ext4: Add default allocation routines for quota structures
[linux-2.6/mini2440.git] / security / selinux / hooks.c
blobdbeaa783b2a968429a808dfde80dd84cf587228f
1 /*
2 * NSA Security-Enhanced Linux (SELinux) security module
4 * This file contains the SELinux hook function implementations.
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul.moore@hp.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2,
23 * as published by the Free Software Foundation.
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h> /* for local_port_range[] */
52 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h> /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h> /* for Unix socket types */
67 #include <net/af_unix.h> /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 #include <linux/posix-timers.h>
80 #include "avc.h"
81 #include "objsec.h"
82 #include "netif.h"
83 #include "netnode.h"
84 #include "netport.h"
85 #include "xfrm.h"
86 #include "netlabel.h"
87 #include "audit.h"
89 #define XATTR_SELINUX_SUFFIX "selinux"
90 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
92 #define NUM_SEL_MNT_OPTS 4
94 extern unsigned int policydb_loaded_version;
95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96 extern int selinux_compat_net;
97 extern struct security_operations *security_ops;
99 /* SECMARK reference count */
100 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
102 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
103 int selinux_enforcing;
105 static int __init enforcing_setup(char *str)
107 unsigned long enforcing;
108 if (!strict_strtoul(str, 0, &enforcing))
109 selinux_enforcing = enforcing ? 1 : 0;
110 return 1;
112 __setup("enforcing=", enforcing_setup);
113 #endif
115 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
116 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
118 static int __init selinux_enabled_setup(char *str)
120 unsigned long enabled;
121 if (!strict_strtoul(str, 0, &enabled))
122 selinux_enabled = enabled ? 1 : 0;
123 return 1;
125 __setup("selinux=", selinux_enabled_setup);
126 #else
127 int selinux_enabled = 1;
128 #endif
132 * Minimal support for a secondary security module,
133 * just to allow the use of the capability module.
135 static struct security_operations *secondary_ops;
137 /* Lists of inode and superblock security structures initialized
138 before the policy was loaded. */
139 static LIST_HEAD(superblock_security_head);
140 static DEFINE_SPINLOCK(sb_security_lock);
142 static struct kmem_cache *sel_inode_cache;
145 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
147 * Description:
148 * This function checks the SECMARK reference counter to see if any SECMARK
149 * targets are currently configured, if the reference counter is greater than
150 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
151 * enabled, false (0) if SECMARK is disabled.
154 static int selinux_secmark_enabled(void)
156 return (atomic_read(&selinux_secmark_refcount) > 0);
160 * initialise the security for the init task
162 static void cred_init_security(void)
164 struct cred *cred = (struct cred *) current->real_cred;
165 struct task_security_struct *tsec;
167 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
168 if (!tsec)
169 panic("SELinux: Failed to initialize initial task.\n");
171 tsec->osid = tsec->sid = SECINITSID_KERNEL;
172 cred->security = tsec;
176 * get the security ID of a set of credentials
178 static inline u32 cred_sid(const struct cred *cred)
180 const struct task_security_struct *tsec;
182 tsec = cred->security;
183 return tsec->sid;
187 * get the objective security ID of a task
189 static inline u32 task_sid(const struct task_struct *task)
191 u32 sid;
193 rcu_read_lock();
194 sid = cred_sid(__task_cred(task));
195 rcu_read_unlock();
196 return sid;
200 * get the subjective security ID of the current task
202 static inline u32 current_sid(void)
204 const struct task_security_struct *tsec = current_cred()->security;
206 return tsec->sid;
209 /* Allocate and free functions for each kind of security blob. */
211 static int inode_alloc_security(struct inode *inode)
213 struct inode_security_struct *isec;
214 u32 sid = current_sid();
216 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
217 if (!isec)
218 return -ENOMEM;
220 mutex_init(&isec->lock);
221 INIT_LIST_HEAD(&isec->list);
222 isec->inode = inode;
223 isec->sid = SECINITSID_UNLABELED;
224 isec->sclass = SECCLASS_FILE;
225 isec->task_sid = sid;
226 inode->i_security = isec;
228 return 0;
231 static void inode_free_security(struct inode *inode)
233 struct inode_security_struct *isec = inode->i_security;
234 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
236 spin_lock(&sbsec->isec_lock);
237 if (!list_empty(&isec->list))
238 list_del_init(&isec->list);
239 spin_unlock(&sbsec->isec_lock);
241 inode->i_security = NULL;
242 kmem_cache_free(sel_inode_cache, isec);
245 static int file_alloc_security(struct file *file)
247 struct file_security_struct *fsec;
248 u32 sid = current_sid();
250 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
251 if (!fsec)
252 return -ENOMEM;
254 fsec->sid = sid;
255 fsec->fown_sid = sid;
256 file->f_security = fsec;
258 return 0;
261 static void file_free_security(struct file *file)
263 struct file_security_struct *fsec = file->f_security;
264 file->f_security = NULL;
265 kfree(fsec);
268 static int superblock_alloc_security(struct super_block *sb)
270 struct superblock_security_struct *sbsec;
272 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
273 if (!sbsec)
274 return -ENOMEM;
276 mutex_init(&sbsec->lock);
277 INIT_LIST_HEAD(&sbsec->list);
278 INIT_LIST_HEAD(&sbsec->isec_head);
279 spin_lock_init(&sbsec->isec_lock);
280 sbsec->sb = sb;
281 sbsec->sid = SECINITSID_UNLABELED;
282 sbsec->def_sid = SECINITSID_FILE;
283 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
284 sb->s_security = sbsec;
286 return 0;
289 static void superblock_free_security(struct super_block *sb)
291 struct superblock_security_struct *sbsec = sb->s_security;
293 spin_lock(&sb_security_lock);
294 if (!list_empty(&sbsec->list))
295 list_del_init(&sbsec->list);
296 spin_unlock(&sb_security_lock);
298 sb->s_security = NULL;
299 kfree(sbsec);
302 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
304 struct sk_security_struct *ssec;
306 ssec = kzalloc(sizeof(*ssec), priority);
307 if (!ssec)
308 return -ENOMEM;
310 ssec->peer_sid = SECINITSID_UNLABELED;
311 ssec->sid = SECINITSID_UNLABELED;
312 sk->sk_security = ssec;
314 selinux_netlbl_sk_security_reset(ssec, family);
316 return 0;
319 static void sk_free_security(struct sock *sk)
321 struct sk_security_struct *ssec = sk->sk_security;
323 sk->sk_security = NULL;
324 selinux_netlbl_sk_security_free(ssec);
325 kfree(ssec);
328 /* The security server must be initialized before
329 any labeling or access decisions can be provided. */
330 extern int ss_initialized;
332 /* The file system's label must be initialized prior to use. */
334 static char *labeling_behaviors[6] = {
335 "uses xattr",
336 "uses transition SIDs",
337 "uses task SIDs",
338 "uses genfs_contexts",
339 "not configured for labeling",
340 "uses mountpoint labeling",
343 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
345 static inline int inode_doinit(struct inode *inode)
347 return inode_doinit_with_dentry(inode, NULL);
350 enum {
351 Opt_error = -1,
352 Opt_context = 1,
353 Opt_fscontext = 2,
354 Opt_defcontext = 3,
355 Opt_rootcontext = 4,
358 static const match_table_t tokens = {
359 {Opt_context, CONTEXT_STR "%s"},
360 {Opt_fscontext, FSCONTEXT_STR "%s"},
361 {Opt_defcontext, DEFCONTEXT_STR "%s"},
362 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
363 {Opt_error, NULL},
366 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
368 static int may_context_mount_sb_relabel(u32 sid,
369 struct superblock_security_struct *sbsec,
370 const struct cred *cred)
372 const struct task_security_struct *tsec = cred->security;
373 int rc;
375 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
376 FILESYSTEM__RELABELFROM, NULL);
377 if (rc)
378 return rc;
380 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
381 FILESYSTEM__RELABELTO, NULL);
382 return rc;
385 static int may_context_mount_inode_relabel(u32 sid,
386 struct superblock_security_struct *sbsec,
387 const struct cred *cred)
389 const struct task_security_struct *tsec = cred->security;
390 int rc;
391 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
392 FILESYSTEM__RELABELFROM, NULL);
393 if (rc)
394 return rc;
396 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
397 FILESYSTEM__ASSOCIATE, NULL);
398 return rc;
401 static int sb_finish_set_opts(struct super_block *sb)
403 struct superblock_security_struct *sbsec = sb->s_security;
404 struct dentry *root = sb->s_root;
405 struct inode *root_inode = root->d_inode;
406 int rc = 0;
408 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
409 /* Make sure that the xattr handler exists and that no
410 error other than -ENODATA is returned by getxattr on
411 the root directory. -ENODATA is ok, as this may be
412 the first boot of the SELinux kernel before we have
413 assigned xattr values to the filesystem. */
414 if (!root_inode->i_op->getxattr) {
415 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
416 "xattr support\n", sb->s_id, sb->s_type->name);
417 rc = -EOPNOTSUPP;
418 goto out;
420 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
421 if (rc < 0 && rc != -ENODATA) {
422 if (rc == -EOPNOTSUPP)
423 printk(KERN_WARNING "SELinux: (dev %s, type "
424 "%s) has no security xattr handler\n",
425 sb->s_id, sb->s_type->name);
426 else
427 printk(KERN_WARNING "SELinux: (dev %s, type "
428 "%s) getxattr errno %d\n", sb->s_id,
429 sb->s_type->name, -rc);
430 goto out;
434 sbsec->initialized = 1;
436 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
437 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
438 sb->s_id, sb->s_type->name);
439 else
440 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
441 sb->s_id, sb->s_type->name,
442 labeling_behaviors[sbsec->behavior-1]);
444 /* Initialize the root inode. */
445 rc = inode_doinit_with_dentry(root_inode, root);
447 /* Initialize any other inodes associated with the superblock, e.g.
448 inodes created prior to initial policy load or inodes created
449 during get_sb by a pseudo filesystem that directly
450 populates itself. */
451 spin_lock(&sbsec->isec_lock);
452 next_inode:
453 if (!list_empty(&sbsec->isec_head)) {
454 struct inode_security_struct *isec =
455 list_entry(sbsec->isec_head.next,
456 struct inode_security_struct, list);
457 struct inode *inode = isec->inode;
458 spin_unlock(&sbsec->isec_lock);
459 inode = igrab(inode);
460 if (inode) {
461 if (!IS_PRIVATE(inode))
462 inode_doinit(inode);
463 iput(inode);
465 spin_lock(&sbsec->isec_lock);
466 list_del_init(&isec->list);
467 goto next_inode;
469 spin_unlock(&sbsec->isec_lock);
470 out:
471 return rc;
475 * This function should allow an FS to ask what it's mount security
476 * options were so it can use those later for submounts, displaying
477 * mount options, or whatever.
479 static int selinux_get_mnt_opts(const struct super_block *sb,
480 struct security_mnt_opts *opts)
482 int rc = 0, i;
483 struct superblock_security_struct *sbsec = sb->s_security;
484 char *context = NULL;
485 u32 len;
486 char tmp;
488 security_init_mnt_opts(opts);
490 if (!sbsec->initialized)
491 return -EINVAL;
493 if (!ss_initialized)
494 return -EINVAL;
497 * if we ever use sbsec flags for anything other than tracking mount
498 * settings this is going to need a mask
500 tmp = sbsec->flags;
501 /* count the number of mount options for this sb */
502 for (i = 0; i < 8; i++) {
503 if (tmp & 0x01)
504 opts->num_mnt_opts++;
505 tmp >>= 1;
508 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
509 if (!opts->mnt_opts) {
510 rc = -ENOMEM;
511 goto out_free;
514 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
515 if (!opts->mnt_opts_flags) {
516 rc = -ENOMEM;
517 goto out_free;
520 i = 0;
521 if (sbsec->flags & FSCONTEXT_MNT) {
522 rc = security_sid_to_context(sbsec->sid, &context, &len);
523 if (rc)
524 goto out_free;
525 opts->mnt_opts[i] = context;
526 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
528 if (sbsec->flags & CONTEXT_MNT) {
529 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
530 if (rc)
531 goto out_free;
532 opts->mnt_opts[i] = context;
533 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
535 if (sbsec->flags & DEFCONTEXT_MNT) {
536 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
537 if (rc)
538 goto out_free;
539 opts->mnt_opts[i] = context;
540 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
542 if (sbsec->flags & ROOTCONTEXT_MNT) {
543 struct inode *root = sbsec->sb->s_root->d_inode;
544 struct inode_security_struct *isec = root->i_security;
546 rc = security_sid_to_context(isec->sid, &context, &len);
547 if (rc)
548 goto out_free;
549 opts->mnt_opts[i] = context;
550 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
553 BUG_ON(i != opts->num_mnt_opts);
555 return 0;
557 out_free:
558 security_free_mnt_opts(opts);
559 return rc;
562 static int bad_option(struct superblock_security_struct *sbsec, char flag,
563 u32 old_sid, u32 new_sid)
565 /* check if the old mount command had the same options */
566 if (sbsec->initialized)
567 if (!(sbsec->flags & flag) ||
568 (old_sid != new_sid))
569 return 1;
571 /* check if we were passed the same options twice,
572 * aka someone passed context=a,context=b
574 if (!sbsec->initialized)
575 if (sbsec->flags & flag)
576 return 1;
577 return 0;
581 * Allow filesystems with binary mount data to explicitly set mount point
582 * labeling information.
584 static int selinux_set_mnt_opts(struct super_block *sb,
585 struct security_mnt_opts *opts)
587 const struct cred *cred = current_cred();
588 int rc = 0, i;
589 struct superblock_security_struct *sbsec = sb->s_security;
590 const char *name = sb->s_type->name;
591 struct inode *inode = sbsec->sb->s_root->d_inode;
592 struct inode_security_struct *root_isec = inode->i_security;
593 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
594 u32 defcontext_sid = 0;
595 char **mount_options = opts->mnt_opts;
596 int *flags = opts->mnt_opts_flags;
597 int num_opts = opts->num_mnt_opts;
599 mutex_lock(&sbsec->lock);
601 if (!ss_initialized) {
602 if (!num_opts) {
603 /* Defer initialization until selinux_complete_init,
604 after the initial policy is loaded and the security
605 server is ready to handle calls. */
606 spin_lock(&sb_security_lock);
607 if (list_empty(&sbsec->list))
608 list_add(&sbsec->list, &superblock_security_head);
609 spin_unlock(&sb_security_lock);
610 goto out;
612 rc = -EINVAL;
613 printk(KERN_WARNING "SELinux: Unable to set superblock options "
614 "before the security server is initialized\n");
615 goto out;
619 * Binary mount data FS will come through this function twice. Once
620 * from an explicit call and once from the generic calls from the vfs.
621 * Since the generic VFS calls will not contain any security mount data
622 * we need to skip the double mount verification.
624 * This does open a hole in which we will not notice if the first
625 * mount using this sb set explict options and a second mount using
626 * this sb does not set any security options. (The first options
627 * will be used for both mounts)
629 if (sbsec->initialized && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
630 && (num_opts == 0))
631 goto out;
634 * parse the mount options, check if they are valid sids.
635 * also check if someone is trying to mount the same sb more
636 * than once with different security options.
638 for (i = 0; i < num_opts; i++) {
639 u32 sid;
640 rc = security_context_to_sid(mount_options[i],
641 strlen(mount_options[i]), &sid);
642 if (rc) {
643 printk(KERN_WARNING "SELinux: security_context_to_sid"
644 "(%s) failed for (dev %s, type %s) errno=%d\n",
645 mount_options[i], sb->s_id, name, rc);
646 goto out;
648 switch (flags[i]) {
649 case FSCONTEXT_MNT:
650 fscontext_sid = sid;
652 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
653 fscontext_sid))
654 goto out_double_mount;
656 sbsec->flags |= FSCONTEXT_MNT;
657 break;
658 case CONTEXT_MNT:
659 context_sid = sid;
661 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
662 context_sid))
663 goto out_double_mount;
665 sbsec->flags |= CONTEXT_MNT;
666 break;
667 case ROOTCONTEXT_MNT:
668 rootcontext_sid = sid;
670 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
671 rootcontext_sid))
672 goto out_double_mount;
674 sbsec->flags |= ROOTCONTEXT_MNT;
676 break;
677 case DEFCONTEXT_MNT:
678 defcontext_sid = sid;
680 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
681 defcontext_sid))
682 goto out_double_mount;
684 sbsec->flags |= DEFCONTEXT_MNT;
686 break;
687 default:
688 rc = -EINVAL;
689 goto out;
693 if (sbsec->initialized) {
694 /* previously mounted with options, but not on this attempt? */
695 if (sbsec->flags && !num_opts)
696 goto out_double_mount;
697 rc = 0;
698 goto out;
701 if (strcmp(sb->s_type->name, "proc") == 0)
702 sbsec->proc = 1;
704 /* Determine the labeling behavior to use for this filesystem type. */
705 rc = security_fs_use(sbsec->proc ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
706 if (rc) {
707 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
708 __func__, sb->s_type->name, rc);
709 goto out;
712 /* sets the context of the superblock for the fs being mounted. */
713 if (fscontext_sid) {
714 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
715 if (rc)
716 goto out;
718 sbsec->sid = fscontext_sid;
722 * Switch to using mount point labeling behavior.
723 * sets the label used on all file below the mountpoint, and will set
724 * the superblock context if not already set.
726 if (context_sid) {
727 if (!fscontext_sid) {
728 rc = may_context_mount_sb_relabel(context_sid, sbsec,
729 cred);
730 if (rc)
731 goto out;
732 sbsec->sid = context_sid;
733 } else {
734 rc = may_context_mount_inode_relabel(context_sid, sbsec,
735 cred);
736 if (rc)
737 goto out;
739 if (!rootcontext_sid)
740 rootcontext_sid = context_sid;
742 sbsec->mntpoint_sid = context_sid;
743 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
746 if (rootcontext_sid) {
747 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
748 cred);
749 if (rc)
750 goto out;
752 root_isec->sid = rootcontext_sid;
753 root_isec->initialized = 1;
756 if (defcontext_sid) {
757 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
758 rc = -EINVAL;
759 printk(KERN_WARNING "SELinux: defcontext option is "
760 "invalid for this filesystem type\n");
761 goto out;
764 if (defcontext_sid != sbsec->def_sid) {
765 rc = may_context_mount_inode_relabel(defcontext_sid,
766 sbsec, cred);
767 if (rc)
768 goto out;
771 sbsec->def_sid = defcontext_sid;
774 rc = sb_finish_set_opts(sb);
775 out:
776 mutex_unlock(&sbsec->lock);
777 return rc;
778 out_double_mount:
779 rc = -EINVAL;
780 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
781 "security settings for (dev %s, type %s)\n", sb->s_id, name);
782 goto out;
785 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
786 struct super_block *newsb)
788 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
789 struct superblock_security_struct *newsbsec = newsb->s_security;
791 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
792 int set_context = (oldsbsec->flags & CONTEXT_MNT);
793 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
796 * if the parent was able to be mounted it clearly had no special lsm
797 * mount options. thus we can safely put this sb on the list and deal
798 * with it later
800 if (!ss_initialized) {
801 spin_lock(&sb_security_lock);
802 if (list_empty(&newsbsec->list))
803 list_add(&newsbsec->list, &superblock_security_head);
804 spin_unlock(&sb_security_lock);
805 return;
808 /* how can we clone if the old one wasn't set up?? */
809 BUG_ON(!oldsbsec->initialized);
811 /* if fs is reusing a sb, just let its options stand... */
812 if (newsbsec->initialized)
813 return;
815 mutex_lock(&newsbsec->lock);
817 newsbsec->flags = oldsbsec->flags;
819 newsbsec->sid = oldsbsec->sid;
820 newsbsec->def_sid = oldsbsec->def_sid;
821 newsbsec->behavior = oldsbsec->behavior;
823 if (set_context) {
824 u32 sid = oldsbsec->mntpoint_sid;
826 if (!set_fscontext)
827 newsbsec->sid = sid;
828 if (!set_rootcontext) {
829 struct inode *newinode = newsb->s_root->d_inode;
830 struct inode_security_struct *newisec = newinode->i_security;
831 newisec->sid = sid;
833 newsbsec->mntpoint_sid = sid;
835 if (set_rootcontext) {
836 const struct inode *oldinode = oldsb->s_root->d_inode;
837 const struct inode_security_struct *oldisec = oldinode->i_security;
838 struct inode *newinode = newsb->s_root->d_inode;
839 struct inode_security_struct *newisec = newinode->i_security;
841 newisec->sid = oldisec->sid;
844 sb_finish_set_opts(newsb);
845 mutex_unlock(&newsbsec->lock);
848 static int selinux_parse_opts_str(char *options,
849 struct security_mnt_opts *opts)
851 char *p;
852 char *context = NULL, *defcontext = NULL;
853 char *fscontext = NULL, *rootcontext = NULL;
854 int rc, num_mnt_opts = 0;
856 opts->num_mnt_opts = 0;
858 /* Standard string-based options. */
859 while ((p = strsep(&options, "|")) != NULL) {
860 int token;
861 substring_t args[MAX_OPT_ARGS];
863 if (!*p)
864 continue;
866 token = match_token(p, tokens, args);
868 switch (token) {
869 case Opt_context:
870 if (context || defcontext) {
871 rc = -EINVAL;
872 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
873 goto out_err;
875 context = match_strdup(&args[0]);
876 if (!context) {
877 rc = -ENOMEM;
878 goto out_err;
880 break;
882 case Opt_fscontext:
883 if (fscontext) {
884 rc = -EINVAL;
885 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
886 goto out_err;
888 fscontext = match_strdup(&args[0]);
889 if (!fscontext) {
890 rc = -ENOMEM;
891 goto out_err;
893 break;
895 case Opt_rootcontext:
896 if (rootcontext) {
897 rc = -EINVAL;
898 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
899 goto out_err;
901 rootcontext = match_strdup(&args[0]);
902 if (!rootcontext) {
903 rc = -ENOMEM;
904 goto out_err;
906 break;
908 case Opt_defcontext:
909 if (context || defcontext) {
910 rc = -EINVAL;
911 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
912 goto out_err;
914 defcontext = match_strdup(&args[0]);
915 if (!defcontext) {
916 rc = -ENOMEM;
917 goto out_err;
919 break;
921 default:
922 rc = -EINVAL;
923 printk(KERN_WARNING "SELinux: unknown mount option\n");
924 goto out_err;
929 rc = -ENOMEM;
930 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
931 if (!opts->mnt_opts)
932 goto out_err;
934 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
935 if (!opts->mnt_opts_flags) {
936 kfree(opts->mnt_opts);
937 goto out_err;
940 if (fscontext) {
941 opts->mnt_opts[num_mnt_opts] = fscontext;
942 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
944 if (context) {
945 opts->mnt_opts[num_mnt_opts] = context;
946 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
948 if (rootcontext) {
949 opts->mnt_opts[num_mnt_opts] = rootcontext;
950 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
952 if (defcontext) {
953 opts->mnt_opts[num_mnt_opts] = defcontext;
954 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
957 opts->num_mnt_opts = num_mnt_opts;
958 return 0;
960 out_err:
961 kfree(context);
962 kfree(defcontext);
963 kfree(fscontext);
964 kfree(rootcontext);
965 return rc;
968 * string mount options parsing and call set the sbsec
970 static int superblock_doinit(struct super_block *sb, void *data)
972 int rc = 0;
973 char *options = data;
974 struct security_mnt_opts opts;
976 security_init_mnt_opts(&opts);
978 if (!data)
979 goto out;
981 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
983 rc = selinux_parse_opts_str(options, &opts);
984 if (rc)
985 goto out_err;
987 out:
988 rc = selinux_set_mnt_opts(sb, &opts);
990 out_err:
991 security_free_mnt_opts(&opts);
992 return rc;
995 static void selinux_write_opts(struct seq_file *m,
996 struct security_mnt_opts *opts)
998 int i;
999 char *prefix;
1001 for (i = 0; i < opts->num_mnt_opts; i++) {
1002 char *has_comma = strchr(opts->mnt_opts[i], ',');
1004 switch (opts->mnt_opts_flags[i]) {
1005 case CONTEXT_MNT:
1006 prefix = CONTEXT_STR;
1007 break;
1008 case FSCONTEXT_MNT:
1009 prefix = FSCONTEXT_STR;
1010 break;
1011 case ROOTCONTEXT_MNT:
1012 prefix = ROOTCONTEXT_STR;
1013 break;
1014 case DEFCONTEXT_MNT:
1015 prefix = DEFCONTEXT_STR;
1016 break;
1017 default:
1018 BUG();
1020 /* we need a comma before each option */
1021 seq_putc(m, ',');
1022 seq_puts(m, prefix);
1023 if (has_comma)
1024 seq_putc(m, '\"');
1025 seq_puts(m, opts->mnt_opts[i]);
1026 if (has_comma)
1027 seq_putc(m, '\"');
1031 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1033 struct security_mnt_opts opts;
1034 int rc;
1036 rc = selinux_get_mnt_opts(sb, &opts);
1037 if (rc) {
1038 /* before policy load we may get EINVAL, don't show anything */
1039 if (rc == -EINVAL)
1040 rc = 0;
1041 return rc;
1044 selinux_write_opts(m, &opts);
1046 security_free_mnt_opts(&opts);
1048 return rc;
1051 static inline u16 inode_mode_to_security_class(umode_t mode)
1053 switch (mode & S_IFMT) {
1054 case S_IFSOCK:
1055 return SECCLASS_SOCK_FILE;
1056 case S_IFLNK:
1057 return SECCLASS_LNK_FILE;
1058 case S_IFREG:
1059 return SECCLASS_FILE;
1060 case S_IFBLK:
1061 return SECCLASS_BLK_FILE;
1062 case S_IFDIR:
1063 return SECCLASS_DIR;
1064 case S_IFCHR:
1065 return SECCLASS_CHR_FILE;
1066 case S_IFIFO:
1067 return SECCLASS_FIFO_FILE;
1071 return SECCLASS_FILE;
1074 static inline int default_protocol_stream(int protocol)
1076 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1079 static inline int default_protocol_dgram(int protocol)
1081 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1084 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1086 switch (family) {
1087 case PF_UNIX:
1088 switch (type) {
1089 case SOCK_STREAM:
1090 case SOCK_SEQPACKET:
1091 return SECCLASS_UNIX_STREAM_SOCKET;
1092 case SOCK_DGRAM:
1093 return SECCLASS_UNIX_DGRAM_SOCKET;
1095 break;
1096 case PF_INET:
1097 case PF_INET6:
1098 switch (type) {
1099 case SOCK_STREAM:
1100 if (default_protocol_stream(protocol))
1101 return SECCLASS_TCP_SOCKET;
1102 else
1103 return SECCLASS_RAWIP_SOCKET;
1104 case SOCK_DGRAM:
1105 if (default_protocol_dgram(protocol))
1106 return SECCLASS_UDP_SOCKET;
1107 else
1108 return SECCLASS_RAWIP_SOCKET;
1109 case SOCK_DCCP:
1110 return SECCLASS_DCCP_SOCKET;
1111 default:
1112 return SECCLASS_RAWIP_SOCKET;
1114 break;
1115 case PF_NETLINK:
1116 switch (protocol) {
1117 case NETLINK_ROUTE:
1118 return SECCLASS_NETLINK_ROUTE_SOCKET;
1119 case NETLINK_FIREWALL:
1120 return SECCLASS_NETLINK_FIREWALL_SOCKET;
1121 case NETLINK_INET_DIAG:
1122 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1123 case NETLINK_NFLOG:
1124 return SECCLASS_NETLINK_NFLOG_SOCKET;
1125 case NETLINK_XFRM:
1126 return SECCLASS_NETLINK_XFRM_SOCKET;
1127 case NETLINK_SELINUX:
1128 return SECCLASS_NETLINK_SELINUX_SOCKET;
1129 case NETLINK_AUDIT:
1130 return SECCLASS_NETLINK_AUDIT_SOCKET;
1131 case NETLINK_IP6_FW:
1132 return SECCLASS_NETLINK_IP6FW_SOCKET;
1133 case NETLINK_DNRTMSG:
1134 return SECCLASS_NETLINK_DNRT_SOCKET;
1135 case NETLINK_KOBJECT_UEVENT:
1136 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1137 default:
1138 return SECCLASS_NETLINK_SOCKET;
1140 case PF_PACKET:
1141 return SECCLASS_PACKET_SOCKET;
1142 case PF_KEY:
1143 return SECCLASS_KEY_SOCKET;
1144 case PF_APPLETALK:
1145 return SECCLASS_APPLETALK_SOCKET;
1148 return SECCLASS_SOCKET;
1151 #ifdef CONFIG_PROC_FS
1152 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1153 u16 tclass,
1154 u32 *sid)
1156 int buflen, rc;
1157 char *buffer, *path, *end;
1159 buffer = (char *)__get_free_page(GFP_KERNEL);
1160 if (!buffer)
1161 return -ENOMEM;
1163 buflen = PAGE_SIZE;
1164 end = buffer+buflen;
1165 *--end = '\0';
1166 buflen--;
1167 path = end-1;
1168 *path = '/';
1169 while (de && de != de->parent) {
1170 buflen -= de->namelen + 1;
1171 if (buflen < 0)
1172 break;
1173 end -= de->namelen;
1174 memcpy(end, de->name, de->namelen);
1175 *--end = '/';
1176 path = end;
1177 de = de->parent;
1179 rc = security_genfs_sid("proc", path, tclass, sid);
1180 free_page((unsigned long)buffer);
1181 return rc;
1183 #else
1184 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1185 u16 tclass,
1186 u32 *sid)
1188 return -EINVAL;
1190 #endif
1192 /* The inode's security attributes must be initialized before first use. */
1193 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1195 struct superblock_security_struct *sbsec = NULL;
1196 struct inode_security_struct *isec = inode->i_security;
1197 u32 sid;
1198 struct dentry *dentry;
1199 #define INITCONTEXTLEN 255
1200 char *context = NULL;
1201 unsigned len = 0;
1202 int rc = 0;
1204 if (isec->initialized)
1205 goto out;
1207 mutex_lock(&isec->lock);
1208 if (isec->initialized)
1209 goto out_unlock;
1211 sbsec = inode->i_sb->s_security;
1212 if (!sbsec->initialized) {
1213 /* Defer initialization until selinux_complete_init,
1214 after the initial policy is loaded and the security
1215 server is ready to handle calls. */
1216 spin_lock(&sbsec->isec_lock);
1217 if (list_empty(&isec->list))
1218 list_add(&isec->list, &sbsec->isec_head);
1219 spin_unlock(&sbsec->isec_lock);
1220 goto out_unlock;
1223 switch (sbsec->behavior) {
1224 case SECURITY_FS_USE_XATTR:
1225 if (!inode->i_op->getxattr) {
1226 isec->sid = sbsec->def_sid;
1227 break;
1230 /* Need a dentry, since the xattr API requires one.
1231 Life would be simpler if we could just pass the inode. */
1232 if (opt_dentry) {
1233 /* Called from d_instantiate or d_splice_alias. */
1234 dentry = dget(opt_dentry);
1235 } else {
1236 /* Called from selinux_complete_init, try to find a dentry. */
1237 dentry = d_find_alias(inode);
1239 if (!dentry) {
1240 printk(KERN_WARNING "SELinux: %s: no dentry for dev=%s "
1241 "ino=%ld\n", __func__, inode->i_sb->s_id,
1242 inode->i_ino);
1243 goto out_unlock;
1246 len = INITCONTEXTLEN;
1247 context = kmalloc(len, GFP_NOFS);
1248 if (!context) {
1249 rc = -ENOMEM;
1250 dput(dentry);
1251 goto out_unlock;
1253 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1254 context, len);
1255 if (rc == -ERANGE) {
1256 /* Need a larger buffer. Query for the right size. */
1257 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1258 NULL, 0);
1259 if (rc < 0) {
1260 dput(dentry);
1261 goto out_unlock;
1263 kfree(context);
1264 len = rc;
1265 context = kmalloc(len, GFP_NOFS);
1266 if (!context) {
1267 rc = -ENOMEM;
1268 dput(dentry);
1269 goto out_unlock;
1271 rc = inode->i_op->getxattr(dentry,
1272 XATTR_NAME_SELINUX,
1273 context, len);
1275 dput(dentry);
1276 if (rc < 0) {
1277 if (rc != -ENODATA) {
1278 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1279 "%d for dev=%s ino=%ld\n", __func__,
1280 -rc, inode->i_sb->s_id, inode->i_ino);
1281 kfree(context);
1282 goto out_unlock;
1284 /* Map ENODATA to the default file SID */
1285 sid = sbsec->def_sid;
1286 rc = 0;
1287 } else {
1288 rc = security_context_to_sid_default(context, rc, &sid,
1289 sbsec->def_sid,
1290 GFP_NOFS);
1291 if (rc) {
1292 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1293 "returned %d for dev=%s ino=%ld\n",
1294 __func__, context, -rc,
1295 inode->i_sb->s_id, inode->i_ino);
1296 kfree(context);
1297 /* Leave with the unlabeled SID */
1298 rc = 0;
1299 break;
1302 kfree(context);
1303 isec->sid = sid;
1304 break;
1305 case SECURITY_FS_USE_TASK:
1306 isec->sid = isec->task_sid;
1307 break;
1308 case SECURITY_FS_USE_TRANS:
1309 /* Default to the fs SID. */
1310 isec->sid = sbsec->sid;
1312 /* Try to obtain a transition SID. */
1313 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1314 rc = security_transition_sid(isec->task_sid,
1315 sbsec->sid,
1316 isec->sclass,
1317 &sid);
1318 if (rc)
1319 goto out_unlock;
1320 isec->sid = sid;
1321 break;
1322 case SECURITY_FS_USE_MNTPOINT:
1323 isec->sid = sbsec->mntpoint_sid;
1324 break;
1325 default:
1326 /* Default to the fs superblock SID. */
1327 isec->sid = sbsec->sid;
1329 if (sbsec->proc && !S_ISLNK(inode->i_mode)) {
1330 struct proc_inode *proci = PROC_I(inode);
1331 if (proci->pde) {
1332 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1333 rc = selinux_proc_get_sid(proci->pde,
1334 isec->sclass,
1335 &sid);
1336 if (rc)
1337 goto out_unlock;
1338 isec->sid = sid;
1341 break;
1344 isec->initialized = 1;
1346 out_unlock:
1347 mutex_unlock(&isec->lock);
1348 out:
1349 if (isec->sclass == SECCLASS_FILE)
1350 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1351 return rc;
1354 /* Convert a Linux signal to an access vector. */
1355 static inline u32 signal_to_av(int sig)
1357 u32 perm = 0;
1359 switch (sig) {
1360 case SIGCHLD:
1361 /* Commonly granted from child to parent. */
1362 perm = PROCESS__SIGCHLD;
1363 break;
1364 case SIGKILL:
1365 /* Cannot be caught or ignored */
1366 perm = PROCESS__SIGKILL;
1367 break;
1368 case SIGSTOP:
1369 /* Cannot be caught or ignored */
1370 perm = PROCESS__SIGSTOP;
1371 break;
1372 default:
1373 /* All other signals. */
1374 perm = PROCESS__SIGNAL;
1375 break;
1378 return perm;
1382 * Check permission between a pair of credentials
1383 * fork check, ptrace check, etc.
1385 static int cred_has_perm(const struct cred *actor,
1386 const struct cred *target,
1387 u32 perms)
1389 u32 asid = cred_sid(actor), tsid = cred_sid(target);
1391 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1395 * Check permission between a pair of tasks, e.g. signal checks,
1396 * fork check, ptrace check, etc.
1397 * tsk1 is the actor and tsk2 is the target
1398 * - this uses the default subjective creds of tsk1
1400 static int task_has_perm(const struct task_struct *tsk1,
1401 const struct task_struct *tsk2,
1402 u32 perms)
1404 const struct task_security_struct *__tsec1, *__tsec2;
1405 u32 sid1, sid2;
1407 rcu_read_lock();
1408 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid;
1409 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid;
1410 rcu_read_unlock();
1411 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1415 * Check permission between current and another task, e.g. signal checks,
1416 * fork check, ptrace check, etc.
1417 * current is the actor and tsk2 is the target
1418 * - this uses current's subjective creds
1420 static int current_has_perm(const struct task_struct *tsk,
1421 u32 perms)
1423 u32 sid, tsid;
1425 sid = current_sid();
1426 tsid = task_sid(tsk);
1427 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1430 #if CAP_LAST_CAP > 63
1431 #error Fix SELinux to handle capabilities > 63.
1432 #endif
1434 /* Check whether a task is allowed to use a capability. */
1435 static int task_has_capability(struct task_struct *tsk,
1436 int cap, int audit)
1438 struct avc_audit_data ad;
1439 struct av_decision avd;
1440 u16 sclass;
1441 u32 sid = task_sid(tsk);
1442 u32 av = CAP_TO_MASK(cap);
1443 int rc;
1445 AVC_AUDIT_DATA_INIT(&ad, CAP);
1446 ad.tsk = tsk;
1447 ad.u.cap = cap;
1449 switch (CAP_TO_INDEX(cap)) {
1450 case 0:
1451 sclass = SECCLASS_CAPABILITY;
1452 break;
1453 case 1:
1454 sclass = SECCLASS_CAPABILITY2;
1455 break;
1456 default:
1457 printk(KERN_ERR
1458 "SELinux: out of range capability %d\n", cap);
1459 BUG();
1462 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1463 if (audit == SECURITY_CAP_AUDIT)
1464 avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1465 return rc;
1468 /* Check whether a task is allowed to use a system operation. */
1469 static int task_has_system(struct task_struct *tsk,
1470 u32 perms)
1472 u32 sid = task_sid(tsk);
1474 return avc_has_perm(sid, SECINITSID_KERNEL,
1475 SECCLASS_SYSTEM, perms, NULL);
1478 /* Check whether a task has a particular permission to an inode.
1479 The 'adp' parameter is optional and allows other audit
1480 data to be passed (e.g. the dentry). */
1481 static int inode_has_perm(const struct cred *cred,
1482 struct inode *inode,
1483 u32 perms,
1484 struct avc_audit_data *adp)
1486 struct inode_security_struct *isec;
1487 struct avc_audit_data ad;
1488 u32 sid;
1490 if (unlikely(IS_PRIVATE(inode)))
1491 return 0;
1493 sid = cred_sid(cred);
1494 isec = inode->i_security;
1496 if (!adp) {
1497 adp = &ad;
1498 AVC_AUDIT_DATA_INIT(&ad, FS);
1499 ad.u.fs.inode = inode;
1502 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1505 /* Same as inode_has_perm, but pass explicit audit data containing
1506 the dentry to help the auditing code to more easily generate the
1507 pathname if needed. */
1508 static inline int dentry_has_perm(const struct cred *cred,
1509 struct vfsmount *mnt,
1510 struct dentry *dentry,
1511 u32 av)
1513 struct inode *inode = dentry->d_inode;
1514 struct avc_audit_data ad;
1516 AVC_AUDIT_DATA_INIT(&ad, FS);
1517 ad.u.fs.path.mnt = mnt;
1518 ad.u.fs.path.dentry = dentry;
1519 return inode_has_perm(cred, inode, av, &ad);
1522 /* Check whether a task can use an open file descriptor to
1523 access an inode in a given way. Check access to the
1524 descriptor itself, and then use dentry_has_perm to
1525 check a particular permission to the file.
1526 Access to the descriptor is implicitly granted if it
1527 has the same SID as the process. If av is zero, then
1528 access to the file is not checked, e.g. for cases
1529 where only the descriptor is affected like seek. */
1530 static int file_has_perm(const struct cred *cred,
1531 struct file *file,
1532 u32 av)
1534 struct file_security_struct *fsec = file->f_security;
1535 struct inode *inode = file->f_path.dentry->d_inode;
1536 struct avc_audit_data ad;
1537 u32 sid = cred_sid(cred);
1538 int rc;
1540 AVC_AUDIT_DATA_INIT(&ad, FS);
1541 ad.u.fs.path = file->f_path;
1543 if (sid != fsec->sid) {
1544 rc = avc_has_perm(sid, fsec->sid,
1545 SECCLASS_FD,
1546 FD__USE,
1547 &ad);
1548 if (rc)
1549 goto out;
1552 /* av is zero if only checking access to the descriptor. */
1553 rc = 0;
1554 if (av)
1555 rc = inode_has_perm(cred, inode, av, &ad);
1557 out:
1558 return rc;
1561 /* Check whether a task can create a file. */
1562 static int may_create(struct inode *dir,
1563 struct dentry *dentry,
1564 u16 tclass)
1566 const struct cred *cred = current_cred();
1567 const struct task_security_struct *tsec = cred->security;
1568 struct inode_security_struct *dsec;
1569 struct superblock_security_struct *sbsec;
1570 u32 sid, newsid;
1571 struct avc_audit_data ad;
1572 int rc;
1574 dsec = dir->i_security;
1575 sbsec = dir->i_sb->s_security;
1577 sid = tsec->sid;
1578 newsid = tsec->create_sid;
1580 AVC_AUDIT_DATA_INIT(&ad, FS);
1581 ad.u.fs.path.dentry = dentry;
1583 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1584 DIR__ADD_NAME | DIR__SEARCH,
1585 &ad);
1586 if (rc)
1587 return rc;
1589 if (!newsid || sbsec->behavior == SECURITY_FS_USE_MNTPOINT) {
1590 rc = security_transition_sid(sid, dsec->sid, tclass, &newsid);
1591 if (rc)
1592 return rc;
1595 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1596 if (rc)
1597 return rc;
1599 return avc_has_perm(newsid, sbsec->sid,
1600 SECCLASS_FILESYSTEM,
1601 FILESYSTEM__ASSOCIATE, &ad);
1604 /* Check whether a task can create a key. */
1605 static int may_create_key(u32 ksid,
1606 struct task_struct *ctx)
1608 u32 sid = task_sid(ctx);
1610 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1613 #define MAY_LINK 0
1614 #define MAY_UNLINK 1
1615 #define MAY_RMDIR 2
1617 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1618 static int may_link(struct inode *dir,
1619 struct dentry *dentry,
1620 int kind)
1623 struct inode_security_struct *dsec, *isec;
1624 struct avc_audit_data ad;
1625 u32 sid = current_sid();
1626 u32 av;
1627 int rc;
1629 dsec = dir->i_security;
1630 isec = dentry->d_inode->i_security;
1632 AVC_AUDIT_DATA_INIT(&ad, FS);
1633 ad.u.fs.path.dentry = dentry;
1635 av = DIR__SEARCH;
1636 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1637 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1638 if (rc)
1639 return rc;
1641 switch (kind) {
1642 case MAY_LINK:
1643 av = FILE__LINK;
1644 break;
1645 case MAY_UNLINK:
1646 av = FILE__UNLINK;
1647 break;
1648 case MAY_RMDIR:
1649 av = DIR__RMDIR;
1650 break;
1651 default:
1652 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1653 __func__, kind);
1654 return 0;
1657 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1658 return rc;
1661 static inline int may_rename(struct inode *old_dir,
1662 struct dentry *old_dentry,
1663 struct inode *new_dir,
1664 struct dentry *new_dentry)
1666 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1667 struct avc_audit_data ad;
1668 u32 sid = current_sid();
1669 u32 av;
1670 int old_is_dir, new_is_dir;
1671 int rc;
1673 old_dsec = old_dir->i_security;
1674 old_isec = old_dentry->d_inode->i_security;
1675 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1676 new_dsec = new_dir->i_security;
1678 AVC_AUDIT_DATA_INIT(&ad, FS);
1680 ad.u.fs.path.dentry = old_dentry;
1681 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1682 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1683 if (rc)
1684 return rc;
1685 rc = avc_has_perm(sid, old_isec->sid,
1686 old_isec->sclass, FILE__RENAME, &ad);
1687 if (rc)
1688 return rc;
1689 if (old_is_dir && new_dir != old_dir) {
1690 rc = avc_has_perm(sid, old_isec->sid,
1691 old_isec->sclass, DIR__REPARENT, &ad);
1692 if (rc)
1693 return rc;
1696 ad.u.fs.path.dentry = new_dentry;
1697 av = DIR__ADD_NAME | DIR__SEARCH;
1698 if (new_dentry->d_inode)
1699 av |= DIR__REMOVE_NAME;
1700 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1701 if (rc)
1702 return rc;
1703 if (new_dentry->d_inode) {
1704 new_isec = new_dentry->d_inode->i_security;
1705 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1706 rc = avc_has_perm(sid, new_isec->sid,
1707 new_isec->sclass,
1708 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1709 if (rc)
1710 return rc;
1713 return 0;
1716 /* Check whether a task can perform a filesystem operation. */
1717 static int superblock_has_perm(const struct cred *cred,
1718 struct super_block *sb,
1719 u32 perms,
1720 struct avc_audit_data *ad)
1722 struct superblock_security_struct *sbsec;
1723 u32 sid = cred_sid(cred);
1725 sbsec = sb->s_security;
1726 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1729 /* Convert a Linux mode and permission mask to an access vector. */
1730 static inline u32 file_mask_to_av(int mode, int mask)
1732 u32 av = 0;
1734 if ((mode & S_IFMT) != S_IFDIR) {
1735 if (mask & MAY_EXEC)
1736 av |= FILE__EXECUTE;
1737 if (mask & MAY_READ)
1738 av |= FILE__READ;
1740 if (mask & MAY_APPEND)
1741 av |= FILE__APPEND;
1742 else if (mask & MAY_WRITE)
1743 av |= FILE__WRITE;
1745 } else {
1746 if (mask & MAY_EXEC)
1747 av |= DIR__SEARCH;
1748 if (mask & MAY_WRITE)
1749 av |= DIR__WRITE;
1750 if (mask & MAY_READ)
1751 av |= DIR__READ;
1754 return av;
1757 /* Convert a Linux file to an access vector. */
1758 static inline u32 file_to_av(struct file *file)
1760 u32 av = 0;
1762 if (file->f_mode & FMODE_READ)
1763 av |= FILE__READ;
1764 if (file->f_mode & FMODE_WRITE) {
1765 if (file->f_flags & O_APPEND)
1766 av |= FILE__APPEND;
1767 else
1768 av |= FILE__WRITE;
1770 if (!av) {
1772 * Special file opened with flags 3 for ioctl-only use.
1774 av = FILE__IOCTL;
1777 return av;
1781 * Convert a file to an access vector and include the correct open
1782 * open permission.
1784 static inline u32 open_file_to_av(struct file *file)
1786 u32 av = file_to_av(file);
1788 if (selinux_policycap_openperm) {
1789 mode_t mode = file->f_path.dentry->d_inode->i_mode;
1791 * lnk files and socks do not really have an 'open'
1793 if (S_ISREG(mode))
1794 av |= FILE__OPEN;
1795 else if (S_ISCHR(mode))
1796 av |= CHR_FILE__OPEN;
1797 else if (S_ISBLK(mode))
1798 av |= BLK_FILE__OPEN;
1799 else if (S_ISFIFO(mode))
1800 av |= FIFO_FILE__OPEN;
1801 else if (S_ISDIR(mode))
1802 av |= DIR__OPEN;
1803 else
1804 printk(KERN_ERR "SELinux: WARNING: inside %s with "
1805 "unknown mode:%o\n", __func__, mode);
1807 return av;
1810 /* Hook functions begin here. */
1812 static int selinux_ptrace_may_access(struct task_struct *child,
1813 unsigned int mode)
1815 int rc;
1817 rc = secondary_ops->ptrace_may_access(child, mode);
1818 if (rc)
1819 return rc;
1821 if (mode == PTRACE_MODE_READ) {
1822 u32 sid = current_sid();
1823 u32 csid = task_sid(child);
1824 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1827 return current_has_perm(child, PROCESS__PTRACE);
1830 static int selinux_ptrace_traceme(struct task_struct *parent)
1832 int rc;
1834 rc = secondary_ops->ptrace_traceme(parent);
1835 if (rc)
1836 return rc;
1838 return task_has_perm(parent, current, PROCESS__PTRACE);
1841 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1842 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1844 int error;
1846 error = current_has_perm(target, PROCESS__GETCAP);
1847 if (error)
1848 return error;
1850 return secondary_ops->capget(target, effective, inheritable, permitted);
1853 static int selinux_capset(struct cred *new, const struct cred *old,
1854 const kernel_cap_t *effective,
1855 const kernel_cap_t *inheritable,
1856 const kernel_cap_t *permitted)
1858 int error;
1860 error = secondary_ops->capset(new, old,
1861 effective, inheritable, permitted);
1862 if (error)
1863 return error;
1865 return cred_has_perm(old, new, PROCESS__SETCAP);
1868 static int selinux_capable(struct task_struct *tsk, int cap, int audit)
1870 int rc;
1872 rc = secondary_ops->capable(tsk, cap, audit);
1873 if (rc)
1874 return rc;
1876 return task_has_capability(tsk, cap, audit);
1879 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1881 int buflen, rc;
1882 char *buffer, *path, *end;
1884 rc = -ENOMEM;
1885 buffer = (char *)__get_free_page(GFP_KERNEL);
1886 if (!buffer)
1887 goto out;
1889 buflen = PAGE_SIZE;
1890 end = buffer+buflen;
1891 *--end = '\0';
1892 buflen--;
1893 path = end-1;
1894 *path = '/';
1895 while (table) {
1896 const char *name = table->procname;
1897 size_t namelen = strlen(name);
1898 buflen -= namelen + 1;
1899 if (buflen < 0)
1900 goto out_free;
1901 end -= namelen;
1902 memcpy(end, name, namelen);
1903 *--end = '/';
1904 path = end;
1905 table = table->parent;
1907 buflen -= 4;
1908 if (buflen < 0)
1909 goto out_free;
1910 end -= 4;
1911 memcpy(end, "/sys", 4);
1912 path = end;
1913 rc = security_genfs_sid("proc", path, tclass, sid);
1914 out_free:
1915 free_page((unsigned long)buffer);
1916 out:
1917 return rc;
1920 static int selinux_sysctl(ctl_table *table, int op)
1922 int error = 0;
1923 u32 av;
1924 u32 tsid, sid;
1925 int rc;
1927 rc = secondary_ops->sysctl(table, op);
1928 if (rc)
1929 return rc;
1931 sid = current_sid();
1933 rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1934 SECCLASS_DIR : SECCLASS_FILE, &tsid);
1935 if (rc) {
1936 /* Default to the well-defined sysctl SID. */
1937 tsid = SECINITSID_SYSCTL;
1940 /* The op values are "defined" in sysctl.c, thereby creating
1941 * a bad coupling between this module and sysctl.c */
1942 if (op == 001) {
1943 error = avc_has_perm(sid, tsid,
1944 SECCLASS_DIR, DIR__SEARCH, NULL);
1945 } else {
1946 av = 0;
1947 if (op & 004)
1948 av |= FILE__READ;
1949 if (op & 002)
1950 av |= FILE__WRITE;
1951 if (av)
1952 error = avc_has_perm(sid, tsid,
1953 SECCLASS_FILE, av, NULL);
1956 return error;
1959 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1961 const struct cred *cred = current_cred();
1962 int rc = 0;
1964 if (!sb)
1965 return 0;
1967 switch (cmds) {
1968 case Q_SYNC:
1969 case Q_QUOTAON:
1970 case Q_QUOTAOFF:
1971 case Q_SETINFO:
1972 case Q_SETQUOTA:
1973 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1974 break;
1975 case Q_GETFMT:
1976 case Q_GETINFO:
1977 case Q_GETQUOTA:
1978 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1979 break;
1980 default:
1981 rc = 0; /* let the kernel handle invalid cmds */
1982 break;
1984 return rc;
1987 static int selinux_quota_on(struct dentry *dentry)
1989 const struct cred *cred = current_cred();
1991 return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON);
1994 static int selinux_syslog(int type)
1996 int rc;
1998 rc = secondary_ops->syslog(type);
1999 if (rc)
2000 return rc;
2002 switch (type) {
2003 case 3: /* Read last kernel messages */
2004 case 10: /* Return size of the log buffer */
2005 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2006 break;
2007 case 6: /* Disable logging to console */
2008 case 7: /* Enable logging to console */
2009 case 8: /* Set level of messages printed to console */
2010 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2011 break;
2012 case 0: /* Close log */
2013 case 1: /* Open log */
2014 case 2: /* Read from log */
2015 case 4: /* Read/clear last kernel messages */
2016 case 5: /* Clear ring buffer */
2017 default:
2018 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2019 break;
2021 return rc;
2025 * Check that a process has enough memory to allocate a new virtual
2026 * mapping. 0 means there is enough memory for the allocation to
2027 * succeed and -ENOMEM implies there is not.
2029 * Note that secondary_ops->capable and task_has_perm_noaudit return 0
2030 * if the capability is granted, but __vm_enough_memory requires 1 if
2031 * the capability is granted.
2033 * Do not audit the selinux permission check, as this is applied to all
2034 * processes that allocate mappings.
2036 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2038 int rc, cap_sys_admin = 0;
2040 rc = selinux_capable(current, CAP_SYS_ADMIN, SECURITY_CAP_NOAUDIT);
2041 if (rc == 0)
2042 cap_sys_admin = 1;
2044 return __vm_enough_memory(mm, pages, cap_sys_admin);
2047 /* binprm security operations */
2049 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2051 const struct task_security_struct *old_tsec;
2052 struct task_security_struct *new_tsec;
2053 struct inode_security_struct *isec;
2054 struct avc_audit_data ad;
2055 struct inode *inode = bprm->file->f_path.dentry->d_inode;
2056 int rc;
2058 rc = secondary_ops->bprm_set_creds(bprm);
2059 if (rc)
2060 return rc;
2062 /* SELinux context only depends on initial program or script and not
2063 * the script interpreter */
2064 if (bprm->cred_prepared)
2065 return 0;
2067 old_tsec = current_security();
2068 new_tsec = bprm->cred->security;
2069 isec = inode->i_security;
2071 /* Default to the current task SID. */
2072 new_tsec->sid = old_tsec->sid;
2073 new_tsec->osid = old_tsec->sid;
2075 /* Reset fs, key, and sock SIDs on execve. */
2076 new_tsec->create_sid = 0;
2077 new_tsec->keycreate_sid = 0;
2078 new_tsec->sockcreate_sid = 0;
2080 if (old_tsec->exec_sid) {
2081 new_tsec->sid = old_tsec->exec_sid;
2082 /* Reset exec SID on execve. */
2083 new_tsec->exec_sid = 0;
2084 } else {
2085 /* Check for a default transition on this program. */
2086 rc = security_transition_sid(old_tsec->sid, isec->sid,
2087 SECCLASS_PROCESS, &new_tsec->sid);
2088 if (rc)
2089 return rc;
2092 AVC_AUDIT_DATA_INIT(&ad, FS);
2093 ad.u.fs.path = bprm->file->f_path;
2095 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2096 new_tsec->sid = old_tsec->sid;
2098 if (new_tsec->sid == old_tsec->sid) {
2099 rc = avc_has_perm(old_tsec->sid, isec->sid,
2100 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2101 if (rc)
2102 return rc;
2103 } else {
2104 /* Check permissions for the transition. */
2105 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2106 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2107 if (rc)
2108 return rc;
2110 rc = avc_has_perm(new_tsec->sid, isec->sid,
2111 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2112 if (rc)
2113 return rc;
2115 /* Check for shared state */
2116 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2117 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2118 SECCLASS_PROCESS, PROCESS__SHARE,
2119 NULL);
2120 if (rc)
2121 return -EPERM;
2124 /* Make sure that anyone attempting to ptrace over a task that
2125 * changes its SID has the appropriate permit */
2126 if (bprm->unsafe &
2127 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2128 struct task_struct *tracer;
2129 struct task_security_struct *sec;
2130 u32 ptsid = 0;
2132 rcu_read_lock();
2133 tracer = tracehook_tracer_task(current);
2134 if (likely(tracer != NULL)) {
2135 sec = __task_cred(tracer)->security;
2136 ptsid = sec->sid;
2138 rcu_read_unlock();
2140 if (ptsid != 0) {
2141 rc = avc_has_perm(ptsid, new_tsec->sid,
2142 SECCLASS_PROCESS,
2143 PROCESS__PTRACE, NULL);
2144 if (rc)
2145 return -EPERM;
2149 /* Clear any possibly unsafe personality bits on exec: */
2150 bprm->per_clear |= PER_CLEAR_ON_SETID;
2153 return 0;
2156 static int selinux_bprm_check_security(struct linux_binprm *bprm)
2158 return secondary_ops->bprm_check_security(bprm);
2161 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2163 const struct cred *cred = current_cred();
2164 const struct task_security_struct *tsec = cred->security;
2165 u32 sid, osid;
2166 int atsecure = 0;
2168 sid = tsec->sid;
2169 osid = tsec->osid;
2171 if (osid != sid) {
2172 /* Enable secure mode for SIDs transitions unless
2173 the noatsecure permission is granted between
2174 the two SIDs, i.e. ahp returns 0. */
2175 atsecure = avc_has_perm(osid, sid,
2176 SECCLASS_PROCESS,
2177 PROCESS__NOATSECURE, NULL);
2180 return (atsecure || secondary_ops->bprm_secureexec(bprm));
2183 extern struct vfsmount *selinuxfs_mount;
2184 extern struct dentry *selinux_null;
2186 /* Derived from fs/exec.c:flush_old_files. */
2187 static inline void flush_unauthorized_files(const struct cred *cred,
2188 struct files_struct *files)
2190 struct avc_audit_data ad;
2191 struct file *file, *devnull = NULL;
2192 struct tty_struct *tty;
2193 struct fdtable *fdt;
2194 long j = -1;
2195 int drop_tty = 0;
2197 tty = get_current_tty();
2198 if (tty) {
2199 file_list_lock();
2200 if (!list_empty(&tty->tty_files)) {
2201 struct inode *inode;
2203 /* Revalidate access to controlling tty.
2204 Use inode_has_perm on the tty inode directly rather
2205 than using file_has_perm, as this particular open
2206 file may belong to another process and we are only
2207 interested in the inode-based check here. */
2208 file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list);
2209 inode = file->f_path.dentry->d_inode;
2210 if (inode_has_perm(cred, inode,
2211 FILE__READ | FILE__WRITE, NULL)) {
2212 drop_tty = 1;
2215 file_list_unlock();
2216 tty_kref_put(tty);
2218 /* Reset controlling tty. */
2219 if (drop_tty)
2220 no_tty();
2222 /* Revalidate access to inherited open files. */
2224 AVC_AUDIT_DATA_INIT(&ad, FS);
2226 spin_lock(&files->file_lock);
2227 for (;;) {
2228 unsigned long set, i;
2229 int fd;
2231 j++;
2232 i = j * __NFDBITS;
2233 fdt = files_fdtable(files);
2234 if (i >= fdt->max_fds)
2235 break;
2236 set = fdt->open_fds->fds_bits[j];
2237 if (!set)
2238 continue;
2239 spin_unlock(&files->file_lock);
2240 for ( ; set ; i++, set >>= 1) {
2241 if (set & 1) {
2242 file = fget(i);
2243 if (!file)
2244 continue;
2245 if (file_has_perm(cred,
2246 file,
2247 file_to_av(file))) {
2248 sys_close(i);
2249 fd = get_unused_fd();
2250 if (fd != i) {
2251 if (fd >= 0)
2252 put_unused_fd(fd);
2253 fput(file);
2254 continue;
2256 if (devnull) {
2257 get_file(devnull);
2258 } else {
2259 devnull = dentry_open(
2260 dget(selinux_null),
2261 mntget(selinuxfs_mount),
2262 O_RDWR, cred);
2263 if (IS_ERR(devnull)) {
2264 devnull = NULL;
2265 put_unused_fd(fd);
2266 fput(file);
2267 continue;
2270 fd_install(fd, devnull);
2272 fput(file);
2275 spin_lock(&files->file_lock);
2278 spin_unlock(&files->file_lock);
2282 * Prepare a process for imminent new credential changes due to exec
2284 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2286 struct task_security_struct *new_tsec;
2287 struct rlimit *rlim, *initrlim;
2288 int rc, i;
2290 secondary_ops->bprm_committing_creds(bprm);
2292 new_tsec = bprm->cred->security;
2293 if (new_tsec->sid == new_tsec->osid)
2294 return;
2296 /* Close files for which the new task SID is not authorized. */
2297 flush_unauthorized_files(bprm->cred, current->files);
2299 /* Always clear parent death signal on SID transitions. */
2300 current->pdeath_signal = 0;
2302 /* Check whether the new SID can inherit resource limits from the old
2303 * SID. If not, reset all soft limits to the lower of the current
2304 * task's hard limit and the init task's soft limit.
2306 * Note that the setting of hard limits (even to lower them) can be
2307 * controlled by the setrlimit check. The inclusion of the init task's
2308 * soft limit into the computation is to avoid resetting soft limits
2309 * higher than the default soft limit for cases where the default is
2310 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2312 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2313 PROCESS__RLIMITINH, NULL);
2314 if (rc) {
2315 for (i = 0; i < RLIM_NLIMITS; i++) {
2316 rlim = current->signal->rlim + i;
2317 initrlim = init_task.signal->rlim + i;
2318 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2320 update_rlimit_cpu(rlim->rlim_cur);
2325 * Clean up the process immediately after the installation of new credentials
2326 * due to exec
2328 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2330 const struct task_security_struct *tsec = current_security();
2331 struct itimerval itimer;
2332 struct sighand_struct *psig;
2333 u32 osid, sid;
2334 int rc, i;
2335 unsigned long flags;
2337 secondary_ops->bprm_committed_creds(bprm);
2339 osid = tsec->osid;
2340 sid = tsec->sid;
2342 if (sid == osid)
2343 return;
2345 /* Check whether the new SID can inherit signal state from the old SID.
2346 * If not, clear itimers to avoid subsequent signal generation and
2347 * flush and unblock signals.
2349 * This must occur _after_ the task SID has been updated so that any
2350 * kill done after the flush will be checked against the new SID.
2352 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2353 if (rc) {
2354 memset(&itimer, 0, sizeof itimer);
2355 for (i = 0; i < 3; i++)
2356 do_setitimer(i, &itimer, NULL);
2357 flush_signals(current);
2358 spin_lock_irq(&current->sighand->siglock);
2359 flush_signal_handlers(current, 1);
2360 sigemptyset(&current->blocked);
2361 recalc_sigpending();
2362 spin_unlock_irq(&current->sighand->siglock);
2365 /* Wake up the parent if it is waiting so that it can recheck
2366 * wait permission to the new task SID. */
2367 read_lock_irq(&tasklist_lock);
2368 psig = current->parent->sighand;
2369 spin_lock_irqsave(&psig->siglock, flags);
2370 wake_up_interruptible(&current->parent->signal->wait_chldexit);
2371 spin_unlock_irqrestore(&psig->siglock, flags);
2372 read_unlock_irq(&tasklist_lock);
2375 /* superblock security operations */
2377 static int selinux_sb_alloc_security(struct super_block *sb)
2379 return superblock_alloc_security(sb);
2382 static void selinux_sb_free_security(struct super_block *sb)
2384 superblock_free_security(sb);
2387 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2389 if (plen > olen)
2390 return 0;
2392 return !memcmp(prefix, option, plen);
2395 static inline int selinux_option(char *option, int len)
2397 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2398 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2399 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2400 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len));
2403 static inline void take_option(char **to, char *from, int *first, int len)
2405 if (!*first) {
2406 **to = ',';
2407 *to += 1;
2408 } else
2409 *first = 0;
2410 memcpy(*to, from, len);
2411 *to += len;
2414 static inline void take_selinux_option(char **to, char *from, int *first,
2415 int len)
2417 int current_size = 0;
2419 if (!*first) {
2420 **to = '|';
2421 *to += 1;
2422 } else
2423 *first = 0;
2425 while (current_size < len) {
2426 if (*from != '"') {
2427 **to = *from;
2428 *to += 1;
2430 from += 1;
2431 current_size += 1;
2435 static int selinux_sb_copy_data(char *orig, char *copy)
2437 int fnosec, fsec, rc = 0;
2438 char *in_save, *in_curr, *in_end;
2439 char *sec_curr, *nosec_save, *nosec;
2440 int open_quote = 0;
2442 in_curr = orig;
2443 sec_curr = copy;
2445 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2446 if (!nosec) {
2447 rc = -ENOMEM;
2448 goto out;
2451 nosec_save = nosec;
2452 fnosec = fsec = 1;
2453 in_save = in_end = orig;
2455 do {
2456 if (*in_end == '"')
2457 open_quote = !open_quote;
2458 if ((*in_end == ',' && open_quote == 0) ||
2459 *in_end == '\0') {
2460 int len = in_end - in_curr;
2462 if (selinux_option(in_curr, len))
2463 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2464 else
2465 take_option(&nosec, in_curr, &fnosec, len);
2467 in_curr = in_end + 1;
2469 } while (*in_end++);
2471 strcpy(in_save, nosec_save);
2472 free_page((unsigned long)nosec_save);
2473 out:
2474 return rc;
2477 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2479 const struct cred *cred = current_cred();
2480 struct avc_audit_data ad;
2481 int rc;
2483 rc = superblock_doinit(sb, data);
2484 if (rc)
2485 return rc;
2487 /* Allow all mounts performed by the kernel */
2488 if (flags & MS_KERNMOUNT)
2489 return 0;
2491 AVC_AUDIT_DATA_INIT(&ad, FS);
2492 ad.u.fs.path.dentry = sb->s_root;
2493 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2496 static int selinux_sb_statfs(struct dentry *dentry)
2498 const struct cred *cred = current_cred();
2499 struct avc_audit_data ad;
2501 AVC_AUDIT_DATA_INIT(&ad, FS);
2502 ad.u.fs.path.dentry = dentry->d_sb->s_root;
2503 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2506 static int selinux_mount(char *dev_name,
2507 struct path *path,
2508 char *type,
2509 unsigned long flags,
2510 void *data)
2512 const struct cred *cred = current_cred();
2513 int rc;
2515 rc = secondary_ops->sb_mount(dev_name, path, type, flags, data);
2516 if (rc)
2517 return rc;
2519 if (flags & MS_REMOUNT)
2520 return superblock_has_perm(cred, path->mnt->mnt_sb,
2521 FILESYSTEM__REMOUNT, NULL);
2522 else
2523 return dentry_has_perm(cred, path->mnt, path->dentry,
2524 FILE__MOUNTON);
2527 static int selinux_umount(struct vfsmount *mnt, int flags)
2529 const struct cred *cred = current_cred();
2530 int rc;
2532 rc = secondary_ops->sb_umount(mnt, flags);
2533 if (rc)
2534 return rc;
2536 return superblock_has_perm(cred, mnt->mnt_sb,
2537 FILESYSTEM__UNMOUNT, NULL);
2540 /* inode security operations */
2542 static int selinux_inode_alloc_security(struct inode *inode)
2544 return inode_alloc_security(inode);
2547 static void selinux_inode_free_security(struct inode *inode)
2549 inode_free_security(inode);
2552 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2553 char **name, void **value,
2554 size_t *len)
2556 const struct cred *cred = current_cred();
2557 const struct task_security_struct *tsec = cred->security;
2558 struct inode_security_struct *dsec;
2559 struct superblock_security_struct *sbsec;
2560 u32 sid, newsid, clen;
2561 int rc;
2562 char *namep = NULL, *context;
2564 dsec = dir->i_security;
2565 sbsec = dir->i_sb->s_security;
2567 sid = tsec->sid;
2568 newsid = tsec->create_sid;
2570 if (!newsid || sbsec->behavior == SECURITY_FS_USE_MNTPOINT) {
2571 rc = security_transition_sid(sid, dsec->sid,
2572 inode_mode_to_security_class(inode->i_mode),
2573 &newsid);
2574 if (rc) {
2575 printk(KERN_WARNING "%s: "
2576 "security_transition_sid failed, rc=%d (dev=%s "
2577 "ino=%ld)\n",
2578 __func__,
2579 -rc, inode->i_sb->s_id, inode->i_ino);
2580 return rc;
2584 /* Possibly defer initialization to selinux_complete_init. */
2585 if (sbsec->initialized) {
2586 struct inode_security_struct *isec = inode->i_security;
2587 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2588 isec->sid = newsid;
2589 isec->initialized = 1;
2592 if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2593 return -EOPNOTSUPP;
2595 if (name) {
2596 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2597 if (!namep)
2598 return -ENOMEM;
2599 *name = namep;
2602 if (value && len) {
2603 rc = security_sid_to_context_force(newsid, &context, &clen);
2604 if (rc) {
2605 kfree(namep);
2606 return rc;
2608 *value = context;
2609 *len = clen;
2612 return 0;
2615 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2617 return may_create(dir, dentry, SECCLASS_FILE);
2620 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2622 int rc;
2624 rc = secondary_ops->inode_link(old_dentry, dir, new_dentry);
2625 if (rc)
2626 return rc;
2627 return may_link(dir, old_dentry, MAY_LINK);
2630 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2632 int rc;
2634 rc = secondary_ops->inode_unlink(dir, dentry);
2635 if (rc)
2636 return rc;
2637 return may_link(dir, dentry, MAY_UNLINK);
2640 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2642 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2645 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2647 return may_create(dir, dentry, SECCLASS_DIR);
2650 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2652 return may_link(dir, dentry, MAY_RMDIR);
2655 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2657 int rc;
2659 rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2660 if (rc)
2661 return rc;
2663 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2666 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2667 struct inode *new_inode, struct dentry *new_dentry)
2669 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2672 static int selinux_inode_readlink(struct dentry *dentry)
2674 const struct cred *cred = current_cred();
2676 return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2679 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2681 const struct cred *cred = current_cred();
2682 int rc;
2684 rc = secondary_ops->inode_follow_link(dentry, nameidata);
2685 if (rc)
2686 return rc;
2687 return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2690 static int selinux_inode_permission(struct inode *inode, int mask)
2692 const struct cred *cred = current_cred();
2693 int rc;
2695 rc = secondary_ops->inode_permission(inode, mask);
2696 if (rc)
2697 return rc;
2699 if (!mask) {
2700 /* No permission to check. Existence test. */
2701 return 0;
2704 return inode_has_perm(cred, inode,
2705 file_mask_to_av(inode->i_mode, mask), NULL);
2708 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2710 const struct cred *cred = current_cred();
2711 int rc;
2713 rc = secondary_ops->inode_setattr(dentry, iattr);
2714 if (rc)
2715 return rc;
2717 if (iattr->ia_valid & ATTR_FORCE)
2718 return 0;
2720 if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2721 ATTR_ATIME_SET | ATTR_MTIME_SET))
2722 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2724 return dentry_has_perm(cred, NULL, dentry, FILE__WRITE);
2727 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2729 const struct cred *cred = current_cred();
2731 return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR);
2734 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2736 const struct cred *cred = current_cred();
2738 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2739 sizeof XATTR_SECURITY_PREFIX - 1)) {
2740 if (!strcmp(name, XATTR_NAME_CAPS)) {
2741 if (!capable(CAP_SETFCAP))
2742 return -EPERM;
2743 } else if (!capable(CAP_SYS_ADMIN)) {
2744 /* A different attribute in the security namespace.
2745 Restrict to administrator. */
2746 return -EPERM;
2750 /* Not an attribute we recognize, so just check the
2751 ordinary setattr permission. */
2752 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2755 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2756 const void *value, size_t size, int flags)
2758 struct inode *inode = dentry->d_inode;
2759 struct inode_security_struct *isec = inode->i_security;
2760 struct superblock_security_struct *sbsec;
2761 struct avc_audit_data ad;
2762 u32 newsid, sid = current_sid();
2763 int rc = 0;
2765 if (strcmp(name, XATTR_NAME_SELINUX))
2766 return selinux_inode_setotherxattr(dentry, name);
2768 sbsec = inode->i_sb->s_security;
2769 if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2770 return -EOPNOTSUPP;
2772 if (!is_owner_or_cap(inode))
2773 return -EPERM;
2775 AVC_AUDIT_DATA_INIT(&ad, FS);
2776 ad.u.fs.path.dentry = dentry;
2778 rc = avc_has_perm(sid, isec->sid, isec->sclass,
2779 FILE__RELABELFROM, &ad);
2780 if (rc)
2781 return rc;
2783 rc = security_context_to_sid(value, size, &newsid);
2784 if (rc == -EINVAL) {
2785 if (!capable(CAP_MAC_ADMIN))
2786 return rc;
2787 rc = security_context_to_sid_force(value, size, &newsid);
2789 if (rc)
2790 return rc;
2792 rc = avc_has_perm(sid, newsid, isec->sclass,
2793 FILE__RELABELTO, &ad);
2794 if (rc)
2795 return rc;
2797 rc = security_validate_transition(isec->sid, newsid, sid,
2798 isec->sclass);
2799 if (rc)
2800 return rc;
2802 return avc_has_perm(newsid,
2803 sbsec->sid,
2804 SECCLASS_FILESYSTEM,
2805 FILESYSTEM__ASSOCIATE,
2806 &ad);
2809 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2810 const void *value, size_t size,
2811 int flags)
2813 struct inode *inode = dentry->d_inode;
2814 struct inode_security_struct *isec = inode->i_security;
2815 u32 newsid;
2816 int rc;
2818 if (strcmp(name, XATTR_NAME_SELINUX)) {
2819 /* Not an attribute we recognize, so nothing to do. */
2820 return;
2823 rc = security_context_to_sid_force(value, size, &newsid);
2824 if (rc) {
2825 printk(KERN_ERR "SELinux: unable to map context to SID"
2826 "for (%s, %lu), rc=%d\n",
2827 inode->i_sb->s_id, inode->i_ino, -rc);
2828 return;
2831 isec->sid = newsid;
2832 return;
2835 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2837 const struct cred *cred = current_cred();
2839 return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2842 static int selinux_inode_listxattr(struct dentry *dentry)
2844 const struct cred *cred = current_cred();
2846 return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2849 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2851 if (strcmp(name, XATTR_NAME_SELINUX))
2852 return selinux_inode_setotherxattr(dentry, name);
2854 /* No one is allowed to remove a SELinux security label.
2855 You can change the label, but all data must be labeled. */
2856 return -EACCES;
2860 * Copy the inode security context value to the user.
2862 * Permission check is handled by selinux_inode_getxattr hook.
2864 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2866 u32 size;
2867 int error;
2868 char *context = NULL;
2869 struct inode_security_struct *isec = inode->i_security;
2871 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2872 return -EOPNOTSUPP;
2875 * If the caller has CAP_MAC_ADMIN, then get the raw context
2876 * value even if it is not defined by current policy; otherwise,
2877 * use the in-core value under current policy.
2878 * Use the non-auditing forms of the permission checks since
2879 * getxattr may be called by unprivileged processes commonly
2880 * and lack of permission just means that we fall back to the
2881 * in-core context value, not a denial.
2883 error = selinux_capable(current, CAP_MAC_ADMIN, SECURITY_CAP_NOAUDIT);
2884 if (!error)
2885 error = security_sid_to_context_force(isec->sid, &context,
2886 &size);
2887 else
2888 error = security_sid_to_context(isec->sid, &context, &size);
2889 if (error)
2890 return error;
2891 error = size;
2892 if (alloc) {
2893 *buffer = context;
2894 goto out_nofree;
2896 kfree(context);
2897 out_nofree:
2898 return error;
2901 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2902 const void *value, size_t size, int flags)
2904 struct inode_security_struct *isec = inode->i_security;
2905 u32 newsid;
2906 int rc;
2908 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2909 return -EOPNOTSUPP;
2911 if (!value || !size)
2912 return -EACCES;
2914 rc = security_context_to_sid((void *)value, size, &newsid);
2915 if (rc)
2916 return rc;
2918 isec->sid = newsid;
2919 return 0;
2922 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2924 const int len = sizeof(XATTR_NAME_SELINUX);
2925 if (buffer && len <= buffer_size)
2926 memcpy(buffer, XATTR_NAME_SELINUX, len);
2927 return len;
2930 static int selinux_inode_need_killpriv(struct dentry *dentry)
2932 return secondary_ops->inode_need_killpriv(dentry);
2935 static int selinux_inode_killpriv(struct dentry *dentry)
2937 return secondary_ops->inode_killpriv(dentry);
2940 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2942 struct inode_security_struct *isec = inode->i_security;
2943 *secid = isec->sid;
2946 /* file security operations */
2948 static int selinux_revalidate_file_permission(struct file *file, int mask)
2950 const struct cred *cred = current_cred();
2951 int rc;
2952 struct inode *inode = file->f_path.dentry->d_inode;
2954 if (!mask) {
2955 /* No permission to check. Existence test. */
2956 return 0;
2959 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2960 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2961 mask |= MAY_APPEND;
2963 rc = file_has_perm(cred, file,
2964 file_mask_to_av(inode->i_mode, mask));
2965 if (rc)
2966 return rc;
2968 return selinux_netlbl_inode_permission(inode, mask);
2971 static int selinux_file_permission(struct file *file, int mask)
2973 struct inode *inode = file->f_path.dentry->d_inode;
2974 struct file_security_struct *fsec = file->f_security;
2975 struct inode_security_struct *isec = inode->i_security;
2976 u32 sid = current_sid();
2978 if (!mask) {
2979 /* No permission to check. Existence test. */
2980 return 0;
2983 if (sid == fsec->sid && fsec->isid == isec->sid
2984 && fsec->pseqno == avc_policy_seqno())
2985 return selinux_netlbl_inode_permission(inode, mask);
2987 return selinux_revalidate_file_permission(file, mask);
2990 static int selinux_file_alloc_security(struct file *file)
2992 return file_alloc_security(file);
2995 static void selinux_file_free_security(struct file *file)
2997 file_free_security(file);
3000 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3001 unsigned long arg)
3003 const struct cred *cred = current_cred();
3004 u32 av = 0;
3006 if (_IOC_DIR(cmd) & _IOC_WRITE)
3007 av |= FILE__WRITE;
3008 if (_IOC_DIR(cmd) & _IOC_READ)
3009 av |= FILE__READ;
3010 if (!av)
3011 av = FILE__IOCTL;
3013 return file_has_perm(cred, file, av);
3016 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3018 const struct cred *cred = current_cred();
3019 int rc = 0;
3021 #ifndef CONFIG_PPC32
3022 if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3024 * We are making executable an anonymous mapping or a
3025 * private file mapping that will also be writable.
3026 * This has an additional check.
3028 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3029 if (rc)
3030 goto error;
3032 #endif
3034 if (file) {
3035 /* read access is always possible with a mapping */
3036 u32 av = FILE__READ;
3038 /* write access only matters if the mapping is shared */
3039 if (shared && (prot & PROT_WRITE))
3040 av |= FILE__WRITE;
3042 if (prot & PROT_EXEC)
3043 av |= FILE__EXECUTE;
3045 return file_has_perm(cred, file, av);
3048 error:
3049 return rc;
3052 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3053 unsigned long prot, unsigned long flags,
3054 unsigned long addr, unsigned long addr_only)
3056 int rc = 0;
3057 u32 sid = current_sid();
3059 if (addr < mmap_min_addr)
3060 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3061 MEMPROTECT__MMAP_ZERO, NULL);
3062 if (rc || addr_only)
3063 return rc;
3065 if (selinux_checkreqprot)
3066 prot = reqprot;
3068 return file_map_prot_check(file, prot,
3069 (flags & MAP_TYPE) == MAP_SHARED);
3072 static int selinux_file_mprotect(struct vm_area_struct *vma,
3073 unsigned long reqprot,
3074 unsigned long prot)
3076 const struct cred *cred = current_cred();
3077 int rc;
3079 rc = secondary_ops->file_mprotect(vma, reqprot, prot);
3080 if (rc)
3081 return rc;
3083 if (selinux_checkreqprot)
3084 prot = reqprot;
3086 #ifndef CONFIG_PPC32
3087 if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3088 rc = 0;
3089 if (vma->vm_start >= vma->vm_mm->start_brk &&
3090 vma->vm_end <= vma->vm_mm->brk) {
3091 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3092 } else if (!vma->vm_file &&
3093 vma->vm_start <= vma->vm_mm->start_stack &&
3094 vma->vm_end >= vma->vm_mm->start_stack) {
3095 rc = current_has_perm(current, PROCESS__EXECSTACK);
3096 } else if (vma->vm_file && vma->anon_vma) {
3098 * We are making executable a file mapping that has
3099 * had some COW done. Since pages might have been
3100 * written, check ability to execute the possibly
3101 * modified content. This typically should only
3102 * occur for text relocations.
3104 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3106 if (rc)
3107 return rc;
3109 #endif
3111 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3114 static int selinux_file_lock(struct file *file, unsigned int cmd)
3116 const struct cred *cred = current_cred();
3118 return file_has_perm(cred, file, FILE__LOCK);
3121 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3122 unsigned long arg)
3124 const struct cred *cred = current_cred();
3125 int err = 0;
3127 switch (cmd) {
3128 case F_SETFL:
3129 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3130 err = -EINVAL;
3131 break;
3134 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3135 err = file_has_perm(cred, file, FILE__WRITE);
3136 break;
3138 /* fall through */
3139 case F_SETOWN:
3140 case F_SETSIG:
3141 case F_GETFL:
3142 case F_GETOWN:
3143 case F_GETSIG:
3144 /* Just check FD__USE permission */
3145 err = file_has_perm(cred, file, 0);
3146 break;
3147 case F_GETLK:
3148 case F_SETLK:
3149 case F_SETLKW:
3150 #if BITS_PER_LONG == 32
3151 case F_GETLK64:
3152 case F_SETLK64:
3153 case F_SETLKW64:
3154 #endif
3155 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3156 err = -EINVAL;
3157 break;
3159 err = file_has_perm(cred, file, FILE__LOCK);
3160 break;
3163 return err;
3166 static int selinux_file_set_fowner(struct file *file)
3168 struct file_security_struct *fsec;
3170 fsec = file->f_security;
3171 fsec->fown_sid = current_sid();
3173 return 0;
3176 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3177 struct fown_struct *fown, int signum)
3179 struct file *file;
3180 u32 sid = current_sid();
3181 u32 perm;
3182 struct file_security_struct *fsec;
3184 /* struct fown_struct is never outside the context of a struct file */
3185 file = container_of(fown, struct file, f_owner);
3187 fsec = file->f_security;
3189 if (!signum)
3190 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3191 else
3192 perm = signal_to_av(signum);
3194 return avc_has_perm(fsec->fown_sid, sid,
3195 SECCLASS_PROCESS, perm, NULL);
3198 static int selinux_file_receive(struct file *file)
3200 const struct cred *cred = current_cred();
3202 return file_has_perm(cred, file, file_to_av(file));
3205 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3207 struct file_security_struct *fsec;
3208 struct inode *inode;
3209 struct inode_security_struct *isec;
3211 inode = file->f_path.dentry->d_inode;
3212 fsec = file->f_security;
3213 isec = inode->i_security;
3215 * Save inode label and policy sequence number
3216 * at open-time so that selinux_file_permission
3217 * can determine whether revalidation is necessary.
3218 * Task label is already saved in the file security
3219 * struct as its SID.
3221 fsec->isid = isec->sid;
3222 fsec->pseqno = avc_policy_seqno();
3224 * Since the inode label or policy seqno may have changed
3225 * between the selinux_inode_permission check and the saving
3226 * of state above, recheck that access is still permitted.
3227 * Otherwise, access might never be revalidated against the
3228 * new inode label or new policy.
3229 * This check is not redundant - do not remove.
3231 return inode_has_perm(cred, inode, open_file_to_av(file), NULL);
3234 /* task security operations */
3236 static int selinux_task_create(unsigned long clone_flags)
3238 int rc;
3240 rc = secondary_ops->task_create(clone_flags);
3241 if (rc)
3242 return rc;
3244 return current_has_perm(current, PROCESS__FORK);
3248 * detach and free the LSM part of a set of credentials
3250 static void selinux_cred_free(struct cred *cred)
3252 struct task_security_struct *tsec = cred->security;
3253 cred->security = NULL;
3254 kfree(tsec);
3258 * prepare a new set of credentials for modification
3260 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3261 gfp_t gfp)
3263 const struct task_security_struct *old_tsec;
3264 struct task_security_struct *tsec;
3266 old_tsec = old->security;
3268 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3269 if (!tsec)
3270 return -ENOMEM;
3272 new->security = tsec;
3273 return 0;
3277 * commit new credentials
3279 static void selinux_cred_commit(struct cred *new, const struct cred *old)
3281 secondary_ops->cred_commit(new, old);
3285 * set the security data for a kernel service
3286 * - all the creation contexts are set to unlabelled
3288 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3290 struct task_security_struct *tsec = new->security;
3291 u32 sid = current_sid();
3292 int ret;
3294 ret = avc_has_perm(sid, secid,
3295 SECCLASS_KERNEL_SERVICE,
3296 KERNEL_SERVICE__USE_AS_OVERRIDE,
3297 NULL);
3298 if (ret == 0) {
3299 tsec->sid = secid;
3300 tsec->create_sid = 0;
3301 tsec->keycreate_sid = 0;
3302 tsec->sockcreate_sid = 0;
3304 return ret;
3308 * set the file creation context in a security record to the same as the
3309 * objective context of the specified inode
3311 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3313 struct inode_security_struct *isec = inode->i_security;
3314 struct task_security_struct *tsec = new->security;
3315 u32 sid = current_sid();
3316 int ret;
3318 ret = avc_has_perm(sid, isec->sid,
3319 SECCLASS_KERNEL_SERVICE,
3320 KERNEL_SERVICE__CREATE_FILES_AS,
3321 NULL);
3323 if (ret == 0)
3324 tsec->create_sid = isec->sid;
3325 return 0;
3328 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3330 /* Since setuid only affects the current process, and
3331 since the SELinux controls are not based on the Linux
3332 identity attributes, SELinux does not need to control
3333 this operation. However, SELinux does control the use
3334 of the CAP_SETUID and CAP_SETGID capabilities using the
3335 capable hook. */
3336 return 0;
3339 static int selinux_task_fix_setuid(struct cred *new, const struct cred *old,
3340 int flags)
3342 return secondary_ops->task_fix_setuid(new, old, flags);
3345 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
3347 /* See the comment for setuid above. */
3348 return 0;
3351 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3353 return current_has_perm(p, PROCESS__SETPGID);
3356 static int selinux_task_getpgid(struct task_struct *p)
3358 return current_has_perm(p, PROCESS__GETPGID);
3361 static int selinux_task_getsid(struct task_struct *p)
3363 return current_has_perm(p, PROCESS__GETSESSION);
3366 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3368 *secid = task_sid(p);
3371 static int selinux_task_setgroups(struct group_info *group_info)
3373 /* See the comment for setuid above. */
3374 return 0;
3377 static int selinux_task_setnice(struct task_struct *p, int nice)
3379 int rc;
3381 rc = secondary_ops->task_setnice(p, nice);
3382 if (rc)
3383 return rc;
3385 return current_has_perm(p, PROCESS__SETSCHED);
3388 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3390 int rc;
3392 rc = secondary_ops->task_setioprio(p, ioprio);
3393 if (rc)
3394 return rc;
3396 return current_has_perm(p, PROCESS__SETSCHED);
3399 static int selinux_task_getioprio(struct task_struct *p)
3401 return current_has_perm(p, PROCESS__GETSCHED);
3404 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3406 struct rlimit *old_rlim = current->signal->rlim + resource;
3407 int rc;
3409 rc = secondary_ops->task_setrlimit(resource, new_rlim);
3410 if (rc)
3411 return rc;
3413 /* Control the ability to change the hard limit (whether
3414 lowering or raising it), so that the hard limit can
3415 later be used as a safe reset point for the soft limit
3416 upon context transitions. See selinux_bprm_committing_creds. */
3417 if (old_rlim->rlim_max != new_rlim->rlim_max)
3418 return current_has_perm(current, PROCESS__SETRLIMIT);
3420 return 0;
3423 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3425 int rc;
3427 rc = secondary_ops->task_setscheduler(p, policy, lp);
3428 if (rc)
3429 return rc;
3431 return current_has_perm(p, PROCESS__SETSCHED);
3434 static int selinux_task_getscheduler(struct task_struct *p)
3436 return current_has_perm(p, PROCESS__GETSCHED);
3439 static int selinux_task_movememory(struct task_struct *p)
3441 return current_has_perm(p, PROCESS__SETSCHED);
3444 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3445 int sig, u32 secid)
3447 u32 perm;
3448 int rc;
3450 rc = secondary_ops->task_kill(p, info, sig, secid);
3451 if (rc)
3452 return rc;
3454 if (!sig)
3455 perm = PROCESS__SIGNULL; /* null signal; existence test */
3456 else
3457 perm = signal_to_av(sig);
3458 if (secid)
3459 rc = avc_has_perm(secid, task_sid(p),
3460 SECCLASS_PROCESS, perm, NULL);
3461 else
3462 rc = current_has_perm(p, perm);
3463 return rc;
3466 static int selinux_task_prctl(int option,
3467 unsigned long arg2,
3468 unsigned long arg3,
3469 unsigned long arg4,
3470 unsigned long arg5)
3472 /* The current prctl operations do not appear to require
3473 any SELinux controls since they merely observe or modify
3474 the state of the current process. */
3475 return secondary_ops->task_prctl(option, arg2, arg3, arg4, arg5);
3478 static int selinux_task_wait(struct task_struct *p)
3480 return task_has_perm(p, current, PROCESS__SIGCHLD);
3483 static void selinux_task_to_inode(struct task_struct *p,
3484 struct inode *inode)
3486 struct inode_security_struct *isec = inode->i_security;
3487 u32 sid = task_sid(p);
3489 isec->sid = sid;
3490 isec->initialized = 1;
3493 /* Returns error only if unable to parse addresses */
3494 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3495 struct avc_audit_data *ad, u8 *proto)
3497 int offset, ihlen, ret = -EINVAL;
3498 struct iphdr _iph, *ih;
3500 offset = skb_network_offset(skb);
3501 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3502 if (ih == NULL)
3503 goto out;
3505 ihlen = ih->ihl * 4;
3506 if (ihlen < sizeof(_iph))
3507 goto out;
3509 ad->u.net.v4info.saddr = ih->saddr;
3510 ad->u.net.v4info.daddr = ih->daddr;
3511 ret = 0;
3513 if (proto)
3514 *proto = ih->protocol;
3516 switch (ih->protocol) {
3517 case IPPROTO_TCP: {
3518 struct tcphdr _tcph, *th;
3520 if (ntohs(ih->frag_off) & IP_OFFSET)
3521 break;
3523 offset += ihlen;
3524 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3525 if (th == NULL)
3526 break;
3528 ad->u.net.sport = th->source;
3529 ad->u.net.dport = th->dest;
3530 break;
3533 case IPPROTO_UDP: {
3534 struct udphdr _udph, *uh;
3536 if (ntohs(ih->frag_off) & IP_OFFSET)
3537 break;
3539 offset += ihlen;
3540 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3541 if (uh == NULL)
3542 break;
3544 ad->u.net.sport = uh->source;
3545 ad->u.net.dport = uh->dest;
3546 break;
3549 case IPPROTO_DCCP: {
3550 struct dccp_hdr _dccph, *dh;
3552 if (ntohs(ih->frag_off) & IP_OFFSET)
3553 break;
3555 offset += ihlen;
3556 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3557 if (dh == NULL)
3558 break;
3560 ad->u.net.sport = dh->dccph_sport;
3561 ad->u.net.dport = dh->dccph_dport;
3562 break;
3565 default:
3566 break;
3568 out:
3569 return ret;
3572 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3574 /* Returns error only if unable to parse addresses */
3575 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3576 struct avc_audit_data *ad, u8 *proto)
3578 u8 nexthdr;
3579 int ret = -EINVAL, offset;
3580 struct ipv6hdr _ipv6h, *ip6;
3582 offset = skb_network_offset(skb);
3583 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3584 if (ip6 == NULL)
3585 goto out;
3587 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3588 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3589 ret = 0;
3591 nexthdr = ip6->nexthdr;
3592 offset += sizeof(_ipv6h);
3593 offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3594 if (offset < 0)
3595 goto out;
3597 if (proto)
3598 *proto = nexthdr;
3600 switch (nexthdr) {
3601 case IPPROTO_TCP: {
3602 struct tcphdr _tcph, *th;
3604 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3605 if (th == NULL)
3606 break;
3608 ad->u.net.sport = th->source;
3609 ad->u.net.dport = th->dest;
3610 break;
3613 case IPPROTO_UDP: {
3614 struct udphdr _udph, *uh;
3616 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3617 if (uh == NULL)
3618 break;
3620 ad->u.net.sport = uh->source;
3621 ad->u.net.dport = uh->dest;
3622 break;
3625 case IPPROTO_DCCP: {
3626 struct dccp_hdr _dccph, *dh;
3628 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3629 if (dh == NULL)
3630 break;
3632 ad->u.net.sport = dh->dccph_sport;
3633 ad->u.net.dport = dh->dccph_dport;
3634 break;
3637 /* includes fragments */
3638 default:
3639 break;
3641 out:
3642 return ret;
3645 #endif /* IPV6 */
3647 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3648 char **_addrp, int src, u8 *proto)
3650 char *addrp;
3651 int ret;
3653 switch (ad->u.net.family) {
3654 case PF_INET:
3655 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3656 if (ret)
3657 goto parse_error;
3658 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3659 &ad->u.net.v4info.daddr);
3660 goto okay;
3662 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3663 case PF_INET6:
3664 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3665 if (ret)
3666 goto parse_error;
3667 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3668 &ad->u.net.v6info.daddr);
3669 goto okay;
3670 #endif /* IPV6 */
3671 default:
3672 addrp = NULL;
3673 goto okay;
3676 parse_error:
3677 printk(KERN_WARNING
3678 "SELinux: failure in selinux_parse_skb(),"
3679 " unable to parse packet\n");
3680 return ret;
3682 okay:
3683 if (_addrp)
3684 *_addrp = addrp;
3685 return 0;
3689 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3690 * @skb: the packet
3691 * @family: protocol family
3692 * @sid: the packet's peer label SID
3694 * Description:
3695 * Check the various different forms of network peer labeling and determine
3696 * the peer label/SID for the packet; most of the magic actually occurs in
3697 * the security server function security_net_peersid_cmp(). The function
3698 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3699 * or -EACCES if @sid is invalid due to inconsistencies with the different
3700 * peer labels.
3703 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3705 int err;
3706 u32 xfrm_sid;
3707 u32 nlbl_sid;
3708 u32 nlbl_type;
3710 selinux_skb_xfrm_sid(skb, &xfrm_sid);
3711 selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3713 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3714 if (unlikely(err)) {
3715 printk(KERN_WARNING
3716 "SELinux: failure in selinux_skb_peerlbl_sid(),"
3717 " unable to determine packet's peer label\n");
3718 return -EACCES;
3721 return 0;
3724 /* socket security operations */
3725 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3726 u32 perms)
3728 struct inode_security_struct *isec;
3729 struct avc_audit_data ad;
3730 u32 sid;
3731 int err = 0;
3733 isec = SOCK_INODE(sock)->i_security;
3735 if (isec->sid == SECINITSID_KERNEL)
3736 goto out;
3737 sid = task_sid(task);
3739 AVC_AUDIT_DATA_INIT(&ad, NET);
3740 ad.u.net.sk = sock->sk;
3741 err = avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
3743 out:
3744 return err;
3747 static int selinux_socket_create(int family, int type,
3748 int protocol, int kern)
3750 const struct cred *cred = current_cred();
3751 const struct task_security_struct *tsec = cred->security;
3752 u32 sid, newsid;
3753 u16 secclass;
3754 int err = 0;
3756 if (kern)
3757 goto out;
3759 sid = tsec->sid;
3760 newsid = tsec->sockcreate_sid ?: sid;
3762 secclass = socket_type_to_security_class(family, type, protocol);
3763 err = avc_has_perm(sid, newsid, secclass, SOCKET__CREATE, NULL);
3765 out:
3766 return err;
3769 static int selinux_socket_post_create(struct socket *sock, int family,
3770 int type, int protocol, int kern)
3772 const struct cred *cred = current_cred();
3773 const struct task_security_struct *tsec = cred->security;
3774 struct inode_security_struct *isec;
3775 struct sk_security_struct *sksec;
3776 u32 sid, newsid;
3777 int err = 0;
3779 sid = tsec->sid;
3780 newsid = tsec->sockcreate_sid;
3782 isec = SOCK_INODE(sock)->i_security;
3784 if (kern)
3785 isec->sid = SECINITSID_KERNEL;
3786 else if (newsid)
3787 isec->sid = newsid;
3788 else
3789 isec->sid = sid;
3791 isec->sclass = socket_type_to_security_class(family, type, protocol);
3792 isec->initialized = 1;
3794 if (sock->sk) {
3795 sksec = sock->sk->sk_security;
3796 sksec->sid = isec->sid;
3797 sksec->sclass = isec->sclass;
3798 err = selinux_netlbl_socket_post_create(sock);
3801 return err;
3804 /* Range of port numbers used to automatically bind.
3805 Need to determine whether we should perform a name_bind
3806 permission check between the socket and the port number. */
3808 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3810 u16 family;
3811 int err;
3813 err = socket_has_perm(current, sock, SOCKET__BIND);
3814 if (err)
3815 goto out;
3818 * If PF_INET or PF_INET6, check name_bind permission for the port.
3819 * Multiple address binding for SCTP is not supported yet: we just
3820 * check the first address now.
3822 family = sock->sk->sk_family;
3823 if (family == PF_INET || family == PF_INET6) {
3824 char *addrp;
3825 struct inode_security_struct *isec;
3826 struct avc_audit_data ad;
3827 struct sockaddr_in *addr4 = NULL;
3828 struct sockaddr_in6 *addr6 = NULL;
3829 unsigned short snum;
3830 struct sock *sk = sock->sk;
3831 u32 sid, node_perm;
3833 isec = SOCK_INODE(sock)->i_security;
3835 if (family == PF_INET) {
3836 addr4 = (struct sockaddr_in *)address;
3837 snum = ntohs(addr4->sin_port);
3838 addrp = (char *)&addr4->sin_addr.s_addr;
3839 } else {
3840 addr6 = (struct sockaddr_in6 *)address;
3841 snum = ntohs(addr6->sin6_port);
3842 addrp = (char *)&addr6->sin6_addr.s6_addr;
3845 if (snum) {
3846 int low, high;
3848 inet_get_local_port_range(&low, &high);
3850 if (snum < max(PROT_SOCK, low) || snum > high) {
3851 err = sel_netport_sid(sk->sk_protocol,
3852 snum, &sid);
3853 if (err)
3854 goto out;
3855 AVC_AUDIT_DATA_INIT(&ad, NET);
3856 ad.u.net.sport = htons(snum);
3857 ad.u.net.family = family;
3858 err = avc_has_perm(isec->sid, sid,
3859 isec->sclass,
3860 SOCKET__NAME_BIND, &ad);
3861 if (err)
3862 goto out;
3866 switch (isec->sclass) {
3867 case SECCLASS_TCP_SOCKET:
3868 node_perm = TCP_SOCKET__NODE_BIND;
3869 break;
3871 case SECCLASS_UDP_SOCKET:
3872 node_perm = UDP_SOCKET__NODE_BIND;
3873 break;
3875 case SECCLASS_DCCP_SOCKET:
3876 node_perm = DCCP_SOCKET__NODE_BIND;
3877 break;
3879 default:
3880 node_perm = RAWIP_SOCKET__NODE_BIND;
3881 break;
3884 err = sel_netnode_sid(addrp, family, &sid);
3885 if (err)
3886 goto out;
3888 AVC_AUDIT_DATA_INIT(&ad, NET);
3889 ad.u.net.sport = htons(snum);
3890 ad.u.net.family = family;
3892 if (family == PF_INET)
3893 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3894 else
3895 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3897 err = avc_has_perm(isec->sid, sid,
3898 isec->sclass, node_perm, &ad);
3899 if (err)
3900 goto out;
3902 out:
3903 return err;
3906 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3908 struct sock *sk = sock->sk;
3909 struct inode_security_struct *isec;
3910 int err;
3912 err = socket_has_perm(current, sock, SOCKET__CONNECT);
3913 if (err)
3914 return err;
3917 * If a TCP or DCCP socket, check name_connect permission for the port.
3919 isec = SOCK_INODE(sock)->i_security;
3920 if (isec->sclass == SECCLASS_TCP_SOCKET ||
3921 isec->sclass == SECCLASS_DCCP_SOCKET) {
3922 struct avc_audit_data ad;
3923 struct sockaddr_in *addr4 = NULL;
3924 struct sockaddr_in6 *addr6 = NULL;
3925 unsigned short snum;
3926 u32 sid, perm;
3928 if (sk->sk_family == PF_INET) {
3929 addr4 = (struct sockaddr_in *)address;
3930 if (addrlen < sizeof(struct sockaddr_in))
3931 return -EINVAL;
3932 snum = ntohs(addr4->sin_port);
3933 } else {
3934 addr6 = (struct sockaddr_in6 *)address;
3935 if (addrlen < SIN6_LEN_RFC2133)
3936 return -EINVAL;
3937 snum = ntohs(addr6->sin6_port);
3940 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3941 if (err)
3942 goto out;
3944 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3945 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3947 AVC_AUDIT_DATA_INIT(&ad, NET);
3948 ad.u.net.dport = htons(snum);
3949 ad.u.net.family = sk->sk_family;
3950 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3951 if (err)
3952 goto out;
3955 err = selinux_netlbl_socket_connect(sk, address);
3957 out:
3958 return err;
3961 static int selinux_socket_listen(struct socket *sock, int backlog)
3963 return socket_has_perm(current, sock, SOCKET__LISTEN);
3966 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3968 int err;
3969 struct inode_security_struct *isec;
3970 struct inode_security_struct *newisec;
3972 err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3973 if (err)
3974 return err;
3976 newisec = SOCK_INODE(newsock)->i_security;
3978 isec = SOCK_INODE(sock)->i_security;
3979 newisec->sclass = isec->sclass;
3980 newisec->sid = isec->sid;
3981 newisec->initialized = 1;
3983 return 0;
3986 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3987 int size)
3989 int rc;
3991 rc = socket_has_perm(current, sock, SOCKET__WRITE);
3992 if (rc)
3993 return rc;
3995 return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3998 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3999 int size, int flags)
4001 return socket_has_perm(current, sock, SOCKET__READ);
4004 static int selinux_socket_getsockname(struct socket *sock)
4006 return socket_has_perm(current, sock, SOCKET__GETATTR);
4009 static int selinux_socket_getpeername(struct socket *sock)
4011 return socket_has_perm(current, sock, SOCKET__GETATTR);
4014 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4016 int err;
4018 err = socket_has_perm(current, sock, SOCKET__SETOPT);
4019 if (err)
4020 return err;
4022 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4025 static int selinux_socket_getsockopt(struct socket *sock, int level,
4026 int optname)
4028 return socket_has_perm(current, sock, SOCKET__GETOPT);
4031 static int selinux_socket_shutdown(struct socket *sock, int how)
4033 return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
4036 static int selinux_socket_unix_stream_connect(struct socket *sock,
4037 struct socket *other,
4038 struct sock *newsk)
4040 struct sk_security_struct *ssec;
4041 struct inode_security_struct *isec;
4042 struct inode_security_struct *other_isec;
4043 struct avc_audit_data ad;
4044 int err;
4046 err = secondary_ops->unix_stream_connect(sock, other, newsk);
4047 if (err)
4048 return err;
4050 isec = SOCK_INODE(sock)->i_security;
4051 other_isec = SOCK_INODE(other)->i_security;
4053 AVC_AUDIT_DATA_INIT(&ad, NET);
4054 ad.u.net.sk = other->sk;
4056 err = avc_has_perm(isec->sid, other_isec->sid,
4057 isec->sclass,
4058 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4059 if (err)
4060 return err;
4062 /* connecting socket */
4063 ssec = sock->sk->sk_security;
4064 ssec->peer_sid = other_isec->sid;
4066 /* server child socket */
4067 ssec = newsk->sk_security;
4068 ssec->peer_sid = isec->sid;
4069 err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
4071 return err;
4074 static int selinux_socket_unix_may_send(struct socket *sock,
4075 struct socket *other)
4077 struct inode_security_struct *isec;
4078 struct inode_security_struct *other_isec;
4079 struct avc_audit_data ad;
4080 int err;
4082 isec = SOCK_INODE(sock)->i_security;
4083 other_isec = SOCK_INODE(other)->i_security;
4085 AVC_AUDIT_DATA_INIT(&ad, NET);
4086 ad.u.net.sk = other->sk;
4088 err = avc_has_perm(isec->sid, other_isec->sid,
4089 isec->sclass, SOCKET__SENDTO, &ad);
4090 if (err)
4091 return err;
4093 return 0;
4096 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4097 u32 peer_sid,
4098 struct avc_audit_data *ad)
4100 int err;
4101 u32 if_sid;
4102 u32 node_sid;
4104 err = sel_netif_sid(ifindex, &if_sid);
4105 if (err)
4106 return err;
4107 err = avc_has_perm(peer_sid, if_sid,
4108 SECCLASS_NETIF, NETIF__INGRESS, ad);
4109 if (err)
4110 return err;
4112 err = sel_netnode_sid(addrp, family, &node_sid);
4113 if (err)
4114 return err;
4115 return avc_has_perm(peer_sid, node_sid,
4116 SECCLASS_NODE, NODE__RECVFROM, ad);
4119 static int selinux_sock_rcv_skb_iptables_compat(struct sock *sk,
4120 struct sk_buff *skb,
4121 struct avc_audit_data *ad,
4122 u16 family,
4123 char *addrp)
4125 int err;
4126 struct sk_security_struct *sksec = sk->sk_security;
4127 u16 sk_class;
4128 u32 netif_perm, node_perm, recv_perm;
4129 u32 port_sid, node_sid, if_sid, sk_sid;
4131 sk_sid = sksec->sid;
4132 sk_class = sksec->sclass;
4134 switch (sk_class) {
4135 case SECCLASS_UDP_SOCKET:
4136 netif_perm = NETIF__UDP_RECV;
4137 node_perm = NODE__UDP_RECV;
4138 recv_perm = UDP_SOCKET__RECV_MSG;
4139 break;
4140 case SECCLASS_TCP_SOCKET:
4141 netif_perm = NETIF__TCP_RECV;
4142 node_perm = NODE__TCP_RECV;
4143 recv_perm = TCP_SOCKET__RECV_MSG;
4144 break;
4145 case SECCLASS_DCCP_SOCKET:
4146 netif_perm = NETIF__DCCP_RECV;
4147 node_perm = NODE__DCCP_RECV;
4148 recv_perm = DCCP_SOCKET__RECV_MSG;
4149 break;
4150 default:
4151 netif_perm = NETIF__RAWIP_RECV;
4152 node_perm = NODE__RAWIP_RECV;
4153 recv_perm = 0;
4154 break;
4157 err = sel_netif_sid(skb->iif, &if_sid);
4158 if (err)
4159 return err;
4160 err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4161 if (err)
4162 return err;
4164 err = sel_netnode_sid(addrp, family, &node_sid);
4165 if (err)
4166 return err;
4167 err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4168 if (err)
4169 return err;
4171 if (!recv_perm)
4172 return 0;
4173 err = sel_netport_sid(sk->sk_protocol,
4174 ntohs(ad->u.net.sport), &port_sid);
4175 if (unlikely(err)) {
4176 printk(KERN_WARNING
4177 "SELinux: failure in"
4178 " selinux_sock_rcv_skb_iptables_compat(),"
4179 " network port label not found\n");
4180 return err;
4182 return avc_has_perm(sk_sid, port_sid, sk_class, recv_perm, ad);
4185 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4186 u16 family)
4188 int err;
4189 struct sk_security_struct *sksec = sk->sk_security;
4190 u32 peer_sid;
4191 u32 sk_sid = sksec->sid;
4192 struct avc_audit_data ad;
4193 char *addrp;
4195 AVC_AUDIT_DATA_INIT(&ad, NET);
4196 ad.u.net.netif = skb->iif;
4197 ad.u.net.family = family;
4198 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4199 if (err)
4200 return err;
4202 if (selinux_compat_net)
4203 err = selinux_sock_rcv_skb_iptables_compat(sk, skb, &ad,
4204 family, addrp);
4205 else
4206 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4207 PACKET__RECV, &ad);
4208 if (err)
4209 return err;
4211 if (selinux_policycap_netpeer) {
4212 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4213 if (err)
4214 return err;
4215 err = avc_has_perm(sk_sid, peer_sid,
4216 SECCLASS_PEER, PEER__RECV, &ad);
4217 if (err)
4218 selinux_netlbl_err(skb, err, 0);
4219 } else {
4220 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4221 if (err)
4222 return err;
4223 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4226 return err;
4229 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4231 int err;
4232 struct sk_security_struct *sksec = sk->sk_security;
4233 u16 family = sk->sk_family;
4234 u32 sk_sid = sksec->sid;
4235 struct avc_audit_data ad;
4236 char *addrp;
4237 u8 secmark_active;
4238 u8 peerlbl_active;
4240 if (family != PF_INET && family != PF_INET6)
4241 return 0;
4243 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4244 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4245 family = PF_INET;
4247 /* If any sort of compatibility mode is enabled then handoff processing
4248 * to the selinux_sock_rcv_skb_compat() function to deal with the
4249 * special handling. We do this in an attempt to keep this function
4250 * as fast and as clean as possible. */
4251 if (selinux_compat_net || !selinux_policycap_netpeer)
4252 return selinux_sock_rcv_skb_compat(sk, skb, family);
4254 secmark_active = selinux_secmark_enabled();
4255 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4256 if (!secmark_active && !peerlbl_active)
4257 return 0;
4259 AVC_AUDIT_DATA_INIT(&ad, NET);
4260 ad.u.net.netif = skb->iif;
4261 ad.u.net.family = family;
4262 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4263 if (err)
4264 return err;
4266 if (peerlbl_active) {
4267 u32 peer_sid;
4269 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4270 if (err)
4271 return err;
4272 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4273 peer_sid, &ad);
4274 if (err) {
4275 selinux_netlbl_err(skb, err, 0);
4276 return err;
4278 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4279 PEER__RECV, &ad);
4280 if (err)
4281 selinux_netlbl_err(skb, err, 0);
4284 if (secmark_active) {
4285 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4286 PACKET__RECV, &ad);
4287 if (err)
4288 return err;
4291 return err;
4294 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4295 int __user *optlen, unsigned len)
4297 int err = 0;
4298 char *scontext;
4299 u32 scontext_len;
4300 struct sk_security_struct *ssec;
4301 struct inode_security_struct *isec;
4302 u32 peer_sid = SECSID_NULL;
4304 isec = SOCK_INODE(sock)->i_security;
4306 if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4307 isec->sclass == SECCLASS_TCP_SOCKET) {
4308 ssec = sock->sk->sk_security;
4309 peer_sid = ssec->peer_sid;
4311 if (peer_sid == SECSID_NULL) {
4312 err = -ENOPROTOOPT;
4313 goto out;
4316 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4318 if (err)
4319 goto out;
4321 if (scontext_len > len) {
4322 err = -ERANGE;
4323 goto out_len;
4326 if (copy_to_user(optval, scontext, scontext_len))
4327 err = -EFAULT;
4329 out_len:
4330 if (put_user(scontext_len, optlen))
4331 err = -EFAULT;
4333 kfree(scontext);
4334 out:
4335 return err;
4338 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4340 u32 peer_secid = SECSID_NULL;
4341 u16 family;
4343 if (skb && skb->protocol == htons(ETH_P_IP))
4344 family = PF_INET;
4345 else if (skb && skb->protocol == htons(ETH_P_IPV6))
4346 family = PF_INET6;
4347 else if (sock)
4348 family = sock->sk->sk_family;
4349 else
4350 goto out;
4352 if (sock && family == PF_UNIX)
4353 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4354 else if (skb)
4355 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4357 out:
4358 *secid = peer_secid;
4359 if (peer_secid == SECSID_NULL)
4360 return -EINVAL;
4361 return 0;
4364 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4366 return sk_alloc_security(sk, family, priority);
4369 static void selinux_sk_free_security(struct sock *sk)
4371 sk_free_security(sk);
4374 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4376 struct sk_security_struct *ssec = sk->sk_security;
4377 struct sk_security_struct *newssec = newsk->sk_security;
4379 newssec->sid = ssec->sid;
4380 newssec->peer_sid = ssec->peer_sid;
4381 newssec->sclass = ssec->sclass;
4383 selinux_netlbl_sk_security_reset(newssec, newsk->sk_family);
4386 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4388 if (!sk)
4389 *secid = SECINITSID_ANY_SOCKET;
4390 else {
4391 struct sk_security_struct *sksec = sk->sk_security;
4393 *secid = sksec->sid;
4397 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4399 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4400 struct sk_security_struct *sksec = sk->sk_security;
4402 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4403 sk->sk_family == PF_UNIX)
4404 isec->sid = sksec->sid;
4405 sksec->sclass = isec->sclass;
4408 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4409 struct request_sock *req)
4411 struct sk_security_struct *sksec = sk->sk_security;
4412 int err;
4413 u16 family = sk->sk_family;
4414 u32 newsid;
4415 u32 peersid;
4417 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4418 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4419 family = PF_INET;
4421 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4422 if (err)
4423 return err;
4424 if (peersid == SECSID_NULL) {
4425 req->secid = sksec->sid;
4426 req->peer_secid = SECSID_NULL;
4427 return 0;
4430 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4431 if (err)
4432 return err;
4434 req->secid = newsid;
4435 req->peer_secid = peersid;
4436 return 0;
4439 static void selinux_inet_csk_clone(struct sock *newsk,
4440 const struct request_sock *req)
4442 struct sk_security_struct *newsksec = newsk->sk_security;
4444 newsksec->sid = req->secid;
4445 newsksec->peer_sid = req->peer_secid;
4446 /* NOTE: Ideally, we should also get the isec->sid for the
4447 new socket in sync, but we don't have the isec available yet.
4448 So we will wait until sock_graft to do it, by which
4449 time it will have been created and available. */
4451 /* We don't need to take any sort of lock here as we are the only
4452 * thread with access to newsksec */
4453 selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
4456 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4458 u16 family = sk->sk_family;
4459 struct sk_security_struct *sksec = sk->sk_security;
4461 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4462 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4463 family = PF_INET;
4465 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4467 selinux_netlbl_inet_conn_established(sk, family);
4470 static void selinux_req_classify_flow(const struct request_sock *req,
4471 struct flowi *fl)
4473 fl->secid = req->secid;
4476 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4478 int err = 0;
4479 u32 perm;
4480 struct nlmsghdr *nlh;
4481 struct socket *sock = sk->sk_socket;
4482 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4484 if (skb->len < NLMSG_SPACE(0)) {
4485 err = -EINVAL;
4486 goto out;
4488 nlh = nlmsg_hdr(skb);
4490 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4491 if (err) {
4492 if (err == -EINVAL) {
4493 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4494 "SELinux: unrecognized netlink message"
4495 " type=%hu for sclass=%hu\n",
4496 nlh->nlmsg_type, isec->sclass);
4497 if (!selinux_enforcing || security_get_allow_unknown())
4498 err = 0;
4501 /* Ignore */
4502 if (err == -ENOENT)
4503 err = 0;
4504 goto out;
4507 err = socket_has_perm(current, sock, perm);
4508 out:
4509 return err;
4512 #ifdef CONFIG_NETFILTER
4514 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4515 u16 family)
4517 int err;
4518 char *addrp;
4519 u32 peer_sid;
4520 struct avc_audit_data ad;
4521 u8 secmark_active;
4522 u8 netlbl_active;
4523 u8 peerlbl_active;
4525 if (!selinux_policycap_netpeer)
4526 return NF_ACCEPT;
4528 secmark_active = selinux_secmark_enabled();
4529 netlbl_active = netlbl_enabled();
4530 peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4531 if (!secmark_active && !peerlbl_active)
4532 return NF_ACCEPT;
4534 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4535 return NF_DROP;
4537 AVC_AUDIT_DATA_INIT(&ad, NET);
4538 ad.u.net.netif = ifindex;
4539 ad.u.net.family = family;
4540 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4541 return NF_DROP;
4543 if (peerlbl_active) {
4544 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4545 peer_sid, &ad);
4546 if (err) {
4547 selinux_netlbl_err(skb, err, 1);
4548 return NF_DROP;
4552 if (secmark_active)
4553 if (avc_has_perm(peer_sid, skb->secmark,
4554 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4555 return NF_DROP;
4557 if (netlbl_active)
4558 /* we do this in the FORWARD path and not the POST_ROUTING
4559 * path because we want to make sure we apply the necessary
4560 * labeling before IPsec is applied so we can leverage AH
4561 * protection */
4562 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4563 return NF_DROP;
4565 return NF_ACCEPT;
4568 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4569 struct sk_buff *skb,
4570 const struct net_device *in,
4571 const struct net_device *out,
4572 int (*okfn)(struct sk_buff *))
4574 return selinux_ip_forward(skb, in->ifindex, PF_INET);
4577 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4578 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4579 struct sk_buff *skb,
4580 const struct net_device *in,
4581 const struct net_device *out,
4582 int (*okfn)(struct sk_buff *))
4584 return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4586 #endif /* IPV6 */
4588 static unsigned int selinux_ip_output(struct sk_buff *skb,
4589 u16 family)
4591 u32 sid;
4593 if (!netlbl_enabled())
4594 return NF_ACCEPT;
4596 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4597 * because we want to make sure we apply the necessary labeling
4598 * before IPsec is applied so we can leverage AH protection */
4599 if (skb->sk) {
4600 struct sk_security_struct *sksec = skb->sk->sk_security;
4601 sid = sksec->sid;
4602 } else
4603 sid = SECINITSID_KERNEL;
4604 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4605 return NF_DROP;
4607 return NF_ACCEPT;
4610 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4611 struct sk_buff *skb,
4612 const struct net_device *in,
4613 const struct net_device *out,
4614 int (*okfn)(struct sk_buff *))
4616 return selinux_ip_output(skb, PF_INET);
4619 static int selinux_ip_postroute_iptables_compat(struct sock *sk,
4620 int ifindex,
4621 struct avc_audit_data *ad,
4622 u16 family, char *addrp)
4624 int err;
4625 struct sk_security_struct *sksec = sk->sk_security;
4626 u16 sk_class;
4627 u32 netif_perm, node_perm, send_perm;
4628 u32 port_sid, node_sid, if_sid, sk_sid;
4630 sk_sid = sksec->sid;
4631 sk_class = sksec->sclass;
4633 switch (sk_class) {
4634 case SECCLASS_UDP_SOCKET:
4635 netif_perm = NETIF__UDP_SEND;
4636 node_perm = NODE__UDP_SEND;
4637 send_perm = UDP_SOCKET__SEND_MSG;
4638 break;
4639 case SECCLASS_TCP_SOCKET:
4640 netif_perm = NETIF__TCP_SEND;
4641 node_perm = NODE__TCP_SEND;
4642 send_perm = TCP_SOCKET__SEND_MSG;
4643 break;
4644 case SECCLASS_DCCP_SOCKET:
4645 netif_perm = NETIF__DCCP_SEND;
4646 node_perm = NODE__DCCP_SEND;
4647 send_perm = DCCP_SOCKET__SEND_MSG;
4648 break;
4649 default:
4650 netif_perm = NETIF__RAWIP_SEND;
4651 node_perm = NODE__RAWIP_SEND;
4652 send_perm = 0;
4653 break;
4656 err = sel_netif_sid(ifindex, &if_sid);
4657 if (err)
4658 return err;
4659 err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4660 return err;
4662 err = sel_netnode_sid(addrp, family, &node_sid);
4663 if (err)
4664 return err;
4665 err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4666 if (err)
4667 return err;
4669 if (send_perm != 0)
4670 return 0;
4672 err = sel_netport_sid(sk->sk_protocol,
4673 ntohs(ad->u.net.dport), &port_sid);
4674 if (unlikely(err)) {
4675 printk(KERN_WARNING
4676 "SELinux: failure in"
4677 " selinux_ip_postroute_iptables_compat(),"
4678 " network port label not found\n");
4679 return err;
4681 return avc_has_perm(sk_sid, port_sid, sk_class, send_perm, ad);
4684 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4685 int ifindex,
4686 u16 family)
4688 struct sock *sk = skb->sk;
4689 struct sk_security_struct *sksec;
4690 struct avc_audit_data ad;
4691 char *addrp;
4692 u8 proto;
4694 if (sk == NULL)
4695 return NF_ACCEPT;
4696 sksec = sk->sk_security;
4698 AVC_AUDIT_DATA_INIT(&ad, NET);
4699 ad.u.net.netif = ifindex;
4700 ad.u.net.family = family;
4701 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4702 return NF_DROP;
4704 if (selinux_compat_net) {
4705 if (selinux_ip_postroute_iptables_compat(skb->sk, ifindex,
4706 &ad, family, addrp))
4707 return NF_DROP;
4708 } else {
4709 if (avc_has_perm(sksec->sid, skb->secmark,
4710 SECCLASS_PACKET, PACKET__SEND, &ad))
4711 return NF_DROP;
4714 if (selinux_policycap_netpeer)
4715 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4716 return NF_DROP;
4718 return NF_ACCEPT;
4721 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4722 u16 family)
4724 u32 secmark_perm;
4725 u32 peer_sid;
4726 struct sock *sk;
4727 struct avc_audit_data ad;
4728 char *addrp;
4729 u8 secmark_active;
4730 u8 peerlbl_active;
4732 /* If any sort of compatibility mode is enabled then handoff processing
4733 * to the selinux_ip_postroute_compat() function to deal with the
4734 * special handling. We do this in an attempt to keep this function
4735 * as fast and as clean as possible. */
4736 if (selinux_compat_net || !selinux_policycap_netpeer)
4737 return selinux_ip_postroute_compat(skb, ifindex, family);
4738 #ifdef CONFIG_XFRM
4739 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4740 * packet transformation so allow the packet to pass without any checks
4741 * since we'll have another chance to perform access control checks
4742 * when the packet is on it's final way out.
4743 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4744 * is NULL, in this case go ahead and apply access control. */
4745 if (skb->dst != NULL && skb->dst->xfrm != NULL)
4746 return NF_ACCEPT;
4747 #endif
4748 secmark_active = selinux_secmark_enabled();
4749 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4750 if (!secmark_active && !peerlbl_active)
4751 return NF_ACCEPT;
4753 /* if the packet is being forwarded then get the peer label from the
4754 * packet itself; otherwise check to see if it is from a local
4755 * application or the kernel, if from an application get the peer label
4756 * from the sending socket, otherwise use the kernel's sid */
4757 sk = skb->sk;
4758 if (sk == NULL) {
4759 switch (family) {
4760 case PF_INET:
4761 if (IPCB(skb)->flags & IPSKB_FORWARDED)
4762 secmark_perm = PACKET__FORWARD_OUT;
4763 else
4764 secmark_perm = PACKET__SEND;
4765 break;
4766 case PF_INET6:
4767 if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4768 secmark_perm = PACKET__FORWARD_OUT;
4769 else
4770 secmark_perm = PACKET__SEND;
4771 break;
4772 default:
4773 return NF_DROP;
4775 if (secmark_perm == PACKET__FORWARD_OUT) {
4776 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4777 return NF_DROP;
4778 } else
4779 peer_sid = SECINITSID_KERNEL;
4780 } else {
4781 struct sk_security_struct *sksec = sk->sk_security;
4782 peer_sid = sksec->sid;
4783 secmark_perm = PACKET__SEND;
4786 AVC_AUDIT_DATA_INIT(&ad, NET);
4787 ad.u.net.netif = ifindex;
4788 ad.u.net.family = family;
4789 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4790 return NF_DROP;
4792 if (secmark_active)
4793 if (avc_has_perm(peer_sid, skb->secmark,
4794 SECCLASS_PACKET, secmark_perm, &ad))
4795 return NF_DROP;
4797 if (peerlbl_active) {
4798 u32 if_sid;
4799 u32 node_sid;
4801 if (sel_netif_sid(ifindex, &if_sid))
4802 return NF_DROP;
4803 if (avc_has_perm(peer_sid, if_sid,
4804 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4805 return NF_DROP;
4807 if (sel_netnode_sid(addrp, family, &node_sid))
4808 return NF_DROP;
4809 if (avc_has_perm(peer_sid, node_sid,
4810 SECCLASS_NODE, NODE__SENDTO, &ad))
4811 return NF_DROP;
4814 return NF_ACCEPT;
4817 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4818 struct sk_buff *skb,
4819 const struct net_device *in,
4820 const struct net_device *out,
4821 int (*okfn)(struct sk_buff *))
4823 return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4826 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4827 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4828 struct sk_buff *skb,
4829 const struct net_device *in,
4830 const struct net_device *out,
4831 int (*okfn)(struct sk_buff *))
4833 return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4835 #endif /* IPV6 */
4837 #endif /* CONFIG_NETFILTER */
4839 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4841 int err;
4843 err = secondary_ops->netlink_send(sk, skb);
4844 if (err)
4845 return err;
4847 if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4848 err = selinux_nlmsg_perm(sk, skb);
4850 return err;
4853 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4855 int err;
4856 struct avc_audit_data ad;
4858 err = secondary_ops->netlink_recv(skb, capability);
4859 if (err)
4860 return err;
4862 AVC_AUDIT_DATA_INIT(&ad, CAP);
4863 ad.u.cap = capability;
4865 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4866 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4869 static int ipc_alloc_security(struct task_struct *task,
4870 struct kern_ipc_perm *perm,
4871 u16 sclass)
4873 struct ipc_security_struct *isec;
4874 u32 sid;
4876 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4877 if (!isec)
4878 return -ENOMEM;
4880 sid = task_sid(task);
4881 isec->sclass = sclass;
4882 isec->sid = sid;
4883 perm->security = isec;
4885 return 0;
4888 static void ipc_free_security(struct kern_ipc_perm *perm)
4890 struct ipc_security_struct *isec = perm->security;
4891 perm->security = NULL;
4892 kfree(isec);
4895 static int msg_msg_alloc_security(struct msg_msg *msg)
4897 struct msg_security_struct *msec;
4899 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4900 if (!msec)
4901 return -ENOMEM;
4903 msec->sid = SECINITSID_UNLABELED;
4904 msg->security = msec;
4906 return 0;
4909 static void msg_msg_free_security(struct msg_msg *msg)
4911 struct msg_security_struct *msec = msg->security;
4913 msg->security = NULL;
4914 kfree(msec);
4917 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4918 u32 perms)
4920 struct ipc_security_struct *isec;
4921 struct avc_audit_data ad;
4922 u32 sid = current_sid();
4924 isec = ipc_perms->security;
4926 AVC_AUDIT_DATA_INIT(&ad, IPC);
4927 ad.u.ipc_id = ipc_perms->key;
4929 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4932 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4934 return msg_msg_alloc_security(msg);
4937 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4939 msg_msg_free_security(msg);
4942 /* message queue security operations */
4943 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4945 struct ipc_security_struct *isec;
4946 struct avc_audit_data ad;
4947 u32 sid = current_sid();
4948 int rc;
4950 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4951 if (rc)
4952 return rc;
4954 isec = msq->q_perm.security;
4956 AVC_AUDIT_DATA_INIT(&ad, IPC);
4957 ad.u.ipc_id = msq->q_perm.key;
4959 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4960 MSGQ__CREATE, &ad);
4961 if (rc) {
4962 ipc_free_security(&msq->q_perm);
4963 return rc;
4965 return 0;
4968 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4970 ipc_free_security(&msq->q_perm);
4973 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4975 struct ipc_security_struct *isec;
4976 struct avc_audit_data ad;
4977 u32 sid = current_sid();
4979 isec = msq->q_perm.security;
4981 AVC_AUDIT_DATA_INIT(&ad, IPC);
4982 ad.u.ipc_id = msq->q_perm.key;
4984 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4985 MSGQ__ASSOCIATE, &ad);
4988 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4990 int err;
4991 int perms;
4993 switch (cmd) {
4994 case IPC_INFO:
4995 case MSG_INFO:
4996 /* No specific object, just general system-wide information. */
4997 return task_has_system(current, SYSTEM__IPC_INFO);
4998 case IPC_STAT:
4999 case MSG_STAT:
5000 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5001 break;
5002 case IPC_SET:
5003 perms = MSGQ__SETATTR;
5004 break;
5005 case IPC_RMID:
5006 perms = MSGQ__DESTROY;
5007 break;
5008 default:
5009 return 0;
5012 err = ipc_has_perm(&msq->q_perm, perms);
5013 return err;
5016 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5018 struct ipc_security_struct *isec;
5019 struct msg_security_struct *msec;
5020 struct avc_audit_data ad;
5021 u32 sid = current_sid();
5022 int rc;
5024 isec = msq->q_perm.security;
5025 msec = msg->security;
5028 * First time through, need to assign label to the message
5030 if (msec->sid == SECINITSID_UNLABELED) {
5032 * Compute new sid based on current process and
5033 * message queue this message will be stored in
5035 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5036 &msec->sid);
5037 if (rc)
5038 return rc;
5041 AVC_AUDIT_DATA_INIT(&ad, IPC);
5042 ad.u.ipc_id = msq->q_perm.key;
5044 /* Can this process write to the queue? */
5045 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5046 MSGQ__WRITE, &ad);
5047 if (!rc)
5048 /* Can this process send the message */
5049 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5050 MSG__SEND, &ad);
5051 if (!rc)
5052 /* Can the message be put in the queue? */
5053 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5054 MSGQ__ENQUEUE, &ad);
5056 return rc;
5059 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5060 struct task_struct *target,
5061 long type, int mode)
5063 struct ipc_security_struct *isec;
5064 struct msg_security_struct *msec;
5065 struct avc_audit_data ad;
5066 u32 sid = task_sid(target);
5067 int rc;
5069 isec = msq->q_perm.security;
5070 msec = msg->security;
5072 AVC_AUDIT_DATA_INIT(&ad, IPC);
5073 ad.u.ipc_id = msq->q_perm.key;
5075 rc = avc_has_perm(sid, isec->sid,
5076 SECCLASS_MSGQ, MSGQ__READ, &ad);
5077 if (!rc)
5078 rc = avc_has_perm(sid, msec->sid,
5079 SECCLASS_MSG, MSG__RECEIVE, &ad);
5080 return rc;
5083 /* Shared Memory security operations */
5084 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5086 struct ipc_security_struct *isec;
5087 struct avc_audit_data ad;
5088 u32 sid = current_sid();
5089 int rc;
5091 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5092 if (rc)
5093 return rc;
5095 isec = shp->shm_perm.security;
5097 AVC_AUDIT_DATA_INIT(&ad, IPC);
5098 ad.u.ipc_id = shp->shm_perm.key;
5100 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5101 SHM__CREATE, &ad);
5102 if (rc) {
5103 ipc_free_security(&shp->shm_perm);
5104 return rc;
5106 return 0;
5109 static void selinux_shm_free_security(struct shmid_kernel *shp)
5111 ipc_free_security(&shp->shm_perm);
5114 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5116 struct ipc_security_struct *isec;
5117 struct avc_audit_data ad;
5118 u32 sid = current_sid();
5120 isec = shp->shm_perm.security;
5122 AVC_AUDIT_DATA_INIT(&ad, IPC);
5123 ad.u.ipc_id = shp->shm_perm.key;
5125 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5126 SHM__ASSOCIATE, &ad);
5129 /* Note, at this point, shp is locked down */
5130 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5132 int perms;
5133 int err;
5135 switch (cmd) {
5136 case IPC_INFO:
5137 case SHM_INFO:
5138 /* No specific object, just general system-wide information. */
5139 return task_has_system(current, SYSTEM__IPC_INFO);
5140 case IPC_STAT:
5141 case SHM_STAT:
5142 perms = SHM__GETATTR | SHM__ASSOCIATE;
5143 break;
5144 case IPC_SET:
5145 perms = SHM__SETATTR;
5146 break;
5147 case SHM_LOCK:
5148 case SHM_UNLOCK:
5149 perms = SHM__LOCK;
5150 break;
5151 case IPC_RMID:
5152 perms = SHM__DESTROY;
5153 break;
5154 default:
5155 return 0;
5158 err = ipc_has_perm(&shp->shm_perm, perms);
5159 return err;
5162 static int selinux_shm_shmat(struct shmid_kernel *shp,
5163 char __user *shmaddr, int shmflg)
5165 u32 perms;
5166 int rc;
5168 rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
5169 if (rc)
5170 return rc;
5172 if (shmflg & SHM_RDONLY)
5173 perms = SHM__READ;
5174 else
5175 perms = SHM__READ | SHM__WRITE;
5177 return ipc_has_perm(&shp->shm_perm, perms);
5180 /* Semaphore security operations */
5181 static int selinux_sem_alloc_security(struct sem_array *sma)
5183 struct ipc_security_struct *isec;
5184 struct avc_audit_data ad;
5185 u32 sid = current_sid();
5186 int rc;
5188 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5189 if (rc)
5190 return rc;
5192 isec = sma->sem_perm.security;
5194 AVC_AUDIT_DATA_INIT(&ad, IPC);
5195 ad.u.ipc_id = sma->sem_perm.key;
5197 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5198 SEM__CREATE, &ad);
5199 if (rc) {
5200 ipc_free_security(&sma->sem_perm);
5201 return rc;
5203 return 0;
5206 static void selinux_sem_free_security(struct sem_array *sma)
5208 ipc_free_security(&sma->sem_perm);
5211 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5213 struct ipc_security_struct *isec;
5214 struct avc_audit_data ad;
5215 u32 sid = current_sid();
5217 isec = sma->sem_perm.security;
5219 AVC_AUDIT_DATA_INIT(&ad, IPC);
5220 ad.u.ipc_id = sma->sem_perm.key;
5222 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5223 SEM__ASSOCIATE, &ad);
5226 /* Note, at this point, sma is locked down */
5227 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5229 int err;
5230 u32 perms;
5232 switch (cmd) {
5233 case IPC_INFO:
5234 case SEM_INFO:
5235 /* No specific object, just general system-wide information. */
5236 return task_has_system(current, SYSTEM__IPC_INFO);
5237 case GETPID:
5238 case GETNCNT:
5239 case GETZCNT:
5240 perms = SEM__GETATTR;
5241 break;
5242 case GETVAL:
5243 case GETALL:
5244 perms = SEM__READ;
5245 break;
5246 case SETVAL:
5247 case SETALL:
5248 perms = SEM__WRITE;
5249 break;
5250 case IPC_RMID:
5251 perms = SEM__DESTROY;
5252 break;
5253 case IPC_SET:
5254 perms = SEM__SETATTR;
5255 break;
5256 case IPC_STAT:
5257 case SEM_STAT:
5258 perms = SEM__GETATTR | SEM__ASSOCIATE;
5259 break;
5260 default:
5261 return 0;
5264 err = ipc_has_perm(&sma->sem_perm, perms);
5265 return err;
5268 static int selinux_sem_semop(struct sem_array *sma,
5269 struct sembuf *sops, unsigned nsops, int alter)
5271 u32 perms;
5273 if (alter)
5274 perms = SEM__READ | SEM__WRITE;
5275 else
5276 perms = SEM__READ;
5278 return ipc_has_perm(&sma->sem_perm, perms);
5281 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5283 u32 av = 0;
5285 av = 0;
5286 if (flag & S_IRUGO)
5287 av |= IPC__UNIX_READ;
5288 if (flag & S_IWUGO)
5289 av |= IPC__UNIX_WRITE;
5291 if (av == 0)
5292 return 0;
5294 return ipc_has_perm(ipcp, av);
5297 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5299 struct ipc_security_struct *isec = ipcp->security;
5300 *secid = isec->sid;
5303 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5305 if (inode)
5306 inode_doinit_with_dentry(inode, dentry);
5309 static int selinux_getprocattr(struct task_struct *p,
5310 char *name, char **value)
5312 const struct task_security_struct *__tsec;
5313 u32 sid;
5314 int error;
5315 unsigned len;
5317 if (current != p) {
5318 error = current_has_perm(p, PROCESS__GETATTR);
5319 if (error)
5320 return error;
5323 rcu_read_lock();
5324 __tsec = __task_cred(p)->security;
5326 if (!strcmp(name, "current"))
5327 sid = __tsec->sid;
5328 else if (!strcmp(name, "prev"))
5329 sid = __tsec->osid;
5330 else if (!strcmp(name, "exec"))
5331 sid = __tsec->exec_sid;
5332 else if (!strcmp(name, "fscreate"))
5333 sid = __tsec->create_sid;
5334 else if (!strcmp(name, "keycreate"))
5335 sid = __tsec->keycreate_sid;
5336 else if (!strcmp(name, "sockcreate"))
5337 sid = __tsec->sockcreate_sid;
5338 else
5339 goto invalid;
5340 rcu_read_unlock();
5342 if (!sid)
5343 return 0;
5345 error = security_sid_to_context(sid, value, &len);
5346 if (error)
5347 return error;
5348 return len;
5350 invalid:
5351 rcu_read_unlock();
5352 return -EINVAL;
5355 static int selinux_setprocattr(struct task_struct *p,
5356 char *name, void *value, size_t size)
5358 struct task_security_struct *tsec;
5359 struct task_struct *tracer;
5360 struct cred *new;
5361 u32 sid = 0, ptsid;
5362 int error;
5363 char *str = value;
5365 if (current != p) {
5366 /* SELinux only allows a process to change its own
5367 security attributes. */
5368 return -EACCES;
5372 * Basic control over ability to set these attributes at all.
5373 * current == p, but we'll pass them separately in case the
5374 * above restriction is ever removed.
5376 if (!strcmp(name, "exec"))
5377 error = current_has_perm(p, PROCESS__SETEXEC);
5378 else if (!strcmp(name, "fscreate"))
5379 error = current_has_perm(p, PROCESS__SETFSCREATE);
5380 else if (!strcmp(name, "keycreate"))
5381 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5382 else if (!strcmp(name, "sockcreate"))
5383 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5384 else if (!strcmp(name, "current"))
5385 error = current_has_perm(p, PROCESS__SETCURRENT);
5386 else
5387 error = -EINVAL;
5388 if (error)
5389 return error;
5391 /* Obtain a SID for the context, if one was specified. */
5392 if (size && str[1] && str[1] != '\n') {
5393 if (str[size-1] == '\n') {
5394 str[size-1] = 0;
5395 size--;
5397 error = security_context_to_sid(value, size, &sid);
5398 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5399 if (!capable(CAP_MAC_ADMIN))
5400 return error;
5401 error = security_context_to_sid_force(value, size,
5402 &sid);
5404 if (error)
5405 return error;
5408 new = prepare_creds();
5409 if (!new)
5410 return -ENOMEM;
5412 /* Permission checking based on the specified context is
5413 performed during the actual operation (execve,
5414 open/mkdir/...), when we know the full context of the
5415 operation. See selinux_bprm_set_creds for the execve
5416 checks and may_create for the file creation checks. The
5417 operation will then fail if the context is not permitted. */
5418 tsec = new->security;
5419 if (!strcmp(name, "exec")) {
5420 tsec->exec_sid = sid;
5421 } else if (!strcmp(name, "fscreate")) {
5422 tsec->create_sid = sid;
5423 } else if (!strcmp(name, "keycreate")) {
5424 error = may_create_key(sid, p);
5425 if (error)
5426 goto abort_change;
5427 tsec->keycreate_sid = sid;
5428 } else if (!strcmp(name, "sockcreate")) {
5429 tsec->sockcreate_sid = sid;
5430 } else if (!strcmp(name, "current")) {
5431 error = -EINVAL;
5432 if (sid == 0)
5433 goto abort_change;
5435 /* Only allow single threaded processes to change context */
5436 error = -EPERM;
5437 if (!is_single_threaded(p)) {
5438 error = security_bounded_transition(tsec->sid, sid);
5439 if (error)
5440 goto abort_change;
5443 /* Check permissions for the transition. */
5444 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5445 PROCESS__DYNTRANSITION, NULL);
5446 if (error)
5447 goto abort_change;
5449 /* Check for ptracing, and update the task SID if ok.
5450 Otherwise, leave SID unchanged and fail. */
5451 ptsid = 0;
5452 task_lock(p);
5453 tracer = tracehook_tracer_task(p);
5454 if (tracer)
5455 ptsid = task_sid(tracer);
5456 task_unlock(p);
5458 if (tracer) {
5459 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5460 PROCESS__PTRACE, NULL);
5461 if (error)
5462 goto abort_change;
5465 tsec->sid = sid;
5466 } else {
5467 error = -EINVAL;
5468 goto abort_change;
5471 commit_creds(new);
5472 return size;
5474 abort_change:
5475 abort_creds(new);
5476 return error;
5479 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5481 return security_sid_to_context(secid, secdata, seclen);
5484 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5486 return security_context_to_sid(secdata, seclen, secid);
5489 static void selinux_release_secctx(char *secdata, u32 seclen)
5491 kfree(secdata);
5494 #ifdef CONFIG_KEYS
5496 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5497 unsigned long flags)
5499 const struct task_security_struct *tsec;
5500 struct key_security_struct *ksec;
5502 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5503 if (!ksec)
5504 return -ENOMEM;
5506 tsec = cred->security;
5507 if (tsec->keycreate_sid)
5508 ksec->sid = tsec->keycreate_sid;
5509 else
5510 ksec->sid = tsec->sid;
5512 k->security = ksec;
5513 return 0;
5516 static void selinux_key_free(struct key *k)
5518 struct key_security_struct *ksec = k->security;
5520 k->security = NULL;
5521 kfree(ksec);
5524 static int selinux_key_permission(key_ref_t key_ref,
5525 const struct cred *cred,
5526 key_perm_t perm)
5528 struct key *key;
5529 struct key_security_struct *ksec;
5530 u32 sid;
5532 /* if no specific permissions are requested, we skip the
5533 permission check. No serious, additional covert channels
5534 appear to be created. */
5535 if (perm == 0)
5536 return 0;
5538 sid = cred_sid(cred);
5540 key = key_ref_to_ptr(key_ref);
5541 ksec = key->security;
5543 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5546 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5548 struct key_security_struct *ksec = key->security;
5549 char *context = NULL;
5550 unsigned len;
5551 int rc;
5553 rc = security_sid_to_context(ksec->sid, &context, &len);
5554 if (!rc)
5555 rc = len;
5556 *_buffer = context;
5557 return rc;
5560 #endif
5562 static struct security_operations selinux_ops = {
5563 .name = "selinux",
5565 .ptrace_may_access = selinux_ptrace_may_access,
5566 .ptrace_traceme = selinux_ptrace_traceme,
5567 .capget = selinux_capget,
5568 .capset = selinux_capset,
5569 .sysctl = selinux_sysctl,
5570 .capable = selinux_capable,
5571 .quotactl = selinux_quotactl,
5572 .quota_on = selinux_quota_on,
5573 .syslog = selinux_syslog,
5574 .vm_enough_memory = selinux_vm_enough_memory,
5576 .netlink_send = selinux_netlink_send,
5577 .netlink_recv = selinux_netlink_recv,
5579 .bprm_set_creds = selinux_bprm_set_creds,
5580 .bprm_check_security = selinux_bprm_check_security,
5581 .bprm_committing_creds = selinux_bprm_committing_creds,
5582 .bprm_committed_creds = selinux_bprm_committed_creds,
5583 .bprm_secureexec = selinux_bprm_secureexec,
5585 .sb_alloc_security = selinux_sb_alloc_security,
5586 .sb_free_security = selinux_sb_free_security,
5587 .sb_copy_data = selinux_sb_copy_data,
5588 .sb_kern_mount = selinux_sb_kern_mount,
5589 .sb_show_options = selinux_sb_show_options,
5590 .sb_statfs = selinux_sb_statfs,
5591 .sb_mount = selinux_mount,
5592 .sb_umount = selinux_umount,
5593 .sb_set_mnt_opts = selinux_set_mnt_opts,
5594 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts,
5595 .sb_parse_opts_str = selinux_parse_opts_str,
5598 .inode_alloc_security = selinux_inode_alloc_security,
5599 .inode_free_security = selinux_inode_free_security,
5600 .inode_init_security = selinux_inode_init_security,
5601 .inode_create = selinux_inode_create,
5602 .inode_link = selinux_inode_link,
5603 .inode_unlink = selinux_inode_unlink,
5604 .inode_symlink = selinux_inode_symlink,
5605 .inode_mkdir = selinux_inode_mkdir,
5606 .inode_rmdir = selinux_inode_rmdir,
5607 .inode_mknod = selinux_inode_mknod,
5608 .inode_rename = selinux_inode_rename,
5609 .inode_readlink = selinux_inode_readlink,
5610 .inode_follow_link = selinux_inode_follow_link,
5611 .inode_permission = selinux_inode_permission,
5612 .inode_setattr = selinux_inode_setattr,
5613 .inode_getattr = selinux_inode_getattr,
5614 .inode_setxattr = selinux_inode_setxattr,
5615 .inode_post_setxattr = selinux_inode_post_setxattr,
5616 .inode_getxattr = selinux_inode_getxattr,
5617 .inode_listxattr = selinux_inode_listxattr,
5618 .inode_removexattr = selinux_inode_removexattr,
5619 .inode_getsecurity = selinux_inode_getsecurity,
5620 .inode_setsecurity = selinux_inode_setsecurity,
5621 .inode_listsecurity = selinux_inode_listsecurity,
5622 .inode_need_killpriv = selinux_inode_need_killpriv,
5623 .inode_killpriv = selinux_inode_killpriv,
5624 .inode_getsecid = selinux_inode_getsecid,
5626 .file_permission = selinux_file_permission,
5627 .file_alloc_security = selinux_file_alloc_security,
5628 .file_free_security = selinux_file_free_security,
5629 .file_ioctl = selinux_file_ioctl,
5630 .file_mmap = selinux_file_mmap,
5631 .file_mprotect = selinux_file_mprotect,
5632 .file_lock = selinux_file_lock,
5633 .file_fcntl = selinux_file_fcntl,
5634 .file_set_fowner = selinux_file_set_fowner,
5635 .file_send_sigiotask = selinux_file_send_sigiotask,
5636 .file_receive = selinux_file_receive,
5638 .dentry_open = selinux_dentry_open,
5640 .task_create = selinux_task_create,
5641 .cred_free = selinux_cred_free,
5642 .cred_prepare = selinux_cred_prepare,
5643 .cred_commit = selinux_cred_commit,
5644 .kernel_act_as = selinux_kernel_act_as,
5645 .kernel_create_files_as = selinux_kernel_create_files_as,
5646 .task_setuid = selinux_task_setuid,
5647 .task_fix_setuid = selinux_task_fix_setuid,
5648 .task_setgid = selinux_task_setgid,
5649 .task_setpgid = selinux_task_setpgid,
5650 .task_getpgid = selinux_task_getpgid,
5651 .task_getsid = selinux_task_getsid,
5652 .task_getsecid = selinux_task_getsecid,
5653 .task_setgroups = selinux_task_setgroups,
5654 .task_setnice = selinux_task_setnice,
5655 .task_setioprio = selinux_task_setioprio,
5656 .task_getioprio = selinux_task_getioprio,
5657 .task_setrlimit = selinux_task_setrlimit,
5658 .task_setscheduler = selinux_task_setscheduler,
5659 .task_getscheduler = selinux_task_getscheduler,
5660 .task_movememory = selinux_task_movememory,
5661 .task_kill = selinux_task_kill,
5662 .task_wait = selinux_task_wait,
5663 .task_prctl = selinux_task_prctl,
5664 .task_to_inode = selinux_task_to_inode,
5666 .ipc_permission = selinux_ipc_permission,
5667 .ipc_getsecid = selinux_ipc_getsecid,
5669 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
5670 .msg_msg_free_security = selinux_msg_msg_free_security,
5672 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
5673 .msg_queue_free_security = selinux_msg_queue_free_security,
5674 .msg_queue_associate = selinux_msg_queue_associate,
5675 .msg_queue_msgctl = selinux_msg_queue_msgctl,
5676 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
5677 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
5679 .shm_alloc_security = selinux_shm_alloc_security,
5680 .shm_free_security = selinux_shm_free_security,
5681 .shm_associate = selinux_shm_associate,
5682 .shm_shmctl = selinux_shm_shmctl,
5683 .shm_shmat = selinux_shm_shmat,
5685 .sem_alloc_security = selinux_sem_alloc_security,
5686 .sem_free_security = selinux_sem_free_security,
5687 .sem_associate = selinux_sem_associate,
5688 .sem_semctl = selinux_sem_semctl,
5689 .sem_semop = selinux_sem_semop,
5691 .d_instantiate = selinux_d_instantiate,
5693 .getprocattr = selinux_getprocattr,
5694 .setprocattr = selinux_setprocattr,
5696 .secid_to_secctx = selinux_secid_to_secctx,
5697 .secctx_to_secid = selinux_secctx_to_secid,
5698 .release_secctx = selinux_release_secctx,
5700 .unix_stream_connect = selinux_socket_unix_stream_connect,
5701 .unix_may_send = selinux_socket_unix_may_send,
5703 .socket_create = selinux_socket_create,
5704 .socket_post_create = selinux_socket_post_create,
5705 .socket_bind = selinux_socket_bind,
5706 .socket_connect = selinux_socket_connect,
5707 .socket_listen = selinux_socket_listen,
5708 .socket_accept = selinux_socket_accept,
5709 .socket_sendmsg = selinux_socket_sendmsg,
5710 .socket_recvmsg = selinux_socket_recvmsg,
5711 .socket_getsockname = selinux_socket_getsockname,
5712 .socket_getpeername = selinux_socket_getpeername,
5713 .socket_getsockopt = selinux_socket_getsockopt,
5714 .socket_setsockopt = selinux_socket_setsockopt,
5715 .socket_shutdown = selinux_socket_shutdown,
5716 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
5717 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
5718 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
5719 .sk_alloc_security = selinux_sk_alloc_security,
5720 .sk_free_security = selinux_sk_free_security,
5721 .sk_clone_security = selinux_sk_clone_security,
5722 .sk_getsecid = selinux_sk_getsecid,
5723 .sock_graft = selinux_sock_graft,
5724 .inet_conn_request = selinux_inet_conn_request,
5725 .inet_csk_clone = selinux_inet_csk_clone,
5726 .inet_conn_established = selinux_inet_conn_established,
5727 .req_classify_flow = selinux_req_classify_flow,
5729 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5730 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
5731 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
5732 .xfrm_policy_free_security = selinux_xfrm_policy_free,
5733 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
5734 .xfrm_state_alloc_security = selinux_xfrm_state_alloc,
5735 .xfrm_state_free_security = selinux_xfrm_state_free,
5736 .xfrm_state_delete_security = selinux_xfrm_state_delete,
5737 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
5738 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match,
5739 .xfrm_decode_session = selinux_xfrm_decode_session,
5740 #endif
5742 #ifdef CONFIG_KEYS
5743 .key_alloc = selinux_key_alloc,
5744 .key_free = selinux_key_free,
5745 .key_permission = selinux_key_permission,
5746 .key_getsecurity = selinux_key_getsecurity,
5747 #endif
5749 #ifdef CONFIG_AUDIT
5750 .audit_rule_init = selinux_audit_rule_init,
5751 .audit_rule_known = selinux_audit_rule_known,
5752 .audit_rule_match = selinux_audit_rule_match,
5753 .audit_rule_free = selinux_audit_rule_free,
5754 #endif
5757 static __init int selinux_init(void)
5759 if (!security_module_enable(&selinux_ops)) {
5760 selinux_enabled = 0;
5761 return 0;
5764 if (!selinux_enabled) {
5765 printk(KERN_INFO "SELinux: Disabled at boot.\n");
5766 return 0;
5769 printk(KERN_INFO "SELinux: Initializing.\n");
5771 /* Set the security state for the initial task. */
5772 cred_init_security();
5774 sel_inode_cache = kmem_cache_create("selinux_inode_security",
5775 sizeof(struct inode_security_struct),
5776 0, SLAB_PANIC, NULL);
5777 avc_init();
5779 secondary_ops = security_ops;
5780 if (!secondary_ops)
5781 panic("SELinux: No initial security operations\n");
5782 if (register_security(&selinux_ops))
5783 panic("SELinux: Unable to register with kernel.\n");
5785 if (selinux_enforcing)
5786 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
5787 else
5788 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
5790 return 0;
5793 void selinux_complete_init(void)
5795 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
5797 /* Set up any superblocks initialized prior to the policy load. */
5798 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
5799 spin_lock(&sb_lock);
5800 spin_lock(&sb_security_lock);
5801 next_sb:
5802 if (!list_empty(&superblock_security_head)) {
5803 struct superblock_security_struct *sbsec =
5804 list_entry(superblock_security_head.next,
5805 struct superblock_security_struct,
5806 list);
5807 struct super_block *sb = sbsec->sb;
5808 sb->s_count++;
5809 spin_unlock(&sb_security_lock);
5810 spin_unlock(&sb_lock);
5811 down_read(&sb->s_umount);
5812 if (sb->s_root)
5813 superblock_doinit(sb, NULL);
5814 drop_super(sb);
5815 spin_lock(&sb_lock);
5816 spin_lock(&sb_security_lock);
5817 list_del_init(&sbsec->list);
5818 goto next_sb;
5820 spin_unlock(&sb_security_lock);
5821 spin_unlock(&sb_lock);
5824 /* SELinux requires early initialization in order to label
5825 all processes and objects when they are created. */
5826 security_initcall(selinux_init);
5828 #if defined(CONFIG_NETFILTER)
5830 static struct nf_hook_ops selinux_ipv4_ops[] = {
5832 .hook = selinux_ipv4_postroute,
5833 .owner = THIS_MODULE,
5834 .pf = PF_INET,
5835 .hooknum = NF_INET_POST_ROUTING,
5836 .priority = NF_IP_PRI_SELINUX_LAST,
5839 .hook = selinux_ipv4_forward,
5840 .owner = THIS_MODULE,
5841 .pf = PF_INET,
5842 .hooknum = NF_INET_FORWARD,
5843 .priority = NF_IP_PRI_SELINUX_FIRST,
5846 .hook = selinux_ipv4_output,
5847 .owner = THIS_MODULE,
5848 .pf = PF_INET,
5849 .hooknum = NF_INET_LOCAL_OUT,
5850 .priority = NF_IP_PRI_SELINUX_FIRST,
5854 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5856 static struct nf_hook_ops selinux_ipv6_ops[] = {
5858 .hook = selinux_ipv6_postroute,
5859 .owner = THIS_MODULE,
5860 .pf = PF_INET6,
5861 .hooknum = NF_INET_POST_ROUTING,
5862 .priority = NF_IP6_PRI_SELINUX_LAST,
5865 .hook = selinux_ipv6_forward,
5866 .owner = THIS_MODULE,
5867 .pf = PF_INET6,
5868 .hooknum = NF_INET_FORWARD,
5869 .priority = NF_IP6_PRI_SELINUX_FIRST,
5873 #endif /* IPV6 */
5875 static int __init selinux_nf_ip_init(void)
5877 int err = 0;
5879 if (!selinux_enabled)
5880 goto out;
5882 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
5884 err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5885 if (err)
5886 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5888 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5889 err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5890 if (err)
5891 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5892 #endif /* IPV6 */
5894 out:
5895 return err;
5898 __initcall(selinux_nf_ip_init);
5900 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5901 static void selinux_nf_ip_exit(void)
5903 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
5905 nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5906 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5907 nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5908 #endif /* IPV6 */
5910 #endif
5912 #else /* CONFIG_NETFILTER */
5914 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5915 #define selinux_nf_ip_exit()
5916 #endif
5918 #endif /* CONFIG_NETFILTER */
5920 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5921 static int selinux_disabled;
5923 int selinux_disable(void)
5925 extern void exit_sel_fs(void);
5927 if (ss_initialized) {
5928 /* Not permitted after initial policy load. */
5929 return -EINVAL;
5932 if (selinux_disabled) {
5933 /* Only do this once. */
5934 return -EINVAL;
5937 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
5939 selinux_disabled = 1;
5940 selinux_enabled = 0;
5942 /* Reset security_ops to the secondary module, dummy or capability. */
5943 security_ops = secondary_ops;
5945 /* Unregister netfilter hooks. */
5946 selinux_nf_ip_exit();
5948 /* Unregister selinuxfs. */
5949 exit_sel_fs();
5951 return 0;
5953 #endif