memory unplug: page isolation
[linux-2.6/mini2440.git] / mm / page_alloc.c
bloba44715e820583fcf1052af31a9e21e74e1190d94
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
40 #include <linux/sort.h>
41 #include <linux/pfn.h>
42 #include <linux/backing-dev.h>
43 #include <linux/fault-inject.h>
44 #include <linux/page-isolation.h>
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48 #include "internal.h"
51 * Array of node states.
53 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
54 [N_POSSIBLE] = NODE_MASK_ALL,
55 [N_ONLINE] = { { [0] = 1UL } },
56 #ifndef CONFIG_NUMA
57 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
58 #ifdef CONFIG_HIGHMEM
59 [N_HIGH_MEMORY] = { { [0] = 1UL } },
60 #endif
61 [N_CPU] = { { [0] = 1UL } },
62 #endif /* NUMA */
64 EXPORT_SYMBOL(node_states);
66 unsigned long totalram_pages __read_mostly;
67 unsigned long totalreserve_pages __read_mostly;
68 long nr_swap_pages;
69 int percpu_pagelist_fraction;
71 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
72 int pageblock_order __read_mostly;
73 #endif
75 static void __free_pages_ok(struct page *page, unsigned int order);
78 * results with 256, 32 in the lowmem_reserve sysctl:
79 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
80 * 1G machine -> (16M dma, 784M normal, 224M high)
81 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
82 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
83 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
85 * TBD: should special case ZONE_DMA32 machines here - in those we normally
86 * don't need any ZONE_NORMAL reservation
88 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
89 #ifdef CONFIG_ZONE_DMA
90 256,
91 #endif
92 #ifdef CONFIG_ZONE_DMA32
93 256,
94 #endif
95 #ifdef CONFIG_HIGHMEM
96 32,
97 #endif
98 32,
101 EXPORT_SYMBOL(totalram_pages);
103 static char * const zone_names[MAX_NR_ZONES] = {
104 #ifdef CONFIG_ZONE_DMA
105 "DMA",
106 #endif
107 #ifdef CONFIG_ZONE_DMA32
108 "DMA32",
109 #endif
110 "Normal",
111 #ifdef CONFIG_HIGHMEM
112 "HighMem",
113 #endif
114 "Movable",
117 int min_free_kbytes = 1024;
119 unsigned long __meminitdata nr_kernel_pages;
120 unsigned long __meminitdata nr_all_pages;
121 static unsigned long __meminitdata dma_reserve;
123 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
125 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
126 * ranges of memory (RAM) that may be registered with add_active_range().
127 * Ranges passed to add_active_range() will be merged if possible
128 * so the number of times add_active_range() can be called is
129 * related to the number of nodes and the number of holes
131 #ifdef CONFIG_MAX_ACTIVE_REGIONS
132 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
133 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
134 #else
135 #if MAX_NUMNODES >= 32
136 /* If there can be many nodes, allow up to 50 holes per node */
137 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
138 #else
139 /* By default, allow up to 256 distinct regions */
140 #define MAX_ACTIVE_REGIONS 256
141 #endif
142 #endif
144 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
145 static int __meminitdata nr_nodemap_entries;
146 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
147 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
148 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
149 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
150 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
151 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
152 unsigned long __initdata required_kernelcore;
153 static unsigned long __initdata required_movablecore;
154 unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
156 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
157 int movable_zone;
158 EXPORT_SYMBOL(movable_zone);
159 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
161 #if MAX_NUMNODES > 1
162 int nr_node_ids __read_mostly = MAX_NUMNODES;
163 EXPORT_SYMBOL(nr_node_ids);
164 #endif
166 int page_group_by_mobility_disabled __read_mostly;
168 static void set_pageblock_migratetype(struct page *page, int migratetype)
170 set_pageblock_flags_group(page, (unsigned long)migratetype,
171 PB_migrate, PB_migrate_end);
174 #ifdef CONFIG_DEBUG_VM
175 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
177 int ret = 0;
178 unsigned seq;
179 unsigned long pfn = page_to_pfn(page);
181 do {
182 seq = zone_span_seqbegin(zone);
183 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
184 ret = 1;
185 else if (pfn < zone->zone_start_pfn)
186 ret = 1;
187 } while (zone_span_seqretry(zone, seq));
189 return ret;
192 static int page_is_consistent(struct zone *zone, struct page *page)
194 if (!pfn_valid_within(page_to_pfn(page)))
195 return 0;
196 if (zone != page_zone(page))
197 return 0;
199 return 1;
202 * Temporary debugging check for pages not lying within a given zone.
204 static int bad_range(struct zone *zone, struct page *page)
206 if (page_outside_zone_boundaries(zone, page))
207 return 1;
208 if (!page_is_consistent(zone, page))
209 return 1;
211 return 0;
213 #else
214 static inline int bad_range(struct zone *zone, struct page *page)
216 return 0;
218 #endif
220 static void bad_page(struct page *page)
222 printk(KERN_EMERG "Bad page state in process '%s'\n"
223 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
224 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
225 KERN_EMERG "Backtrace:\n",
226 current->comm, page, (int)(2*sizeof(unsigned long)),
227 (unsigned long)page->flags, page->mapping,
228 page_mapcount(page), page_count(page));
229 dump_stack();
230 page->flags &= ~(1 << PG_lru |
231 1 << PG_private |
232 1 << PG_locked |
233 1 << PG_active |
234 1 << PG_dirty |
235 1 << PG_reclaim |
236 1 << PG_slab |
237 1 << PG_swapcache |
238 1 << PG_writeback |
239 1 << PG_buddy );
240 set_page_count(page, 0);
241 reset_page_mapcount(page);
242 page->mapping = NULL;
243 add_taint(TAINT_BAD_PAGE);
247 * Higher-order pages are called "compound pages". They are structured thusly:
249 * The first PAGE_SIZE page is called the "head page".
251 * The remaining PAGE_SIZE pages are called "tail pages".
253 * All pages have PG_compound set. All pages have their ->private pointing at
254 * the head page (even the head page has this).
256 * The first tail page's ->lru.next holds the address of the compound page's
257 * put_page() function. Its ->lru.prev holds the order of allocation.
258 * This usage means that zero-order pages may not be compound.
261 static void free_compound_page(struct page *page)
263 __free_pages_ok(page, compound_order(page));
266 static void prep_compound_page(struct page *page, unsigned long order)
268 int i;
269 int nr_pages = 1 << order;
271 set_compound_page_dtor(page, free_compound_page);
272 set_compound_order(page, order);
273 __SetPageHead(page);
274 for (i = 1; i < nr_pages; i++) {
275 struct page *p = page + i;
277 __SetPageTail(p);
278 p->first_page = page;
282 static void destroy_compound_page(struct page *page, unsigned long order)
284 int i;
285 int nr_pages = 1 << order;
287 if (unlikely(compound_order(page) != order))
288 bad_page(page);
290 if (unlikely(!PageHead(page)))
291 bad_page(page);
292 __ClearPageHead(page);
293 for (i = 1; i < nr_pages; i++) {
294 struct page *p = page + i;
296 if (unlikely(!PageTail(p) |
297 (p->first_page != page)))
298 bad_page(page);
299 __ClearPageTail(p);
303 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
305 int i;
307 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
309 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
310 * and __GFP_HIGHMEM from hard or soft interrupt context.
312 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
313 for (i = 0; i < (1 << order); i++)
314 clear_highpage(page + i);
317 static inline void set_page_order(struct page *page, int order)
319 set_page_private(page, order);
320 __SetPageBuddy(page);
323 static inline void rmv_page_order(struct page *page)
325 __ClearPageBuddy(page);
326 set_page_private(page, 0);
330 * Locate the struct page for both the matching buddy in our
331 * pair (buddy1) and the combined O(n+1) page they form (page).
333 * 1) Any buddy B1 will have an order O twin B2 which satisfies
334 * the following equation:
335 * B2 = B1 ^ (1 << O)
336 * For example, if the starting buddy (buddy2) is #8 its order
337 * 1 buddy is #10:
338 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
340 * 2) Any buddy B will have an order O+1 parent P which
341 * satisfies the following equation:
342 * P = B & ~(1 << O)
344 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
346 static inline struct page *
347 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
349 unsigned long buddy_idx = page_idx ^ (1 << order);
351 return page + (buddy_idx - page_idx);
354 static inline unsigned long
355 __find_combined_index(unsigned long page_idx, unsigned int order)
357 return (page_idx & ~(1 << order));
361 * This function checks whether a page is free && is the buddy
362 * we can do coalesce a page and its buddy if
363 * (a) the buddy is not in a hole &&
364 * (b) the buddy is in the buddy system &&
365 * (c) a page and its buddy have the same order &&
366 * (d) a page and its buddy are in the same zone.
368 * For recording whether a page is in the buddy system, we use PG_buddy.
369 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
371 * For recording page's order, we use page_private(page).
373 static inline int page_is_buddy(struct page *page, struct page *buddy,
374 int order)
376 if (!pfn_valid_within(page_to_pfn(buddy)))
377 return 0;
379 if (page_zone_id(page) != page_zone_id(buddy))
380 return 0;
382 if (PageBuddy(buddy) && page_order(buddy) == order) {
383 BUG_ON(page_count(buddy) != 0);
384 return 1;
386 return 0;
390 * Freeing function for a buddy system allocator.
392 * The concept of a buddy system is to maintain direct-mapped table
393 * (containing bit values) for memory blocks of various "orders".
394 * The bottom level table contains the map for the smallest allocatable
395 * units of memory (here, pages), and each level above it describes
396 * pairs of units from the levels below, hence, "buddies".
397 * At a high level, all that happens here is marking the table entry
398 * at the bottom level available, and propagating the changes upward
399 * as necessary, plus some accounting needed to play nicely with other
400 * parts of the VM system.
401 * At each level, we keep a list of pages, which are heads of continuous
402 * free pages of length of (1 << order) and marked with PG_buddy. Page's
403 * order is recorded in page_private(page) field.
404 * So when we are allocating or freeing one, we can derive the state of the
405 * other. That is, if we allocate a small block, and both were
406 * free, the remainder of the region must be split into blocks.
407 * If a block is freed, and its buddy is also free, then this
408 * triggers coalescing into a block of larger size.
410 * -- wli
413 static inline void __free_one_page(struct page *page,
414 struct zone *zone, unsigned int order)
416 unsigned long page_idx;
417 int order_size = 1 << order;
418 int migratetype = get_pageblock_migratetype(page);
420 if (unlikely(PageCompound(page)))
421 destroy_compound_page(page, order);
423 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
425 VM_BUG_ON(page_idx & (order_size - 1));
426 VM_BUG_ON(bad_range(zone, page));
428 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
429 while (order < MAX_ORDER-1) {
430 unsigned long combined_idx;
431 struct page *buddy;
433 buddy = __page_find_buddy(page, page_idx, order);
434 if (!page_is_buddy(page, buddy, order))
435 break; /* Move the buddy up one level. */
437 list_del(&buddy->lru);
438 zone->free_area[order].nr_free--;
439 rmv_page_order(buddy);
440 combined_idx = __find_combined_index(page_idx, order);
441 page = page + (combined_idx - page_idx);
442 page_idx = combined_idx;
443 order++;
445 set_page_order(page, order);
446 list_add(&page->lru,
447 &zone->free_area[order].free_list[migratetype]);
448 zone->free_area[order].nr_free++;
451 static inline int free_pages_check(struct page *page)
453 if (unlikely(page_mapcount(page) |
454 (page->mapping != NULL) |
455 (page_count(page) != 0) |
456 (page->flags & (
457 1 << PG_lru |
458 1 << PG_private |
459 1 << PG_locked |
460 1 << PG_active |
461 1 << PG_slab |
462 1 << PG_swapcache |
463 1 << PG_writeback |
464 1 << PG_reserved |
465 1 << PG_buddy ))))
466 bad_page(page);
467 if (PageDirty(page))
468 __ClearPageDirty(page);
470 * For now, we report if PG_reserved was found set, but do not
471 * clear it, and do not free the page. But we shall soon need
472 * to do more, for when the ZERO_PAGE count wraps negative.
474 return PageReserved(page);
478 * Frees a list of pages.
479 * Assumes all pages on list are in same zone, and of same order.
480 * count is the number of pages to free.
482 * If the zone was previously in an "all pages pinned" state then look to
483 * see if this freeing clears that state.
485 * And clear the zone's pages_scanned counter, to hold off the "all pages are
486 * pinned" detection logic.
488 static void free_pages_bulk(struct zone *zone, int count,
489 struct list_head *list, int order)
491 spin_lock(&zone->lock);
492 zone->all_unreclaimable = 0;
493 zone->pages_scanned = 0;
494 while (count--) {
495 struct page *page;
497 VM_BUG_ON(list_empty(list));
498 page = list_entry(list->prev, struct page, lru);
499 /* have to delete it as __free_one_page list manipulates */
500 list_del(&page->lru);
501 __free_one_page(page, zone, order);
503 spin_unlock(&zone->lock);
506 static void free_one_page(struct zone *zone, struct page *page, int order)
508 spin_lock(&zone->lock);
509 zone->all_unreclaimable = 0;
510 zone->pages_scanned = 0;
511 __free_one_page(page, zone, order);
512 spin_unlock(&zone->lock);
515 static void __free_pages_ok(struct page *page, unsigned int order)
517 unsigned long flags;
518 int i;
519 int reserved = 0;
521 for (i = 0 ; i < (1 << order) ; ++i)
522 reserved += free_pages_check(page + i);
523 if (reserved)
524 return;
526 if (!PageHighMem(page))
527 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
528 arch_free_page(page, order);
529 kernel_map_pages(page, 1 << order, 0);
531 local_irq_save(flags);
532 __count_vm_events(PGFREE, 1 << order);
533 free_one_page(page_zone(page), page, order);
534 local_irq_restore(flags);
538 * permit the bootmem allocator to evade page validation on high-order frees
540 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
542 if (order == 0) {
543 __ClearPageReserved(page);
544 set_page_count(page, 0);
545 set_page_refcounted(page);
546 __free_page(page);
547 } else {
548 int loop;
550 prefetchw(page);
551 for (loop = 0; loop < BITS_PER_LONG; loop++) {
552 struct page *p = &page[loop];
554 if (loop + 1 < BITS_PER_LONG)
555 prefetchw(p + 1);
556 __ClearPageReserved(p);
557 set_page_count(p, 0);
560 set_page_refcounted(page);
561 __free_pages(page, order);
567 * The order of subdivision here is critical for the IO subsystem.
568 * Please do not alter this order without good reasons and regression
569 * testing. Specifically, as large blocks of memory are subdivided,
570 * the order in which smaller blocks are delivered depends on the order
571 * they're subdivided in this function. This is the primary factor
572 * influencing the order in which pages are delivered to the IO
573 * subsystem according to empirical testing, and this is also justified
574 * by considering the behavior of a buddy system containing a single
575 * large block of memory acted on by a series of small allocations.
576 * This behavior is a critical factor in sglist merging's success.
578 * -- wli
580 static inline void expand(struct zone *zone, struct page *page,
581 int low, int high, struct free_area *area,
582 int migratetype)
584 unsigned long size = 1 << high;
586 while (high > low) {
587 area--;
588 high--;
589 size >>= 1;
590 VM_BUG_ON(bad_range(zone, &page[size]));
591 list_add(&page[size].lru, &area->free_list[migratetype]);
592 area->nr_free++;
593 set_page_order(&page[size], high);
598 * This page is about to be returned from the page allocator
600 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
602 if (unlikely(page_mapcount(page) |
603 (page->mapping != NULL) |
604 (page_count(page) != 0) |
605 (page->flags & (
606 1 << PG_lru |
607 1 << PG_private |
608 1 << PG_locked |
609 1 << PG_active |
610 1 << PG_dirty |
611 1 << PG_slab |
612 1 << PG_swapcache |
613 1 << PG_writeback |
614 1 << PG_reserved |
615 1 << PG_buddy ))))
616 bad_page(page);
619 * For now, we report if PG_reserved was found set, but do not
620 * clear it, and do not allocate the page: as a safety net.
622 if (PageReserved(page))
623 return 1;
625 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
626 1 << PG_referenced | 1 << PG_arch_1 |
627 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
628 set_page_private(page, 0);
629 set_page_refcounted(page);
631 arch_alloc_page(page, order);
632 kernel_map_pages(page, 1 << order, 1);
634 if (gfp_flags & __GFP_ZERO)
635 prep_zero_page(page, order, gfp_flags);
637 if (order && (gfp_flags & __GFP_COMP))
638 prep_compound_page(page, order);
640 return 0;
644 * Go through the free lists for the given migratetype and remove
645 * the smallest available page from the freelists
647 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
648 int migratetype)
650 unsigned int current_order;
651 struct free_area * area;
652 struct page *page;
654 /* Find a page of the appropriate size in the preferred list */
655 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
656 area = &(zone->free_area[current_order]);
657 if (list_empty(&area->free_list[migratetype]))
658 continue;
660 page = list_entry(area->free_list[migratetype].next,
661 struct page, lru);
662 list_del(&page->lru);
663 rmv_page_order(page);
664 area->nr_free--;
665 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
666 expand(zone, page, order, current_order, area, migratetype);
667 return page;
670 return NULL;
675 * This array describes the order lists are fallen back to when
676 * the free lists for the desirable migrate type are depleted
678 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
679 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
680 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
681 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
682 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
686 * Move the free pages in a range to the free lists of the requested type.
687 * Note that start_page and end_pages are not aligned on a pageblock
688 * boundary. If alignment is required, use move_freepages_block()
690 int move_freepages(struct zone *zone,
691 struct page *start_page, struct page *end_page,
692 int migratetype)
694 struct page *page;
695 unsigned long order;
696 int pages_moved = 0;
698 #ifndef CONFIG_HOLES_IN_ZONE
700 * page_zone is not safe to call in this context when
701 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
702 * anyway as we check zone boundaries in move_freepages_block().
703 * Remove at a later date when no bug reports exist related to
704 * grouping pages by mobility
706 BUG_ON(page_zone(start_page) != page_zone(end_page));
707 #endif
709 for (page = start_page; page <= end_page;) {
710 if (!pfn_valid_within(page_to_pfn(page))) {
711 page++;
712 continue;
715 if (!PageBuddy(page)) {
716 page++;
717 continue;
720 order = page_order(page);
721 list_del(&page->lru);
722 list_add(&page->lru,
723 &zone->free_area[order].free_list[migratetype]);
724 page += 1 << order;
725 pages_moved += 1 << order;
728 return pages_moved;
731 int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
733 unsigned long start_pfn, end_pfn;
734 struct page *start_page, *end_page;
736 start_pfn = page_to_pfn(page);
737 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
738 start_page = pfn_to_page(start_pfn);
739 end_page = start_page + pageblock_nr_pages - 1;
740 end_pfn = start_pfn + pageblock_nr_pages - 1;
742 /* Do not cross zone boundaries */
743 if (start_pfn < zone->zone_start_pfn)
744 start_page = page;
745 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
746 return 0;
748 return move_freepages(zone, start_page, end_page, migratetype);
751 /* Return the page with the lowest PFN in the list */
752 static struct page *min_page(struct list_head *list)
754 unsigned long min_pfn = -1UL;
755 struct page *min_page = NULL, *page;;
757 list_for_each_entry(page, list, lru) {
758 unsigned long pfn = page_to_pfn(page);
759 if (pfn < min_pfn) {
760 min_pfn = pfn;
761 min_page = page;
765 return min_page;
768 /* Remove an element from the buddy allocator from the fallback list */
769 static struct page *__rmqueue_fallback(struct zone *zone, int order,
770 int start_migratetype)
772 struct free_area * area;
773 int current_order;
774 struct page *page;
775 int migratetype, i;
777 /* Find the largest possible block of pages in the other list */
778 for (current_order = MAX_ORDER-1; current_order >= order;
779 --current_order) {
780 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
781 migratetype = fallbacks[start_migratetype][i];
783 /* MIGRATE_RESERVE handled later if necessary */
784 if (migratetype == MIGRATE_RESERVE)
785 continue;
787 area = &(zone->free_area[current_order]);
788 if (list_empty(&area->free_list[migratetype]))
789 continue;
791 /* Bias kernel allocations towards low pfns */
792 page = list_entry(area->free_list[migratetype].next,
793 struct page, lru);
794 if (unlikely(start_migratetype != MIGRATE_MOVABLE))
795 page = min_page(&area->free_list[migratetype]);
796 area->nr_free--;
799 * If breaking a large block of pages, move all free
800 * pages to the preferred allocation list. If falling
801 * back for a reclaimable kernel allocation, be more
802 * agressive about taking ownership of free pages
804 if (unlikely(current_order >= (pageblock_order >> 1)) ||
805 start_migratetype == MIGRATE_RECLAIMABLE) {
806 unsigned long pages;
807 pages = move_freepages_block(zone, page,
808 start_migratetype);
810 /* Claim the whole block if over half of it is free */
811 if (pages >= (1 << (pageblock_order-1)))
812 set_pageblock_migratetype(page,
813 start_migratetype);
815 migratetype = start_migratetype;
818 /* Remove the page from the freelists */
819 list_del(&page->lru);
820 rmv_page_order(page);
821 __mod_zone_page_state(zone, NR_FREE_PAGES,
822 -(1UL << order));
824 if (current_order == pageblock_order)
825 set_pageblock_migratetype(page,
826 start_migratetype);
828 expand(zone, page, order, current_order, area, migratetype);
829 return page;
833 /* Use MIGRATE_RESERVE rather than fail an allocation */
834 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
838 * Do the hard work of removing an element from the buddy allocator.
839 * Call me with the zone->lock already held.
841 static struct page *__rmqueue(struct zone *zone, unsigned int order,
842 int migratetype)
844 struct page *page;
846 page = __rmqueue_smallest(zone, order, migratetype);
848 if (unlikely(!page))
849 page = __rmqueue_fallback(zone, order, migratetype);
851 return page;
855 * Obtain a specified number of elements from the buddy allocator, all under
856 * a single hold of the lock, for efficiency. Add them to the supplied list.
857 * Returns the number of new pages which were placed at *list.
859 static int rmqueue_bulk(struct zone *zone, unsigned int order,
860 unsigned long count, struct list_head *list,
861 int migratetype)
863 int i;
865 spin_lock(&zone->lock);
866 for (i = 0; i < count; ++i) {
867 struct page *page = __rmqueue(zone, order, migratetype);
868 if (unlikely(page == NULL))
869 break;
870 list_add(&page->lru, list);
871 set_page_private(page, migratetype);
873 spin_unlock(&zone->lock);
874 return i;
877 #ifdef CONFIG_NUMA
879 * Called from the vmstat counter updater to drain pagesets of this
880 * currently executing processor on remote nodes after they have
881 * expired.
883 * Note that this function must be called with the thread pinned to
884 * a single processor.
886 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
888 unsigned long flags;
889 int to_drain;
891 local_irq_save(flags);
892 if (pcp->count >= pcp->batch)
893 to_drain = pcp->batch;
894 else
895 to_drain = pcp->count;
896 free_pages_bulk(zone, to_drain, &pcp->list, 0);
897 pcp->count -= to_drain;
898 local_irq_restore(flags);
900 #endif
902 static void __drain_pages(unsigned int cpu)
904 unsigned long flags;
905 struct zone *zone;
906 int i;
908 for_each_zone(zone) {
909 struct per_cpu_pageset *pset;
911 if (!populated_zone(zone))
912 continue;
914 pset = zone_pcp(zone, cpu);
915 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
916 struct per_cpu_pages *pcp;
918 pcp = &pset->pcp[i];
919 local_irq_save(flags);
920 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
921 pcp->count = 0;
922 local_irq_restore(flags);
927 #ifdef CONFIG_HIBERNATION
929 void mark_free_pages(struct zone *zone)
931 unsigned long pfn, max_zone_pfn;
932 unsigned long flags;
933 int order, t;
934 struct list_head *curr;
936 if (!zone->spanned_pages)
937 return;
939 spin_lock_irqsave(&zone->lock, flags);
941 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
942 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
943 if (pfn_valid(pfn)) {
944 struct page *page = pfn_to_page(pfn);
946 if (!swsusp_page_is_forbidden(page))
947 swsusp_unset_page_free(page);
950 for_each_migratetype_order(order, t) {
951 list_for_each(curr, &zone->free_area[order].free_list[t]) {
952 unsigned long i;
954 pfn = page_to_pfn(list_entry(curr, struct page, lru));
955 for (i = 0; i < (1UL << order); i++)
956 swsusp_set_page_free(pfn_to_page(pfn + i));
959 spin_unlock_irqrestore(&zone->lock, flags);
961 #endif /* CONFIG_PM */
964 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
966 void drain_local_pages(void)
968 unsigned long flags;
970 local_irq_save(flags);
971 __drain_pages(smp_processor_id());
972 local_irq_restore(flags);
975 void smp_drain_local_pages(void *arg)
977 drain_local_pages();
981 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
983 void drain_all_local_pages(void)
985 unsigned long flags;
987 local_irq_save(flags);
988 __drain_pages(smp_processor_id());
989 local_irq_restore(flags);
991 smp_call_function(smp_drain_local_pages, NULL, 0, 1);
995 * Free a 0-order page
997 static void fastcall free_hot_cold_page(struct page *page, int cold)
999 struct zone *zone = page_zone(page);
1000 struct per_cpu_pages *pcp;
1001 unsigned long flags;
1003 if (PageAnon(page))
1004 page->mapping = NULL;
1005 if (free_pages_check(page))
1006 return;
1008 if (!PageHighMem(page))
1009 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1010 arch_free_page(page, 0);
1011 kernel_map_pages(page, 1, 0);
1013 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1014 local_irq_save(flags);
1015 __count_vm_event(PGFREE);
1016 list_add(&page->lru, &pcp->list);
1017 set_page_private(page, get_pageblock_migratetype(page));
1018 pcp->count++;
1019 if (pcp->count >= pcp->high) {
1020 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1021 pcp->count -= pcp->batch;
1023 local_irq_restore(flags);
1024 put_cpu();
1027 void fastcall free_hot_page(struct page *page)
1029 free_hot_cold_page(page, 0);
1032 void fastcall free_cold_page(struct page *page)
1034 free_hot_cold_page(page, 1);
1038 * split_page takes a non-compound higher-order page, and splits it into
1039 * n (1<<order) sub-pages: page[0..n]
1040 * Each sub-page must be freed individually.
1042 * Note: this is probably too low level an operation for use in drivers.
1043 * Please consult with lkml before using this in your driver.
1045 void split_page(struct page *page, unsigned int order)
1047 int i;
1049 VM_BUG_ON(PageCompound(page));
1050 VM_BUG_ON(!page_count(page));
1051 for (i = 1; i < (1 << order); i++)
1052 set_page_refcounted(page + i);
1056 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1057 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1058 * or two.
1060 static struct page *buffered_rmqueue(struct zonelist *zonelist,
1061 struct zone *zone, int order, gfp_t gfp_flags)
1063 unsigned long flags;
1064 struct page *page;
1065 int cold = !!(gfp_flags & __GFP_COLD);
1066 int cpu;
1067 int migratetype = allocflags_to_migratetype(gfp_flags);
1069 again:
1070 cpu = get_cpu();
1071 if (likely(order == 0)) {
1072 struct per_cpu_pages *pcp;
1074 pcp = &zone_pcp(zone, cpu)->pcp[cold];
1075 local_irq_save(flags);
1076 if (!pcp->count) {
1077 pcp->count = rmqueue_bulk(zone, 0,
1078 pcp->batch, &pcp->list, migratetype);
1079 if (unlikely(!pcp->count))
1080 goto failed;
1083 /* Find a page of the appropriate migrate type */
1084 list_for_each_entry(page, &pcp->list, lru)
1085 if (page_private(page) == migratetype)
1086 break;
1088 /* Allocate more to the pcp list if necessary */
1089 if (unlikely(&page->lru == &pcp->list)) {
1090 pcp->count += rmqueue_bulk(zone, 0,
1091 pcp->batch, &pcp->list, migratetype);
1092 page = list_entry(pcp->list.next, struct page, lru);
1095 list_del(&page->lru);
1096 pcp->count--;
1097 } else {
1098 spin_lock_irqsave(&zone->lock, flags);
1099 page = __rmqueue(zone, order, migratetype);
1100 spin_unlock(&zone->lock);
1101 if (!page)
1102 goto failed;
1105 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1106 zone_statistics(zonelist, zone);
1107 local_irq_restore(flags);
1108 put_cpu();
1110 VM_BUG_ON(bad_range(zone, page));
1111 if (prep_new_page(page, order, gfp_flags))
1112 goto again;
1113 return page;
1115 failed:
1116 local_irq_restore(flags);
1117 put_cpu();
1118 return NULL;
1121 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1122 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1123 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1124 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1125 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1126 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1127 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1129 #ifdef CONFIG_FAIL_PAGE_ALLOC
1131 static struct fail_page_alloc_attr {
1132 struct fault_attr attr;
1134 u32 ignore_gfp_highmem;
1135 u32 ignore_gfp_wait;
1136 u32 min_order;
1138 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1140 struct dentry *ignore_gfp_highmem_file;
1141 struct dentry *ignore_gfp_wait_file;
1142 struct dentry *min_order_file;
1144 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1146 } fail_page_alloc = {
1147 .attr = FAULT_ATTR_INITIALIZER,
1148 .ignore_gfp_wait = 1,
1149 .ignore_gfp_highmem = 1,
1150 .min_order = 1,
1153 static int __init setup_fail_page_alloc(char *str)
1155 return setup_fault_attr(&fail_page_alloc.attr, str);
1157 __setup("fail_page_alloc=", setup_fail_page_alloc);
1159 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1161 if (order < fail_page_alloc.min_order)
1162 return 0;
1163 if (gfp_mask & __GFP_NOFAIL)
1164 return 0;
1165 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1166 return 0;
1167 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1168 return 0;
1170 return should_fail(&fail_page_alloc.attr, 1 << order);
1173 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1175 static int __init fail_page_alloc_debugfs(void)
1177 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1178 struct dentry *dir;
1179 int err;
1181 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1182 "fail_page_alloc");
1183 if (err)
1184 return err;
1185 dir = fail_page_alloc.attr.dentries.dir;
1187 fail_page_alloc.ignore_gfp_wait_file =
1188 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1189 &fail_page_alloc.ignore_gfp_wait);
1191 fail_page_alloc.ignore_gfp_highmem_file =
1192 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1193 &fail_page_alloc.ignore_gfp_highmem);
1194 fail_page_alloc.min_order_file =
1195 debugfs_create_u32("min-order", mode, dir,
1196 &fail_page_alloc.min_order);
1198 if (!fail_page_alloc.ignore_gfp_wait_file ||
1199 !fail_page_alloc.ignore_gfp_highmem_file ||
1200 !fail_page_alloc.min_order_file) {
1201 err = -ENOMEM;
1202 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1203 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1204 debugfs_remove(fail_page_alloc.min_order_file);
1205 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1208 return err;
1211 late_initcall(fail_page_alloc_debugfs);
1213 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1215 #else /* CONFIG_FAIL_PAGE_ALLOC */
1217 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1219 return 0;
1222 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1225 * Return 1 if free pages are above 'mark'. This takes into account the order
1226 * of the allocation.
1228 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1229 int classzone_idx, int alloc_flags)
1231 /* free_pages my go negative - that's OK */
1232 long min = mark;
1233 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1234 int o;
1236 if (alloc_flags & ALLOC_HIGH)
1237 min -= min / 2;
1238 if (alloc_flags & ALLOC_HARDER)
1239 min -= min / 4;
1241 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1242 return 0;
1243 for (o = 0; o < order; o++) {
1244 /* At the next order, this order's pages become unavailable */
1245 free_pages -= z->free_area[o].nr_free << o;
1247 /* Require fewer higher order pages to be free */
1248 min >>= 1;
1250 if (free_pages <= min)
1251 return 0;
1253 return 1;
1256 #ifdef CONFIG_NUMA
1258 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1259 * skip over zones that are not allowed by the cpuset, or that have
1260 * been recently (in last second) found to be nearly full. See further
1261 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1262 * that have to skip over alot of full or unallowed zones.
1264 * If the zonelist cache is present in the passed in zonelist, then
1265 * returns a pointer to the allowed node mask (either the current
1266 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1268 * If the zonelist cache is not available for this zonelist, does
1269 * nothing and returns NULL.
1271 * If the fullzones BITMAP in the zonelist cache is stale (more than
1272 * a second since last zap'd) then we zap it out (clear its bits.)
1274 * We hold off even calling zlc_setup, until after we've checked the
1275 * first zone in the zonelist, on the theory that most allocations will
1276 * be satisfied from that first zone, so best to examine that zone as
1277 * quickly as we can.
1279 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1281 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1282 nodemask_t *allowednodes; /* zonelist_cache approximation */
1284 zlc = zonelist->zlcache_ptr;
1285 if (!zlc)
1286 return NULL;
1288 if (jiffies - zlc->last_full_zap > 1 * HZ) {
1289 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1290 zlc->last_full_zap = jiffies;
1293 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1294 &cpuset_current_mems_allowed :
1295 &node_states[N_HIGH_MEMORY];
1296 return allowednodes;
1300 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1301 * if it is worth looking at further for free memory:
1302 * 1) Check that the zone isn't thought to be full (doesn't have its
1303 * bit set in the zonelist_cache fullzones BITMAP).
1304 * 2) Check that the zones node (obtained from the zonelist_cache
1305 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1306 * Return true (non-zero) if zone is worth looking at further, or
1307 * else return false (zero) if it is not.
1309 * This check -ignores- the distinction between various watermarks,
1310 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1311 * found to be full for any variation of these watermarks, it will
1312 * be considered full for up to one second by all requests, unless
1313 * we are so low on memory on all allowed nodes that we are forced
1314 * into the second scan of the zonelist.
1316 * In the second scan we ignore this zonelist cache and exactly
1317 * apply the watermarks to all zones, even it is slower to do so.
1318 * We are low on memory in the second scan, and should leave no stone
1319 * unturned looking for a free page.
1321 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1322 nodemask_t *allowednodes)
1324 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1325 int i; /* index of *z in zonelist zones */
1326 int n; /* node that zone *z is on */
1328 zlc = zonelist->zlcache_ptr;
1329 if (!zlc)
1330 return 1;
1332 i = z - zonelist->zones;
1333 n = zlc->z_to_n[i];
1335 /* This zone is worth trying if it is allowed but not full */
1336 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1340 * Given 'z' scanning a zonelist, set the corresponding bit in
1341 * zlc->fullzones, so that subsequent attempts to allocate a page
1342 * from that zone don't waste time re-examining it.
1344 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1346 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1347 int i; /* index of *z in zonelist zones */
1349 zlc = zonelist->zlcache_ptr;
1350 if (!zlc)
1351 return;
1353 i = z - zonelist->zones;
1355 set_bit(i, zlc->fullzones);
1358 #else /* CONFIG_NUMA */
1360 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1362 return NULL;
1365 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1366 nodemask_t *allowednodes)
1368 return 1;
1371 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1374 #endif /* CONFIG_NUMA */
1377 * get_page_from_freelist goes through the zonelist trying to allocate
1378 * a page.
1380 static struct page *
1381 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1382 struct zonelist *zonelist, int alloc_flags)
1384 struct zone **z;
1385 struct page *page = NULL;
1386 int classzone_idx = zone_idx(zonelist->zones[0]);
1387 struct zone *zone;
1388 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1389 int zlc_active = 0; /* set if using zonelist_cache */
1390 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1391 enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
1393 zonelist_scan:
1395 * Scan zonelist, looking for a zone with enough free.
1396 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1398 z = zonelist->zones;
1400 do {
1402 * In NUMA, this could be a policy zonelist which contains
1403 * zones that may not be allowed by the current gfp_mask.
1404 * Check the zone is allowed by the current flags
1406 if (unlikely(alloc_should_filter_zonelist(zonelist))) {
1407 if (highest_zoneidx == -1)
1408 highest_zoneidx = gfp_zone(gfp_mask);
1409 if (zone_idx(*z) > highest_zoneidx)
1410 continue;
1413 if (NUMA_BUILD && zlc_active &&
1414 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1415 continue;
1416 zone = *z;
1417 if ((alloc_flags & ALLOC_CPUSET) &&
1418 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1419 goto try_next_zone;
1421 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1422 unsigned long mark;
1423 if (alloc_flags & ALLOC_WMARK_MIN)
1424 mark = zone->pages_min;
1425 else if (alloc_flags & ALLOC_WMARK_LOW)
1426 mark = zone->pages_low;
1427 else
1428 mark = zone->pages_high;
1429 if (!zone_watermark_ok(zone, order, mark,
1430 classzone_idx, alloc_flags)) {
1431 if (!zone_reclaim_mode ||
1432 !zone_reclaim(zone, gfp_mask, order))
1433 goto this_zone_full;
1437 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1438 if (page)
1439 break;
1440 this_zone_full:
1441 if (NUMA_BUILD)
1442 zlc_mark_zone_full(zonelist, z);
1443 try_next_zone:
1444 if (NUMA_BUILD && !did_zlc_setup) {
1445 /* we do zlc_setup after the first zone is tried */
1446 allowednodes = zlc_setup(zonelist, alloc_flags);
1447 zlc_active = 1;
1448 did_zlc_setup = 1;
1450 } while (*(++z) != NULL);
1452 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1453 /* Disable zlc cache for second zonelist scan */
1454 zlc_active = 0;
1455 goto zonelist_scan;
1457 return page;
1461 * This is the 'heart' of the zoned buddy allocator.
1463 struct page * fastcall
1464 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1465 struct zonelist *zonelist)
1467 const gfp_t wait = gfp_mask & __GFP_WAIT;
1468 struct zone **z;
1469 struct page *page;
1470 struct reclaim_state reclaim_state;
1471 struct task_struct *p = current;
1472 int do_retry;
1473 int alloc_flags;
1474 int did_some_progress;
1476 might_sleep_if(wait);
1478 if (should_fail_alloc_page(gfp_mask, order))
1479 return NULL;
1481 restart:
1482 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1484 if (unlikely(*z == NULL)) {
1486 * Happens if we have an empty zonelist as a result of
1487 * GFP_THISNODE being used on a memoryless node
1489 return NULL;
1492 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1493 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1494 if (page)
1495 goto got_pg;
1498 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1499 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1500 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1501 * using a larger set of nodes after it has established that the
1502 * allowed per node queues are empty and that nodes are
1503 * over allocated.
1505 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1506 goto nopage;
1508 for (z = zonelist->zones; *z; z++)
1509 wakeup_kswapd(*z, order);
1512 * OK, we're below the kswapd watermark and have kicked background
1513 * reclaim. Now things get more complex, so set up alloc_flags according
1514 * to how we want to proceed.
1516 * The caller may dip into page reserves a bit more if the caller
1517 * cannot run direct reclaim, or if the caller has realtime scheduling
1518 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1519 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1521 alloc_flags = ALLOC_WMARK_MIN;
1522 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1523 alloc_flags |= ALLOC_HARDER;
1524 if (gfp_mask & __GFP_HIGH)
1525 alloc_flags |= ALLOC_HIGH;
1526 if (wait)
1527 alloc_flags |= ALLOC_CPUSET;
1530 * Go through the zonelist again. Let __GFP_HIGH and allocations
1531 * coming from realtime tasks go deeper into reserves.
1533 * This is the last chance, in general, before the goto nopage.
1534 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1535 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1537 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1538 if (page)
1539 goto got_pg;
1541 /* This allocation should allow future memory freeing. */
1543 rebalance:
1544 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1545 && !in_interrupt()) {
1546 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1547 nofail_alloc:
1548 /* go through the zonelist yet again, ignoring mins */
1549 page = get_page_from_freelist(gfp_mask, order,
1550 zonelist, ALLOC_NO_WATERMARKS);
1551 if (page)
1552 goto got_pg;
1553 if (gfp_mask & __GFP_NOFAIL) {
1554 congestion_wait(WRITE, HZ/50);
1555 goto nofail_alloc;
1558 goto nopage;
1561 /* Atomic allocations - we can't balance anything */
1562 if (!wait)
1563 goto nopage;
1565 cond_resched();
1567 /* We now go into synchronous reclaim */
1568 cpuset_memory_pressure_bump();
1569 p->flags |= PF_MEMALLOC;
1570 reclaim_state.reclaimed_slab = 0;
1571 p->reclaim_state = &reclaim_state;
1573 did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
1575 p->reclaim_state = NULL;
1576 p->flags &= ~PF_MEMALLOC;
1578 cond_resched();
1580 if (order != 0)
1581 drain_all_local_pages();
1583 if (likely(did_some_progress)) {
1584 page = get_page_from_freelist(gfp_mask, order,
1585 zonelist, alloc_flags);
1586 if (page)
1587 goto got_pg;
1588 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1590 * Go through the zonelist yet one more time, keep
1591 * very high watermark here, this is only to catch
1592 * a parallel oom killing, we must fail if we're still
1593 * under heavy pressure.
1595 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1596 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1597 if (page)
1598 goto got_pg;
1600 /* The OOM killer will not help higher order allocs so fail */
1601 if (order > PAGE_ALLOC_COSTLY_ORDER)
1602 goto nopage;
1604 out_of_memory(zonelist, gfp_mask, order);
1605 goto restart;
1609 * Don't let big-order allocations loop unless the caller explicitly
1610 * requests that. Wait for some write requests to complete then retry.
1612 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1613 * <= 3, but that may not be true in other implementations.
1615 do_retry = 0;
1616 if (!(gfp_mask & __GFP_NORETRY)) {
1617 if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
1618 (gfp_mask & __GFP_REPEAT))
1619 do_retry = 1;
1620 if (gfp_mask & __GFP_NOFAIL)
1621 do_retry = 1;
1623 if (do_retry) {
1624 congestion_wait(WRITE, HZ/50);
1625 goto rebalance;
1628 nopage:
1629 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1630 printk(KERN_WARNING "%s: page allocation failure."
1631 " order:%d, mode:0x%x\n",
1632 p->comm, order, gfp_mask);
1633 dump_stack();
1634 show_mem();
1636 got_pg:
1637 return page;
1640 EXPORT_SYMBOL(__alloc_pages);
1643 * Common helper functions.
1645 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1647 struct page * page;
1648 page = alloc_pages(gfp_mask, order);
1649 if (!page)
1650 return 0;
1651 return (unsigned long) page_address(page);
1654 EXPORT_SYMBOL(__get_free_pages);
1656 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1658 struct page * page;
1661 * get_zeroed_page() returns a 32-bit address, which cannot represent
1662 * a highmem page
1664 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1666 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1667 if (page)
1668 return (unsigned long) page_address(page);
1669 return 0;
1672 EXPORT_SYMBOL(get_zeroed_page);
1674 void __pagevec_free(struct pagevec *pvec)
1676 int i = pagevec_count(pvec);
1678 while (--i >= 0)
1679 free_hot_cold_page(pvec->pages[i], pvec->cold);
1682 fastcall void __free_pages(struct page *page, unsigned int order)
1684 if (put_page_testzero(page)) {
1685 if (order == 0)
1686 free_hot_page(page);
1687 else
1688 __free_pages_ok(page, order);
1692 EXPORT_SYMBOL(__free_pages);
1694 fastcall void free_pages(unsigned long addr, unsigned int order)
1696 if (addr != 0) {
1697 VM_BUG_ON(!virt_addr_valid((void *)addr));
1698 __free_pages(virt_to_page((void *)addr), order);
1702 EXPORT_SYMBOL(free_pages);
1704 static unsigned int nr_free_zone_pages(int offset)
1706 /* Just pick one node, since fallback list is circular */
1707 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1708 unsigned int sum = 0;
1710 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1711 struct zone **zonep = zonelist->zones;
1712 struct zone *zone;
1714 for (zone = *zonep++; zone; zone = *zonep++) {
1715 unsigned long size = zone->present_pages;
1716 unsigned long high = zone->pages_high;
1717 if (size > high)
1718 sum += size - high;
1721 return sum;
1725 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1727 unsigned int nr_free_buffer_pages(void)
1729 return nr_free_zone_pages(gfp_zone(GFP_USER));
1731 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1734 * Amount of free RAM allocatable within all zones
1736 unsigned int nr_free_pagecache_pages(void)
1738 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1741 static inline void show_node(struct zone *zone)
1743 if (NUMA_BUILD)
1744 printk("Node %d ", zone_to_nid(zone));
1747 void si_meminfo(struct sysinfo *val)
1749 val->totalram = totalram_pages;
1750 val->sharedram = 0;
1751 val->freeram = global_page_state(NR_FREE_PAGES);
1752 val->bufferram = nr_blockdev_pages();
1753 val->totalhigh = totalhigh_pages;
1754 val->freehigh = nr_free_highpages();
1755 val->mem_unit = PAGE_SIZE;
1758 EXPORT_SYMBOL(si_meminfo);
1760 #ifdef CONFIG_NUMA
1761 void si_meminfo_node(struct sysinfo *val, int nid)
1763 pg_data_t *pgdat = NODE_DATA(nid);
1765 val->totalram = pgdat->node_present_pages;
1766 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1767 #ifdef CONFIG_HIGHMEM
1768 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1769 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1770 NR_FREE_PAGES);
1771 #else
1772 val->totalhigh = 0;
1773 val->freehigh = 0;
1774 #endif
1775 val->mem_unit = PAGE_SIZE;
1777 #endif
1779 #define K(x) ((x) << (PAGE_SHIFT-10))
1782 * Show free area list (used inside shift_scroll-lock stuff)
1783 * We also calculate the percentage fragmentation. We do this by counting the
1784 * memory on each free list with the exception of the first item on the list.
1786 void show_free_areas(void)
1788 int cpu;
1789 struct zone *zone;
1791 for_each_zone(zone) {
1792 if (!populated_zone(zone))
1793 continue;
1795 show_node(zone);
1796 printk("%s per-cpu:\n", zone->name);
1798 for_each_online_cpu(cpu) {
1799 struct per_cpu_pageset *pageset;
1801 pageset = zone_pcp(zone, cpu);
1803 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1804 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1805 cpu, pageset->pcp[0].high,
1806 pageset->pcp[0].batch, pageset->pcp[0].count,
1807 pageset->pcp[1].high, pageset->pcp[1].batch,
1808 pageset->pcp[1].count);
1812 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1813 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1814 global_page_state(NR_ACTIVE),
1815 global_page_state(NR_INACTIVE),
1816 global_page_state(NR_FILE_DIRTY),
1817 global_page_state(NR_WRITEBACK),
1818 global_page_state(NR_UNSTABLE_NFS),
1819 global_page_state(NR_FREE_PAGES),
1820 global_page_state(NR_SLAB_RECLAIMABLE) +
1821 global_page_state(NR_SLAB_UNRECLAIMABLE),
1822 global_page_state(NR_FILE_MAPPED),
1823 global_page_state(NR_PAGETABLE),
1824 global_page_state(NR_BOUNCE));
1826 for_each_zone(zone) {
1827 int i;
1829 if (!populated_zone(zone))
1830 continue;
1832 show_node(zone);
1833 printk("%s"
1834 " free:%lukB"
1835 " min:%lukB"
1836 " low:%lukB"
1837 " high:%lukB"
1838 " active:%lukB"
1839 " inactive:%lukB"
1840 " present:%lukB"
1841 " pages_scanned:%lu"
1842 " all_unreclaimable? %s"
1843 "\n",
1844 zone->name,
1845 K(zone_page_state(zone, NR_FREE_PAGES)),
1846 K(zone->pages_min),
1847 K(zone->pages_low),
1848 K(zone->pages_high),
1849 K(zone_page_state(zone, NR_ACTIVE)),
1850 K(zone_page_state(zone, NR_INACTIVE)),
1851 K(zone->present_pages),
1852 zone->pages_scanned,
1853 (zone->all_unreclaimable ? "yes" : "no")
1855 printk("lowmem_reserve[]:");
1856 for (i = 0; i < MAX_NR_ZONES; i++)
1857 printk(" %lu", zone->lowmem_reserve[i]);
1858 printk("\n");
1861 for_each_zone(zone) {
1862 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1864 if (!populated_zone(zone))
1865 continue;
1867 show_node(zone);
1868 printk("%s: ", zone->name);
1870 spin_lock_irqsave(&zone->lock, flags);
1871 for (order = 0; order < MAX_ORDER; order++) {
1872 nr[order] = zone->free_area[order].nr_free;
1873 total += nr[order] << order;
1875 spin_unlock_irqrestore(&zone->lock, flags);
1876 for (order = 0; order < MAX_ORDER; order++)
1877 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1878 printk("= %lukB\n", K(total));
1881 show_swap_cache_info();
1885 * Builds allocation fallback zone lists.
1887 * Add all populated zones of a node to the zonelist.
1889 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1890 int nr_zones, enum zone_type zone_type)
1892 struct zone *zone;
1894 BUG_ON(zone_type >= MAX_NR_ZONES);
1895 zone_type++;
1897 do {
1898 zone_type--;
1899 zone = pgdat->node_zones + zone_type;
1900 if (populated_zone(zone)) {
1901 zonelist->zones[nr_zones++] = zone;
1902 check_highest_zone(zone_type);
1905 } while (zone_type);
1906 return nr_zones;
1911 * zonelist_order:
1912 * 0 = automatic detection of better ordering.
1913 * 1 = order by ([node] distance, -zonetype)
1914 * 2 = order by (-zonetype, [node] distance)
1916 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1917 * the same zonelist. So only NUMA can configure this param.
1919 #define ZONELIST_ORDER_DEFAULT 0
1920 #define ZONELIST_ORDER_NODE 1
1921 #define ZONELIST_ORDER_ZONE 2
1923 /* zonelist order in the kernel.
1924 * set_zonelist_order() will set this to NODE or ZONE.
1926 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1927 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1930 #ifdef CONFIG_NUMA
1931 /* The value user specified ....changed by config */
1932 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1933 /* string for sysctl */
1934 #define NUMA_ZONELIST_ORDER_LEN 16
1935 char numa_zonelist_order[16] = "default";
1938 * interface for configure zonelist ordering.
1939 * command line option "numa_zonelist_order"
1940 * = "[dD]efault - default, automatic configuration.
1941 * = "[nN]ode - order by node locality, then by zone within node
1942 * = "[zZ]one - order by zone, then by locality within zone
1945 static int __parse_numa_zonelist_order(char *s)
1947 if (*s == 'd' || *s == 'D') {
1948 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1949 } else if (*s == 'n' || *s == 'N') {
1950 user_zonelist_order = ZONELIST_ORDER_NODE;
1951 } else if (*s == 'z' || *s == 'Z') {
1952 user_zonelist_order = ZONELIST_ORDER_ZONE;
1953 } else {
1954 printk(KERN_WARNING
1955 "Ignoring invalid numa_zonelist_order value: "
1956 "%s\n", s);
1957 return -EINVAL;
1959 return 0;
1962 static __init int setup_numa_zonelist_order(char *s)
1964 if (s)
1965 return __parse_numa_zonelist_order(s);
1966 return 0;
1968 early_param("numa_zonelist_order", setup_numa_zonelist_order);
1971 * sysctl handler for numa_zonelist_order
1973 int numa_zonelist_order_handler(ctl_table *table, int write,
1974 struct file *file, void __user *buffer, size_t *length,
1975 loff_t *ppos)
1977 char saved_string[NUMA_ZONELIST_ORDER_LEN];
1978 int ret;
1980 if (write)
1981 strncpy(saved_string, (char*)table->data,
1982 NUMA_ZONELIST_ORDER_LEN);
1983 ret = proc_dostring(table, write, file, buffer, length, ppos);
1984 if (ret)
1985 return ret;
1986 if (write) {
1987 int oldval = user_zonelist_order;
1988 if (__parse_numa_zonelist_order((char*)table->data)) {
1990 * bogus value. restore saved string
1992 strncpy((char*)table->data, saved_string,
1993 NUMA_ZONELIST_ORDER_LEN);
1994 user_zonelist_order = oldval;
1995 } else if (oldval != user_zonelist_order)
1996 build_all_zonelists();
1998 return 0;
2002 #define MAX_NODE_LOAD (num_online_nodes())
2003 static int node_load[MAX_NUMNODES];
2006 * find_next_best_node - find the next node that should appear in a given node's fallback list
2007 * @node: node whose fallback list we're appending
2008 * @used_node_mask: nodemask_t of already used nodes
2010 * We use a number of factors to determine which is the next node that should
2011 * appear on a given node's fallback list. The node should not have appeared
2012 * already in @node's fallback list, and it should be the next closest node
2013 * according to the distance array (which contains arbitrary distance values
2014 * from each node to each node in the system), and should also prefer nodes
2015 * with no CPUs, since presumably they'll have very little allocation pressure
2016 * on them otherwise.
2017 * It returns -1 if no node is found.
2019 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2021 int n, val;
2022 int min_val = INT_MAX;
2023 int best_node = -1;
2025 /* Use the local node if we haven't already */
2026 if (!node_isset(node, *used_node_mask)) {
2027 node_set(node, *used_node_mask);
2028 return node;
2031 for_each_node_state(n, N_HIGH_MEMORY) {
2032 cpumask_t tmp;
2034 /* Don't want a node to appear more than once */
2035 if (node_isset(n, *used_node_mask))
2036 continue;
2038 /* Use the distance array to find the distance */
2039 val = node_distance(node, n);
2041 /* Penalize nodes under us ("prefer the next node") */
2042 val += (n < node);
2044 /* Give preference to headless and unused nodes */
2045 tmp = node_to_cpumask(n);
2046 if (!cpus_empty(tmp))
2047 val += PENALTY_FOR_NODE_WITH_CPUS;
2049 /* Slight preference for less loaded node */
2050 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2051 val += node_load[n];
2053 if (val < min_val) {
2054 min_val = val;
2055 best_node = n;
2059 if (best_node >= 0)
2060 node_set(best_node, *used_node_mask);
2062 return best_node;
2067 * Build zonelists ordered by node and zones within node.
2068 * This results in maximum locality--normal zone overflows into local
2069 * DMA zone, if any--but risks exhausting DMA zone.
2071 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2073 enum zone_type i;
2074 int j;
2075 struct zonelist *zonelist;
2077 for (i = 0; i < MAX_NR_ZONES; i++) {
2078 zonelist = pgdat->node_zonelists + i;
2079 for (j = 0; zonelist->zones[j] != NULL; j++)
2081 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2082 zonelist->zones[j] = NULL;
2087 * Build gfp_thisnode zonelists
2089 static void build_thisnode_zonelists(pg_data_t *pgdat)
2091 enum zone_type i;
2092 int j;
2093 struct zonelist *zonelist;
2095 for (i = 0; i < MAX_NR_ZONES; i++) {
2096 zonelist = pgdat->node_zonelists + MAX_NR_ZONES + i;
2097 j = build_zonelists_node(pgdat, zonelist, 0, i);
2098 zonelist->zones[j] = NULL;
2103 * Build zonelists ordered by zone and nodes within zones.
2104 * This results in conserving DMA zone[s] until all Normal memory is
2105 * exhausted, but results in overflowing to remote node while memory
2106 * may still exist in local DMA zone.
2108 static int node_order[MAX_NUMNODES];
2110 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2112 enum zone_type i;
2113 int pos, j, node;
2114 int zone_type; /* needs to be signed */
2115 struct zone *z;
2116 struct zonelist *zonelist;
2118 for (i = 0; i < MAX_NR_ZONES; i++) {
2119 zonelist = pgdat->node_zonelists + i;
2120 pos = 0;
2121 for (zone_type = i; zone_type >= 0; zone_type--) {
2122 for (j = 0; j < nr_nodes; j++) {
2123 node = node_order[j];
2124 z = &NODE_DATA(node)->node_zones[zone_type];
2125 if (populated_zone(z)) {
2126 zonelist->zones[pos++] = z;
2127 check_highest_zone(zone_type);
2131 zonelist->zones[pos] = NULL;
2135 static int default_zonelist_order(void)
2137 int nid, zone_type;
2138 unsigned long low_kmem_size,total_size;
2139 struct zone *z;
2140 int average_size;
2142 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2143 * If they are really small and used heavily, the system can fall
2144 * into OOM very easily.
2145 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2147 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2148 low_kmem_size = 0;
2149 total_size = 0;
2150 for_each_online_node(nid) {
2151 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2152 z = &NODE_DATA(nid)->node_zones[zone_type];
2153 if (populated_zone(z)) {
2154 if (zone_type < ZONE_NORMAL)
2155 low_kmem_size += z->present_pages;
2156 total_size += z->present_pages;
2160 if (!low_kmem_size || /* there are no DMA area. */
2161 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2162 return ZONELIST_ORDER_NODE;
2164 * look into each node's config.
2165 * If there is a node whose DMA/DMA32 memory is very big area on
2166 * local memory, NODE_ORDER may be suitable.
2168 average_size = total_size /
2169 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2170 for_each_online_node(nid) {
2171 low_kmem_size = 0;
2172 total_size = 0;
2173 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2174 z = &NODE_DATA(nid)->node_zones[zone_type];
2175 if (populated_zone(z)) {
2176 if (zone_type < ZONE_NORMAL)
2177 low_kmem_size += z->present_pages;
2178 total_size += z->present_pages;
2181 if (low_kmem_size &&
2182 total_size > average_size && /* ignore small node */
2183 low_kmem_size > total_size * 70/100)
2184 return ZONELIST_ORDER_NODE;
2186 return ZONELIST_ORDER_ZONE;
2189 static void set_zonelist_order(void)
2191 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2192 current_zonelist_order = default_zonelist_order();
2193 else
2194 current_zonelist_order = user_zonelist_order;
2197 static void build_zonelists(pg_data_t *pgdat)
2199 int j, node, load;
2200 enum zone_type i;
2201 nodemask_t used_mask;
2202 int local_node, prev_node;
2203 struct zonelist *zonelist;
2204 int order = current_zonelist_order;
2206 /* initialize zonelists */
2207 for (i = 0; i < MAX_ZONELISTS; i++) {
2208 zonelist = pgdat->node_zonelists + i;
2209 zonelist->zones[0] = NULL;
2212 /* NUMA-aware ordering of nodes */
2213 local_node = pgdat->node_id;
2214 load = num_online_nodes();
2215 prev_node = local_node;
2216 nodes_clear(used_mask);
2218 memset(node_load, 0, sizeof(node_load));
2219 memset(node_order, 0, sizeof(node_order));
2220 j = 0;
2222 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2223 int distance = node_distance(local_node, node);
2226 * If another node is sufficiently far away then it is better
2227 * to reclaim pages in a zone before going off node.
2229 if (distance > RECLAIM_DISTANCE)
2230 zone_reclaim_mode = 1;
2233 * We don't want to pressure a particular node.
2234 * So adding penalty to the first node in same
2235 * distance group to make it round-robin.
2237 if (distance != node_distance(local_node, prev_node))
2238 node_load[node] = load;
2240 prev_node = node;
2241 load--;
2242 if (order == ZONELIST_ORDER_NODE)
2243 build_zonelists_in_node_order(pgdat, node);
2244 else
2245 node_order[j++] = node; /* remember order */
2248 if (order == ZONELIST_ORDER_ZONE) {
2249 /* calculate node order -- i.e., DMA last! */
2250 build_zonelists_in_zone_order(pgdat, j);
2253 build_thisnode_zonelists(pgdat);
2256 /* Construct the zonelist performance cache - see further mmzone.h */
2257 static void build_zonelist_cache(pg_data_t *pgdat)
2259 int i;
2261 for (i = 0; i < MAX_NR_ZONES; i++) {
2262 struct zonelist *zonelist;
2263 struct zonelist_cache *zlc;
2264 struct zone **z;
2266 zonelist = pgdat->node_zonelists + i;
2267 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2268 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2269 for (z = zonelist->zones; *z; z++)
2270 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
2275 #else /* CONFIG_NUMA */
2277 static void set_zonelist_order(void)
2279 current_zonelist_order = ZONELIST_ORDER_ZONE;
2282 static void build_zonelists(pg_data_t *pgdat)
2284 int node, local_node;
2285 enum zone_type i,j;
2287 local_node = pgdat->node_id;
2288 for (i = 0; i < MAX_NR_ZONES; i++) {
2289 struct zonelist *zonelist;
2291 zonelist = pgdat->node_zonelists + i;
2293 j = build_zonelists_node(pgdat, zonelist, 0, i);
2295 * Now we build the zonelist so that it contains the zones
2296 * of all the other nodes.
2297 * We don't want to pressure a particular node, so when
2298 * building the zones for node N, we make sure that the
2299 * zones coming right after the local ones are those from
2300 * node N+1 (modulo N)
2302 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2303 if (!node_online(node))
2304 continue;
2305 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2307 for (node = 0; node < local_node; node++) {
2308 if (!node_online(node))
2309 continue;
2310 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2313 zonelist->zones[j] = NULL;
2317 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2318 static void build_zonelist_cache(pg_data_t *pgdat)
2320 int i;
2322 for (i = 0; i < MAX_NR_ZONES; i++)
2323 pgdat->node_zonelists[i].zlcache_ptr = NULL;
2326 #endif /* CONFIG_NUMA */
2328 /* return values int ....just for stop_machine_run() */
2329 static int __build_all_zonelists(void *dummy)
2331 int nid;
2333 for_each_online_node(nid) {
2334 pg_data_t *pgdat = NODE_DATA(nid);
2336 build_zonelists(pgdat);
2337 build_zonelist_cache(pgdat);
2339 return 0;
2342 void build_all_zonelists(void)
2344 set_zonelist_order();
2346 if (system_state == SYSTEM_BOOTING) {
2347 __build_all_zonelists(NULL);
2348 cpuset_init_current_mems_allowed();
2349 } else {
2350 /* we have to stop all cpus to guaranntee there is no user
2351 of zonelist */
2352 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2353 /* cpuset refresh routine should be here */
2355 vm_total_pages = nr_free_pagecache_pages();
2357 * Disable grouping by mobility if the number of pages in the
2358 * system is too low to allow the mechanism to work. It would be
2359 * more accurate, but expensive to check per-zone. This check is
2360 * made on memory-hotadd so a system can start with mobility
2361 * disabled and enable it later
2363 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2364 page_group_by_mobility_disabled = 1;
2365 else
2366 page_group_by_mobility_disabled = 0;
2368 printk("Built %i zonelists in %s order, mobility grouping %s. "
2369 "Total pages: %ld\n",
2370 num_online_nodes(),
2371 zonelist_order_name[current_zonelist_order],
2372 page_group_by_mobility_disabled ? "off" : "on",
2373 vm_total_pages);
2374 #ifdef CONFIG_NUMA
2375 printk("Policy zone: %s\n", zone_names[policy_zone]);
2376 #endif
2380 * Helper functions to size the waitqueue hash table.
2381 * Essentially these want to choose hash table sizes sufficiently
2382 * large so that collisions trying to wait on pages are rare.
2383 * But in fact, the number of active page waitqueues on typical
2384 * systems is ridiculously low, less than 200. So this is even
2385 * conservative, even though it seems large.
2387 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2388 * waitqueues, i.e. the size of the waitq table given the number of pages.
2390 #define PAGES_PER_WAITQUEUE 256
2392 #ifndef CONFIG_MEMORY_HOTPLUG
2393 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2395 unsigned long size = 1;
2397 pages /= PAGES_PER_WAITQUEUE;
2399 while (size < pages)
2400 size <<= 1;
2403 * Once we have dozens or even hundreds of threads sleeping
2404 * on IO we've got bigger problems than wait queue collision.
2405 * Limit the size of the wait table to a reasonable size.
2407 size = min(size, 4096UL);
2409 return max(size, 4UL);
2411 #else
2413 * A zone's size might be changed by hot-add, so it is not possible to determine
2414 * a suitable size for its wait_table. So we use the maximum size now.
2416 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2418 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2419 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2420 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2422 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2423 * or more by the traditional way. (See above). It equals:
2425 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2426 * ia64(16K page size) : = ( 8G + 4M)byte.
2427 * powerpc (64K page size) : = (32G +16M)byte.
2429 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2431 return 4096UL;
2433 #endif
2436 * This is an integer logarithm so that shifts can be used later
2437 * to extract the more random high bits from the multiplicative
2438 * hash function before the remainder is taken.
2440 static inline unsigned long wait_table_bits(unsigned long size)
2442 return ffz(~size);
2445 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2448 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2449 * of blocks reserved is based on zone->pages_min. The memory within the
2450 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2451 * higher will lead to a bigger reserve which will get freed as contiguous
2452 * blocks as reclaim kicks in
2454 static void setup_zone_migrate_reserve(struct zone *zone)
2456 unsigned long start_pfn, pfn, end_pfn;
2457 struct page *page;
2458 unsigned long reserve, block_migratetype;
2460 /* Get the start pfn, end pfn and the number of blocks to reserve */
2461 start_pfn = zone->zone_start_pfn;
2462 end_pfn = start_pfn + zone->spanned_pages;
2463 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2464 pageblock_order;
2466 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2467 if (!pfn_valid(pfn))
2468 continue;
2469 page = pfn_to_page(pfn);
2471 /* Blocks with reserved pages will never free, skip them. */
2472 if (PageReserved(page))
2473 continue;
2475 block_migratetype = get_pageblock_migratetype(page);
2477 /* If this block is reserved, account for it */
2478 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2479 reserve--;
2480 continue;
2483 /* Suitable for reserving if this block is movable */
2484 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2485 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2486 move_freepages_block(zone, page, MIGRATE_RESERVE);
2487 reserve--;
2488 continue;
2492 * If the reserve is met and this is a previous reserved block,
2493 * take it back
2495 if (block_migratetype == MIGRATE_RESERVE) {
2496 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2497 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2503 * Initially all pages are reserved - free ones are freed
2504 * up by free_all_bootmem() once the early boot process is
2505 * done. Non-atomic initialization, single-pass.
2507 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2508 unsigned long start_pfn, enum memmap_context context)
2510 struct page *page;
2511 unsigned long end_pfn = start_pfn + size;
2512 unsigned long pfn;
2514 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2516 * There can be holes in boot-time mem_map[]s
2517 * handed to this function. They do not
2518 * exist on hotplugged memory.
2520 if (context == MEMMAP_EARLY) {
2521 if (!early_pfn_valid(pfn))
2522 continue;
2523 if (!early_pfn_in_nid(pfn, nid))
2524 continue;
2526 page = pfn_to_page(pfn);
2527 set_page_links(page, zone, nid, pfn);
2528 init_page_count(page);
2529 reset_page_mapcount(page);
2530 SetPageReserved(page);
2533 * Mark the block movable so that blocks are reserved for
2534 * movable at startup. This will force kernel allocations
2535 * to reserve their blocks rather than leaking throughout
2536 * the address space during boot when many long-lived
2537 * kernel allocations are made. Later some blocks near
2538 * the start are marked MIGRATE_RESERVE by
2539 * setup_zone_migrate_reserve()
2541 if ((pfn & (pageblock_nr_pages-1)))
2542 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2544 INIT_LIST_HEAD(&page->lru);
2545 #ifdef WANT_PAGE_VIRTUAL
2546 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2547 if (!is_highmem_idx(zone))
2548 set_page_address(page, __va(pfn << PAGE_SHIFT));
2549 #endif
2553 static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
2554 struct zone *zone, unsigned long size)
2556 int order, t;
2557 for_each_migratetype_order(order, t) {
2558 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2559 zone->free_area[order].nr_free = 0;
2563 #ifndef __HAVE_ARCH_MEMMAP_INIT
2564 #define memmap_init(size, nid, zone, start_pfn) \
2565 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2566 #endif
2568 static int __devinit zone_batchsize(struct zone *zone)
2570 int batch;
2573 * The per-cpu-pages pools are set to around 1000th of the
2574 * size of the zone. But no more than 1/2 of a meg.
2576 * OK, so we don't know how big the cache is. So guess.
2578 batch = zone->present_pages / 1024;
2579 if (batch * PAGE_SIZE > 512 * 1024)
2580 batch = (512 * 1024) / PAGE_SIZE;
2581 batch /= 4; /* We effectively *= 4 below */
2582 if (batch < 1)
2583 batch = 1;
2586 * Clamp the batch to a 2^n - 1 value. Having a power
2587 * of 2 value was found to be more likely to have
2588 * suboptimal cache aliasing properties in some cases.
2590 * For example if 2 tasks are alternately allocating
2591 * batches of pages, one task can end up with a lot
2592 * of pages of one half of the possible page colors
2593 * and the other with pages of the other colors.
2595 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2597 return batch;
2600 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2602 struct per_cpu_pages *pcp;
2604 memset(p, 0, sizeof(*p));
2606 pcp = &p->pcp[0]; /* hot */
2607 pcp->count = 0;
2608 pcp->high = 6 * batch;
2609 pcp->batch = max(1UL, 1 * batch);
2610 INIT_LIST_HEAD(&pcp->list);
2612 pcp = &p->pcp[1]; /* cold*/
2613 pcp->count = 0;
2614 pcp->high = 2 * batch;
2615 pcp->batch = max(1UL, batch/2);
2616 INIT_LIST_HEAD(&pcp->list);
2620 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2621 * to the value high for the pageset p.
2624 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2625 unsigned long high)
2627 struct per_cpu_pages *pcp;
2629 pcp = &p->pcp[0]; /* hot list */
2630 pcp->high = high;
2631 pcp->batch = max(1UL, high/4);
2632 if ((high/4) > (PAGE_SHIFT * 8))
2633 pcp->batch = PAGE_SHIFT * 8;
2637 #ifdef CONFIG_NUMA
2639 * Boot pageset table. One per cpu which is going to be used for all
2640 * zones and all nodes. The parameters will be set in such a way
2641 * that an item put on a list will immediately be handed over to
2642 * the buddy list. This is safe since pageset manipulation is done
2643 * with interrupts disabled.
2645 * Some NUMA counter updates may also be caught by the boot pagesets.
2647 * The boot_pagesets must be kept even after bootup is complete for
2648 * unused processors and/or zones. They do play a role for bootstrapping
2649 * hotplugged processors.
2651 * zoneinfo_show() and maybe other functions do
2652 * not check if the processor is online before following the pageset pointer.
2653 * Other parts of the kernel may not check if the zone is available.
2655 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2658 * Dynamically allocate memory for the
2659 * per cpu pageset array in struct zone.
2661 static int __cpuinit process_zones(int cpu)
2663 struct zone *zone, *dzone;
2664 int node = cpu_to_node(cpu);
2666 node_set_state(node, N_CPU); /* this node has a cpu */
2668 for_each_zone(zone) {
2670 if (!populated_zone(zone))
2671 continue;
2673 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2674 GFP_KERNEL, node);
2675 if (!zone_pcp(zone, cpu))
2676 goto bad;
2678 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2680 if (percpu_pagelist_fraction)
2681 setup_pagelist_highmark(zone_pcp(zone, cpu),
2682 (zone->present_pages / percpu_pagelist_fraction));
2685 return 0;
2686 bad:
2687 for_each_zone(dzone) {
2688 if (!populated_zone(dzone))
2689 continue;
2690 if (dzone == zone)
2691 break;
2692 kfree(zone_pcp(dzone, cpu));
2693 zone_pcp(dzone, cpu) = NULL;
2695 return -ENOMEM;
2698 static inline void free_zone_pagesets(int cpu)
2700 struct zone *zone;
2702 for_each_zone(zone) {
2703 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2705 /* Free per_cpu_pageset if it is slab allocated */
2706 if (pset != &boot_pageset[cpu])
2707 kfree(pset);
2708 zone_pcp(zone, cpu) = NULL;
2712 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2713 unsigned long action,
2714 void *hcpu)
2716 int cpu = (long)hcpu;
2717 int ret = NOTIFY_OK;
2719 switch (action) {
2720 case CPU_UP_PREPARE:
2721 case CPU_UP_PREPARE_FROZEN:
2722 if (process_zones(cpu))
2723 ret = NOTIFY_BAD;
2724 break;
2725 case CPU_UP_CANCELED:
2726 case CPU_UP_CANCELED_FROZEN:
2727 case CPU_DEAD:
2728 case CPU_DEAD_FROZEN:
2729 free_zone_pagesets(cpu);
2730 break;
2731 default:
2732 break;
2734 return ret;
2737 static struct notifier_block __cpuinitdata pageset_notifier =
2738 { &pageset_cpuup_callback, NULL, 0 };
2740 void __init setup_per_cpu_pageset(void)
2742 int err;
2744 /* Initialize per_cpu_pageset for cpu 0.
2745 * A cpuup callback will do this for every cpu
2746 * as it comes online
2748 err = process_zones(smp_processor_id());
2749 BUG_ON(err);
2750 register_cpu_notifier(&pageset_notifier);
2753 #endif
2755 static noinline __init_refok
2756 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2758 int i;
2759 struct pglist_data *pgdat = zone->zone_pgdat;
2760 size_t alloc_size;
2763 * The per-page waitqueue mechanism uses hashed waitqueues
2764 * per zone.
2766 zone->wait_table_hash_nr_entries =
2767 wait_table_hash_nr_entries(zone_size_pages);
2768 zone->wait_table_bits =
2769 wait_table_bits(zone->wait_table_hash_nr_entries);
2770 alloc_size = zone->wait_table_hash_nr_entries
2771 * sizeof(wait_queue_head_t);
2773 if (system_state == SYSTEM_BOOTING) {
2774 zone->wait_table = (wait_queue_head_t *)
2775 alloc_bootmem_node(pgdat, alloc_size);
2776 } else {
2778 * This case means that a zone whose size was 0 gets new memory
2779 * via memory hot-add.
2780 * But it may be the case that a new node was hot-added. In
2781 * this case vmalloc() will not be able to use this new node's
2782 * memory - this wait_table must be initialized to use this new
2783 * node itself as well.
2784 * To use this new node's memory, further consideration will be
2785 * necessary.
2787 zone->wait_table = vmalloc(alloc_size);
2789 if (!zone->wait_table)
2790 return -ENOMEM;
2792 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2793 init_waitqueue_head(zone->wait_table + i);
2795 return 0;
2798 static __meminit void zone_pcp_init(struct zone *zone)
2800 int cpu;
2801 unsigned long batch = zone_batchsize(zone);
2803 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2804 #ifdef CONFIG_NUMA
2805 /* Early boot. Slab allocator not functional yet */
2806 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2807 setup_pageset(&boot_pageset[cpu],0);
2808 #else
2809 setup_pageset(zone_pcp(zone,cpu), batch);
2810 #endif
2812 if (zone->present_pages)
2813 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2814 zone->name, zone->present_pages, batch);
2817 __meminit int init_currently_empty_zone(struct zone *zone,
2818 unsigned long zone_start_pfn,
2819 unsigned long size,
2820 enum memmap_context context)
2822 struct pglist_data *pgdat = zone->zone_pgdat;
2823 int ret;
2824 ret = zone_wait_table_init(zone, size);
2825 if (ret)
2826 return ret;
2827 pgdat->nr_zones = zone_idx(zone) + 1;
2829 zone->zone_start_pfn = zone_start_pfn;
2831 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2833 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2835 return 0;
2838 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2840 * Basic iterator support. Return the first range of PFNs for a node
2841 * Note: nid == MAX_NUMNODES returns first region regardless of node
2843 static int __meminit first_active_region_index_in_nid(int nid)
2845 int i;
2847 for (i = 0; i < nr_nodemap_entries; i++)
2848 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2849 return i;
2851 return -1;
2855 * Basic iterator support. Return the next active range of PFNs for a node
2856 * Note: nid == MAX_NUMNODES returns next region regardles of node
2858 static int __meminit next_active_region_index_in_nid(int index, int nid)
2860 for (index = index + 1; index < nr_nodemap_entries; index++)
2861 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2862 return index;
2864 return -1;
2867 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2869 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2870 * Architectures may implement their own version but if add_active_range()
2871 * was used and there are no special requirements, this is a convenient
2872 * alternative
2874 int __meminit early_pfn_to_nid(unsigned long pfn)
2876 int i;
2878 for (i = 0; i < nr_nodemap_entries; i++) {
2879 unsigned long start_pfn = early_node_map[i].start_pfn;
2880 unsigned long end_pfn = early_node_map[i].end_pfn;
2882 if (start_pfn <= pfn && pfn < end_pfn)
2883 return early_node_map[i].nid;
2886 return 0;
2888 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2890 /* Basic iterator support to walk early_node_map[] */
2891 #define for_each_active_range_index_in_nid(i, nid) \
2892 for (i = first_active_region_index_in_nid(nid); i != -1; \
2893 i = next_active_region_index_in_nid(i, nid))
2896 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2897 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2898 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2900 * If an architecture guarantees that all ranges registered with
2901 * add_active_ranges() contain no holes and may be freed, this
2902 * this function may be used instead of calling free_bootmem() manually.
2904 void __init free_bootmem_with_active_regions(int nid,
2905 unsigned long max_low_pfn)
2907 int i;
2909 for_each_active_range_index_in_nid(i, nid) {
2910 unsigned long size_pages = 0;
2911 unsigned long end_pfn = early_node_map[i].end_pfn;
2913 if (early_node_map[i].start_pfn >= max_low_pfn)
2914 continue;
2916 if (end_pfn > max_low_pfn)
2917 end_pfn = max_low_pfn;
2919 size_pages = end_pfn - early_node_map[i].start_pfn;
2920 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2921 PFN_PHYS(early_node_map[i].start_pfn),
2922 size_pages << PAGE_SHIFT);
2927 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2928 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2930 * If an architecture guarantees that all ranges registered with
2931 * add_active_ranges() contain no holes and may be freed, this
2932 * function may be used instead of calling memory_present() manually.
2934 void __init sparse_memory_present_with_active_regions(int nid)
2936 int i;
2938 for_each_active_range_index_in_nid(i, nid)
2939 memory_present(early_node_map[i].nid,
2940 early_node_map[i].start_pfn,
2941 early_node_map[i].end_pfn);
2945 * push_node_boundaries - Push node boundaries to at least the requested boundary
2946 * @nid: The nid of the node to push the boundary for
2947 * @start_pfn: The start pfn of the node
2948 * @end_pfn: The end pfn of the node
2950 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2951 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2952 * be hotplugged even though no physical memory exists. This function allows
2953 * an arch to push out the node boundaries so mem_map is allocated that can
2954 * be used later.
2956 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2957 void __init push_node_boundaries(unsigned int nid,
2958 unsigned long start_pfn, unsigned long end_pfn)
2960 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2961 nid, start_pfn, end_pfn);
2963 /* Initialise the boundary for this node if necessary */
2964 if (node_boundary_end_pfn[nid] == 0)
2965 node_boundary_start_pfn[nid] = -1UL;
2967 /* Update the boundaries */
2968 if (node_boundary_start_pfn[nid] > start_pfn)
2969 node_boundary_start_pfn[nid] = start_pfn;
2970 if (node_boundary_end_pfn[nid] < end_pfn)
2971 node_boundary_end_pfn[nid] = end_pfn;
2974 /* If necessary, push the node boundary out for reserve hotadd */
2975 static void __meminit account_node_boundary(unsigned int nid,
2976 unsigned long *start_pfn, unsigned long *end_pfn)
2978 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2979 nid, *start_pfn, *end_pfn);
2981 /* Return if boundary information has not been provided */
2982 if (node_boundary_end_pfn[nid] == 0)
2983 return;
2985 /* Check the boundaries and update if necessary */
2986 if (node_boundary_start_pfn[nid] < *start_pfn)
2987 *start_pfn = node_boundary_start_pfn[nid];
2988 if (node_boundary_end_pfn[nid] > *end_pfn)
2989 *end_pfn = node_boundary_end_pfn[nid];
2991 #else
2992 void __init push_node_boundaries(unsigned int nid,
2993 unsigned long start_pfn, unsigned long end_pfn) {}
2995 static void __meminit account_node_boundary(unsigned int nid,
2996 unsigned long *start_pfn, unsigned long *end_pfn) {}
2997 #endif
3001 * get_pfn_range_for_nid - Return the start and end page frames for a node
3002 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3003 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3004 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3006 * It returns the start and end page frame of a node based on information
3007 * provided by an arch calling add_active_range(). If called for a node
3008 * with no available memory, a warning is printed and the start and end
3009 * PFNs will be 0.
3011 void __meminit get_pfn_range_for_nid(unsigned int nid,
3012 unsigned long *start_pfn, unsigned long *end_pfn)
3014 int i;
3015 *start_pfn = -1UL;
3016 *end_pfn = 0;
3018 for_each_active_range_index_in_nid(i, nid) {
3019 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3020 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3023 if (*start_pfn == -1UL)
3024 *start_pfn = 0;
3026 /* Push the node boundaries out if requested */
3027 account_node_boundary(nid, start_pfn, end_pfn);
3031 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3032 * assumption is made that zones within a node are ordered in monotonic
3033 * increasing memory addresses so that the "highest" populated zone is used
3035 void __init find_usable_zone_for_movable(void)
3037 int zone_index;
3038 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3039 if (zone_index == ZONE_MOVABLE)
3040 continue;
3042 if (arch_zone_highest_possible_pfn[zone_index] >
3043 arch_zone_lowest_possible_pfn[zone_index])
3044 break;
3047 VM_BUG_ON(zone_index == -1);
3048 movable_zone = zone_index;
3052 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3053 * because it is sized independant of architecture. Unlike the other zones,
3054 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3055 * in each node depending on the size of each node and how evenly kernelcore
3056 * is distributed. This helper function adjusts the zone ranges
3057 * provided by the architecture for a given node by using the end of the
3058 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3059 * zones within a node are in order of monotonic increases memory addresses
3061 void __meminit adjust_zone_range_for_zone_movable(int nid,
3062 unsigned long zone_type,
3063 unsigned long node_start_pfn,
3064 unsigned long node_end_pfn,
3065 unsigned long *zone_start_pfn,
3066 unsigned long *zone_end_pfn)
3068 /* Only adjust if ZONE_MOVABLE is on this node */
3069 if (zone_movable_pfn[nid]) {
3070 /* Size ZONE_MOVABLE */
3071 if (zone_type == ZONE_MOVABLE) {
3072 *zone_start_pfn = zone_movable_pfn[nid];
3073 *zone_end_pfn = min(node_end_pfn,
3074 arch_zone_highest_possible_pfn[movable_zone]);
3076 /* Adjust for ZONE_MOVABLE starting within this range */
3077 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3078 *zone_end_pfn > zone_movable_pfn[nid]) {
3079 *zone_end_pfn = zone_movable_pfn[nid];
3081 /* Check if this whole range is within ZONE_MOVABLE */
3082 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3083 *zone_start_pfn = *zone_end_pfn;
3088 * Return the number of pages a zone spans in a node, including holes
3089 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3091 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3092 unsigned long zone_type,
3093 unsigned long *ignored)
3095 unsigned long node_start_pfn, node_end_pfn;
3096 unsigned long zone_start_pfn, zone_end_pfn;
3098 /* Get the start and end of the node and zone */
3099 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3100 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3101 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3102 adjust_zone_range_for_zone_movable(nid, zone_type,
3103 node_start_pfn, node_end_pfn,
3104 &zone_start_pfn, &zone_end_pfn);
3106 /* Check that this node has pages within the zone's required range */
3107 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3108 return 0;
3110 /* Move the zone boundaries inside the node if necessary */
3111 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3112 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3114 /* Return the spanned pages */
3115 return zone_end_pfn - zone_start_pfn;
3119 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3120 * then all holes in the requested range will be accounted for.
3122 unsigned long __meminit __absent_pages_in_range(int nid,
3123 unsigned long range_start_pfn,
3124 unsigned long range_end_pfn)
3126 int i = 0;
3127 unsigned long prev_end_pfn = 0, hole_pages = 0;
3128 unsigned long start_pfn;
3130 /* Find the end_pfn of the first active range of pfns in the node */
3131 i = first_active_region_index_in_nid(nid);
3132 if (i == -1)
3133 return 0;
3135 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3137 /* Account for ranges before physical memory on this node */
3138 if (early_node_map[i].start_pfn > range_start_pfn)
3139 hole_pages = prev_end_pfn - range_start_pfn;
3141 /* Find all holes for the zone within the node */
3142 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3144 /* No need to continue if prev_end_pfn is outside the zone */
3145 if (prev_end_pfn >= range_end_pfn)
3146 break;
3148 /* Make sure the end of the zone is not within the hole */
3149 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3150 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3152 /* Update the hole size cound and move on */
3153 if (start_pfn > range_start_pfn) {
3154 BUG_ON(prev_end_pfn > start_pfn);
3155 hole_pages += start_pfn - prev_end_pfn;
3157 prev_end_pfn = early_node_map[i].end_pfn;
3160 /* Account for ranges past physical memory on this node */
3161 if (range_end_pfn > prev_end_pfn)
3162 hole_pages += range_end_pfn -
3163 max(range_start_pfn, prev_end_pfn);
3165 return hole_pages;
3169 * absent_pages_in_range - Return number of page frames in holes within a range
3170 * @start_pfn: The start PFN to start searching for holes
3171 * @end_pfn: The end PFN to stop searching for holes
3173 * It returns the number of pages frames in memory holes within a range.
3175 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3176 unsigned long end_pfn)
3178 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3181 /* Return the number of page frames in holes in a zone on a node */
3182 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3183 unsigned long zone_type,
3184 unsigned long *ignored)
3186 unsigned long node_start_pfn, node_end_pfn;
3187 unsigned long zone_start_pfn, zone_end_pfn;
3189 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3190 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3191 node_start_pfn);
3192 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3193 node_end_pfn);
3195 adjust_zone_range_for_zone_movable(nid, zone_type,
3196 node_start_pfn, node_end_pfn,
3197 &zone_start_pfn, &zone_end_pfn);
3198 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3201 #else
3202 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3203 unsigned long zone_type,
3204 unsigned long *zones_size)
3206 return zones_size[zone_type];
3209 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3210 unsigned long zone_type,
3211 unsigned long *zholes_size)
3213 if (!zholes_size)
3214 return 0;
3216 return zholes_size[zone_type];
3219 #endif
3221 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3222 unsigned long *zones_size, unsigned long *zholes_size)
3224 unsigned long realtotalpages, totalpages = 0;
3225 enum zone_type i;
3227 for (i = 0; i < MAX_NR_ZONES; i++)
3228 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3229 zones_size);
3230 pgdat->node_spanned_pages = totalpages;
3232 realtotalpages = totalpages;
3233 for (i = 0; i < MAX_NR_ZONES; i++)
3234 realtotalpages -=
3235 zone_absent_pages_in_node(pgdat->node_id, i,
3236 zholes_size);
3237 pgdat->node_present_pages = realtotalpages;
3238 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3239 realtotalpages);
3242 #ifndef CONFIG_SPARSEMEM
3244 * Calculate the size of the zone->blockflags rounded to an unsigned long
3245 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3246 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3247 * round what is now in bits to nearest long in bits, then return it in
3248 * bytes.
3250 static unsigned long __init usemap_size(unsigned long zonesize)
3252 unsigned long usemapsize;
3254 usemapsize = roundup(zonesize, pageblock_nr_pages);
3255 usemapsize = usemapsize >> pageblock_order;
3256 usemapsize *= NR_PAGEBLOCK_BITS;
3257 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3259 return usemapsize / 8;
3262 static void __init setup_usemap(struct pglist_data *pgdat,
3263 struct zone *zone, unsigned long zonesize)
3265 unsigned long usemapsize = usemap_size(zonesize);
3266 zone->pageblock_flags = NULL;
3267 if (usemapsize) {
3268 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3269 memset(zone->pageblock_flags, 0, usemapsize);
3272 #else
3273 static void inline setup_usemap(struct pglist_data *pgdat,
3274 struct zone *zone, unsigned long zonesize) {}
3275 #endif /* CONFIG_SPARSEMEM */
3277 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3278 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3279 static inline void __init set_pageblock_order(unsigned int order)
3281 /* Check that pageblock_nr_pages has not already been setup */
3282 if (pageblock_order)
3283 return;
3286 * Assume the largest contiguous order of interest is a huge page.
3287 * This value may be variable depending on boot parameters on IA64
3289 pageblock_order = order;
3291 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3293 /* Defined this way to avoid accidently referencing HUGETLB_PAGE_ORDER */
3294 #define set_pageblock_order(x) do {} while (0)
3296 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3299 * Set up the zone data structures:
3300 * - mark all pages reserved
3301 * - mark all memory queues empty
3302 * - clear the memory bitmaps
3304 static void __meminit free_area_init_core(struct pglist_data *pgdat,
3305 unsigned long *zones_size, unsigned long *zholes_size)
3307 enum zone_type j;
3308 int nid = pgdat->node_id;
3309 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3310 int ret;
3312 pgdat_resize_init(pgdat);
3313 pgdat->nr_zones = 0;
3314 init_waitqueue_head(&pgdat->kswapd_wait);
3315 pgdat->kswapd_max_order = 0;
3317 for (j = 0; j < MAX_NR_ZONES; j++) {
3318 struct zone *zone = pgdat->node_zones + j;
3319 unsigned long size, realsize, memmap_pages;
3321 size = zone_spanned_pages_in_node(nid, j, zones_size);
3322 realsize = size - zone_absent_pages_in_node(nid, j,
3323 zholes_size);
3326 * Adjust realsize so that it accounts for how much memory
3327 * is used by this zone for memmap. This affects the watermark
3328 * and per-cpu initialisations
3330 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
3331 if (realsize >= memmap_pages) {
3332 realsize -= memmap_pages;
3333 printk(KERN_DEBUG
3334 " %s zone: %lu pages used for memmap\n",
3335 zone_names[j], memmap_pages);
3336 } else
3337 printk(KERN_WARNING
3338 " %s zone: %lu pages exceeds realsize %lu\n",
3339 zone_names[j], memmap_pages, realsize);
3341 /* Account for reserved pages */
3342 if (j == 0 && realsize > dma_reserve) {
3343 realsize -= dma_reserve;
3344 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3345 zone_names[0], dma_reserve);
3348 if (!is_highmem_idx(j))
3349 nr_kernel_pages += realsize;
3350 nr_all_pages += realsize;
3352 zone->spanned_pages = size;
3353 zone->present_pages = realsize;
3354 #ifdef CONFIG_NUMA
3355 zone->node = nid;
3356 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3357 / 100;
3358 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3359 #endif
3360 zone->name = zone_names[j];
3361 spin_lock_init(&zone->lock);
3362 spin_lock_init(&zone->lru_lock);
3363 zone_seqlock_init(zone);
3364 zone->zone_pgdat = pgdat;
3366 zone->prev_priority = DEF_PRIORITY;
3368 zone_pcp_init(zone);
3369 INIT_LIST_HEAD(&zone->active_list);
3370 INIT_LIST_HEAD(&zone->inactive_list);
3371 zone->nr_scan_active = 0;
3372 zone->nr_scan_inactive = 0;
3373 zap_zone_vm_stats(zone);
3374 atomic_set(&zone->reclaim_in_progress, 0);
3375 if (!size)
3376 continue;
3378 set_pageblock_order(HUGETLB_PAGE_ORDER);
3379 setup_usemap(pgdat, zone, size);
3380 ret = init_currently_empty_zone(zone, zone_start_pfn,
3381 size, MEMMAP_EARLY);
3382 BUG_ON(ret);
3383 zone_start_pfn += size;
3387 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3389 /* Skip empty nodes */
3390 if (!pgdat->node_spanned_pages)
3391 return;
3393 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3394 /* ia64 gets its own node_mem_map, before this, without bootmem */
3395 if (!pgdat->node_mem_map) {
3396 unsigned long size, start, end;
3397 struct page *map;
3400 * The zone's endpoints aren't required to be MAX_ORDER
3401 * aligned but the node_mem_map endpoints must be in order
3402 * for the buddy allocator to function correctly.
3404 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3405 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3406 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3407 size = (end - start) * sizeof(struct page);
3408 map = alloc_remap(pgdat->node_id, size);
3409 if (!map)
3410 map = alloc_bootmem_node(pgdat, size);
3411 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3413 #ifndef CONFIG_NEED_MULTIPLE_NODES
3415 * With no DISCONTIG, the global mem_map is just set as node 0's
3417 if (pgdat == NODE_DATA(0)) {
3418 mem_map = NODE_DATA(0)->node_mem_map;
3419 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3420 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3421 mem_map -= pgdat->node_start_pfn;
3422 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3424 #endif
3425 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3428 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
3429 unsigned long *zones_size, unsigned long node_start_pfn,
3430 unsigned long *zholes_size)
3432 pgdat->node_id = nid;
3433 pgdat->node_start_pfn = node_start_pfn;
3434 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3436 alloc_node_mem_map(pgdat);
3438 free_area_init_core(pgdat, zones_size, zholes_size);
3441 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3443 #if MAX_NUMNODES > 1
3445 * Figure out the number of possible node ids.
3447 static void __init setup_nr_node_ids(void)
3449 unsigned int node;
3450 unsigned int highest = 0;
3452 for_each_node_mask(node, node_possible_map)
3453 highest = node;
3454 nr_node_ids = highest + 1;
3456 #else
3457 static inline void setup_nr_node_ids(void)
3460 #endif
3463 * add_active_range - Register a range of PFNs backed by physical memory
3464 * @nid: The node ID the range resides on
3465 * @start_pfn: The start PFN of the available physical memory
3466 * @end_pfn: The end PFN of the available physical memory
3468 * These ranges are stored in an early_node_map[] and later used by
3469 * free_area_init_nodes() to calculate zone sizes and holes. If the
3470 * range spans a memory hole, it is up to the architecture to ensure
3471 * the memory is not freed by the bootmem allocator. If possible
3472 * the range being registered will be merged with existing ranges.
3474 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3475 unsigned long end_pfn)
3477 int i;
3479 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3480 "%d entries of %d used\n",
3481 nid, start_pfn, end_pfn,
3482 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3484 /* Merge with existing active regions if possible */
3485 for (i = 0; i < nr_nodemap_entries; i++) {
3486 if (early_node_map[i].nid != nid)
3487 continue;
3489 /* Skip if an existing region covers this new one */
3490 if (start_pfn >= early_node_map[i].start_pfn &&
3491 end_pfn <= early_node_map[i].end_pfn)
3492 return;
3494 /* Merge forward if suitable */
3495 if (start_pfn <= early_node_map[i].end_pfn &&
3496 end_pfn > early_node_map[i].end_pfn) {
3497 early_node_map[i].end_pfn = end_pfn;
3498 return;
3501 /* Merge backward if suitable */
3502 if (start_pfn < early_node_map[i].end_pfn &&
3503 end_pfn >= early_node_map[i].start_pfn) {
3504 early_node_map[i].start_pfn = start_pfn;
3505 return;
3509 /* Check that early_node_map is large enough */
3510 if (i >= MAX_ACTIVE_REGIONS) {
3511 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3512 MAX_ACTIVE_REGIONS);
3513 return;
3516 early_node_map[i].nid = nid;
3517 early_node_map[i].start_pfn = start_pfn;
3518 early_node_map[i].end_pfn = end_pfn;
3519 nr_nodemap_entries = i + 1;
3523 * shrink_active_range - Shrink an existing registered range of PFNs
3524 * @nid: The node id the range is on that should be shrunk
3525 * @old_end_pfn: The old end PFN of the range
3526 * @new_end_pfn: The new PFN of the range
3528 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3529 * The map is kept at the end physical page range that has already been
3530 * registered with add_active_range(). This function allows an arch to shrink
3531 * an existing registered range.
3533 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3534 unsigned long new_end_pfn)
3536 int i;
3538 /* Find the old active region end and shrink */
3539 for_each_active_range_index_in_nid(i, nid)
3540 if (early_node_map[i].end_pfn == old_end_pfn) {
3541 early_node_map[i].end_pfn = new_end_pfn;
3542 break;
3547 * remove_all_active_ranges - Remove all currently registered regions
3549 * During discovery, it may be found that a table like SRAT is invalid
3550 * and an alternative discovery method must be used. This function removes
3551 * all currently registered regions.
3553 void __init remove_all_active_ranges(void)
3555 memset(early_node_map, 0, sizeof(early_node_map));
3556 nr_nodemap_entries = 0;
3557 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3558 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3559 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3560 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3563 /* Compare two active node_active_regions */
3564 static int __init cmp_node_active_region(const void *a, const void *b)
3566 struct node_active_region *arange = (struct node_active_region *)a;
3567 struct node_active_region *brange = (struct node_active_region *)b;
3569 /* Done this way to avoid overflows */
3570 if (arange->start_pfn > brange->start_pfn)
3571 return 1;
3572 if (arange->start_pfn < brange->start_pfn)
3573 return -1;
3575 return 0;
3578 /* sort the node_map by start_pfn */
3579 static void __init sort_node_map(void)
3581 sort(early_node_map, (size_t)nr_nodemap_entries,
3582 sizeof(struct node_active_region),
3583 cmp_node_active_region, NULL);
3586 /* Find the lowest pfn for a node */
3587 unsigned long __init find_min_pfn_for_node(unsigned long nid)
3589 int i;
3590 unsigned long min_pfn = ULONG_MAX;
3592 /* Assuming a sorted map, the first range found has the starting pfn */
3593 for_each_active_range_index_in_nid(i, nid)
3594 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3596 if (min_pfn == ULONG_MAX) {
3597 printk(KERN_WARNING
3598 "Could not find start_pfn for node %lu\n", nid);
3599 return 0;
3602 return min_pfn;
3606 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3608 * It returns the minimum PFN based on information provided via
3609 * add_active_range().
3611 unsigned long __init find_min_pfn_with_active_regions(void)
3613 return find_min_pfn_for_node(MAX_NUMNODES);
3617 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3619 * It returns the maximum PFN based on information provided via
3620 * add_active_range().
3622 unsigned long __init find_max_pfn_with_active_regions(void)
3624 int i;
3625 unsigned long max_pfn = 0;
3627 for (i = 0; i < nr_nodemap_entries; i++)
3628 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3630 return max_pfn;
3634 * early_calculate_totalpages()
3635 * Sum pages in active regions for movable zone.
3636 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3638 static unsigned long __init early_calculate_totalpages(void)
3640 int i;
3641 unsigned long totalpages = 0;
3643 for (i = 0; i < nr_nodemap_entries; i++) {
3644 unsigned long pages = early_node_map[i].end_pfn -
3645 early_node_map[i].start_pfn;
3646 totalpages += pages;
3647 if (pages)
3648 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3650 return totalpages;
3654 * Find the PFN the Movable zone begins in each node. Kernel memory
3655 * is spread evenly between nodes as long as the nodes have enough
3656 * memory. When they don't, some nodes will have more kernelcore than
3657 * others
3659 void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3661 int i, nid;
3662 unsigned long usable_startpfn;
3663 unsigned long kernelcore_node, kernelcore_remaining;
3664 unsigned long totalpages = early_calculate_totalpages();
3665 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3668 * If movablecore was specified, calculate what size of
3669 * kernelcore that corresponds so that memory usable for
3670 * any allocation type is evenly spread. If both kernelcore
3671 * and movablecore are specified, then the value of kernelcore
3672 * will be used for required_kernelcore if it's greater than
3673 * what movablecore would have allowed.
3675 if (required_movablecore) {
3676 unsigned long corepages;
3679 * Round-up so that ZONE_MOVABLE is at least as large as what
3680 * was requested by the user
3682 required_movablecore =
3683 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3684 corepages = totalpages - required_movablecore;
3686 required_kernelcore = max(required_kernelcore, corepages);
3689 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3690 if (!required_kernelcore)
3691 return;
3693 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3694 find_usable_zone_for_movable();
3695 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3697 restart:
3698 /* Spread kernelcore memory as evenly as possible throughout nodes */
3699 kernelcore_node = required_kernelcore / usable_nodes;
3700 for_each_node_state(nid, N_HIGH_MEMORY) {
3702 * Recalculate kernelcore_node if the division per node
3703 * now exceeds what is necessary to satisfy the requested
3704 * amount of memory for the kernel
3706 if (required_kernelcore < kernelcore_node)
3707 kernelcore_node = required_kernelcore / usable_nodes;
3710 * As the map is walked, we track how much memory is usable
3711 * by the kernel using kernelcore_remaining. When it is
3712 * 0, the rest of the node is usable by ZONE_MOVABLE
3714 kernelcore_remaining = kernelcore_node;
3716 /* Go through each range of PFNs within this node */
3717 for_each_active_range_index_in_nid(i, nid) {
3718 unsigned long start_pfn, end_pfn;
3719 unsigned long size_pages;
3721 start_pfn = max(early_node_map[i].start_pfn,
3722 zone_movable_pfn[nid]);
3723 end_pfn = early_node_map[i].end_pfn;
3724 if (start_pfn >= end_pfn)
3725 continue;
3727 /* Account for what is only usable for kernelcore */
3728 if (start_pfn < usable_startpfn) {
3729 unsigned long kernel_pages;
3730 kernel_pages = min(end_pfn, usable_startpfn)
3731 - start_pfn;
3733 kernelcore_remaining -= min(kernel_pages,
3734 kernelcore_remaining);
3735 required_kernelcore -= min(kernel_pages,
3736 required_kernelcore);
3738 /* Continue if range is now fully accounted */
3739 if (end_pfn <= usable_startpfn) {
3742 * Push zone_movable_pfn to the end so
3743 * that if we have to rebalance
3744 * kernelcore across nodes, we will
3745 * not double account here
3747 zone_movable_pfn[nid] = end_pfn;
3748 continue;
3750 start_pfn = usable_startpfn;
3754 * The usable PFN range for ZONE_MOVABLE is from
3755 * start_pfn->end_pfn. Calculate size_pages as the
3756 * number of pages used as kernelcore
3758 size_pages = end_pfn - start_pfn;
3759 if (size_pages > kernelcore_remaining)
3760 size_pages = kernelcore_remaining;
3761 zone_movable_pfn[nid] = start_pfn + size_pages;
3764 * Some kernelcore has been met, update counts and
3765 * break if the kernelcore for this node has been
3766 * satisified
3768 required_kernelcore -= min(required_kernelcore,
3769 size_pages);
3770 kernelcore_remaining -= size_pages;
3771 if (!kernelcore_remaining)
3772 break;
3777 * If there is still required_kernelcore, we do another pass with one
3778 * less node in the count. This will push zone_movable_pfn[nid] further
3779 * along on the nodes that still have memory until kernelcore is
3780 * satisified
3782 usable_nodes--;
3783 if (usable_nodes && required_kernelcore > usable_nodes)
3784 goto restart;
3786 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3787 for (nid = 0; nid < MAX_NUMNODES; nid++)
3788 zone_movable_pfn[nid] =
3789 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3792 /* Any regular memory on that node ? */
3793 static void check_for_regular_memory(pg_data_t *pgdat)
3795 #ifdef CONFIG_HIGHMEM
3796 enum zone_type zone_type;
3798 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3799 struct zone *zone = &pgdat->node_zones[zone_type];
3800 if (zone->present_pages)
3801 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3803 #endif
3807 * free_area_init_nodes - Initialise all pg_data_t and zone data
3808 * @max_zone_pfn: an array of max PFNs for each zone
3810 * This will call free_area_init_node() for each active node in the system.
3811 * Using the page ranges provided by add_active_range(), the size of each
3812 * zone in each node and their holes is calculated. If the maximum PFN
3813 * between two adjacent zones match, it is assumed that the zone is empty.
3814 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3815 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3816 * starts where the previous one ended. For example, ZONE_DMA32 starts
3817 * at arch_max_dma_pfn.
3819 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3821 unsigned long nid;
3822 enum zone_type i;
3824 /* Sort early_node_map as initialisation assumes it is sorted */
3825 sort_node_map();
3827 /* Record where the zone boundaries are */
3828 memset(arch_zone_lowest_possible_pfn, 0,
3829 sizeof(arch_zone_lowest_possible_pfn));
3830 memset(arch_zone_highest_possible_pfn, 0,
3831 sizeof(arch_zone_highest_possible_pfn));
3832 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3833 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3834 for (i = 1; i < MAX_NR_ZONES; i++) {
3835 if (i == ZONE_MOVABLE)
3836 continue;
3837 arch_zone_lowest_possible_pfn[i] =
3838 arch_zone_highest_possible_pfn[i-1];
3839 arch_zone_highest_possible_pfn[i] =
3840 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3842 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3843 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3845 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3846 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3847 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3849 /* Print out the zone ranges */
3850 printk("Zone PFN ranges:\n");
3851 for (i = 0; i < MAX_NR_ZONES; i++) {
3852 if (i == ZONE_MOVABLE)
3853 continue;
3854 printk(" %-8s %8lu -> %8lu\n",
3855 zone_names[i],
3856 arch_zone_lowest_possible_pfn[i],
3857 arch_zone_highest_possible_pfn[i]);
3860 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3861 printk("Movable zone start PFN for each node\n");
3862 for (i = 0; i < MAX_NUMNODES; i++) {
3863 if (zone_movable_pfn[i])
3864 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
3867 /* Print out the early_node_map[] */
3868 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3869 for (i = 0; i < nr_nodemap_entries; i++)
3870 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3871 early_node_map[i].start_pfn,
3872 early_node_map[i].end_pfn);
3874 /* Initialise every node */
3875 setup_nr_node_ids();
3876 for_each_online_node(nid) {
3877 pg_data_t *pgdat = NODE_DATA(nid);
3878 free_area_init_node(nid, pgdat, NULL,
3879 find_min_pfn_for_node(nid), NULL);
3881 /* Any memory on that node */
3882 if (pgdat->node_present_pages)
3883 node_set_state(nid, N_HIGH_MEMORY);
3884 check_for_regular_memory(pgdat);
3888 static int __init cmdline_parse_core(char *p, unsigned long *core)
3890 unsigned long long coremem;
3891 if (!p)
3892 return -EINVAL;
3894 coremem = memparse(p, &p);
3895 *core = coremem >> PAGE_SHIFT;
3897 /* Paranoid check that UL is enough for the coremem value */
3898 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3900 return 0;
3904 * kernelcore=size sets the amount of memory for use for allocations that
3905 * cannot be reclaimed or migrated.
3907 static int __init cmdline_parse_kernelcore(char *p)
3909 return cmdline_parse_core(p, &required_kernelcore);
3913 * movablecore=size sets the amount of memory for use for allocations that
3914 * can be reclaimed or migrated.
3916 static int __init cmdline_parse_movablecore(char *p)
3918 return cmdline_parse_core(p, &required_movablecore);
3921 early_param("kernelcore", cmdline_parse_kernelcore);
3922 early_param("movablecore", cmdline_parse_movablecore);
3924 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3927 * set_dma_reserve - set the specified number of pages reserved in the first zone
3928 * @new_dma_reserve: The number of pages to mark reserved
3930 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3931 * In the DMA zone, a significant percentage may be consumed by kernel image
3932 * and other unfreeable allocations which can skew the watermarks badly. This
3933 * function may optionally be used to account for unfreeable pages in the
3934 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3935 * smaller per-cpu batchsize.
3937 void __init set_dma_reserve(unsigned long new_dma_reserve)
3939 dma_reserve = new_dma_reserve;
3942 #ifndef CONFIG_NEED_MULTIPLE_NODES
3943 static bootmem_data_t contig_bootmem_data;
3944 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3946 EXPORT_SYMBOL(contig_page_data);
3947 #endif
3949 void __init free_area_init(unsigned long *zones_size)
3951 free_area_init_node(0, NODE_DATA(0), zones_size,
3952 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3955 static int page_alloc_cpu_notify(struct notifier_block *self,
3956 unsigned long action, void *hcpu)
3958 int cpu = (unsigned long)hcpu;
3960 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3961 local_irq_disable();
3962 __drain_pages(cpu);
3963 vm_events_fold_cpu(cpu);
3964 local_irq_enable();
3965 refresh_cpu_vm_stats(cpu);
3967 return NOTIFY_OK;
3970 void __init page_alloc_init(void)
3972 hotcpu_notifier(page_alloc_cpu_notify, 0);
3976 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3977 * or min_free_kbytes changes.
3979 static void calculate_totalreserve_pages(void)
3981 struct pglist_data *pgdat;
3982 unsigned long reserve_pages = 0;
3983 enum zone_type i, j;
3985 for_each_online_pgdat(pgdat) {
3986 for (i = 0; i < MAX_NR_ZONES; i++) {
3987 struct zone *zone = pgdat->node_zones + i;
3988 unsigned long max = 0;
3990 /* Find valid and maximum lowmem_reserve in the zone */
3991 for (j = i; j < MAX_NR_ZONES; j++) {
3992 if (zone->lowmem_reserve[j] > max)
3993 max = zone->lowmem_reserve[j];
3996 /* we treat pages_high as reserved pages. */
3997 max += zone->pages_high;
3999 if (max > zone->present_pages)
4000 max = zone->present_pages;
4001 reserve_pages += max;
4004 totalreserve_pages = reserve_pages;
4008 * setup_per_zone_lowmem_reserve - called whenever
4009 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4010 * has a correct pages reserved value, so an adequate number of
4011 * pages are left in the zone after a successful __alloc_pages().
4013 static void setup_per_zone_lowmem_reserve(void)
4015 struct pglist_data *pgdat;
4016 enum zone_type j, idx;
4018 for_each_online_pgdat(pgdat) {
4019 for (j = 0; j < MAX_NR_ZONES; j++) {
4020 struct zone *zone = pgdat->node_zones + j;
4021 unsigned long present_pages = zone->present_pages;
4023 zone->lowmem_reserve[j] = 0;
4025 idx = j;
4026 while (idx) {
4027 struct zone *lower_zone;
4029 idx--;
4031 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4032 sysctl_lowmem_reserve_ratio[idx] = 1;
4034 lower_zone = pgdat->node_zones + idx;
4035 lower_zone->lowmem_reserve[j] = present_pages /
4036 sysctl_lowmem_reserve_ratio[idx];
4037 present_pages += lower_zone->present_pages;
4042 /* update totalreserve_pages */
4043 calculate_totalreserve_pages();
4047 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4049 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4050 * with respect to min_free_kbytes.
4052 void setup_per_zone_pages_min(void)
4054 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4055 unsigned long lowmem_pages = 0;
4056 struct zone *zone;
4057 unsigned long flags;
4059 /* Calculate total number of !ZONE_HIGHMEM pages */
4060 for_each_zone(zone) {
4061 if (!is_highmem(zone))
4062 lowmem_pages += zone->present_pages;
4065 for_each_zone(zone) {
4066 u64 tmp;
4068 spin_lock_irqsave(&zone->lru_lock, flags);
4069 tmp = (u64)pages_min * zone->present_pages;
4070 do_div(tmp, lowmem_pages);
4071 if (is_highmem(zone)) {
4073 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4074 * need highmem pages, so cap pages_min to a small
4075 * value here.
4077 * The (pages_high-pages_low) and (pages_low-pages_min)
4078 * deltas controls asynch page reclaim, and so should
4079 * not be capped for highmem.
4081 int min_pages;
4083 min_pages = zone->present_pages / 1024;
4084 if (min_pages < SWAP_CLUSTER_MAX)
4085 min_pages = SWAP_CLUSTER_MAX;
4086 if (min_pages > 128)
4087 min_pages = 128;
4088 zone->pages_min = min_pages;
4089 } else {
4091 * If it's a lowmem zone, reserve a number of pages
4092 * proportionate to the zone's size.
4094 zone->pages_min = tmp;
4097 zone->pages_low = zone->pages_min + (tmp >> 2);
4098 zone->pages_high = zone->pages_min + (tmp >> 1);
4099 setup_zone_migrate_reserve(zone);
4100 spin_unlock_irqrestore(&zone->lru_lock, flags);
4103 /* update totalreserve_pages */
4104 calculate_totalreserve_pages();
4108 * Initialise min_free_kbytes.
4110 * For small machines we want it small (128k min). For large machines
4111 * we want it large (64MB max). But it is not linear, because network
4112 * bandwidth does not increase linearly with machine size. We use
4114 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4115 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4117 * which yields
4119 * 16MB: 512k
4120 * 32MB: 724k
4121 * 64MB: 1024k
4122 * 128MB: 1448k
4123 * 256MB: 2048k
4124 * 512MB: 2896k
4125 * 1024MB: 4096k
4126 * 2048MB: 5792k
4127 * 4096MB: 8192k
4128 * 8192MB: 11584k
4129 * 16384MB: 16384k
4131 static int __init init_per_zone_pages_min(void)
4133 unsigned long lowmem_kbytes;
4135 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4137 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4138 if (min_free_kbytes < 128)
4139 min_free_kbytes = 128;
4140 if (min_free_kbytes > 65536)
4141 min_free_kbytes = 65536;
4142 setup_per_zone_pages_min();
4143 setup_per_zone_lowmem_reserve();
4144 return 0;
4146 module_init(init_per_zone_pages_min)
4149 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4150 * that we can call two helper functions whenever min_free_kbytes
4151 * changes.
4153 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4154 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4156 proc_dointvec(table, write, file, buffer, length, ppos);
4157 if (write)
4158 setup_per_zone_pages_min();
4159 return 0;
4162 #ifdef CONFIG_NUMA
4163 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4164 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4166 struct zone *zone;
4167 int rc;
4169 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4170 if (rc)
4171 return rc;
4173 for_each_zone(zone)
4174 zone->min_unmapped_pages = (zone->present_pages *
4175 sysctl_min_unmapped_ratio) / 100;
4176 return 0;
4179 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4180 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4182 struct zone *zone;
4183 int rc;
4185 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4186 if (rc)
4187 return rc;
4189 for_each_zone(zone)
4190 zone->min_slab_pages = (zone->present_pages *
4191 sysctl_min_slab_ratio) / 100;
4192 return 0;
4194 #endif
4197 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4198 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4199 * whenever sysctl_lowmem_reserve_ratio changes.
4201 * The reserve ratio obviously has absolutely no relation with the
4202 * pages_min watermarks. The lowmem reserve ratio can only make sense
4203 * if in function of the boot time zone sizes.
4205 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4206 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4208 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4209 setup_per_zone_lowmem_reserve();
4210 return 0;
4214 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4215 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4216 * can have before it gets flushed back to buddy allocator.
4219 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4220 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4222 struct zone *zone;
4223 unsigned int cpu;
4224 int ret;
4226 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4227 if (!write || (ret == -EINVAL))
4228 return ret;
4229 for_each_zone(zone) {
4230 for_each_online_cpu(cpu) {
4231 unsigned long high;
4232 high = zone->present_pages / percpu_pagelist_fraction;
4233 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4236 return 0;
4239 int hashdist = HASHDIST_DEFAULT;
4241 #ifdef CONFIG_NUMA
4242 static int __init set_hashdist(char *str)
4244 if (!str)
4245 return 0;
4246 hashdist = simple_strtoul(str, &str, 0);
4247 return 1;
4249 __setup("hashdist=", set_hashdist);
4250 #endif
4253 * allocate a large system hash table from bootmem
4254 * - it is assumed that the hash table must contain an exact power-of-2
4255 * quantity of entries
4256 * - limit is the number of hash buckets, not the total allocation size
4258 void *__init alloc_large_system_hash(const char *tablename,
4259 unsigned long bucketsize,
4260 unsigned long numentries,
4261 int scale,
4262 int flags,
4263 unsigned int *_hash_shift,
4264 unsigned int *_hash_mask,
4265 unsigned long limit)
4267 unsigned long long max = limit;
4268 unsigned long log2qty, size;
4269 void *table = NULL;
4271 /* allow the kernel cmdline to have a say */
4272 if (!numentries) {
4273 /* round applicable memory size up to nearest megabyte */
4274 numentries = nr_kernel_pages;
4275 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4276 numentries >>= 20 - PAGE_SHIFT;
4277 numentries <<= 20 - PAGE_SHIFT;
4279 /* limit to 1 bucket per 2^scale bytes of low memory */
4280 if (scale > PAGE_SHIFT)
4281 numentries >>= (scale - PAGE_SHIFT);
4282 else
4283 numentries <<= (PAGE_SHIFT - scale);
4285 /* Make sure we've got at least a 0-order allocation.. */
4286 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4287 numentries = PAGE_SIZE / bucketsize;
4289 numentries = roundup_pow_of_two(numentries);
4291 /* limit allocation size to 1/16 total memory by default */
4292 if (max == 0) {
4293 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4294 do_div(max, bucketsize);
4297 if (numentries > max)
4298 numentries = max;
4300 log2qty = ilog2(numentries);
4302 do {
4303 size = bucketsize << log2qty;
4304 if (flags & HASH_EARLY)
4305 table = alloc_bootmem(size);
4306 else if (hashdist)
4307 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4308 else {
4309 unsigned long order;
4310 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
4312 table = (void*) __get_free_pages(GFP_ATOMIC, order);
4314 * If bucketsize is not a power-of-two, we may free
4315 * some pages at the end of hash table.
4317 if (table) {
4318 unsigned long alloc_end = (unsigned long)table +
4319 (PAGE_SIZE << order);
4320 unsigned long used = (unsigned long)table +
4321 PAGE_ALIGN(size);
4322 split_page(virt_to_page(table), order);
4323 while (used < alloc_end) {
4324 free_page(used);
4325 used += PAGE_SIZE;
4329 } while (!table && size > PAGE_SIZE && --log2qty);
4331 if (!table)
4332 panic("Failed to allocate %s hash table\n", tablename);
4334 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4335 tablename,
4336 (1U << log2qty),
4337 ilog2(size) - PAGE_SHIFT,
4338 size);
4340 if (_hash_shift)
4341 *_hash_shift = log2qty;
4342 if (_hash_mask)
4343 *_hash_mask = (1 << log2qty) - 1;
4345 return table;
4348 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4349 struct page *pfn_to_page(unsigned long pfn)
4351 return __pfn_to_page(pfn);
4353 unsigned long page_to_pfn(struct page *page)
4355 return __page_to_pfn(page);
4357 EXPORT_SYMBOL(pfn_to_page);
4358 EXPORT_SYMBOL(page_to_pfn);
4359 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4361 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4362 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4363 unsigned long pfn)
4365 #ifdef CONFIG_SPARSEMEM
4366 return __pfn_to_section(pfn)->pageblock_flags;
4367 #else
4368 return zone->pageblock_flags;
4369 #endif /* CONFIG_SPARSEMEM */
4372 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4374 #ifdef CONFIG_SPARSEMEM
4375 pfn &= (PAGES_PER_SECTION-1);
4376 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4377 #else
4378 pfn = pfn - zone->zone_start_pfn;
4379 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4380 #endif /* CONFIG_SPARSEMEM */
4384 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4385 * @page: The page within the block of interest
4386 * @start_bitidx: The first bit of interest to retrieve
4387 * @end_bitidx: The last bit of interest
4388 * returns pageblock_bits flags
4390 unsigned long get_pageblock_flags_group(struct page *page,
4391 int start_bitidx, int end_bitidx)
4393 struct zone *zone;
4394 unsigned long *bitmap;
4395 unsigned long pfn, bitidx;
4396 unsigned long flags = 0;
4397 unsigned long value = 1;
4399 zone = page_zone(page);
4400 pfn = page_to_pfn(page);
4401 bitmap = get_pageblock_bitmap(zone, pfn);
4402 bitidx = pfn_to_bitidx(zone, pfn);
4404 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4405 if (test_bit(bitidx + start_bitidx, bitmap))
4406 flags |= value;
4408 return flags;
4412 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4413 * @page: The page within the block of interest
4414 * @start_bitidx: The first bit of interest
4415 * @end_bitidx: The last bit of interest
4416 * @flags: The flags to set
4418 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4419 int start_bitidx, int end_bitidx)
4421 struct zone *zone;
4422 unsigned long *bitmap;
4423 unsigned long pfn, bitidx;
4424 unsigned long value = 1;
4426 zone = page_zone(page);
4427 pfn = page_to_pfn(page);
4428 bitmap = get_pageblock_bitmap(zone, pfn);
4429 bitidx = pfn_to_bitidx(zone, pfn);
4431 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4432 if (flags & value)
4433 __set_bit(bitidx + start_bitidx, bitmap);
4434 else
4435 __clear_bit(bitidx + start_bitidx, bitmap);
4439 * This is designed as sub function...plz see page_isolation.c also.
4440 * set/clear page block's type to be ISOLATE.
4441 * page allocater never alloc memory from ISOLATE block.
4444 int set_migratetype_isolate(struct page *page)
4446 struct zone *zone;
4447 unsigned long flags;
4448 int ret = -EBUSY;
4450 zone = page_zone(page);
4451 spin_lock_irqsave(&zone->lock, flags);
4453 * In future, more migrate types will be able to be isolation target.
4455 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4456 goto out;
4457 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4458 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4459 ret = 0;
4460 out:
4461 spin_unlock_irqrestore(&zone->lock, flags);
4462 if (!ret)
4463 drain_all_local_pages();
4464 return ret;
4467 void unset_migratetype_isolate(struct page *page)
4469 struct zone *zone;
4470 unsigned long flags;
4471 zone = page_zone(page);
4472 spin_lock_irqsave(&zone->lock, flags);
4473 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4474 goto out;
4475 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4476 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4477 out:
4478 spin_unlock_irqrestore(&zone->lock, flags);