bridge: relay bridge multicast pkgs if !STP
[linux-2.6/mini2440.git] / fs / namei.c
blob967c3db9272453e5cdd597d8f9fb50b4ceae0367
1 /*
2 * linux/fs/namei.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * Some corrections by tytso.
9 */
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <asm/uaccess.h>
38 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
40 /* [Feb-1997 T. Schoebel-Theuer]
41 * Fundamental changes in the pathname lookup mechanisms (namei)
42 * were necessary because of omirr. The reason is that omirr needs
43 * to know the _real_ pathname, not the user-supplied one, in case
44 * of symlinks (and also when transname replacements occur).
46 * The new code replaces the old recursive symlink resolution with
47 * an iterative one (in case of non-nested symlink chains). It does
48 * this with calls to <fs>_follow_link().
49 * As a side effect, dir_namei(), _namei() and follow_link() are now
50 * replaced with a single function lookup_dentry() that can handle all
51 * the special cases of the former code.
53 * With the new dcache, the pathname is stored at each inode, at least as
54 * long as the refcount of the inode is positive. As a side effect, the
55 * size of the dcache depends on the inode cache and thus is dynamic.
57 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
58 * resolution to correspond with current state of the code.
60 * Note that the symlink resolution is not *completely* iterative.
61 * There is still a significant amount of tail- and mid- recursion in
62 * the algorithm. Also, note that <fs>_readlink() is not used in
63 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
64 * may return different results than <fs>_follow_link(). Many virtual
65 * filesystems (including /proc) exhibit this behavior.
68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
69 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
70 * and the name already exists in form of a symlink, try to create the new
71 * name indicated by the symlink. The old code always complained that the
72 * name already exists, due to not following the symlink even if its target
73 * is nonexistent. The new semantics affects also mknod() and link() when
74 * the name is a symlink pointing to a non-existant name.
76 * I don't know which semantics is the right one, since I have no access
77 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
78 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
79 * "old" one. Personally, I think the new semantics is much more logical.
80 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
81 * file does succeed in both HP-UX and SunOs, but not in Solaris
82 * and in the old Linux semantics.
85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
86 * semantics. See the comments in "open_namei" and "do_link" below.
88 * [10-Sep-98 Alan Modra] Another symlink change.
91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
92 * inside the path - always follow.
93 * in the last component in creation/removal/renaming - never follow.
94 * if LOOKUP_FOLLOW passed - follow.
95 * if the pathname has trailing slashes - follow.
96 * otherwise - don't follow.
97 * (applied in that order).
99 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
100 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
101 * During the 2.4 we need to fix the userland stuff depending on it -
102 * hopefully we will be able to get rid of that wart in 2.5. So far only
103 * XEmacs seems to be relying on it...
106 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
107 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
108 * any extra contention...
111 static int __link_path_walk(const char *name, struct nameidata *nd);
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
120 static int do_getname(const char __user *filename, char *page)
122 int retval;
123 unsigned long len = PATH_MAX;
125 if (!segment_eq(get_fs(), KERNEL_DS)) {
126 if ((unsigned long) filename >= TASK_SIZE)
127 return -EFAULT;
128 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
129 len = TASK_SIZE - (unsigned long) filename;
132 retval = strncpy_from_user(page, filename, len);
133 if (retval > 0) {
134 if (retval < len)
135 return 0;
136 return -ENAMETOOLONG;
137 } else if (!retval)
138 retval = -ENOENT;
139 return retval;
142 char * getname(const char __user * filename)
144 char *tmp, *result;
146 result = ERR_PTR(-ENOMEM);
147 tmp = __getname();
148 if (tmp) {
149 int retval = do_getname(filename, tmp);
151 result = tmp;
152 if (retval < 0) {
153 __putname(tmp);
154 result = ERR_PTR(retval);
157 audit_getname(result);
158 return result;
161 #ifdef CONFIG_AUDITSYSCALL
162 void putname(const char *name)
164 if (unlikely(!audit_dummy_context()))
165 audit_putname(name);
166 else
167 __putname(name);
169 EXPORT_SYMBOL(putname);
170 #endif
174 * generic_permission - check for access rights on a Posix-like filesystem
175 * @inode: inode to check access rights for
176 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
177 * @check_acl: optional callback to check for Posix ACLs
179 * Used to check for read/write/execute permissions on a file.
180 * We use "fsuid" for this, letting us set arbitrary permissions
181 * for filesystem access without changing the "normal" uids which
182 * are used for other things..
184 int generic_permission(struct inode *inode, int mask,
185 int (*check_acl)(struct inode *inode, int mask))
187 umode_t mode = inode->i_mode;
189 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
191 if (current_fsuid() == inode->i_uid)
192 mode >>= 6;
193 else {
194 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
195 int error = check_acl(inode, mask);
196 if (error == -EACCES)
197 goto check_capabilities;
198 else if (error != -EAGAIN)
199 return error;
202 if (in_group_p(inode->i_gid))
203 mode >>= 3;
207 * If the DACs are ok we don't need any capability check.
209 if ((mask & ~mode) == 0)
210 return 0;
212 check_capabilities:
214 * Read/write DACs are always overridable.
215 * Executable DACs are overridable if at least one exec bit is set.
217 if (!(mask & MAY_EXEC) || execute_ok(inode))
218 if (capable(CAP_DAC_OVERRIDE))
219 return 0;
222 * Searching includes executable on directories, else just read.
224 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
225 if (capable(CAP_DAC_READ_SEARCH))
226 return 0;
228 return -EACCES;
232 * inode_permission - check for access rights to a given inode
233 * @inode: inode to check permission on
234 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
236 * Used to check for read/write/execute permissions on an inode.
237 * We use "fsuid" for this, letting us set arbitrary permissions
238 * for filesystem access without changing the "normal" uids which
239 * are used for other things.
241 int inode_permission(struct inode *inode, int mask)
243 int retval;
245 if (mask & MAY_WRITE) {
246 umode_t mode = inode->i_mode;
249 * Nobody gets write access to a read-only fs.
251 if (IS_RDONLY(inode) &&
252 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
253 return -EROFS;
256 * Nobody gets write access to an immutable file.
258 if (IS_IMMUTABLE(inode))
259 return -EACCES;
262 if (inode->i_op->permission)
263 retval = inode->i_op->permission(inode, mask);
264 else
265 retval = generic_permission(inode, mask, NULL);
267 if (retval)
268 return retval;
270 retval = devcgroup_inode_permission(inode, mask);
271 if (retval)
272 return retval;
274 return security_inode_permission(inode,
275 mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND));
279 * file_permission - check for additional access rights to a given file
280 * @file: file to check access rights for
281 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
283 * Used to check for read/write/execute permissions on an already opened
284 * file.
286 * Note:
287 * Do not use this function in new code. All access checks should
288 * be done using inode_permission().
290 int file_permission(struct file *file, int mask)
292 return inode_permission(file->f_path.dentry->d_inode, mask);
296 * get_write_access() gets write permission for a file.
297 * put_write_access() releases this write permission.
298 * This is used for regular files.
299 * We cannot support write (and maybe mmap read-write shared) accesses and
300 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
301 * can have the following values:
302 * 0: no writers, no VM_DENYWRITE mappings
303 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
304 * > 0: (i_writecount) users are writing to the file.
306 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
307 * except for the cases where we don't hold i_writecount yet. Then we need to
308 * use {get,deny}_write_access() - these functions check the sign and refuse
309 * to do the change if sign is wrong. Exclusion between them is provided by
310 * the inode->i_lock spinlock.
313 int get_write_access(struct inode * inode)
315 spin_lock(&inode->i_lock);
316 if (atomic_read(&inode->i_writecount) < 0) {
317 spin_unlock(&inode->i_lock);
318 return -ETXTBSY;
320 atomic_inc(&inode->i_writecount);
321 spin_unlock(&inode->i_lock);
323 return 0;
326 int deny_write_access(struct file * file)
328 struct inode *inode = file->f_path.dentry->d_inode;
330 spin_lock(&inode->i_lock);
331 if (atomic_read(&inode->i_writecount) > 0) {
332 spin_unlock(&inode->i_lock);
333 return -ETXTBSY;
335 atomic_dec(&inode->i_writecount);
336 spin_unlock(&inode->i_lock);
338 return 0;
342 * path_get - get a reference to a path
343 * @path: path to get the reference to
345 * Given a path increment the reference count to the dentry and the vfsmount.
347 void path_get(struct path *path)
349 mntget(path->mnt);
350 dget(path->dentry);
352 EXPORT_SYMBOL(path_get);
355 * path_put - put a reference to a path
356 * @path: path to put the reference to
358 * Given a path decrement the reference count to the dentry and the vfsmount.
360 void path_put(struct path *path)
362 dput(path->dentry);
363 mntput(path->mnt);
365 EXPORT_SYMBOL(path_put);
368 * release_open_intent - free up open intent resources
369 * @nd: pointer to nameidata
371 void release_open_intent(struct nameidata *nd)
373 if (nd->intent.open.file->f_path.dentry == NULL)
374 put_filp(nd->intent.open.file);
375 else
376 fput(nd->intent.open.file);
379 static inline struct dentry *
380 do_revalidate(struct dentry *dentry, struct nameidata *nd)
382 int status = dentry->d_op->d_revalidate(dentry, nd);
383 if (unlikely(status <= 0)) {
385 * The dentry failed validation.
386 * If d_revalidate returned 0 attempt to invalidate
387 * the dentry otherwise d_revalidate is asking us
388 * to return a fail status.
390 if (!status) {
391 if (!d_invalidate(dentry)) {
392 dput(dentry);
393 dentry = NULL;
395 } else {
396 dput(dentry);
397 dentry = ERR_PTR(status);
400 return dentry;
404 * Internal lookup() using the new generic dcache.
405 * SMP-safe
407 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
409 struct dentry * dentry = __d_lookup(parent, name);
411 /* lockess __d_lookup may fail due to concurrent d_move()
412 * in some unrelated directory, so try with d_lookup
414 if (!dentry)
415 dentry = d_lookup(parent, name);
417 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
418 dentry = do_revalidate(dentry, nd);
420 return dentry;
424 * Short-cut version of permission(), for calling by
425 * path_walk(), when dcache lock is held. Combines parts
426 * of permission() and generic_permission(), and tests ONLY for
427 * MAY_EXEC permission.
429 * If appropriate, check DAC only. If not appropriate, or
430 * short-cut DAC fails, then call permission() to do more
431 * complete permission check.
433 static int exec_permission_lite(struct inode *inode)
435 umode_t mode = inode->i_mode;
437 if (inode->i_op->permission)
438 return -EAGAIN;
440 if (current_fsuid() == inode->i_uid)
441 mode >>= 6;
442 else if (in_group_p(inode->i_gid))
443 mode >>= 3;
445 if (mode & MAY_EXEC)
446 goto ok;
448 if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE))
449 goto ok;
451 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE))
452 goto ok;
454 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH))
455 goto ok;
457 return -EACCES;
459 return security_inode_permission(inode, MAY_EXEC);
463 * This is called when everything else fails, and we actually have
464 * to go to the low-level filesystem to find out what we should do..
466 * We get the directory semaphore, and after getting that we also
467 * make sure that nobody added the entry to the dcache in the meantime..
468 * SMP-safe
470 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
472 struct dentry * result;
473 struct inode *dir = parent->d_inode;
475 mutex_lock(&dir->i_mutex);
477 * First re-do the cached lookup just in case it was created
478 * while we waited for the directory semaphore..
480 * FIXME! This could use version numbering or similar to
481 * avoid unnecessary cache lookups.
483 * The "dcache_lock" is purely to protect the RCU list walker
484 * from concurrent renames at this point (we mustn't get false
485 * negatives from the RCU list walk here, unlike the optimistic
486 * fast walk).
488 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
490 result = d_lookup(parent, name);
491 if (!result) {
492 struct dentry *dentry;
494 /* Don't create child dentry for a dead directory. */
495 result = ERR_PTR(-ENOENT);
496 if (IS_DEADDIR(dir))
497 goto out_unlock;
499 dentry = d_alloc(parent, name);
500 result = ERR_PTR(-ENOMEM);
501 if (dentry) {
502 result = dir->i_op->lookup(dir, dentry, nd);
503 if (result)
504 dput(dentry);
505 else
506 result = dentry;
508 out_unlock:
509 mutex_unlock(&dir->i_mutex);
510 return result;
514 * Uhhuh! Nasty case: the cache was re-populated while
515 * we waited on the semaphore. Need to revalidate.
517 mutex_unlock(&dir->i_mutex);
518 if (result->d_op && result->d_op->d_revalidate) {
519 result = do_revalidate(result, nd);
520 if (!result)
521 result = ERR_PTR(-ENOENT);
523 return result;
527 * Wrapper to retry pathname resolution whenever the underlying
528 * file system returns an ESTALE.
530 * Retry the whole path once, forcing real lookup requests
531 * instead of relying on the dcache.
533 static __always_inline int link_path_walk(const char *name, struct nameidata *nd)
535 struct path save = nd->path;
536 int result;
538 /* make sure the stuff we saved doesn't go away */
539 path_get(&save);
541 result = __link_path_walk(name, nd);
542 if (result == -ESTALE) {
543 /* nd->path had been dropped */
544 nd->path = save;
545 path_get(&nd->path);
546 nd->flags |= LOOKUP_REVAL;
547 result = __link_path_walk(name, nd);
550 path_put(&save);
552 return result;
555 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
557 int res = 0;
558 char *name;
559 if (IS_ERR(link))
560 goto fail;
562 if (*link == '/') {
563 struct fs_struct *fs = current->fs;
565 path_put(&nd->path);
567 read_lock(&fs->lock);
568 nd->path = fs->root;
569 path_get(&fs->root);
570 read_unlock(&fs->lock);
573 res = link_path_walk(link, nd);
574 if (nd->depth || res || nd->last_type!=LAST_NORM)
575 return res;
577 * If it is an iterative symlinks resolution in open_namei() we
578 * have to copy the last component. And all that crap because of
579 * bloody create() on broken symlinks. Furrfu...
581 name = __getname();
582 if (unlikely(!name)) {
583 path_put(&nd->path);
584 return -ENOMEM;
586 strcpy(name, nd->last.name);
587 nd->last.name = name;
588 return 0;
589 fail:
590 path_put(&nd->path);
591 return PTR_ERR(link);
594 static void path_put_conditional(struct path *path, struct nameidata *nd)
596 dput(path->dentry);
597 if (path->mnt != nd->path.mnt)
598 mntput(path->mnt);
601 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
603 dput(nd->path.dentry);
604 if (nd->path.mnt != path->mnt)
605 mntput(nd->path.mnt);
606 nd->path.mnt = path->mnt;
607 nd->path.dentry = path->dentry;
610 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
612 int error;
613 void *cookie;
614 struct dentry *dentry = path->dentry;
616 touch_atime(path->mnt, dentry);
617 nd_set_link(nd, NULL);
619 if (path->mnt != nd->path.mnt) {
620 path_to_nameidata(path, nd);
621 dget(dentry);
623 mntget(path->mnt);
624 cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
625 error = PTR_ERR(cookie);
626 if (!IS_ERR(cookie)) {
627 char *s = nd_get_link(nd);
628 error = 0;
629 if (s)
630 error = __vfs_follow_link(nd, s);
631 if (dentry->d_inode->i_op->put_link)
632 dentry->d_inode->i_op->put_link(dentry, nd, cookie);
634 path_put(path);
636 return error;
640 * This limits recursive symlink follows to 8, while
641 * limiting consecutive symlinks to 40.
643 * Without that kind of total limit, nasty chains of consecutive
644 * symlinks can cause almost arbitrarily long lookups.
646 static inline int do_follow_link(struct path *path, struct nameidata *nd)
648 int err = -ELOOP;
649 if (current->link_count >= MAX_NESTED_LINKS)
650 goto loop;
651 if (current->total_link_count >= 40)
652 goto loop;
653 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
654 cond_resched();
655 err = security_inode_follow_link(path->dentry, nd);
656 if (err)
657 goto loop;
658 current->link_count++;
659 current->total_link_count++;
660 nd->depth++;
661 err = __do_follow_link(path, nd);
662 current->link_count--;
663 nd->depth--;
664 return err;
665 loop:
666 path_put_conditional(path, nd);
667 path_put(&nd->path);
668 return err;
671 int follow_up(struct vfsmount **mnt, struct dentry **dentry)
673 struct vfsmount *parent;
674 struct dentry *mountpoint;
675 spin_lock(&vfsmount_lock);
676 parent=(*mnt)->mnt_parent;
677 if (parent == *mnt) {
678 spin_unlock(&vfsmount_lock);
679 return 0;
681 mntget(parent);
682 mountpoint=dget((*mnt)->mnt_mountpoint);
683 spin_unlock(&vfsmount_lock);
684 dput(*dentry);
685 *dentry = mountpoint;
686 mntput(*mnt);
687 *mnt = parent;
688 return 1;
691 /* no need for dcache_lock, as serialization is taken care in
692 * namespace.c
694 static int __follow_mount(struct path *path)
696 int res = 0;
697 while (d_mountpoint(path->dentry)) {
698 struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry);
699 if (!mounted)
700 break;
701 dput(path->dentry);
702 if (res)
703 mntput(path->mnt);
704 path->mnt = mounted;
705 path->dentry = dget(mounted->mnt_root);
706 res = 1;
708 return res;
711 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry)
713 while (d_mountpoint(*dentry)) {
714 struct vfsmount *mounted = lookup_mnt(*mnt, *dentry);
715 if (!mounted)
716 break;
717 dput(*dentry);
718 mntput(*mnt);
719 *mnt = mounted;
720 *dentry = dget(mounted->mnt_root);
724 /* no need for dcache_lock, as serialization is taken care in
725 * namespace.c
727 int follow_down(struct vfsmount **mnt, struct dentry **dentry)
729 struct vfsmount *mounted;
731 mounted = lookup_mnt(*mnt, *dentry);
732 if (mounted) {
733 dput(*dentry);
734 mntput(*mnt);
735 *mnt = mounted;
736 *dentry = dget(mounted->mnt_root);
737 return 1;
739 return 0;
742 static __always_inline void follow_dotdot(struct nameidata *nd)
744 struct fs_struct *fs = current->fs;
746 while(1) {
747 struct vfsmount *parent;
748 struct dentry *old = nd->path.dentry;
750 read_lock(&fs->lock);
751 if (nd->path.dentry == fs->root.dentry &&
752 nd->path.mnt == fs->root.mnt) {
753 read_unlock(&fs->lock);
754 break;
756 read_unlock(&fs->lock);
757 spin_lock(&dcache_lock);
758 if (nd->path.dentry != nd->path.mnt->mnt_root) {
759 nd->path.dentry = dget(nd->path.dentry->d_parent);
760 spin_unlock(&dcache_lock);
761 dput(old);
762 break;
764 spin_unlock(&dcache_lock);
765 spin_lock(&vfsmount_lock);
766 parent = nd->path.mnt->mnt_parent;
767 if (parent == nd->path.mnt) {
768 spin_unlock(&vfsmount_lock);
769 break;
771 mntget(parent);
772 nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint);
773 spin_unlock(&vfsmount_lock);
774 dput(old);
775 mntput(nd->path.mnt);
776 nd->path.mnt = parent;
778 follow_mount(&nd->path.mnt, &nd->path.dentry);
782 * It's more convoluted than I'd like it to be, but... it's still fairly
783 * small and for now I'd prefer to have fast path as straight as possible.
784 * It _is_ time-critical.
786 static int do_lookup(struct nameidata *nd, struct qstr *name,
787 struct path *path)
789 struct vfsmount *mnt = nd->path.mnt;
790 struct dentry *dentry = __d_lookup(nd->path.dentry, name);
792 if (!dentry)
793 goto need_lookup;
794 if (dentry->d_op && dentry->d_op->d_revalidate)
795 goto need_revalidate;
796 done:
797 path->mnt = mnt;
798 path->dentry = dentry;
799 __follow_mount(path);
800 return 0;
802 need_lookup:
803 dentry = real_lookup(nd->path.dentry, name, nd);
804 if (IS_ERR(dentry))
805 goto fail;
806 goto done;
808 need_revalidate:
809 dentry = do_revalidate(dentry, nd);
810 if (!dentry)
811 goto need_lookup;
812 if (IS_ERR(dentry))
813 goto fail;
814 goto done;
816 fail:
817 return PTR_ERR(dentry);
821 * Name resolution.
822 * This is the basic name resolution function, turning a pathname into
823 * the final dentry. We expect 'base' to be positive and a directory.
825 * Returns 0 and nd will have valid dentry and mnt on success.
826 * Returns error and drops reference to input namei data on failure.
828 static int __link_path_walk(const char *name, struct nameidata *nd)
830 struct path next;
831 struct inode *inode;
832 int err;
833 unsigned int lookup_flags = nd->flags;
835 while (*name=='/')
836 name++;
837 if (!*name)
838 goto return_reval;
840 inode = nd->path.dentry->d_inode;
841 if (nd->depth)
842 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
844 /* At this point we know we have a real path component. */
845 for(;;) {
846 unsigned long hash;
847 struct qstr this;
848 unsigned int c;
850 nd->flags |= LOOKUP_CONTINUE;
851 err = exec_permission_lite(inode);
852 if (err == -EAGAIN)
853 err = inode_permission(nd->path.dentry->d_inode,
854 MAY_EXEC);
855 if (!err)
856 err = ima_path_check(&nd->path, MAY_EXEC);
857 if (err)
858 break;
860 this.name = name;
861 c = *(const unsigned char *)name;
863 hash = init_name_hash();
864 do {
865 name++;
866 hash = partial_name_hash(c, hash);
867 c = *(const unsigned char *)name;
868 } while (c && (c != '/'));
869 this.len = name - (const char *) this.name;
870 this.hash = end_name_hash(hash);
872 /* remove trailing slashes? */
873 if (!c)
874 goto last_component;
875 while (*++name == '/');
876 if (!*name)
877 goto last_with_slashes;
880 * "." and ".." are special - ".." especially so because it has
881 * to be able to know about the current root directory and
882 * parent relationships.
884 if (this.name[0] == '.') switch (this.len) {
885 default:
886 break;
887 case 2:
888 if (this.name[1] != '.')
889 break;
890 follow_dotdot(nd);
891 inode = nd->path.dentry->d_inode;
892 /* fallthrough */
893 case 1:
894 continue;
897 * See if the low-level filesystem might want
898 * to use its own hash..
900 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
901 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
902 &this);
903 if (err < 0)
904 break;
906 /* This does the actual lookups.. */
907 err = do_lookup(nd, &this, &next);
908 if (err)
909 break;
911 err = -ENOENT;
912 inode = next.dentry->d_inode;
913 if (!inode)
914 goto out_dput;
916 if (inode->i_op->follow_link) {
917 err = do_follow_link(&next, nd);
918 if (err)
919 goto return_err;
920 err = -ENOENT;
921 inode = nd->path.dentry->d_inode;
922 if (!inode)
923 break;
924 } else
925 path_to_nameidata(&next, nd);
926 err = -ENOTDIR;
927 if (!inode->i_op->lookup)
928 break;
929 continue;
930 /* here ends the main loop */
932 last_with_slashes:
933 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
934 last_component:
935 /* Clear LOOKUP_CONTINUE iff it was previously unset */
936 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
937 if (lookup_flags & LOOKUP_PARENT)
938 goto lookup_parent;
939 if (this.name[0] == '.') switch (this.len) {
940 default:
941 break;
942 case 2:
943 if (this.name[1] != '.')
944 break;
945 follow_dotdot(nd);
946 inode = nd->path.dentry->d_inode;
947 /* fallthrough */
948 case 1:
949 goto return_reval;
951 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
952 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
953 &this);
954 if (err < 0)
955 break;
957 err = do_lookup(nd, &this, &next);
958 if (err)
959 break;
960 inode = next.dentry->d_inode;
961 if ((lookup_flags & LOOKUP_FOLLOW)
962 && inode && inode->i_op->follow_link) {
963 err = do_follow_link(&next, nd);
964 if (err)
965 goto return_err;
966 inode = nd->path.dentry->d_inode;
967 } else
968 path_to_nameidata(&next, nd);
969 err = -ENOENT;
970 if (!inode)
971 break;
972 if (lookup_flags & LOOKUP_DIRECTORY) {
973 err = -ENOTDIR;
974 if (!inode->i_op->lookup)
975 break;
977 goto return_base;
978 lookup_parent:
979 nd->last = this;
980 nd->last_type = LAST_NORM;
981 if (this.name[0] != '.')
982 goto return_base;
983 if (this.len == 1)
984 nd->last_type = LAST_DOT;
985 else if (this.len == 2 && this.name[1] == '.')
986 nd->last_type = LAST_DOTDOT;
987 else
988 goto return_base;
989 return_reval:
991 * We bypassed the ordinary revalidation routines.
992 * We may need to check the cached dentry for staleness.
994 if (nd->path.dentry && nd->path.dentry->d_sb &&
995 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
996 err = -ESTALE;
997 /* Note: we do not d_invalidate() */
998 if (!nd->path.dentry->d_op->d_revalidate(
999 nd->path.dentry, nd))
1000 break;
1002 return_base:
1003 return 0;
1004 out_dput:
1005 path_put_conditional(&next, nd);
1006 break;
1008 path_put(&nd->path);
1009 return_err:
1010 return err;
1013 static int path_walk(const char *name, struct nameidata *nd)
1015 current->total_link_count = 0;
1016 return link_path_walk(name, nd);
1019 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1020 static int do_path_lookup(int dfd, const char *name,
1021 unsigned int flags, struct nameidata *nd)
1023 int retval = 0;
1024 int fput_needed;
1025 struct file *file;
1026 struct fs_struct *fs = current->fs;
1028 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1029 nd->flags = flags;
1030 nd->depth = 0;
1032 if (*name=='/') {
1033 read_lock(&fs->lock);
1034 nd->path = fs->root;
1035 path_get(&fs->root);
1036 read_unlock(&fs->lock);
1037 } else if (dfd == AT_FDCWD) {
1038 read_lock(&fs->lock);
1039 nd->path = fs->pwd;
1040 path_get(&fs->pwd);
1041 read_unlock(&fs->lock);
1042 } else {
1043 struct dentry *dentry;
1045 file = fget_light(dfd, &fput_needed);
1046 retval = -EBADF;
1047 if (!file)
1048 goto out_fail;
1050 dentry = file->f_path.dentry;
1052 retval = -ENOTDIR;
1053 if (!S_ISDIR(dentry->d_inode->i_mode))
1054 goto fput_fail;
1056 retval = file_permission(file, MAY_EXEC);
1057 if (retval)
1058 goto fput_fail;
1060 nd->path = file->f_path;
1061 path_get(&file->f_path);
1063 fput_light(file, fput_needed);
1066 retval = path_walk(name, nd);
1067 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1068 nd->path.dentry->d_inode))
1069 audit_inode(name, nd->path.dentry);
1070 out_fail:
1071 return retval;
1073 fput_fail:
1074 fput_light(file, fput_needed);
1075 goto out_fail;
1078 int path_lookup(const char *name, unsigned int flags,
1079 struct nameidata *nd)
1081 return do_path_lookup(AT_FDCWD, name, flags, nd);
1084 int kern_path(const char *name, unsigned int flags, struct path *path)
1086 struct nameidata nd;
1087 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1088 if (!res)
1089 *path = nd.path;
1090 return res;
1094 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1095 * @dentry: pointer to dentry of the base directory
1096 * @mnt: pointer to vfs mount of the base directory
1097 * @name: pointer to file name
1098 * @flags: lookup flags
1099 * @nd: pointer to nameidata
1101 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1102 const char *name, unsigned int flags,
1103 struct nameidata *nd)
1105 int retval;
1107 /* same as do_path_lookup */
1108 nd->last_type = LAST_ROOT;
1109 nd->flags = flags;
1110 nd->depth = 0;
1112 nd->path.dentry = dentry;
1113 nd->path.mnt = mnt;
1114 path_get(&nd->path);
1116 retval = path_walk(name, nd);
1117 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1118 nd->path.dentry->d_inode))
1119 audit_inode(name, nd->path.dentry);
1121 return retval;
1126 * path_lookup_open - lookup a file path with open intent
1127 * @dfd: the directory to use as base, or AT_FDCWD
1128 * @name: pointer to file name
1129 * @lookup_flags: lookup intent flags
1130 * @nd: pointer to nameidata
1131 * @open_flags: open intent flags
1133 static int path_lookup_open(int dfd, const char *name,
1134 unsigned int lookup_flags, struct nameidata *nd, int open_flags)
1136 struct file *filp = get_empty_filp();
1137 int err;
1139 if (filp == NULL)
1140 return -ENFILE;
1141 nd->intent.open.file = filp;
1142 nd->intent.open.flags = open_flags;
1143 nd->intent.open.create_mode = 0;
1144 err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1145 if (IS_ERR(nd->intent.open.file)) {
1146 if (err == 0) {
1147 err = PTR_ERR(nd->intent.open.file);
1148 path_put(&nd->path);
1150 } else if (err != 0)
1151 release_open_intent(nd);
1152 return err;
1155 static struct dentry *__lookup_hash(struct qstr *name,
1156 struct dentry *base, struct nameidata *nd)
1158 struct dentry *dentry;
1159 struct inode *inode;
1160 int err;
1162 inode = base->d_inode;
1165 * See if the low-level filesystem might want
1166 * to use its own hash..
1168 if (base->d_op && base->d_op->d_hash) {
1169 err = base->d_op->d_hash(base, name);
1170 dentry = ERR_PTR(err);
1171 if (err < 0)
1172 goto out;
1175 dentry = cached_lookup(base, name, nd);
1176 if (!dentry) {
1177 struct dentry *new;
1179 /* Don't create child dentry for a dead directory. */
1180 dentry = ERR_PTR(-ENOENT);
1181 if (IS_DEADDIR(inode))
1182 goto out;
1184 new = d_alloc(base, name);
1185 dentry = ERR_PTR(-ENOMEM);
1186 if (!new)
1187 goto out;
1188 dentry = inode->i_op->lookup(inode, new, nd);
1189 if (!dentry)
1190 dentry = new;
1191 else
1192 dput(new);
1194 out:
1195 return dentry;
1199 * Restricted form of lookup. Doesn't follow links, single-component only,
1200 * needs parent already locked. Doesn't follow mounts.
1201 * SMP-safe.
1203 static struct dentry *lookup_hash(struct nameidata *nd)
1205 int err;
1207 err = inode_permission(nd->path.dentry->d_inode, MAY_EXEC);
1208 if (err)
1209 return ERR_PTR(err);
1210 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1213 static int __lookup_one_len(const char *name, struct qstr *this,
1214 struct dentry *base, int len)
1216 unsigned long hash;
1217 unsigned int c;
1219 this->name = name;
1220 this->len = len;
1221 if (!len)
1222 return -EACCES;
1224 hash = init_name_hash();
1225 while (len--) {
1226 c = *(const unsigned char *)name++;
1227 if (c == '/' || c == '\0')
1228 return -EACCES;
1229 hash = partial_name_hash(c, hash);
1231 this->hash = end_name_hash(hash);
1232 return 0;
1236 * lookup_one_len - filesystem helper to lookup single pathname component
1237 * @name: pathname component to lookup
1238 * @base: base directory to lookup from
1239 * @len: maximum length @len should be interpreted to
1241 * Note that this routine is purely a helper for filesystem usage and should
1242 * not be called by generic code. Also note that by using this function the
1243 * nameidata argument is passed to the filesystem methods and a filesystem
1244 * using this helper needs to be prepared for that.
1246 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1248 int err;
1249 struct qstr this;
1251 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1253 err = __lookup_one_len(name, &this, base, len);
1254 if (err)
1255 return ERR_PTR(err);
1257 err = inode_permission(base->d_inode, MAY_EXEC);
1258 if (err)
1259 return ERR_PTR(err);
1260 return __lookup_hash(&this, base, NULL);
1264 * lookup_one_noperm - bad hack for sysfs
1265 * @name: pathname component to lookup
1266 * @base: base directory to lookup from
1268 * This is a variant of lookup_one_len that doesn't perform any permission
1269 * checks. It's a horrible hack to work around the braindead sysfs
1270 * architecture and should not be used anywhere else.
1272 * DON'T USE THIS FUNCTION EVER, thanks.
1274 struct dentry *lookup_one_noperm(const char *name, struct dentry *base)
1276 int err;
1277 struct qstr this;
1279 err = __lookup_one_len(name, &this, base, strlen(name));
1280 if (err)
1281 return ERR_PTR(err);
1282 return __lookup_hash(&this, base, NULL);
1285 int user_path_at(int dfd, const char __user *name, unsigned flags,
1286 struct path *path)
1288 struct nameidata nd;
1289 char *tmp = getname(name);
1290 int err = PTR_ERR(tmp);
1291 if (!IS_ERR(tmp)) {
1293 BUG_ON(flags & LOOKUP_PARENT);
1295 err = do_path_lookup(dfd, tmp, flags, &nd);
1296 putname(tmp);
1297 if (!err)
1298 *path = nd.path;
1300 return err;
1303 static int user_path_parent(int dfd, const char __user *path,
1304 struct nameidata *nd, char **name)
1306 char *s = getname(path);
1307 int error;
1309 if (IS_ERR(s))
1310 return PTR_ERR(s);
1312 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1313 if (error)
1314 putname(s);
1315 else
1316 *name = s;
1318 return error;
1322 * It's inline, so penalty for filesystems that don't use sticky bit is
1323 * minimal.
1325 static inline int check_sticky(struct inode *dir, struct inode *inode)
1327 uid_t fsuid = current_fsuid();
1329 if (!(dir->i_mode & S_ISVTX))
1330 return 0;
1331 if (inode->i_uid == fsuid)
1332 return 0;
1333 if (dir->i_uid == fsuid)
1334 return 0;
1335 return !capable(CAP_FOWNER);
1339 * Check whether we can remove a link victim from directory dir, check
1340 * whether the type of victim is right.
1341 * 1. We can't do it if dir is read-only (done in permission())
1342 * 2. We should have write and exec permissions on dir
1343 * 3. We can't remove anything from append-only dir
1344 * 4. We can't do anything with immutable dir (done in permission())
1345 * 5. If the sticky bit on dir is set we should either
1346 * a. be owner of dir, or
1347 * b. be owner of victim, or
1348 * c. have CAP_FOWNER capability
1349 * 6. If the victim is append-only or immutable we can't do antyhing with
1350 * links pointing to it.
1351 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1352 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1353 * 9. We can't remove a root or mountpoint.
1354 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1355 * nfs_async_unlink().
1357 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1359 int error;
1361 if (!victim->d_inode)
1362 return -ENOENT;
1364 BUG_ON(victim->d_parent->d_inode != dir);
1365 audit_inode_child(victim->d_name.name, victim, dir);
1367 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1368 if (error)
1369 return error;
1370 if (IS_APPEND(dir))
1371 return -EPERM;
1372 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1373 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1374 return -EPERM;
1375 if (isdir) {
1376 if (!S_ISDIR(victim->d_inode->i_mode))
1377 return -ENOTDIR;
1378 if (IS_ROOT(victim))
1379 return -EBUSY;
1380 } else if (S_ISDIR(victim->d_inode->i_mode))
1381 return -EISDIR;
1382 if (IS_DEADDIR(dir))
1383 return -ENOENT;
1384 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1385 return -EBUSY;
1386 return 0;
1389 /* Check whether we can create an object with dentry child in directory
1390 * dir.
1391 * 1. We can't do it if child already exists (open has special treatment for
1392 * this case, but since we are inlined it's OK)
1393 * 2. We can't do it if dir is read-only (done in permission())
1394 * 3. We should have write and exec permissions on dir
1395 * 4. We can't do it if dir is immutable (done in permission())
1397 static inline int may_create(struct inode *dir, struct dentry *child)
1399 if (child->d_inode)
1400 return -EEXIST;
1401 if (IS_DEADDIR(dir))
1402 return -ENOENT;
1403 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1407 * O_DIRECTORY translates into forcing a directory lookup.
1409 static inline int lookup_flags(unsigned int f)
1411 unsigned long retval = LOOKUP_FOLLOW;
1413 if (f & O_NOFOLLOW)
1414 retval &= ~LOOKUP_FOLLOW;
1416 if (f & O_DIRECTORY)
1417 retval |= LOOKUP_DIRECTORY;
1419 return retval;
1423 * p1 and p2 should be directories on the same fs.
1425 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1427 struct dentry *p;
1429 if (p1 == p2) {
1430 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1431 return NULL;
1434 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1436 p = d_ancestor(p2, p1);
1437 if (p) {
1438 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1439 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1440 return p;
1443 p = d_ancestor(p1, p2);
1444 if (p) {
1445 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1446 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1447 return p;
1450 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1451 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1452 return NULL;
1455 void unlock_rename(struct dentry *p1, struct dentry *p2)
1457 mutex_unlock(&p1->d_inode->i_mutex);
1458 if (p1 != p2) {
1459 mutex_unlock(&p2->d_inode->i_mutex);
1460 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1464 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1465 struct nameidata *nd)
1467 int error = may_create(dir, dentry);
1469 if (error)
1470 return error;
1472 if (!dir->i_op->create)
1473 return -EACCES; /* shouldn't it be ENOSYS? */
1474 mode &= S_IALLUGO;
1475 mode |= S_IFREG;
1476 error = security_inode_create(dir, dentry, mode);
1477 if (error)
1478 return error;
1479 vfs_dq_init(dir);
1480 error = dir->i_op->create(dir, dentry, mode, nd);
1481 if (!error)
1482 fsnotify_create(dir, dentry);
1483 return error;
1486 int may_open(struct path *path, int acc_mode, int flag)
1488 struct dentry *dentry = path->dentry;
1489 struct inode *inode = dentry->d_inode;
1490 int error;
1492 if (!inode)
1493 return -ENOENT;
1495 switch (inode->i_mode & S_IFMT) {
1496 case S_IFLNK:
1497 return -ELOOP;
1498 case S_IFDIR:
1499 if (acc_mode & MAY_WRITE)
1500 return -EISDIR;
1501 break;
1502 case S_IFBLK:
1503 case S_IFCHR:
1504 if (path->mnt->mnt_flags & MNT_NODEV)
1505 return -EACCES;
1506 /*FALLTHRU*/
1507 case S_IFIFO:
1508 case S_IFSOCK:
1509 flag &= ~O_TRUNC;
1510 break;
1513 error = inode_permission(inode, acc_mode);
1514 if (error)
1515 return error;
1517 error = ima_path_check(path,
1518 acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC));
1519 if (error)
1520 return error;
1522 * An append-only file must be opened in append mode for writing.
1524 if (IS_APPEND(inode)) {
1525 if ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1526 return -EPERM;
1527 if (flag & O_TRUNC)
1528 return -EPERM;
1531 /* O_NOATIME can only be set by the owner or superuser */
1532 if (flag & O_NOATIME)
1533 if (!is_owner_or_cap(inode))
1534 return -EPERM;
1537 * Ensure there are no outstanding leases on the file.
1539 error = break_lease(inode, flag);
1540 if (error)
1541 return error;
1543 if (flag & O_TRUNC) {
1544 error = get_write_access(inode);
1545 if (error)
1546 return error;
1549 * Refuse to truncate files with mandatory locks held on them.
1551 error = locks_verify_locked(inode);
1552 if (!error)
1553 error = security_path_truncate(path, 0,
1554 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN);
1555 if (!error) {
1556 vfs_dq_init(inode);
1558 error = do_truncate(dentry, 0,
1559 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1560 NULL);
1562 put_write_access(inode);
1563 if (error)
1564 return error;
1565 } else
1566 if (flag & FMODE_WRITE)
1567 vfs_dq_init(inode);
1569 return 0;
1573 * Be careful about ever adding any more callers of this
1574 * function. Its flags must be in the namei format, not
1575 * what get passed to sys_open().
1577 static int __open_namei_create(struct nameidata *nd, struct path *path,
1578 int flag, int mode)
1580 int error;
1581 struct dentry *dir = nd->path.dentry;
1583 if (!IS_POSIXACL(dir->d_inode))
1584 mode &= ~current_umask();
1585 error = security_path_mknod(&nd->path, path->dentry, mode, 0);
1586 if (error)
1587 goto out_unlock;
1588 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1589 out_unlock:
1590 mutex_unlock(&dir->d_inode->i_mutex);
1591 dput(nd->path.dentry);
1592 nd->path.dentry = path->dentry;
1593 if (error)
1594 return error;
1595 /* Don't check for write permission, don't truncate */
1596 return may_open(&nd->path, 0, flag & ~O_TRUNC);
1600 * Note that while the flag value (low two bits) for sys_open means:
1601 * 00 - read-only
1602 * 01 - write-only
1603 * 10 - read-write
1604 * 11 - special
1605 * it is changed into
1606 * 00 - no permissions needed
1607 * 01 - read-permission
1608 * 10 - write-permission
1609 * 11 - read-write
1610 * for the internal routines (ie open_namei()/follow_link() etc)
1611 * This is more logical, and also allows the 00 "no perm needed"
1612 * to be used for symlinks (where the permissions are checked
1613 * later).
1616 static inline int open_to_namei_flags(int flag)
1618 if ((flag+1) & O_ACCMODE)
1619 flag++;
1620 return flag;
1623 static int open_will_write_to_fs(int flag, struct inode *inode)
1626 * We'll never write to the fs underlying
1627 * a device file.
1629 if (special_file(inode->i_mode))
1630 return 0;
1631 return (flag & O_TRUNC);
1635 * Note that the low bits of the passed in "open_flag"
1636 * are not the same as in the local variable "flag". See
1637 * open_to_namei_flags() for more details.
1639 struct file *do_filp_open(int dfd, const char *pathname,
1640 int open_flag, int mode, int acc_mode)
1642 struct file *filp;
1643 struct nameidata nd;
1644 int error;
1645 struct path path;
1646 struct dentry *dir;
1647 int count = 0;
1648 int will_write;
1649 int flag = open_to_namei_flags(open_flag);
1651 if (!acc_mode)
1652 acc_mode = MAY_OPEN | ACC_MODE(flag);
1654 /* O_TRUNC implies we need access checks for write permissions */
1655 if (flag & O_TRUNC)
1656 acc_mode |= MAY_WRITE;
1658 /* Allow the LSM permission hook to distinguish append
1659 access from general write access. */
1660 if (flag & O_APPEND)
1661 acc_mode |= MAY_APPEND;
1664 * The simplest case - just a plain lookup.
1666 if (!(flag & O_CREAT)) {
1667 error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1668 &nd, flag);
1669 if (error)
1670 return ERR_PTR(error);
1671 goto ok;
1675 * Create - we need to know the parent.
1677 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
1678 if (error)
1679 return ERR_PTR(error);
1682 * We have the parent and last component. First of all, check
1683 * that we are not asked to creat(2) an obvious directory - that
1684 * will not do.
1686 error = -EISDIR;
1687 if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len])
1688 goto exit_parent;
1690 error = -ENFILE;
1691 filp = get_empty_filp();
1692 if (filp == NULL)
1693 goto exit_parent;
1694 nd.intent.open.file = filp;
1695 nd.intent.open.flags = flag;
1696 nd.intent.open.create_mode = mode;
1697 dir = nd.path.dentry;
1698 nd.flags &= ~LOOKUP_PARENT;
1699 nd.flags |= LOOKUP_CREATE | LOOKUP_OPEN;
1700 if (flag & O_EXCL)
1701 nd.flags |= LOOKUP_EXCL;
1702 mutex_lock(&dir->d_inode->i_mutex);
1703 path.dentry = lookup_hash(&nd);
1704 path.mnt = nd.path.mnt;
1706 do_last:
1707 error = PTR_ERR(path.dentry);
1708 if (IS_ERR(path.dentry)) {
1709 mutex_unlock(&dir->d_inode->i_mutex);
1710 goto exit;
1713 if (IS_ERR(nd.intent.open.file)) {
1714 error = PTR_ERR(nd.intent.open.file);
1715 goto exit_mutex_unlock;
1718 /* Negative dentry, just create the file */
1719 if (!path.dentry->d_inode) {
1721 * This write is needed to ensure that a
1722 * ro->rw transition does not occur between
1723 * the time when the file is created and when
1724 * a permanent write count is taken through
1725 * the 'struct file' in nameidata_to_filp().
1727 error = mnt_want_write(nd.path.mnt);
1728 if (error)
1729 goto exit_mutex_unlock;
1730 error = __open_namei_create(&nd, &path, flag, mode);
1731 if (error) {
1732 mnt_drop_write(nd.path.mnt);
1733 goto exit;
1735 filp = nameidata_to_filp(&nd, open_flag);
1736 mnt_drop_write(nd.path.mnt);
1737 return filp;
1741 * It already exists.
1743 mutex_unlock(&dir->d_inode->i_mutex);
1744 audit_inode(pathname, path.dentry);
1746 error = -EEXIST;
1747 if (flag & O_EXCL)
1748 goto exit_dput;
1750 if (__follow_mount(&path)) {
1751 error = -ELOOP;
1752 if (flag & O_NOFOLLOW)
1753 goto exit_dput;
1756 error = -ENOENT;
1757 if (!path.dentry->d_inode)
1758 goto exit_dput;
1759 if (path.dentry->d_inode->i_op->follow_link)
1760 goto do_link;
1762 path_to_nameidata(&path, &nd);
1763 error = -EISDIR;
1764 if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1765 goto exit;
1768 * Consider:
1769 * 1. may_open() truncates a file
1770 * 2. a rw->ro mount transition occurs
1771 * 3. nameidata_to_filp() fails due to
1772 * the ro mount.
1773 * That would be inconsistent, and should
1774 * be avoided. Taking this mnt write here
1775 * ensures that (2) can not occur.
1777 will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode);
1778 if (will_write) {
1779 error = mnt_want_write(nd.path.mnt);
1780 if (error)
1781 goto exit;
1783 error = may_open(&nd.path, acc_mode, flag);
1784 if (error) {
1785 if (will_write)
1786 mnt_drop_write(nd.path.mnt);
1787 goto exit;
1789 filp = nameidata_to_filp(&nd, open_flag);
1791 * It is now safe to drop the mnt write
1792 * because the filp has had a write taken
1793 * on its behalf.
1795 if (will_write)
1796 mnt_drop_write(nd.path.mnt);
1797 return filp;
1799 exit_mutex_unlock:
1800 mutex_unlock(&dir->d_inode->i_mutex);
1801 exit_dput:
1802 path_put_conditional(&path, &nd);
1803 exit:
1804 if (!IS_ERR(nd.intent.open.file))
1805 release_open_intent(&nd);
1806 exit_parent:
1807 path_put(&nd.path);
1808 return ERR_PTR(error);
1810 do_link:
1811 error = -ELOOP;
1812 if (flag & O_NOFOLLOW)
1813 goto exit_dput;
1815 * This is subtle. Instead of calling do_follow_link() we do the
1816 * thing by hands. The reason is that this way we have zero link_count
1817 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1818 * After that we have the parent and last component, i.e.
1819 * we are in the same situation as after the first path_walk().
1820 * Well, almost - if the last component is normal we get its copy
1821 * stored in nd->last.name and we will have to putname() it when we
1822 * are done. Procfs-like symlinks just set LAST_BIND.
1824 nd.flags |= LOOKUP_PARENT;
1825 error = security_inode_follow_link(path.dentry, &nd);
1826 if (error)
1827 goto exit_dput;
1828 error = __do_follow_link(&path, &nd);
1829 if (error) {
1830 /* Does someone understand code flow here? Or it is only
1831 * me so stupid? Anathema to whoever designed this non-sense
1832 * with "intent.open".
1834 release_open_intent(&nd);
1835 return ERR_PTR(error);
1837 nd.flags &= ~LOOKUP_PARENT;
1838 if (nd.last_type == LAST_BIND)
1839 goto ok;
1840 error = -EISDIR;
1841 if (nd.last_type != LAST_NORM)
1842 goto exit;
1843 if (nd.last.name[nd.last.len]) {
1844 __putname(nd.last.name);
1845 goto exit;
1847 error = -ELOOP;
1848 if (count++==32) {
1849 __putname(nd.last.name);
1850 goto exit;
1852 dir = nd.path.dentry;
1853 mutex_lock(&dir->d_inode->i_mutex);
1854 path.dentry = lookup_hash(&nd);
1855 path.mnt = nd.path.mnt;
1856 __putname(nd.last.name);
1857 goto do_last;
1861 * filp_open - open file and return file pointer
1863 * @filename: path to open
1864 * @flags: open flags as per the open(2) second argument
1865 * @mode: mode for the new file if O_CREAT is set, else ignored
1867 * This is the helper to open a file from kernelspace if you really
1868 * have to. But in generally you should not do this, so please move
1869 * along, nothing to see here..
1871 struct file *filp_open(const char *filename, int flags, int mode)
1873 return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
1875 EXPORT_SYMBOL(filp_open);
1878 * lookup_create - lookup a dentry, creating it if it doesn't exist
1879 * @nd: nameidata info
1880 * @is_dir: directory flag
1882 * Simple function to lookup and return a dentry and create it
1883 * if it doesn't exist. Is SMP-safe.
1885 * Returns with nd->path.dentry->d_inode->i_mutex locked.
1887 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1889 struct dentry *dentry = ERR_PTR(-EEXIST);
1891 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1893 * Yucky last component or no last component at all?
1894 * (foo/., foo/.., /////)
1896 if (nd->last_type != LAST_NORM)
1897 goto fail;
1898 nd->flags &= ~LOOKUP_PARENT;
1899 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1900 nd->intent.open.flags = O_EXCL;
1903 * Do the final lookup.
1905 dentry = lookup_hash(nd);
1906 if (IS_ERR(dentry))
1907 goto fail;
1909 if (dentry->d_inode)
1910 goto eexist;
1912 * Special case - lookup gave negative, but... we had foo/bar/
1913 * From the vfs_mknod() POV we just have a negative dentry -
1914 * all is fine. Let's be bastards - you had / on the end, you've
1915 * been asking for (non-existent) directory. -ENOENT for you.
1917 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1918 dput(dentry);
1919 dentry = ERR_PTR(-ENOENT);
1921 return dentry;
1922 eexist:
1923 dput(dentry);
1924 dentry = ERR_PTR(-EEXIST);
1925 fail:
1926 return dentry;
1928 EXPORT_SYMBOL_GPL(lookup_create);
1930 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1932 int error = may_create(dir, dentry);
1934 if (error)
1935 return error;
1937 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1938 return -EPERM;
1940 if (!dir->i_op->mknod)
1941 return -EPERM;
1943 error = devcgroup_inode_mknod(mode, dev);
1944 if (error)
1945 return error;
1947 error = security_inode_mknod(dir, dentry, mode, dev);
1948 if (error)
1949 return error;
1951 vfs_dq_init(dir);
1952 error = dir->i_op->mknod(dir, dentry, mode, dev);
1953 if (!error)
1954 fsnotify_create(dir, dentry);
1955 return error;
1958 static int may_mknod(mode_t mode)
1960 switch (mode & S_IFMT) {
1961 case S_IFREG:
1962 case S_IFCHR:
1963 case S_IFBLK:
1964 case S_IFIFO:
1965 case S_IFSOCK:
1966 case 0: /* zero mode translates to S_IFREG */
1967 return 0;
1968 case S_IFDIR:
1969 return -EPERM;
1970 default:
1971 return -EINVAL;
1975 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
1976 unsigned, dev)
1978 int error;
1979 char *tmp;
1980 struct dentry *dentry;
1981 struct nameidata nd;
1983 if (S_ISDIR(mode))
1984 return -EPERM;
1986 error = user_path_parent(dfd, filename, &nd, &tmp);
1987 if (error)
1988 return error;
1990 dentry = lookup_create(&nd, 0);
1991 if (IS_ERR(dentry)) {
1992 error = PTR_ERR(dentry);
1993 goto out_unlock;
1995 if (!IS_POSIXACL(nd.path.dentry->d_inode))
1996 mode &= ~current_umask();
1997 error = may_mknod(mode);
1998 if (error)
1999 goto out_dput;
2000 error = mnt_want_write(nd.path.mnt);
2001 if (error)
2002 goto out_dput;
2003 error = security_path_mknod(&nd.path, dentry, mode, dev);
2004 if (error)
2005 goto out_drop_write;
2006 switch (mode & S_IFMT) {
2007 case 0: case S_IFREG:
2008 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2009 break;
2010 case S_IFCHR: case S_IFBLK:
2011 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2012 new_decode_dev(dev));
2013 break;
2014 case S_IFIFO: case S_IFSOCK:
2015 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2016 break;
2018 out_drop_write:
2019 mnt_drop_write(nd.path.mnt);
2020 out_dput:
2021 dput(dentry);
2022 out_unlock:
2023 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2024 path_put(&nd.path);
2025 putname(tmp);
2027 return error;
2030 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2032 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2035 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2037 int error = may_create(dir, dentry);
2039 if (error)
2040 return error;
2042 if (!dir->i_op->mkdir)
2043 return -EPERM;
2045 mode &= (S_IRWXUGO|S_ISVTX);
2046 error = security_inode_mkdir(dir, dentry, mode);
2047 if (error)
2048 return error;
2050 vfs_dq_init(dir);
2051 error = dir->i_op->mkdir(dir, dentry, mode);
2052 if (!error)
2053 fsnotify_mkdir(dir, dentry);
2054 return error;
2057 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2059 int error = 0;
2060 char * tmp;
2061 struct dentry *dentry;
2062 struct nameidata nd;
2064 error = user_path_parent(dfd, pathname, &nd, &tmp);
2065 if (error)
2066 goto out_err;
2068 dentry = lookup_create(&nd, 1);
2069 error = PTR_ERR(dentry);
2070 if (IS_ERR(dentry))
2071 goto out_unlock;
2073 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2074 mode &= ~current_umask();
2075 error = mnt_want_write(nd.path.mnt);
2076 if (error)
2077 goto out_dput;
2078 error = security_path_mkdir(&nd.path, dentry, mode);
2079 if (error)
2080 goto out_drop_write;
2081 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2082 out_drop_write:
2083 mnt_drop_write(nd.path.mnt);
2084 out_dput:
2085 dput(dentry);
2086 out_unlock:
2087 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2088 path_put(&nd.path);
2089 putname(tmp);
2090 out_err:
2091 return error;
2094 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2096 return sys_mkdirat(AT_FDCWD, pathname, mode);
2100 * We try to drop the dentry early: we should have
2101 * a usage count of 2 if we're the only user of this
2102 * dentry, and if that is true (possibly after pruning
2103 * the dcache), then we drop the dentry now.
2105 * A low-level filesystem can, if it choses, legally
2106 * do a
2108 * if (!d_unhashed(dentry))
2109 * return -EBUSY;
2111 * if it cannot handle the case of removing a directory
2112 * that is still in use by something else..
2114 void dentry_unhash(struct dentry *dentry)
2116 dget(dentry);
2117 shrink_dcache_parent(dentry);
2118 spin_lock(&dcache_lock);
2119 spin_lock(&dentry->d_lock);
2120 if (atomic_read(&dentry->d_count) == 2)
2121 __d_drop(dentry);
2122 spin_unlock(&dentry->d_lock);
2123 spin_unlock(&dcache_lock);
2126 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2128 int error = may_delete(dir, dentry, 1);
2130 if (error)
2131 return error;
2133 if (!dir->i_op->rmdir)
2134 return -EPERM;
2136 vfs_dq_init(dir);
2138 mutex_lock(&dentry->d_inode->i_mutex);
2139 dentry_unhash(dentry);
2140 if (d_mountpoint(dentry))
2141 error = -EBUSY;
2142 else {
2143 error = security_inode_rmdir(dir, dentry);
2144 if (!error) {
2145 error = dir->i_op->rmdir(dir, dentry);
2146 if (!error)
2147 dentry->d_inode->i_flags |= S_DEAD;
2150 mutex_unlock(&dentry->d_inode->i_mutex);
2151 if (!error) {
2152 d_delete(dentry);
2154 dput(dentry);
2156 return error;
2159 static long do_rmdir(int dfd, const char __user *pathname)
2161 int error = 0;
2162 char * name;
2163 struct dentry *dentry;
2164 struct nameidata nd;
2166 error = user_path_parent(dfd, pathname, &nd, &name);
2167 if (error)
2168 return error;
2170 switch(nd.last_type) {
2171 case LAST_DOTDOT:
2172 error = -ENOTEMPTY;
2173 goto exit1;
2174 case LAST_DOT:
2175 error = -EINVAL;
2176 goto exit1;
2177 case LAST_ROOT:
2178 error = -EBUSY;
2179 goto exit1;
2182 nd.flags &= ~LOOKUP_PARENT;
2184 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2185 dentry = lookup_hash(&nd);
2186 error = PTR_ERR(dentry);
2187 if (IS_ERR(dentry))
2188 goto exit2;
2189 error = mnt_want_write(nd.path.mnt);
2190 if (error)
2191 goto exit3;
2192 error = security_path_rmdir(&nd.path, dentry);
2193 if (error)
2194 goto exit4;
2195 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2196 exit4:
2197 mnt_drop_write(nd.path.mnt);
2198 exit3:
2199 dput(dentry);
2200 exit2:
2201 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2202 exit1:
2203 path_put(&nd.path);
2204 putname(name);
2205 return error;
2208 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2210 return do_rmdir(AT_FDCWD, pathname);
2213 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2215 int error = may_delete(dir, dentry, 0);
2217 if (error)
2218 return error;
2220 if (!dir->i_op->unlink)
2221 return -EPERM;
2223 vfs_dq_init(dir);
2225 mutex_lock(&dentry->d_inode->i_mutex);
2226 if (d_mountpoint(dentry))
2227 error = -EBUSY;
2228 else {
2229 error = security_inode_unlink(dir, dentry);
2230 if (!error)
2231 error = dir->i_op->unlink(dir, dentry);
2233 mutex_unlock(&dentry->d_inode->i_mutex);
2235 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2236 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2237 fsnotify_link_count(dentry->d_inode);
2238 d_delete(dentry);
2241 return error;
2245 * Make sure that the actual truncation of the file will occur outside its
2246 * directory's i_mutex. Truncate can take a long time if there is a lot of
2247 * writeout happening, and we don't want to prevent access to the directory
2248 * while waiting on the I/O.
2250 static long do_unlinkat(int dfd, const char __user *pathname)
2252 int error;
2253 char *name;
2254 struct dentry *dentry;
2255 struct nameidata nd;
2256 struct inode *inode = NULL;
2258 error = user_path_parent(dfd, pathname, &nd, &name);
2259 if (error)
2260 return error;
2262 error = -EISDIR;
2263 if (nd.last_type != LAST_NORM)
2264 goto exit1;
2266 nd.flags &= ~LOOKUP_PARENT;
2268 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2269 dentry = lookup_hash(&nd);
2270 error = PTR_ERR(dentry);
2271 if (!IS_ERR(dentry)) {
2272 /* Why not before? Because we want correct error value */
2273 if (nd.last.name[nd.last.len])
2274 goto slashes;
2275 inode = dentry->d_inode;
2276 if (inode)
2277 atomic_inc(&inode->i_count);
2278 error = mnt_want_write(nd.path.mnt);
2279 if (error)
2280 goto exit2;
2281 error = security_path_unlink(&nd.path, dentry);
2282 if (error)
2283 goto exit3;
2284 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2285 exit3:
2286 mnt_drop_write(nd.path.mnt);
2287 exit2:
2288 dput(dentry);
2290 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2291 if (inode)
2292 iput(inode); /* truncate the inode here */
2293 exit1:
2294 path_put(&nd.path);
2295 putname(name);
2296 return error;
2298 slashes:
2299 error = !dentry->d_inode ? -ENOENT :
2300 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2301 goto exit2;
2304 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2306 if ((flag & ~AT_REMOVEDIR) != 0)
2307 return -EINVAL;
2309 if (flag & AT_REMOVEDIR)
2310 return do_rmdir(dfd, pathname);
2312 return do_unlinkat(dfd, pathname);
2315 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2317 return do_unlinkat(AT_FDCWD, pathname);
2320 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2322 int error = may_create(dir, dentry);
2324 if (error)
2325 return error;
2327 if (!dir->i_op->symlink)
2328 return -EPERM;
2330 error = security_inode_symlink(dir, dentry, oldname);
2331 if (error)
2332 return error;
2334 vfs_dq_init(dir);
2335 error = dir->i_op->symlink(dir, dentry, oldname);
2336 if (!error)
2337 fsnotify_create(dir, dentry);
2338 return error;
2341 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2342 int, newdfd, const char __user *, newname)
2344 int error;
2345 char *from;
2346 char *to;
2347 struct dentry *dentry;
2348 struct nameidata nd;
2350 from = getname(oldname);
2351 if (IS_ERR(from))
2352 return PTR_ERR(from);
2354 error = user_path_parent(newdfd, newname, &nd, &to);
2355 if (error)
2356 goto out_putname;
2358 dentry = lookup_create(&nd, 0);
2359 error = PTR_ERR(dentry);
2360 if (IS_ERR(dentry))
2361 goto out_unlock;
2363 error = mnt_want_write(nd.path.mnt);
2364 if (error)
2365 goto out_dput;
2366 error = security_path_symlink(&nd.path, dentry, from);
2367 if (error)
2368 goto out_drop_write;
2369 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2370 out_drop_write:
2371 mnt_drop_write(nd.path.mnt);
2372 out_dput:
2373 dput(dentry);
2374 out_unlock:
2375 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2376 path_put(&nd.path);
2377 putname(to);
2378 out_putname:
2379 putname(from);
2380 return error;
2383 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2385 return sys_symlinkat(oldname, AT_FDCWD, newname);
2388 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2390 struct inode *inode = old_dentry->d_inode;
2391 int error;
2393 if (!inode)
2394 return -ENOENT;
2396 error = may_create(dir, new_dentry);
2397 if (error)
2398 return error;
2400 if (dir->i_sb != inode->i_sb)
2401 return -EXDEV;
2404 * A link to an append-only or immutable file cannot be created.
2406 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2407 return -EPERM;
2408 if (!dir->i_op->link)
2409 return -EPERM;
2410 if (S_ISDIR(inode->i_mode))
2411 return -EPERM;
2413 error = security_inode_link(old_dentry, dir, new_dentry);
2414 if (error)
2415 return error;
2417 mutex_lock(&inode->i_mutex);
2418 vfs_dq_init(dir);
2419 error = dir->i_op->link(old_dentry, dir, new_dentry);
2420 mutex_unlock(&inode->i_mutex);
2421 if (!error)
2422 fsnotify_link(dir, inode, new_dentry);
2423 return error;
2427 * Hardlinks are often used in delicate situations. We avoid
2428 * security-related surprises by not following symlinks on the
2429 * newname. --KAB
2431 * We don't follow them on the oldname either to be compatible
2432 * with linux 2.0, and to avoid hard-linking to directories
2433 * and other special files. --ADM
2435 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2436 int, newdfd, const char __user *, newname, int, flags)
2438 struct dentry *new_dentry;
2439 struct nameidata nd;
2440 struct path old_path;
2441 int error;
2442 char *to;
2444 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2445 return -EINVAL;
2447 error = user_path_at(olddfd, oldname,
2448 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2449 &old_path);
2450 if (error)
2451 return error;
2453 error = user_path_parent(newdfd, newname, &nd, &to);
2454 if (error)
2455 goto out;
2456 error = -EXDEV;
2457 if (old_path.mnt != nd.path.mnt)
2458 goto out_release;
2459 new_dentry = lookup_create(&nd, 0);
2460 error = PTR_ERR(new_dentry);
2461 if (IS_ERR(new_dentry))
2462 goto out_unlock;
2463 error = mnt_want_write(nd.path.mnt);
2464 if (error)
2465 goto out_dput;
2466 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2467 if (error)
2468 goto out_drop_write;
2469 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2470 out_drop_write:
2471 mnt_drop_write(nd.path.mnt);
2472 out_dput:
2473 dput(new_dentry);
2474 out_unlock:
2475 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2476 out_release:
2477 path_put(&nd.path);
2478 putname(to);
2479 out:
2480 path_put(&old_path);
2482 return error;
2485 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2487 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2491 * The worst of all namespace operations - renaming directory. "Perverted"
2492 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2493 * Problems:
2494 * a) we can get into loop creation. Check is done in is_subdir().
2495 * b) race potential - two innocent renames can create a loop together.
2496 * That's where 4.4 screws up. Current fix: serialization on
2497 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2498 * story.
2499 * c) we have to lock _three_ objects - parents and victim (if it exists).
2500 * And that - after we got ->i_mutex on parents (until then we don't know
2501 * whether the target exists). Solution: try to be smart with locking
2502 * order for inodes. We rely on the fact that tree topology may change
2503 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2504 * move will be locked. Thus we can rank directories by the tree
2505 * (ancestors first) and rank all non-directories after them.
2506 * That works since everybody except rename does "lock parent, lookup,
2507 * lock child" and rename is under ->s_vfs_rename_mutex.
2508 * HOWEVER, it relies on the assumption that any object with ->lookup()
2509 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2510 * we'd better make sure that there's no link(2) for them.
2511 * d) some filesystems don't support opened-but-unlinked directories,
2512 * either because of layout or because they are not ready to deal with
2513 * all cases correctly. The latter will be fixed (taking this sort of
2514 * stuff into VFS), but the former is not going away. Solution: the same
2515 * trick as in rmdir().
2516 * e) conversion from fhandle to dentry may come in the wrong moment - when
2517 * we are removing the target. Solution: we will have to grab ->i_mutex
2518 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2519 * ->i_mutex on parents, which works but leads to some truely excessive
2520 * locking].
2522 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2523 struct inode *new_dir, struct dentry *new_dentry)
2525 int error = 0;
2526 struct inode *target;
2529 * If we are going to change the parent - check write permissions,
2530 * we'll need to flip '..'.
2532 if (new_dir != old_dir) {
2533 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2534 if (error)
2535 return error;
2538 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2539 if (error)
2540 return error;
2542 target = new_dentry->d_inode;
2543 if (target) {
2544 mutex_lock(&target->i_mutex);
2545 dentry_unhash(new_dentry);
2547 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2548 error = -EBUSY;
2549 else
2550 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2551 if (target) {
2552 if (!error)
2553 target->i_flags |= S_DEAD;
2554 mutex_unlock(&target->i_mutex);
2555 if (d_unhashed(new_dentry))
2556 d_rehash(new_dentry);
2557 dput(new_dentry);
2559 if (!error)
2560 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2561 d_move(old_dentry,new_dentry);
2562 return error;
2565 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2566 struct inode *new_dir, struct dentry *new_dentry)
2568 struct inode *target;
2569 int error;
2571 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2572 if (error)
2573 return error;
2575 dget(new_dentry);
2576 target = new_dentry->d_inode;
2577 if (target)
2578 mutex_lock(&target->i_mutex);
2579 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2580 error = -EBUSY;
2581 else
2582 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2583 if (!error) {
2584 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2585 d_move(old_dentry, new_dentry);
2587 if (target)
2588 mutex_unlock(&target->i_mutex);
2589 dput(new_dentry);
2590 return error;
2593 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2594 struct inode *new_dir, struct dentry *new_dentry)
2596 int error;
2597 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2598 const char *old_name;
2600 if (old_dentry->d_inode == new_dentry->d_inode)
2601 return 0;
2603 error = may_delete(old_dir, old_dentry, is_dir);
2604 if (error)
2605 return error;
2607 if (!new_dentry->d_inode)
2608 error = may_create(new_dir, new_dentry);
2609 else
2610 error = may_delete(new_dir, new_dentry, is_dir);
2611 if (error)
2612 return error;
2614 if (!old_dir->i_op->rename)
2615 return -EPERM;
2617 vfs_dq_init(old_dir);
2618 vfs_dq_init(new_dir);
2620 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2622 if (is_dir)
2623 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2624 else
2625 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2626 if (!error) {
2627 const char *new_name = old_dentry->d_name.name;
2628 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2629 new_dentry->d_inode, old_dentry);
2631 fsnotify_oldname_free(old_name);
2633 return error;
2636 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
2637 int, newdfd, const char __user *, newname)
2639 struct dentry *old_dir, *new_dir;
2640 struct dentry *old_dentry, *new_dentry;
2641 struct dentry *trap;
2642 struct nameidata oldnd, newnd;
2643 char *from;
2644 char *to;
2645 int error;
2647 error = user_path_parent(olddfd, oldname, &oldnd, &from);
2648 if (error)
2649 goto exit;
2651 error = user_path_parent(newdfd, newname, &newnd, &to);
2652 if (error)
2653 goto exit1;
2655 error = -EXDEV;
2656 if (oldnd.path.mnt != newnd.path.mnt)
2657 goto exit2;
2659 old_dir = oldnd.path.dentry;
2660 error = -EBUSY;
2661 if (oldnd.last_type != LAST_NORM)
2662 goto exit2;
2664 new_dir = newnd.path.dentry;
2665 if (newnd.last_type != LAST_NORM)
2666 goto exit2;
2668 oldnd.flags &= ~LOOKUP_PARENT;
2669 newnd.flags &= ~LOOKUP_PARENT;
2670 newnd.flags |= LOOKUP_RENAME_TARGET;
2672 trap = lock_rename(new_dir, old_dir);
2674 old_dentry = lookup_hash(&oldnd);
2675 error = PTR_ERR(old_dentry);
2676 if (IS_ERR(old_dentry))
2677 goto exit3;
2678 /* source must exist */
2679 error = -ENOENT;
2680 if (!old_dentry->d_inode)
2681 goto exit4;
2682 /* unless the source is a directory trailing slashes give -ENOTDIR */
2683 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2684 error = -ENOTDIR;
2685 if (oldnd.last.name[oldnd.last.len])
2686 goto exit4;
2687 if (newnd.last.name[newnd.last.len])
2688 goto exit4;
2690 /* source should not be ancestor of target */
2691 error = -EINVAL;
2692 if (old_dentry == trap)
2693 goto exit4;
2694 new_dentry = lookup_hash(&newnd);
2695 error = PTR_ERR(new_dentry);
2696 if (IS_ERR(new_dentry))
2697 goto exit4;
2698 /* target should not be an ancestor of source */
2699 error = -ENOTEMPTY;
2700 if (new_dentry == trap)
2701 goto exit5;
2703 error = mnt_want_write(oldnd.path.mnt);
2704 if (error)
2705 goto exit5;
2706 error = security_path_rename(&oldnd.path, old_dentry,
2707 &newnd.path, new_dentry);
2708 if (error)
2709 goto exit6;
2710 error = vfs_rename(old_dir->d_inode, old_dentry,
2711 new_dir->d_inode, new_dentry);
2712 exit6:
2713 mnt_drop_write(oldnd.path.mnt);
2714 exit5:
2715 dput(new_dentry);
2716 exit4:
2717 dput(old_dentry);
2718 exit3:
2719 unlock_rename(new_dir, old_dir);
2720 exit2:
2721 path_put(&newnd.path);
2722 putname(to);
2723 exit1:
2724 path_put(&oldnd.path);
2725 putname(from);
2726 exit:
2727 return error;
2730 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
2732 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2735 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2737 int len;
2739 len = PTR_ERR(link);
2740 if (IS_ERR(link))
2741 goto out;
2743 len = strlen(link);
2744 if (len > (unsigned) buflen)
2745 len = buflen;
2746 if (copy_to_user(buffer, link, len))
2747 len = -EFAULT;
2748 out:
2749 return len;
2753 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2754 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2755 * using) it for any given inode is up to filesystem.
2757 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2759 struct nameidata nd;
2760 void *cookie;
2761 int res;
2763 nd.depth = 0;
2764 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2765 if (IS_ERR(cookie))
2766 return PTR_ERR(cookie);
2768 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2769 if (dentry->d_inode->i_op->put_link)
2770 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2771 return res;
2774 int vfs_follow_link(struct nameidata *nd, const char *link)
2776 return __vfs_follow_link(nd, link);
2779 /* get the link contents into pagecache */
2780 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2782 char *kaddr;
2783 struct page *page;
2784 struct address_space *mapping = dentry->d_inode->i_mapping;
2785 page = read_mapping_page(mapping, 0, NULL);
2786 if (IS_ERR(page))
2787 return (char*)page;
2788 *ppage = page;
2789 kaddr = kmap(page);
2790 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
2791 return kaddr;
2794 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2796 struct page *page = NULL;
2797 char *s = page_getlink(dentry, &page);
2798 int res = vfs_readlink(dentry,buffer,buflen,s);
2799 if (page) {
2800 kunmap(page);
2801 page_cache_release(page);
2803 return res;
2806 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2808 struct page *page = NULL;
2809 nd_set_link(nd, page_getlink(dentry, &page));
2810 return page;
2813 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2815 struct page *page = cookie;
2817 if (page) {
2818 kunmap(page);
2819 page_cache_release(page);
2824 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
2826 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
2828 struct address_space *mapping = inode->i_mapping;
2829 struct page *page;
2830 void *fsdata;
2831 int err;
2832 char *kaddr;
2833 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
2834 if (nofs)
2835 flags |= AOP_FLAG_NOFS;
2837 retry:
2838 err = pagecache_write_begin(NULL, mapping, 0, len-1,
2839 flags, &page, &fsdata);
2840 if (err)
2841 goto fail;
2843 kaddr = kmap_atomic(page, KM_USER0);
2844 memcpy(kaddr, symname, len-1);
2845 kunmap_atomic(kaddr, KM_USER0);
2847 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2848 page, fsdata);
2849 if (err < 0)
2850 goto fail;
2851 if (err < len-1)
2852 goto retry;
2854 mark_inode_dirty(inode);
2855 return 0;
2856 fail:
2857 return err;
2860 int page_symlink(struct inode *inode, const char *symname, int len)
2862 return __page_symlink(inode, symname, len,
2863 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
2866 const struct inode_operations page_symlink_inode_operations = {
2867 .readlink = generic_readlink,
2868 .follow_link = page_follow_link_light,
2869 .put_link = page_put_link,
2872 EXPORT_SYMBOL(user_path_at);
2873 EXPORT_SYMBOL(follow_down);
2874 EXPORT_SYMBOL(follow_up);
2875 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2876 EXPORT_SYMBOL(getname);
2877 EXPORT_SYMBOL(lock_rename);
2878 EXPORT_SYMBOL(lookup_one_len);
2879 EXPORT_SYMBOL(page_follow_link_light);
2880 EXPORT_SYMBOL(page_put_link);
2881 EXPORT_SYMBOL(page_readlink);
2882 EXPORT_SYMBOL(__page_symlink);
2883 EXPORT_SYMBOL(page_symlink);
2884 EXPORT_SYMBOL(page_symlink_inode_operations);
2885 EXPORT_SYMBOL(path_lookup);
2886 EXPORT_SYMBOL(kern_path);
2887 EXPORT_SYMBOL(vfs_path_lookup);
2888 EXPORT_SYMBOL(inode_permission);
2889 EXPORT_SYMBOL(file_permission);
2890 EXPORT_SYMBOL(unlock_rename);
2891 EXPORT_SYMBOL(vfs_create);
2892 EXPORT_SYMBOL(vfs_follow_link);
2893 EXPORT_SYMBOL(vfs_link);
2894 EXPORT_SYMBOL(vfs_mkdir);
2895 EXPORT_SYMBOL(vfs_mknod);
2896 EXPORT_SYMBOL(generic_permission);
2897 EXPORT_SYMBOL(vfs_readlink);
2898 EXPORT_SYMBOL(vfs_rename);
2899 EXPORT_SYMBOL(vfs_rmdir);
2900 EXPORT_SYMBOL(vfs_symlink);
2901 EXPORT_SYMBOL(vfs_unlink);
2902 EXPORT_SYMBOL(dentry_unhash);
2903 EXPORT_SYMBOL(generic_readlink);