418 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
4419 int start_bitidx
, int end_bitidx
)
4422 unsigned long *bitmap
;
4423 unsigned long pfn
, bitidx
;
4424 unsigned long value
= 1;
4426 zone
= page_zone(page
);
4427 pfn
= page_to_pfn(page
);
4428 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4429 bitidx
= pfn_to_bitidx(zone
, pfn
);
4431 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4433 __set_bit(bitidx
+ start_bitidx
, bitmap
);
4435 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
4439 * This is designed as sub function...plz see page_isolation.c also.
4440 * set/clear page block's type to be ISOLATE.
4441 * page allocater never alloc memory from ISOLATE block.
4444 int set_migratetype_isolate(struct page
*page
)
4447 unsigned long flags
;
4450 zone
= page_zone(page
);
4451 spin_lock_irqsave(&zone
->lock
, flags
);
4453 * In future, more migrate types will be able to be isolation target.
4455 if (get_pageblock_migratetype(page
) != MIGRATE_MOVABLE
)
4457 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
4458 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
4461 spin_unlock_irqrestore(&zone
->lock
, flags
);
4463 drain_all_local_pages();
4467 void unset_migratetype_isolate(struct page
*page
)
4470 unsigned long flags
;
4471 zone
= page_zone(page
);
4472 spin_lock_irqsave(&zone
->lock
, flags
);
4473 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
4475 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4476 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
4478 spin_unlock_irqrestore(&zone
->lock
, flags
);