sh: sh_mobile i2c clock framework support
[linux-2.6/mini2440.git] / drivers / atm / ambassador.c
blob703364b52170fa2f4728ff135d38bc2be8cb6e48
1 /*
2 Madge Ambassador ATM Adapter driver.
3 Copyright (C) 1995-1999 Madge Networks Ltd.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
20 system and in the file COPYING in the Linux kernel source.
23 /* * dedicated to the memory of Graham Gordon 1971-1998 * */
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/pci.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/ioport.h>
31 #include <linux/atmdev.h>
32 #include <linux/delay.h>
33 #include <linux/interrupt.h>
34 #include <linux/poison.h>
35 #include <linux/bitrev.h>
36 #include <linux/mutex.h>
37 #include <linux/firmware.h>
38 #include <linux/ihex.h>
40 #include <asm/atomic.h>
41 #include <asm/io.h>
42 #include <asm/byteorder.h>
44 #include "ambassador.h"
46 #define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
47 #define description_string "Madge ATM Ambassador driver"
48 #define version_string "1.2.4"
50 static inline void __init show_version (void) {
51 printk ("%s version %s\n", description_string, version_string);
56 Theory of Operation
58 I Hardware, detection, initialisation and shutdown.
60 1. Supported Hardware
62 This driver is for the PCI ATMizer-based Ambassador card (except
63 very early versions). It is not suitable for the similar EISA "TR7"
64 card. Commercially, both cards are known as Collage Server ATM
65 adapters.
67 The loader supports image transfer to the card, image start and few
68 other miscellaneous commands.
70 Only AAL5 is supported with vpi = 0 and vci in the range 0 to 1023.
72 The cards are big-endian.
74 2. Detection
76 Standard PCI stuff, the early cards are detected and rejected.
78 3. Initialisation
80 The cards are reset and the self-test results are checked. The
81 microcode image is then transferred and started. This waits for a
82 pointer to a descriptor containing details of the host-based queues
83 and buffers and various parameters etc. Once they are processed
84 normal operations may begin. The BIA is read using a microcode
85 command.
87 4. Shutdown
89 This may be accomplished either by a card reset or via the microcode
90 shutdown command. Further investigation required.
92 5. Persistent state
94 The card reset does not affect PCI configuration (good) or the
95 contents of several other "shared run-time registers" (bad) which
96 include doorbell and interrupt control as well as EEPROM and PCI
97 control. The driver must be careful when modifying these registers
98 not to touch bits it does not use and to undo any changes at exit.
100 II Driver software
102 0. Generalities
104 The adapter is quite intelligent (fast) and has a simple interface
105 (few features). VPI is always zero, 1024 VCIs are supported. There
106 is limited cell rate support. UBR channels can be capped and ABR
107 (explicit rate, but not EFCI) is supported. There is no CBR or VBR
108 support.
110 1. Driver <-> Adapter Communication
112 Apart from the basic loader commands, the driver communicates
113 through three entities: the command queue (CQ), the transmit queue
114 pair (TXQ) and the receive queue pairs (RXQ). These three entities
115 are set up by the host and passed to the microcode just after it has
116 been started.
118 All queues are host-based circular queues. They are contiguous and
119 (due to hardware limitations) have some restrictions as to their
120 locations in (bus) memory. They are of the "full means the same as
121 empty so don't do that" variety since the adapter uses pointers
122 internally.
124 The queue pairs work as follows: one queue is for supply to the
125 adapter, items in it are pending and are owned by the adapter; the
126 other is the queue for return from the adapter, items in it have
127 been dealt with by the adapter. The host adds items to the supply
128 (TX descriptors and free RX buffer descriptors) and removes items
129 from the return (TX and RX completions). The adapter deals with out
130 of order completions.
132 Interrupts (card to host) and the doorbell (host to card) are used
133 for signalling.
135 1. CQ
137 This is to communicate "open VC", "close VC", "get stats" etc. to
138 the adapter. At most one command is retired every millisecond by the
139 card. There is no out of order completion or notification. The
140 driver needs to check the return code of the command, waiting as
141 appropriate.
143 2. TXQ
145 TX supply items are of variable length (scatter gather support) and
146 so the queue items are (more or less) pointers to the real thing.
147 Each TX supply item contains a unique, host-supplied handle (the skb
148 bus address seems most sensible as this works for Alphas as well,
149 there is no need to do any endian conversions on the handles).
151 TX return items consist of just the handles above.
153 3. RXQ (up to 4 of these with different lengths and buffer sizes)
155 RX supply items consist of a unique, host-supplied handle (the skb
156 bus address again) and a pointer to the buffer data area.
158 RX return items consist of the handle above, the VC, length and a
159 status word. This just screams "oh so easy" doesn't it?
161 Note on RX pool sizes:
163 Each pool should have enough buffers to handle a back-to-back stream
164 of minimum sized frames on a single VC. For example:
166 frame spacing = 3us (about right)
168 delay = IRQ lat + RX handling + RX buffer replenish = 20 (us) (a guess)
170 min number of buffers for one VC = 1 + delay/spacing (buffers)
172 delay/spacing = latency = (20+2)/3 = 7 (buffers) (rounding up)
174 The 20us delay assumes that there is no need to sleep; if we need to
175 sleep to get buffers we are going to drop frames anyway.
177 In fact, each pool should have enough buffers to support the
178 simultaneous reassembly of a separate frame on each VC and cope with
179 the case in which frames complete in round robin cell fashion on
180 each VC.
182 Only one frame can complete at each cell arrival, so if "n" VCs are
183 open, the worst case is to have them all complete frames together
184 followed by all starting new frames together.
186 desired number of buffers = n + delay/spacing
188 These are the extreme requirements, however, they are "n+k" for some
189 "k" so we have only the constant to choose. This is the argument
190 rx_lats which current defaults to 7.
192 Actually, "n ? n+k : 0" is better and this is what is implemented,
193 subject to the limit given by the pool size.
195 4. Driver locking
197 Simple spinlocks are used around the TX and RX queue mechanisms.
198 Anyone with a faster, working method is welcome to implement it.
200 The adapter command queue is protected with a spinlock. We always
201 wait for commands to complete.
203 A more complex form of locking is used around parts of the VC open
204 and close functions. There are three reasons for a lock: 1. we need
205 to do atomic rate reservation and release (not used yet), 2. Opening
206 sometimes involves two adapter commands which must not be separated
207 by another command on the same VC, 3. the changes to RX pool size
208 must be atomic. The lock needs to work over context switches, so we
209 use a semaphore.
211 III Hardware Features and Microcode Bugs
213 1. Byte Ordering
215 *%^"$&%^$*&^"$(%^$#&^%$(&#%$*(&^#%!"!"!*!
217 2. Memory access
219 All structures that are not accessed using DMA must be 4-byte
220 aligned (not a problem) and must not cross 4MB boundaries.
222 There is a DMA memory hole at E0000000-E00000FF (groan).
224 TX fragments (DMA read) must not cross 4MB boundaries (would be 16MB
225 but for a hardware bug).
227 RX buffers (DMA write) must not cross 16MB boundaries and must
228 include spare trailing bytes up to the next 4-byte boundary; they
229 will be written with rubbish.
231 The PLX likes to prefetch; if reading up to 4 u32 past the end of
232 each TX fragment is not a problem, then TX can be made to go a
233 little faster by passing a flag at init that disables a prefetch
234 workaround. We do not pass this flag. (new microcode only)
236 Now we:
237 . Note that alloc_skb rounds up size to a 16byte boundary.
238 . Ensure all areas do not traverse 4MB boundaries.
239 . Ensure all areas do not start at a E00000xx bus address.
240 (I cannot be certain, but this may always hold with Linux)
241 . Make all failures cause a loud message.
242 . Discard non-conforming SKBs (causes TX failure or RX fill delay).
243 . Discard non-conforming TX fragment descriptors (the TX fails).
244 In the future we could:
245 . Allow RX areas that traverse 4MB (but not 16MB) boundaries.
246 . Segment TX areas into some/more fragments, when necessary.
247 . Relax checks for non-DMA items (ignore hole).
248 . Give scatter-gather (iovec) requirements using ???. (?)
250 3. VC close is broken (only for new microcode)
252 The VC close adapter microcode command fails to do anything if any
253 frames have been received on the VC but none have been transmitted.
254 Frames continue to be reassembled and passed (with IRQ) to the
255 driver.
257 IV To Do List
259 . Fix bugs!
261 . Timer code may be broken.
263 . Deal with buggy VC close (somehow) in microcode 12.
265 . Handle interrupted and/or non-blocking writes - is this a job for
266 the protocol layer?
268 . Add code to break up TX fragments when they span 4MB boundaries.
270 . Add SUNI phy layer (need to know where SUNI lives on card).
272 . Implement a tx_alloc fn to (a) satisfy TX alignment etc. and (b)
273 leave extra headroom space for Ambassador TX descriptors.
275 . Understand these elements of struct atm_vcc: recvq (proto?),
276 sleep, callback, listenq, backlog_quota, reply and user_back.
278 . Adjust TX/RX skb allocation to favour IP with LANE/CLIP (configurable).
280 . Impose a TX-pending limit (2?) on each VC, help avoid TX q overflow.
282 . Decide whether RX buffer recycling is or can be made completely safe;
283 turn it back on. It looks like Werner is going to axe this.
285 . Implement QoS changes on open VCs (involves extracting parts of VC open
286 and close into separate functions and using them to make changes).
288 . Hack on command queue so that someone can issue multiple commands and wait
289 on the last one (OR only "no-op" or "wait" commands are waited for).
291 . Eliminate need for while-schedule around do_command.
295 static void do_housekeeping (unsigned long arg);
296 /********** globals **********/
298 static unsigned short debug = 0;
299 static unsigned int cmds = 8;
300 static unsigned int txs = 32;
301 static unsigned int rxs[NUM_RX_POOLS] = { 64, 64, 64, 64 };
302 static unsigned int rxs_bs[NUM_RX_POOLS] = { 4080, 12240, 36720, 65535 };
303 static unsigned int rx_lats = 7;
304 static unsigned char pci_lat = 0;
306 static const unsigned long onegigmask = -1 << 30;
308 /********** access to adapter **********/
310 static inline void wr_plain (const amb_dev * dev, size_t addr, u32 data) {
311 PRINTD (DBG_FLOW|DBG_REGS, "wr: %08zx <- %08x", addr, data);
312 #ifdef AMB_MMIO
313 dev->membase[addr / sizeof(u32)] = data;
314 #else
315 outl (data, dev->iobase + addr);
316 #endif
319 static inline u32 rd_plain (const amb_dev * dev, size_t addr) {
320 #ifdef AMB_MMIO
321 u32 data = dev->membase[addr / sizeof(u32)];
322 #else
323 u32 data = inl (dev->iobase + addr);
324 #endif
325 PRINTD (DBG_FLOW|DBG_REGS, "rd: %08zx -> %08x", addr, data);
326 return data;
329 static inline void wr_mem (const amb_dev * dev, size_t addr, u32 data) {
330 __be32 be = cpu_to_be32 (data);
331 PRINTD (DBG_FLOW|DBG_REGS, "wr: %08zx <- %08x b[%08x]", addr, data, be);
332 #ifdef AMB_MMIO
333 dev->membase[addr / sizeof(u32)] = be;
334 #else
335 outl (be, dev->iobase + addr);
336 #endif
339 static inline u32 rd_mem (const amb_dev * dev, size_t addr) {
340 #ifdef AMB_MMIO
341 __be32 be = dev->membase[addr / sizeof(u32)];
342 #else
343 __be32 be = inl (dev->iobase + addr);
344 #endif
345 u32 data = be32_to_cpu (be);
346 PRINTD (DBG_FLOW|DBG_REGS, "rd: %08zx -> %08x b[%08x]", addr, data, be);
347 return data;
350 /********** dump routines **********/
352 static inline void dump_registers (const amb_dev * dev) {
353 #ifdef DEBUG_AMBASSADOR
354 if (debug & DBG_REGS) {
355 size_t i;
356 PRINTD (DBG_REGS, "reading PLX control: ");
357 for (i = 0x00; i < 0x30; i += sizeof(u32))
358 rd_mem (dev, i);
359 PRINTD (DBG_REGS, "reading mailboxes: ");
360 for (i = 0x40; i < 0x60; i += sizeof(u32))
361 rd_mem (dev, i);
362 PRINTD (DBG_REGS, "reading doorb irqev irqen reset:");
363 for (i = 0x60; i < 0x70; i += sizeof(u32))
364 rd_mem (dev, i);
366 #else
367 (void) dev;
368 #endif
369 return;
372 static inline void dump_loader_block (volatile loader_block * lb) {
373 #ifdef DEBUG_AMBASSADOR
374 unsigned int i;
375 PRINTDB (DBG_LOAD, "lb @ %p; res: %d, cmd: %d, pay:",
376 lb, be32_to_cpu (lb->result), be32_to_cpu (lb->command));
377 for (i = 0; i < MAX_COMMAND_DATA; ++i)
378 PRINTDM (DBG_LOAD, " %08x", be32_to_cpu (lb->payload.data[i]));
379 PRINTDE (DBG_LOAD, ", vld: %08x", be32_to_cpu (lb->valid));
380 #else
381 (void) lb;
382 #endif
383 return;
386 static inline void dump_command (command * cmd) {
387 #ifdef DEBUG_AMBASSADOR
388 unsigned int i;
389 PRINTDB (DBG_CMD, "cmd @ %p, req: %08x, pars:",
390 cmd, /*be32_to_cpu*/ (cmd->request));
391 for (i = 0; i < 3; ++i)
392 PRINTDM (DBG_CMD, " %08x", /*be32_to_cpu*/ (cmd->args.par[i]));
393 PRINTDE (DBG_CMD, "");
394 #else
395 (void) cmd;
396 #endif
397 return;
400 static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
401 #ifdef DEBUG_AMBASSADOR
402 unsigned int i;
403 unsigned char * data = skb->data;
404 PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
405 for (i=0; i<skb->len && i < 256;i++)
406 PRINTDM (DBG_DATA, "%02x ", data[i]);
407 PRINTDE (DBG_DATA,"");
408 #else
409 (void) prefix;
410 (void) vc;
411 (void) skb;
412 #endif
413 return;
416 /********** check memory areas for use by Ambassador **********/
418 /* see limitations under Hardware Features */
420 static int check_area (void * start, size_t length) {
421 // assumes length > 0
422 const u32 fourmegmask = -1 << 22;
423 const u32 twofivesixmask = -1 << 8;
424 const u32 starthole = 0xE0000000;
425 u32 startaddress = virt_to_bus (start);
426 u32 lastaddress = startaddress+length-1;
427 if ((startaddress ^ lastaddress) & fourmegmask ||
428 (startaddress & twofivesixmask) == starthole) {
429 PRINTK (KERN_ERR, "check_area failure: [%x,%x] - mail maintainer!",
430 startaddress, lastaddress);
431 return -1;
432 } else {
433 return 0;
437 /********** free an skb (as per ATM device driver documentation) **********/
439 static void amb_kfree_skb (struct sk_buff * skb) {
440 if (ATM_SKB(skb)->vcc->pop) {
441 ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
442 } else {
443 dev_kfree_skb_any (skb);
447 /********** TX completion **********/
449 static void tx_complete (amb_dev * dev, tx_out * tx) {
450 tx_simple * tx_descr = bus_to_virt (tx->handle);
451 struct sk_buff * skb = tx_descr->skb;
453 PRINTD (DBG_FLOW|DBG_TX, "tx_complete %p %p", dev, tx);
455 // VC layer stats
456 atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
458 // free the descriptor
459 kfree (tx_descr);
461 // free the skb
462 amb_kfree_skb (skb);
464 dev->stats.tx_ok++;
465 return;
468 /********** RX completion **********/
470 static void rx_complete (amb_dev * dev, rx_out * rx) {
471 struct sk_buff * skb = bus_to_virt (rx->handle);
472 u16 vc = be16_to_cpu (rx->vc);
473 // unused: u16 lec_id = be16_to_cpu (rx->lec_id);
474 u16 status = be16_to_cpu (rx->status);
475 u16 rx_len = be16_to_cpu (rx->length);
477 PRINTD (DBG_FLOW|DBG_RX, "rx_complete %p %p (len=%hu)", dev, rx, rx_len);
479 // XXX move this in and add to VC stats ???
480 if (!status) {
481 struct atm_vcc * atm_vcc = dev->rxer[vc];
482 dev->stats.rx.ok++;
484 if (atm_vcc) {
486 if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
488 if (atm_charge (atm_vcc, skb->truesize)) {
490 // prepare socket buffer
491 ATM_SKB(skb)->vcc = atm_vcc;
492 skb_put (skb, rx_len);
494 dump_skb ("<<<", vc, skb);
496 // VC layer stats
497 atomic_inc(&atm_vcc->stats->rx);
498 __net_timestamp(skb);
499 // end of our responsability
500 atm_vcc->push (atm_vcc, skb);
501 return;
503 } else {
504 // someone fix this (message), please!
505 PRINTD (DBG_INFO|DBG_RX, "dropped thanks to atm_charge (vc %hu, truesize %u)", vc, skb->truesize);
506 // drop stats incremented in atm_charge
509 } else {
510 PRINTK (KERN_INFO, "dropped over-size frame");
511 // should we count this?
512 atomic_inc(&atm_vcc->stats->rx_drop);
515 } else {
516 PRINTD (DBG_WARN|DBG_RX, "got frame but RX closed for channel %hu", vc);
517 // this is an adapter bug, only in new version of microcode
520 } else {
521 dev->stats.rx.error++;
522 if (status & CRC_ERR)
523 dev->stats.rx.badcrc++;
524 if (status & LEN_ERR)
525 dev->stats.rx.toolong++;
526 if (status & ABORT_ERR)
527 dev->stats.rx.aborted++;
528 if (status & UNUSED_ERR)
529 dev->stats.rx.unused++;
532 dev_kfree_skb_any (skb);
533 return;
538 Note on queue handling.
540 Here "give" and "take" refer to queue entries and a queue (pair)
541 rather than frames to or from the host or adapter. Empty frame
542 buffers are given to the RX queue pair and returned unused or
543 containing RX frames. TX frames (well, pointers to TX fragment
544 lists) are given to the TX queue pair, completions are returned.
548 /********** command queue **********/
550 // I really don't like this, but it's the best I can do at the moment
552 // also, the callers are responsible for byte order as the microcode
553 // sometimes does 16-bit accesses (yuk yuk yuk)
555 static int command_do (amb_dev * dev, command * cmd) {
556 amb_cq * cq = &dev->cq;
557 volatile amb_cq_ptrs * ptrs = &cq->ptrs;
558 command * my_slot;
560 PRINTD (DBG_FLOW|DBG_CMD, "command_do %p", dev);
562 if (test_bit (dead, &dev->flags))
563 return 0;
565 spin_lock (&cq->lock);
567 // if not full...
568 if (cq->pending < cq->maximum) {
569 // remember my slot for later
570 my_slot = ptrs->in;
571 PRINTD (DBG_CMD, "command in slot %p", my_slot);
573 dump_command (cmd);
575 // copy command in
576 *ptrs->in = *cmd;
577 cq->pending++;
578 ptrs->in = NEXTQ (ptrs->in, ptrs->start, ptrs->limit);
580 // mail the command
581 wr_mem (dev, offsetof(amb_mem, mb.adapter.cmd_address), virt_to_bus (ptrs->in));
583 if (cq->pending > cq->high)
584 cq->high = cq->pending;
585 spin_unlock (&cq->lock);
587 // these comments were in a while-loop before, msleep removes the loop
588 // go to sleep
589 // PRINTD (DBG_CMD, "wait: sleeping %lu for command", timeout);
590 msleep(cq->pending);
592 // wait for my slot to be reached (all waiters are here or above, until...)
593 while (ptrs->out != my_slot) {
594 PRINTD (DBG_CMD, "wait: command slot (now at %p)", ptrs->out);
595 set_current_state(TASK_UNINTERRUPTIBLE);
596 schedule();
599 // wait on my slot (... one gets to its slot, and... )
600 while (ptrs->out->request != cpu_to_be32 (SRB_COMPLETE)) {
601 PRINTD (DBG_CMD, "wait: command slot completion");
602 set_current_state(TASK_UNINTERRUPTIBLE);
603 schedule();
606 PRINTD (DBG_CMD, "command complete");
607 // update queue (... moves the queue along to the next slot)
608 spin_lock (&cq->lock);
609 cq->pending--;
610 // copy command out
611 *cmd = *ptrs->out;
612 ptrs->out = NEXTQ (ptrs->out, ptrs->start, ptrs->limit);
613 spin_unlock (&cq->lock);
615 return 0;
616 } else {
617 cq->filled++;
618 spin_unlock (&cq->lock);
619 return -EAGAIN;
624 /********** TX queue pair **********/
626 static int tx_give (amb_dev * dev, tx_in * tx) {
627 amb_txq * txq = &dev->txq;
628 unsigned long flags;
630 PRINTD (DBG_FLOW|DBG_TX, "tx_give %p", dev);
632 if (test_bit (dead, &dev->flags))
633 return 0;
635 spin_lock_irqsave (&txq->lock, flags);
637 if (txq->pending < txq->maximum) {
638 PRINTD (DBG_TX, "TX in slot %p", txq->in.ptr);
640 *txq->in.ptr = *tx;
641 txq->pending++;
642 txq->in.ptr = NEXTQ (txq->in.ptr, txq->in.start, txq->in.limit);
643 // hand over the TX and ring the bell
644 wr_mem (dev, offsetof(amb_mem, mb.adapter.tx_address), virt_to_bus (txq->in.ptr));
645 wr_mem (dev, offsetof(amb_mem, doorbell), TX_FRAME);
647 if (txq->pending > txq->high)
648 txq->high = txq->pending;
649 spin_unlock_irqrestore (&txq->lock, flags);
650 return 0;
651 } else {
652 txq->filled++;
653 spin_unlock_irqrestore (&txq->lock, flags);
654 return -EAGAIN;
658 static int tx_take (amb_dev * dev) {
659 amb_txq * txq = &dev->txq;
660 unsigned long flags;
662 PRINTD (DBG_FLOW|DBG_TX, "tx_take %p", dev);
664 spin_lock_irqsave (&txq->lock, flags);
666 if (txq->pending && txq->out.ptr->handle) {
667 // deal with TX completion
668 tx_complete (dev, txq->out.ptr);
669 // mark unused again
670 txq->out.ptr->handle = 0;
671 // remove item
672 txq->pending--;
673 txq->out.ptr = NEXTQ (txq->out.ptr, txq->out.start, txq->out.limit);
675 spin_unlock_irqrestore (&txq->lock, flags);
676 return 0;
677 } else {
679 spin_unlock_irqrestore (&txq->lock, flags);
680 return -1;
684 /********** RX queue pairs **********/
686 static int rx_give (amb_dev * dev, rx_in * rx, unsigned char pool) {
687 amb_rxq * rxq = &dev->rxq[pool];
688 unsigned long flags;
690 PRINTD (DBG_FLOW|DBG_RX, "rx_give %p[%hu]", dev, pool);
692 spin_lock_irqsave (&rxq->lock, flags);
694 if (rxq->pending < rxq->maximum) {
695 PRINTD (DBG_RX, "RX in slot %p", rxq->in.ptr);
697 *rxq->in.ptr = *rx;
698 rxq->pending++;
699 rxq->in.ptr = NEXTQ (rxq->in.ptr, rxq->in.start, rxq->in.limit);
700 // hand over the RX buffer
701 wr_mem (dev, offsetof(amb_mem, mb.adapter.rx_address[pool]), virt_to_bus (rxq->in.ptr));
703 spin_unlock_irqrestore (&rxq->lock, flags);
704 return 0;
705 } else {
706 spin_unlock_irqrestore (&rxq->lock, flags);
707 return -1;
711 static int rx_take (amb_dev * dev, unsigned char pool) {
712 amb_rxq * rxq = &dev->rxq[pool];
713 unsigned long flags;
715 PRINTD (DBG_FLOW|DBG_RX, "rx_take %p[%hu]", dev, pool);
717 spin_lock_irqsave (&rxq->lock, flags);
719 if (rxq->pending && (rxq->out.ptr->status || rxq->out.ptr->length)) {
720 // deal with RX completion
721 rx_complete (dev, rxq->out.ptr);
722 // mark unused again
723 rxq->out.ptr->status = 0;
724 rxq->out.ptr->length = 0;
725 // remove item
726 rxq->pending--;
727 rxq->out.ptr = NEXTQ (rxq->out.ptr, rxq->out.start, rxq->out.limit);
729 if (rxq->pending < rxq->low)
730 rxq->low = rxq->pending;
731 spin_unlock_irqrestore (&rxq->lock, flags);
732 return 0;
733 } else {
734 if (!rxq->pending && rxq->buffers_wanted)
735 rxq->emptied++;
736 spin_unlock_irqrestore (&rxq->lock, flags);
737 return -1;
741 /********** RX Pool handling **********/
743 /* pre: buffers_wanted = 0, post: pending = 0 */
744 static void drain_rx_pool (amb_dev * dev, unsigned char pool) {
745 amb_rxq * rxq = &dev->rxq[pool];
747 PRINTD (DBG_FLOW|DBG_POOL, "drain_rx_pool %p %hu", dev, pool);
749 if (test_bit (dead, &dev->flags))
750 return;
752 /* we are not quite like the fill pool routines as we cannot just
753 remove one buffer, we have to remove all of them, but we might as
754 well pretend... */
755 if (rxq->pending > rxq->buffers_wanted) {
756 command cmd;
757 cmd.request = cpu_to_be32 (SRB_FLUSH_BUFFER_Q);
758 cmd.args.flush.flags = cpu_to_be32 (pool << SRB_POOL_SHIFT);
759 while (command_do (dev, &cmd))
760 schedule();
761 /* the pool may also be emptied via the interrupt handler */
762 while (rxq->pending > rxq->buffers_wanted)
763 if (rx_take (dev, pool))
764 schedule();
767 return;
770 static void drain_rx_pools (amb_dev * dev) {
771 unsigned char pool;
773 PRINTD (DBG_FLOW|DBG_POOL, "drain_rx_pools %p", dev);
775 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
776 drain_rx_pool (dev, pool);
779 static void fill_rx_pool (amb_dev * dev, unsigned char pool,
780 gfp_t priority)
782 rx_in rx;
783 amb_rxq * rxq;
785 PRINTD (DBG_FLOW|DBG_POOL, "fill_rx_pool %p %hu %x", dev, pool, priority);
787 if (test_bit (dead, &dev->flags))
788 return;
790 rxq = &dev->rxq[pool];
791 while (rxq->pending < rxq->maximum && rxq->pending < rxq->buffers_wanted) {
793 struct sk_buff * skb = alloc_skb (rxq->buffer_size, priority);
794 if (!skb) {
795 PRINTD (DBG_SKB|DBG_POOL, "failed to allocate skb for RX pool %hu", pool);
796 return;
798 if (check_area (skb->data, skb->truesize)) {
799 dev_kfree_skb_any (skb);
800 return;
802 // cast needed as there is no %? for pointer differences
803 PRINTD (DBG_SKB, "allocated skb at %p, head %p, area %li",
804 skb, skb->head, (long) (skb_end_pointer(skb) - skb->head));
805 rx.handle = virt_to_bus (skb);
806 rx.host_address = cpu_to_be32 (virt_to_bus (skb->data));
807 if (rx_give (dev, &rx, pool))
808 dev_kfree_skb_any (skb);
812 return;
815 // top up all RX pools (can also be called as a bottom half)
816 static void fill_rx_pools (amb_dev * dev) {
817 unsigned char pool;
819 PRINTD (DBG_FLOW|DBG_POOL, "fill_rx_pools %p", dev);
821 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
822 fill_rx_pool (dev, pool, GFP_ATOMIC);
824 return;
827 /********** enable host interrupts **********/
829 static void interrupts_on (amb_dev * dev) {
830 wr_plain (dev, offsetof(amb_mem, interrupt_control),
831 rd_plain (dev, offsetof(amb_mem, interrupt_control))
832 | AMB_INTERRUPT_BITS);
835 /********** disable host interrupts **********/
837 static void interrupts_off (amb_dev * dev) {
838 wr_plain (dev, offsetof(amb_mem, interrupt_control),
839 rd_plain (dev, offsetof(amb_mem, interrupt_control))
840 &~ AMB_INTERRUPT_BITS);
843 /********** interrupt handling **********/
845 static irqreturn_t interrupt_handler(int irq, void *dev_id) {
846 amb_dev * dev = dev_id;
848 PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler: %p", dev_id);
851 u32 interrupt = rd_plain (dev, offsetof(amb_mem, interrupt));
853 // for us or someone else sharing the same interrupt
854 if (!interrupt) {
855 PRINTD (DBG_IRQ, "irq not for me: %d", irq);
856 return IRQ_NONE;
859 // definitely for us
860 PRINTD (DBG_IRQ, "FYI: interrupt was %08x", interrupt);
861 wr_plain (dev, offsetof(amb_mem, interrupt), -1);
865 unsigned int irq_work = 0;
866 unsigned char pool;
867 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
868 while (!rx_take (dev, pool))
869 ++irq_work;
870 while (!tx_take (dev))
871 ++irq_work;
873 if (irq_work) {
874 #ifdef FILL_RX_POOLS_IN_BH
875 schedule_work (&dev->bh);
876 #else
877 fill_rx_pools (dev);
878 #endif
880 PRINTD (DBG_IRQ, "work done: %u", irq_work);
881 } else {
882 PRINTD (DBG_IRQ|DBG_WARN, "no work done");
886 PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
887 return IRQ_HANDLED;
890 /********** make rate (not quite as much fun as Horizon) **********/
892 static int make_rate (unsigned int rate, rounding r,
893 u16 * bits, unsigned int * actual) {
894 unsigned char exp = -1; // hush gcc
895 unsigned int man = -1; // hush gcc
897 PRINTD (DBG_FLOW|DBG_QOS, "make_rate %u", rate);
899 // rates in cells per second, ITU format (nasty 16-bit floating-point)
900 // given 5-bit e and 9-bit m:
901 // rate = EITHER (1+m/2^9)*2^e OR 0
902 // bits = EITHER 1<<14 | e<<9 | m OR 0
903 // (bit 15 is "reserved", bit 14 "non-zero")
904 // smallest rate is 0 (special representation)
905 // largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
906 // smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
907 // simple algorithm:
908 // find position of top bit, this gives e
909 // remove top bit and shift (rounding if feeling clever) by 9-e
911 // ucode bug: please don't set bit 14! so 0 rate not representable
913 if (rate > 0xffc00000U) {
914 // larger than largest representable rate
916 if (r == round_up) {
917 return -EINVAL;
918 } else {
919 exp = 31;
920 man = 511;
923 } else if (rate) {
924 // representable rate
926 exp = 31;
927 man = rate;
929 // invariant: rate = man*2^(exp-31)
930 while (!(man & (1<<31))) {
931 exp = exp - 1;
932 man = man<<1;
935 // man has top bit set
936 // rate = (2^31+(man-2^31))*2^(exp-31)
937 // rate = (1+(man-2^31)/2^31)*2^exp
938 man = man<<1;
939 man &= 0xffffffffU; // a nop on 32-bit systems
940 // rate = (1+man/2^32)*2^exp
942 // exp is in the range 0 to 31, man is in the range 0 to 2^32-1
943 // time to lose significance... we want m in the range 0 to 2^9-1
944 // rounding presents a minor problem... we first decide which way
945 // we are rounding (based on given rounding direction and possibly
946 // the bits of the mantissa that are to be discarded).
948 switch (r) {
949 case round_down: {
950 // just truncate
951 man = man>>(32-9);
952 break;
954 case round_up: {
955 // check all bits that we are discarding
956 if (man & (~0U>>9)) {
957 man = (man>>(32-9)) + 1;
958 if (man == (1<<9)) {
959 // no need to check for round up outside of range
960 man = 0;
961 exp += 1;
963 } else {
964 man = (man>>(32-9));
966 break;
968 case round_nearest: {
969 // check msb that we are discarding
970 if (man & (1<<(32-9-1))) {
971 man = (man>>(32-9)) + 1;
972 if (man == (1<<9)) {
973 // no need to check for round up outside of range
974 man = 0;
975 exp += 1;
977 } else {
978 man = (man>>(32-9));
980 break;
984 } else {
985 // zero rate - not representable
987 if (r == round_down) {
988 return -EINVAL;
989 } else {
990 exp = 0;
991 man = 0;
996 PRINTD (DBG_QOS, "rate: man=%u, exp=%hu", man, exp);
998 if (bits)
999 *bits = /* (1<<14) | */ (exp<<9) | man;
1001 if (actual)
1002 *actual = (exp >= 9)
1003 ? (1 << exp) + (man << (exp-9))
1004 : (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
1006 return 0;
1009 /********** Linux ATM Operations **********/
1011 // some are not yet implemented while others do not make sense for
1012 // this device
1014 /********** Open a VC **********/
1016 static int amb_open (struct atm_vcc * atm_vcc)
1018 int error;
1020 struct atm_qos * qos;
1021 struct atm_trafprm * txtp;
1022 struct atm_trafprm * rxtp;
1023 u16 tx_rate_bits = -1; // hush gcc
1024 u16 tx_vc_bits = -1; // hush gcc
1025 u16 tx_frame_bits = -1; // hush gcc
1027 amb_dev * dev = AMB_DEV(atm_vcc->dev);
1028 amb_vcc * vcc;
1029 unsigned char pool = -1; // hush gcc
1030 short vpi = atm_vcc->vpi;
1031 int vci = atm_vcc->vci;
1033 PRINTD (DBG_FLOW|DBG_VCC, "amb_open %x %x", vpi, vci);
1035 #ifdef ATM_VPI_UNSPEC
1036 // UNSPEC is deprecated, remove this code eventually
1037 if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
1038 PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
1039 return -EINVAL;
1041 #endif
1043 if (!(0 <= vpi && vpi < (1<<NUM_VPI_BITS) &&
1044 0 <= vci && vci < (1<<NUM_VCI_BITS))) {
1045 PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
1046 return -EINVAL;
1049 qos = &atm_vcc->qos;
1051 if (qos->aal != ATM_AAL5) {
1052 PRINTD (DBG_QOS, "AAL not supported");
1053 return -EINVAL;
1056 // traffic parameters
1058 PRINTD (DBG_QOS, "TX:");
1059 txtp = &qos->txtp;
1060 if (txtp->traffic_class != ATM_NONE) {
1061 switch (txtp->traffic_class) {
1062 case ATM_UBR: {
1063 // we take "the PCR" as a rate-cap
1064 int pcr = atm_pcr_goal (txtp);
1065 if (!pcr) {
1066 // no rate cap
1067 tx_rate_bits = 0;
1068 tx_vc_bits = TX_UBR;
1069 tx_frame_bits = TX_FRAME_NOTCAP;
1070 } else {
1071 rounding r;
1072 if (pcr < 0) {
1073 r = round_down;
1074 pcr = -pcr;
1075 } else {
1076 r = round_up;
1078 error = make_rate (pcr, r, &tx_rate_bits, NULL);
1079 if (error)
1080 return error;
1081 tx_vc_bits = TX_UBR_CAPPED;
1082 tx_frame_bits = TX_FRAME_CAPPED;
1084 break;
1086 #if 0
1087 case ATM_ABR: {
1088 pcr = atm_pcr_goal (txtp);
1089 PRINTD (DBG_QOS, "pcr goal = %d", pcr);
1090 break;
1092 #endif
1093 default: {
1094 // PRINTD (DBG_QOS, "request for non-UBR/ABR denied");
1095 PRINTD (DBG_QOS, "request for non-UBR denied");
1096 return -EINVAL;
1099 PRINTD (DBG_QOS, "tx_rate_bits=%hx, tx_vc_bits=%hx",
1100 tx_rate_bits, tx_vc_bits);
1103 PRINTD (DBG_QOS, "RX:");
1104 rxtp = &qos->rxtp;
1105 if (rxtp->traffic_class == ATM_NONE) {
1106 // do nothing
1107 } else {
1108 // choose an RX pool (arranged in increasing size)
1109 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
1110 if ((unsigned int) rxtp->max_sdu <= dev->rxq[pool].buffer_size) {
1111 PRINTD (DBG_VCC|DBG_QOS|DBG_POOL, "chose pool %hu (max_sdu %u <= %u)",
1112 pool, rxtp->max_sdu, dev->rxq[pool].buffer_size);
1113 break;
1115 if (pool == NUM_RX_POOLS) {
1116 PRINTD (DBG_WARN|DBG_VCC|DBG_QOS|DBG_POOL,
1117 "no pool suitable for VC (RX max_sdu %d is too large)",
1118 rxtp->max_sdu);
1119 return -EINVAL;
1122 switch (rxtp->traffic_class) {
1123 case ATM_UBR: {
1124 break;
1126 #if 0
1127 case ATM_ABR: {
1128 pcr = atm_pcr_goal (rxtp);
1129 PRINTD (DBG_QOS, "pcr goal = %d", pcr);
1130 break;
1132 #endif
1133 default: {
1134 // PRINTD (DBG_QOS, "request for non-UBR/ABR denied");
1135 PRINTD (DBG_QOS, "request for non-UBR denied");
1136 return -EINVAL;
1141 // get space for our vcc stuff
1142 vcc = kmalloc (sizeof(amb_vcc), GFP_KERNEL);
1143 if (!vcc) {
1144 PRINTK (KERN_ERR, "out of memory!");
1145 return -ENOMEM;
1147 atm_vcc->dev_data = (void *) vcc;
1149 // no failures beyond this point
1151 // we are not really "immediately before allocating the connection
1152 // identifier in hardware", but it will just have to do!
1153 set_bit(ATM_VF_ADDR,&atm_vcc->flags);
1155 if (txtp->traffic_class != ATM_NONE) {
1156 command cmd;
1158 vcc->tx_frame_bits = tx_frame_bits;
1160 mutex_lock(&dev->vcc_sf);
1161 if (dev->rxer[vci]) {
1162 // RXer on the channel already, just modify rate...
1163 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_RATE);
1164 cmd.args.modify_rate.vc = cpu_to_be32 (vci); // vpi 0
1165 cmd.args.modify_rate.rate = cpu_to_be32 (tx_rate_bits << SRB_RATE_SHIFT);
1166 while (command_do (dev, &cmd))
1167 schedule();
1168 // ... and TX flags, preserving the RX pool
1169 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1170 cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0
1171 cmd.args.modify_flags.flags = cpu_to_be32
1172 ( (AMB_VCC(dev->rxer[vci])->rx_info.pool << SRB_POOL_SHIFT)
1173 | (tx_vc_bits << SRB_FLAGS_SHIFT) );
1174 while (command_do (dev, &cmd))
1175 schedule();
1176 } else {
1177 // no RXer on the channel, just open (with pool zero)
1178 cmd.request = cpu_to_be32 (SRB_OPEN_VC);
1179 cmd.args.open.vc = cpu_to_be32 (vci); // vpi 0
1180 cmd.args.open.flags = cpu_to_be32 (tx_vc_bits << SRB_FLAGS_SHIFT);
1181 cmd.args.open.rate = cpu_to_be32 (tx_rate_bits << SRB_RATE_SHIFT);
1182 while (command_do (dev, &cmd))
1183 schedule();
1185 dev->txer[vci].tx_present = 1;
1186 mutex_unlock(&dev->vcc_sf);
1189 if (rxtp->traffic_class != ATM_NONE) {
1190 command cmd;
1192 vcc->rx_info.pool = pool;
1194 mutex_lock(&dev->vcc_sf);
1195 /* grow RX buffer pool */
1196 if (!dev->rxq[pool].buffers_wanted)
1197 dev->rxq[pool].buffers_wanted = rx_lats;
1198 dev->rxq[pool].buffers_wanted += 1;
1199 fill_rx_pool (dev, pool, GFP_KERNEL);
1201 if (dev->txer[vci].tx_present) {
1202 // TXer on the channel already
1203 // switch (from pool zero) to this pool, preserving the TX bits
1204 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1205 cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0
1206 cmd.args.modify_flags.flags = cpu_to_be32
1207 ( (pool << SRB_POOL_SHIFT)
1208 | (dev->txer[vci].tx_vc_bits << SRB_FLAGS_SHIFT) );
1209 } else {
1210 // no TXer on the channel, open the VC (with no rate info)
1211 cmd.request = cpu_to_be32 (SRB_OPEN_VC);
1212 cmd.args.open.vc = cpu_to_be32 (vci); // vpi 0
1213 cmd.args.open.flags = cpu_to_be32 (pool << SRB_POOL_SHIFT);
1214 cmd.args.open.rate = cpu_to_be32 (0);
1216 while (command_do (dev, &cmd))
1217 schedule();
1218 // this link allows RX frames through
1219 dev->rxer[vci] = atm_vcc;
1220 mutex_unlock(&dev->vcc_sf);
1223 // indicate readiness
1224 set_bit(ATM_VF_READY,&atm_vcc->flags);
1226 return 0;
1229 /********** Close a VC **********/
1231 static void amb_close (struct atm_vcc * atm_vcc) {
1232 amb_dev * dev = AMB_DEV (atm_vcc->dev);
1233 amb_vcc * vcc = AMB_VCC (atm_vcc);
1234 u16 vci = atm_vcc->vci;
1236 PRINTD (DBG_VCC|DBG_FLOW, "amb_close");
1238 // indicate unreadiness
1239 clear_bit(ATM_VF_READY,&atm_vcc->flags);
1241 // disable TXing
1242 if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
1243 command cmd;
1245 mutex_lock(&dev->vcc_sf);
1246 if (dev->rxer[vci]) {
1247 // RXer still on the channel, just modify rate... XXX not really needed
1248 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_RATE);
1249 cmd.args.modify_rate.vc = cpu_to_be32 (vci); // vpi 0
1250 cmd.args.modify_rate.rate = cpu_to_be32 (0);
1251 // ... and clear TX rate flags (XXX to stop RM cell output?), preserving RX pool
1252 } else {
1253 // no RXer on the channel, close channel
1254 cmd.request = cpu_to_be32 (SRB_CLOSE_VC);
1255 cmd.args.close.vc = cpu_to_be32 (vci); // vpi 0
1257 dev->txer[vci].tx_present = 0;
1258 while (command_do (dev, &cmd))
1259 schedule();
1260 mutex_unlock(&dev->vcc_sf);
1263 // disable RXing
1264 if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1265 command cmd;
1267 // this is (the?) one reason why we need the amb_vcc struct
1268 unsigned char pool = vcc->rx_info.pool;
1270 mutex_lock(&dev->vcc_sf);
1271 if (dev->txer[vci].tx_present) {
1272 // TXer still on the channel, just go to pool zero XXX not really needed
1273 cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1274 cmd.args.modify_flags.vc = cpu_to_be32 (vci); // vpi 0
1275 cmd.args.modify_flags.flags = cpu_to_be32
1276 (dev->txer[vci].tx_vc_bits << SRB_FLAGS_SHIFT);
1277 } else {
1278 // no TXer on the channel, close the VC
1279 cmd.request = cpu_to_be32 (SRB_CLOSE_VC);
1280 cmd.args.close.vc = cpu_to_be32 (vci); // vpi 0
1282 // forget the rxer - no more skbs will be pushed
1283 if (atm_vcc != dev->rxer[vci])
1284 PRINTK (KERN_ERR, "%s vcc=%p rxer[vci]=%p",
1285 "arghhh! we're going to die!",
1286 vcc, dev->rxer[vci]);
1287 dev->rxer[vci] = NULL;
1288 while (command_do (dev, &cmd))
1289 schedule();
1291 /* shrink RX buffer pool */
1292 dev->rxq[pool].buffers_wanted -= 1;
1293 if (dev->rxq[pool].buffers_wanted == rx_lats) {
1294 dev->rxq[pool].buffers_wanted = 0;
1295 drain_rx_pool (dev, pool);
1297 mutex_unlock(&dev->vcc_sf);
1300 // free our structure
1301 kfree (vcc);
1303 // say the VPI/VCI is free again
1304 clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
1306 return;
1309 /********** Set socket options for a VC **********/
1311 // int amb_getsockopt (struct atm_vcc * atm_vcc, int level, int optname, void * optval, int optlen);
1313 /********** Set socket options for a VC **********/
1315 // int amb_setsockopt (struct atm_vcc * atm_vcc, int level, int optname, void * optval, int optlen);
1317 /********** Send **********/
1319 static int amb_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1320 amb_dev * dev = AMB_DEV(atm_vcc->dev);
1321 amb_vcc * vcc = AMB_VCC(atm_vcc);
1322 u16 vc = atm_vcc->vci;
1323 unsigned int tx_len = skb->len;
1324 unsigned char * tx_data = skb->data;
1325 tx_simple * tx_descr;
1326 tx_in tx;
1328 if (test_bit (dead, &dev->flags))
1329 return -EIO;
1331 PRINTD (DBG_FLOW|DBG_TX, "amb_send vc %x data %p len %u",
1332 vc, tx_data, tx_len);
1334 dump_skb (">>>", vc, skb);
1336 if (!dev->txer[vc].tx_present) {
1337 PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", vc);
1338 return -EBADFD;
1341 // this is a driver private field so we have to set it ourselves,
1342 // despite the fact that we are _required_ to use it to check for a
1343 // pop function
1344 ATM_SKB(skb)->vcc = atm_vcc;
1346 if (skb->len > (size_t) atm_vcc->qos.txtp.max_sdu) {
1347 PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1348 return -EIO;
1351 if (check_area (skb->data, skb->len)) {
1352 atomic_inc(&atm_vcc->stats->tx_err);
1353 return -ENOMEM; // ?
1356 // allocate memory for fragments
1357 tx_descr = kmalloc (sizeof(tx_simple), GFP_KERNEL);
1358 if (!tx_descr) {
1359 PRINTK (KERN_ERR, "could not allocate TX descriptor");
1360 return -ENOMEM;
1362 if (check_area (tx_descr, sizeof(tx_simple))) {
1363 kfree (tx_descr);
1364 return -ENOMEM;
1366 PRINTD (DBG_TX, "fragment list allocated at %p", tx_descr);
1368 tx_descr->skb = skb;
1370 tx_descr->tx_frag.bytes = cpu_to_be32 (tx_len);
1371 tx_descr->tx_frag.address = cpu_to_be32 (virt_to_bus (tx_data));
1373 tx_descr->tx_frag_end.handle = virt_to_bus (tx_descr);
1374 tx_descr->tx_frag_end.vc = 0;
1375 tx_descr->tx_frag_end.next_descriptor_length = 0;
1376 tx_descr->tx_frag_end.next_descriptor = 0;
1377 #ifdef AMB_NEW_MICROCODE
1378 tx_descr->tx_frag_end.cpcs_uu = 0;
1379 tx_descr->tx_frag_end.cpi = 0;
1380 tx_descr->tx_frag_end.pad = 0;
1381 #endif
1383 tx.vc = cpu_to_be16 (vcc->tx_frame_bits | vc);
1384 tx.tx_descr_length = cpu_to_be16 (sizeof(tx_frag)+sizeof(tx_frag_end));
1385 tx.tx_descr_addr = cpu_to_be32 (virt_to_bus (&tx_descr->tx_frag));
1387 while (tx_give (dev, &tx))
1388 schedule();
1389 return 0;
1392 /********** Change QoS on a VC **********/
1394 // int amb_change_qos (struct atm_vcc * atm_vcc, struct atm_qos * qos, int flags);
1396 /********** Free RX Socket Buffer **********/
1398 #if 0
1399 static void amb_free_rx_skb (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1400 amb_dev * dev = AMB_DEV (atm_vcc->dev);
1401 amb_vcc * vcc = AMB_VCC (atm_vcc);
1402 unsigned char pool = vcc->rx_info.pool;
1403 rx_in rx;
1405 // This may be unsafe for various reasons that I cannot really guess
1406 // at. However, I note that the ATM layer calls kfree_skb rather
1407 // than dev_kfree_skb at this point so we are least covered as far
1408 // as buffer locking goes. There may be bugs if pcap clones RX skbs.
1410 PRINTD (DBG_FLOW|DBG_SKB, "amb_rx_free skb %p (atm_vcc %p, vcc %p)",
1411 skb, atm_vcc, vcc);
1413 rx.handle = virt_to_bus (skb);
1414 rx.host_address = cpu_to_be32 (virt_to_bus (skb->data));
1416 skb->data = skb->head;
1417 skb->tail = skb->head;
1418 skb->len = 0;
1420 if (!rx_give (dev, &rx, pool)) {
1421 // success
1422 PRINTD (DBG_SKB|DBG_POOL, "recycled skb for pool %hu", pool);
1423 return;
1426 // just do what the ATM layer would have done
1427 dev_kfree_skb_any (skb);
1429 return;
1431 #endif
1433 /********** Proc File Output **********/
1435 static int amb_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
1436 amb_dev * dev = AMB_DEV (atm_dev);
1437 int left = *pos;
1438 unsigned char pool;
1440 PRINTD (DBG_FLOW, "amb_proc_read");
1442 /* more diagnostics here? */
1444 if (!left--) {
1445 amb_stats * s = &dev->stats;
1446 return sprintf (page,
1447 "frames: TX OK %lu, RX OK %lu, RX bad %lu "
1448 "(CRC %lu, long %lu, aborted %lu, unused %lu).\n",
1449 s->tx_ok, s->rx.ok, s->rx.error,
1450 s->rx.badcrc, s->rx.toolong,
1451 s->rx.aborted, s->rx.unused);
1454 if (!left--) {
1455 amb_cq * c = &dev->cq;
1456 return sprintf (page, "cmd queue [cur/hi/max]: %u/%u/%u. ",
1457 c->pending, c->high, c->maximum);
1460 if (!left--) {
1461 amb_txq * t = &dev->txq;
1462 return sprintf (page, "TX queue [cur/max high full]: %u/%u %u %u.\n",
1463 t->pending, t->maximum, t->high, t->filled);
1466 if (!left--) {
1467 unsigned int count = sprintf (page, "RX queues [cur/max/req low empty]:");
1468 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1469 amb_rxq * r = &dev->rxq[pool];
1470 count += sprintf (page+count, " %u/%u/%u %u %u",
1471 r->pending, r->maximum, r->buffers_wanted, r->low, r->emptied);
1473 count += sprintf (page+count, ".\n");
1474 return count;
1477 if (!left--) {
1478 unsigned int count = sprintf (page, "RX buffer sizes:");
1479 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1480 amb_rxq * r = &dev->rxq[pool];
1481 count += sprintf (page+count, " %u", r->buffer_size);
1483 count += sprintf (page+count, ".\n");
1484 return count;
1487 #if 0
1488 if (!left--) {
1489 // suni block etc?
1491 #endif
1493 return 0;
1496 /********** Operation Structure **********/
1498 static const struct atmdev_ops amb_ops = {
1499 .open = amb_open,
1500 .close = amb_close,
1501 .send = amb_send,
1502 .proc_read = amb_proc_read,
1503 .owner = THIS_MODULE,
1506 /********** housekeeping **********/
1507 static void do_housekeeping (unsigned long arg) {
1508 amb_dev * dev = (amb_dev *) arg;
1510 // could collect device-specific (not driver/atm-linux) stats here
1512 // last resort refill once every ten seconds
1513 fill_rx_pools (dev);
1514 mod_timer(&dev->housekeeping, jiffies + 10*HZ);
1516 return;
1519 /********** creation of communication queues **********/
1521 static int __devinit create_queues (amb_dev * dev, unsigned int cmds,
1522 unsigned int txs, unsigned int * rxs,
1523 unsigned int * rx_buffer_sizes) {
1524 unsigned char pool;
1525 size_t total = 0;
1526 void * memory;
1527 void * limit;
1529 PRINTD (DBG_FLOW, "create_queues %p", dev);
1531 total += cmds * sizeof(command);
1533 total += txs * (sizeof(tx_in) + sizeof(tx_out));
1535 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
1536 total += rxs[pool] * (sizeof(rx_in) + sizeof(rx_out));
1538 memory = kmalloc (total, GFP_KERNEL);
1539 if (!memory) {
1540 PRINTK (KERN_ERR, "could not allocate queues");
1541 return -ENOMEM;
1543 if (check_area (memory, total)) {
1544 PRINTK (KERN_ERR, "queues allocated in nasty area");
1545 kfree (memory);
1546 return -ENOMEM;
1549 limit = memory + total;
1550 PRINTD (DBG_INIT, "queues from %p to %p", memory, limit);
1552 PRINTD (DBG_CMD, "command queue at %p", memory);
1555 command * cmd = memory;
1556 amb_cq * cq = &dev->cq;
1558 cq->pending = 0;
1559 cq->high = 0;
1560 cq->maximum = cmds - 1;
1562 cq->ptrs.start = cmd;
1563 cq->ptrs.in = cmd;
1564 cq->ptrs.out = cmd;
1565 cq->ptrs.limit = cmd + cmds;
1567 memory = cq->ptrs.limit;
1570 PRINTD (DBG_TX, "TX queue pair at %p", memory);
1573 tx_in * in = memory;
1574 tx_out * out;
1575 amb_txq * txq = &dev->txq;
1577 txq->pending = 0;
1578 txq->high = 0;
1579 txq->filled = 0;
1580 txq->maximum = txs - 1;
1582 txq->in.start = in;
1583 txq->in.ptr = in;
1584 txq->in.limit = in + txs;
1586 memory = txq->in.limit;
1587 out = memory;
1589 txq->out.start = out;
1590 txq->out.ptr = out;
1591 txq->out.limit = out + txs;
1593 memory = txq->out.limit;
1596 PRINTD (DBG_RX, "RX queue pairs at %p", memory);
1598 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1599 rx_in * in = memory;
1600 rx_out * out;
1601 amb_rxq * rxq = &dev->rxq[pool];
1603 rxq->buffer_size = rx_buffer_sizes[pool];
1604 rxq->buffers_wanted = 0;
1606 rxq->pending = 0;
1607 rxq->low = rxs[pool] - 1;
1608 rxq->emptied = 0;
1609 rxq->maximum = rxs[pool] - 1;
1611 rxq->in.start = in;
1612 rxq->in.ptr = in;
1613 rxq->in.limit = in + rxs[pool];
1615 memory = rxq->in.limit;
1616 out = memory;
1618 rxq->out.start = out;
1619 rxq->out.ptr = out;
1620 rxq->out.limit = out + rxs[pool];
1622 memory = rxq->out.limit;
1625 if (memory == limit) {
1626 return 0;
1627 } else {
1628 PRINTK (KERN_ERR, "bad queue alloc %p != %p (tell maintainer)", memory, limit);
1629 kfree (limit - total);
1630 return -ENOMEM;
1635 /********** destruction of communication queues **********/
1637 static void destroy_queues (amb_dev * dev) {
1638 // all queues assumed empty
1639 void * memory = dev->cq.ptrs.start;
1640 // includes txq.in, txq.out, rxq[].in and rxq[].out
1642 PRINTD (DBG_FLOW, "destroy_queues %p", dev);
1644 PRINTD (DBG_INIT, "freeing queues at %p", memory);
1645 kfree (memory);
1647 return;
1650 /********** basic loader commands and error handling **********/
1651 // centisecond timeouts - guessing away here
1652 static unsigned int command_timeouts [] = {
1653 [host_memory_test] = 15,
1654 [read_adapter_memory] = 2,
1655 [write_adapter_memory] = 2,
1656 [adapter_start] = 50,
1657 [get_version_number] = 10,
1658 [interrupt_host] = 1,
1659 [flash_erase_sector] = 1,
1660 [adap_download_block] = 1,
1661 [adap_erase_flash] = 1,
1662 [adap_run_in_iram] = 1,
1663 [adap_end_download] = 1
1667 static unsigned int command_successes [] = {
1668 [host_memory_test] = COMMAND_PASSED_TEST,
1669 [read_adapter_memory] = COMMAND_READ_DATA_OK,
1670 [write_adapter_memory] = COMMAND_WRITE_DATA_OK,
1671 [adapter_start] = COMMAND_COMPLETE,
1672 [get_version_number] = COMMAND_COMPLETE,
1673 [interrupt_host] = COMMAND_COMPLETE,
1674 [flash_erase_sector] = COMMAND_COMPLETE,
1675 [adap_download_block] = COMMAND_COMPLETE,
1676 [adap_erase_flash] = COMMAND_COMPLETE,
1677 [adap_run_in_iram] = COMMAND_COMPLETE,
1678 [adap_end_download] = COMMAND_COMPLETE
1681 static int decode_loader_result (loader_command cmd, u32 result)
1683 int res;
1684 const char *msg;
1686 if (result == command_successes[cmd])
1687 return 0;
1689 switch (result) {
1690 case BAD_COMMAND:
1691 res = -EINVAL;
1692 msg = "bad command";
1693 break;
1694 case COMMAND_IN_PROGRESS:
1695 res = -ETIMEDOUT;
1696 msg = "command in progress";
1697 break;
1698 case COMMAND_PASSED_TEST:
1699 res = 0;
1700 msg = "command passed test";
1701 break;
1702 case COMMAND_FAILED_TEST:
1703 res = -EIO;
1704 msg = "command failed test";
1705 break;
1706 case COMMAND_READ_DATA_OK:
1707 res = 0;
1708 msg = "command read data ok";
1709 break;
1710 case COMMAND_READ_BAD_ADDRESS:
1711 res = -EINVAL;
1712 msg = "command read bad address";
1713 break;
1714 case COMMAND_WRITE_DATA_OK:
1715 res = 0;
1716 msg = "command write data ok";
1717 break;
1718 case COMMAND_WRITE_BAD_ADDRESS:
1719 res = -EINVAL;
1720 msg = "command write bad address";
1721 break;
1722 case COMMAND_WRITE_FLASH_FAILURE:
1723 res = -EIO;
1724 msg = "command write flash failure";
1725 break;
1726 case COMMAND_COMPLETE:
1727 res = 0;
1728 msg = "command complete";
1729 break;
1730 case COMMAND_FLASH_ERASE_FAILURE:
1731 res = -EIO;
1732 msg = "command flash erase failure";
1733 break;
1734 case COMMAND_WRITE_BAD_DATA:
1735 res = -EINVAL;
1736 msg = "command write bad data";
1737 break;
1738 default:
1739 res = -EINVAL;
1740 msg = "unknown error";
1741 PRINTD (DBG_LOAD|DBG_ERR,
1742 "decode_loader_result got %d=%x !",
1743 result, result);
1744 break;
1747 PRINTK (KERN_ERR, "%s", msg);
1748 return res;
1751 static int __devinit do_loader_command (volatile loader_block * lb,
1752 const amb_dev * dev, loader_command cmd) {
1754 unsigned long timeout;
1756 PRINTD (DBG_FLOW|DBG_LOAD, "do_loader_command");
1758 /* do a command
1760 Set the return value to zero, set the command type and set the
1761 valid entry to the right magic value. The payload is already
1762 correctly byte-ordered so we leave it alone. Hit the doorbell
1763 with the bus address of this structure.
1767 lb->result = 0;
1768 lb->command = cpu_to_be32 (cmd);
1769 lb->valid = cpu_to_be32 (DMA_VALID);
1770 // dump_registers (dev);
1771 // dump_loader_block (lb);
1772 wr_mem (dev, offsetof(amb_mem, doorbell), virt_to_bus (lb) & ~onegigmask);
1774 timeout = command_timeouts[cmd] * 10;
1776 while (!lb->result || lb->result == cpu_to_be32 (COMMAND_IN_PROGRESS))
1777 if (timeout) {
1778 timeout = msleep_interruptible(timeout);
1779 } else {
1780 PRINTD (DBG_LOAD|DBG_ERR, "command %d timed out", cmd);
1781 dump_registers (dev);
1782 dump_loader_block (lb);
1783 return -ETIMEDOUT;
1786 if (cmd == adapter_start) {
1787 // wait for start command to acknowledge...
1788 timeout = 100;
1789 while (rd_plain (dev, offsetof(amb_mem, doorbell)))
1790 if (timeout) {
1791 timeout = msleep_interruptible(timeout);
1792 } else {
1793 PRINTD (DBG_LOAD|DBG_ERR, "start command did not clear doorbell, res=%08x",
1794 be32_to_cpu (lb->result));
1795 dump_registers (dev);
1796 return -ETIMEDOUT;
1798 return 0;
1799 } else {
1800 return decode_loader_result (cmd, be32_to_cpu (lb->result));
1805 /* loader: determine loader version */
1807 static int __devinit get_loader_version (loader_block * lb,
1808 const amb_dev * dev, u32 * version) {
1809 int res;
1811 PRINTD (DBG_FLOW|DBG_LOAD, "get_loader_version");
1813 res = do_loader_command (lb, dev, get_version_number);
1814 if (res)
1815 return res;
1816 if (version)
1817 *version = be32_to_cpu (lb->payload.version);
1818 return 0;
1821 /* loader: write memory data blocks */
1823 static int __devinit loader_write (loader_block* lb,
1824 const amb_dev *dev,
1825 const struct ihex_binrec *rec) {
1826 transfer_block * tb = &lb->payload.transfer;
1828 PRINTD (DBG_FLOW|DBG_LOAD, "loader_write");
1830 tb->address = rec->addr;
1831 tb->count = cpu_to_be32(be16_to_cpu(rec->len) / 4);
1832 memcpy(tb->data, rec->data, be16_to_cpu(rec->len));
1833 return do_loader_command (lb, dev, write_adapter_memory);
1836 /* loader: verify memory data blocks */
1838 static int __devinit loader_verify (loader_block * lb,
1839 const amb_dev *dev,
1840 const struct ihex_binrec *rec) {
1841 transfer_block * tb = &lb->payload.transfer;
1842 int res;
1844 PRINTD (DBG_FLOW|DBG_LOAD, "loader_verify");
1846 tb->address = rec->addr;
1847 tb->count = cpu_to_be32(be16_to_cpu(rec->len) / 4);
1848 res = do_loader_command (lb, dev, read_adapter_memory);
1849 if (!res && memcmp(tb->data, rec->data, be16_to_cpu(rec->len)))
1850 res = -EINVAL;
1851 return res;
1854 /* loader: start microcode */
1856 static int __devinit loader_start (loader_block * lb,
1857 const amb_dev * dev, u32 address) {
1858 PRINTD (DBG_FLOW|DBG_LOAD, "loader_start");
1860 lb->payload.start = cpu_to_be32 (address);
1861 return do_loader_command (lb, dev, adapter_start);
1864 /********** reset card **********/
1866 static inline void sf (const char * msg)
1868 PRINTK (KERN_ERR, "self-test failed: %s", msg);
1871 static int amb_reset (amb_dev * dev, int diags) {
1872 u32 word;
1874 PRINTD (DBG_FLOW|DBG_LOAD, "amb_reset");
1876 word = rd_plain (dev, offsetof(amb_mem, reset_control));
1877 // put card into reset state
1878 wr_plain (dev, offsetof(amb_mem, reset_control), word | AMB_RESET_BITS);
1879 // wait a short while
1880 udelay (10);
1881 #if 1
1882 // put card into known good state
1883 wr_plain (dev, offsetof(amb_mem, interrupt_control), AMB_DOORBELL_BITS);
1884 // clear all interrupts just in case
1885 wr_plain (dev, offsetof(amb_mem, interrupt), -1);
1886 #endif
1887 // clear self-test done flag
1888 wr_plain (dev, offsetof(amb_mem, mb.loader.ready), 0);
1889 // take card out of reset state
1890 wr_plain (dev, offsetof(amb_mem, reset_control), word &~ AMB_RESET_BITS);
1892 if (diags) {
1893 unsigned long timeout;
1894 // 4.2 second wait
1895 msleep(4200);
1896 // half second time-out
1897 timeout = 500;
1898 while (!rd_plain (dev, offsetof(amb_mem, mb.loader.ready)))
1899 if (timeout) {
1900 timeout = msleep_interruptible(timeout);
1901 } else {
1902 PRINTD (DBG_LOAD|DBG_ERR, "reset timed out");
1903 return -ETIMEDOUT;
1906 // get results of self-test
1907 // XXX double check byte-order
1908 word = rd_mem (dev, offsetof(amb_mem, mb.loader.result));
1909 if (word & SELF_TEST_FAILURE) {
1910 if (word & GPINT_TST_FAILURE)
1911 sf ("interrupt");
1912 if (word & SUNI_DATA_PATTERN_FAILURE)
1913 sf ("SUNI data pattern");
1914 if (word & SUNI_DATA_BITS_FAILURE)
1915 sf ("SUNI data bits");
1916 if (word & SUNI_UTOPIA_FAILURE)
1917 sf ("SUNI UTOPIA interface");
1918 if (word & SUNI_FIFO_FAILURE)
1919 sf ("SUNI cell buffer FIFO");
1920 if (word & SRAM_FAILURE)
1921 sf ("bad SRAM");
1922 // better return value?
1923 return -EIO;
1927 return 0;
1930 /********** transfer and start the microcode **********/
1932 static int __devinit ucode_init (loader_block * lb, amb_dev * dev) {
1933 const struct firmware *fw;
1934 unsigned long start_address;
1935 const struct ihex_binrec *rec;
1936 int res;
1938 res = request_ihex_firmware(&fw, "atmsar11.fw", &dev->pci_dev->dev);
1939 if (res) {
1940 PRINTK (KERN_ERR, "Cannot load microcode data");
1941 return res;
1944 /* First record contains just the start address */
1945 rec = (const struct ihex_binrec *)fw->data;
1946 if (be16_to_cpu(rec->len) != sizeof(__be32) || be32_to_cpu(rec->addr)) {
1947 PRINTK (KERN_ERR, "Bad microcode data (no start record)");
1948 return -EINVAL;
1950 start_address = be32_to_cpup((__be32 *)rec->data);
1952 rec = ihex_next_binrec(rec);
1954 PRINTD (DBG_FLOW|DBG_LOAD, "ucode_init");
1956 while (rec) {
1957 PRINTD (DBG_LOAD, "starting region (%x, %u)", be32_to_cpu(rec->addr),
1958 be16_to_cpu(rec->len));
1959 if (be16_to_cpu(rec->len) > 4 * MAX_TRANSFER_DATA) {
1960 PRINTK (KERN_ERR, "Bad microcode data (record too long)");
1961 return -EINVAL;
1963 if (be16_to_cpu(rec->len) & 3) {
1964 PRINTK (KERN_ERR, "Bad microcode data (odd number of bytes)");
1965 return -EINVAL;
1967 res = loader_write(lb, dev, rec);
1968 if (res)
1969 break;
1971 res = loader_verify(lb, dev, rec);
1972 if (res)
1973 break;
1975 release_firmware(fw);
1976 if (!res)
1977 res = loader_start(lb, dev, start_address);
1979 return res;
1982 /********** give adapter parameters **********/
1984 static inline __be32 bus_addr(void * addr) {
1985 return cpu_to_be32 (virt_to_bus (addr));
1988 static int __devinit amb_talk (amb_dev * dev) {
1989 adap_talk_block a;
1990 unsigned char pool;
1991 unsigned long timeout;
1993 PRINTD (DBG_FLOW, "amb_talk %p", dev);
1995 a.command_start = bus_addr (dev->cq.ptrs.start);
1996 a.command_end = bus_addr (dev->cq.ptrs.limit);
1997 a.tx_start = bus_addr (dev->txq.in.start);
1998 a.tx_end = bus_addr (dev->txq.in.limit);
1999 a.txcom_start = bus_addr (dev->txq.out.start);
2000 a.txcom_end = bus_addr (dev->txq.out.limit);
2002 for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
2003 // the other "a" items are set up by the adapter
2004 a.rec_struct[pool].buffer_start = bus_addr (dev->rxq[pool].in.start);
2005 a.rec_struct[pool].buffer_end = bus_addr (dev->rxq[pool].in.limit);
2006 a.rec_struct[pool].rx_start = bus_addr (dev->rxq[pool].out.start);
2007 a.rec_struct[pool].rx_end = bus_addr (dev->rxq[pool].out.limit);
2008 a.rec_struct[pool].buffer_size = cpu_to_be32 (dev->rxq[pool].buffer_size);
2011 #ifdef AMB_NEW_MICROCODE
2012 // disable fast PLX prefetching
2013 a.init_flags = 0;
2014 #endif
2016 // pass the structure
2017 wr_mem (dev, offsetof(amb_mem, doorbell), virt_to_bus (&a));
2019 // 2.2 second wait (must not touch doorbell during 2 second DMA test)
2020 msleep(2200);
2021 // give the adapter another half second?
2022 timeout = 500;
2023 while (rd_plain (dev, offsetof(amb_mem, doorbell)))
2024 if (timeout) {
2025 timeout = msleep_interruptible(timeout);
2026 } else {
2027 PRINTD (DBG_INIT|DBG_ERR, "adapter init timed out");
2028 return -ETIMEDOUT;
2031 return 0;
2034 // get microcode version
2035 static void __devinit amb_ucode_version (amb_dev * dev) {
2036 u32 major;
2037 u32 minor;
2038 command cmd;
2039 cmd.request = cpu_to_be32 (SRB_GET_VERSION);
2040 while (command_do (dev, &cmd)) {
2041 set_current_state(TASK_UNINTERRUPTIBLE);
2042 schedule();
2044 major = be32_to_cpu (cmd.args.version.major);
2045 minor = be32_to_cpu (cmd.args.version.minor);
2046 PRINTK (KERN_INFO, "microcode version is %u.%u", major, minor);
2049 // get end station address
2050 static void __devinit amb_esi (amb_dev * dev, u8 * esi) {
2051 u32 lower4;
2052 u16 upper2;
2053 command cmd;
2055 cmd.request = cpu_to_be32 (SRB_GET_BIA);
2056 while (command_do (dev, &cmd)) {
2057 set_current_state(TASK_UNINTERRUPTIBLE);
2058 schedule();
2060 lower4 = be32_to_cpu (cmd.args.bia.lower4);
2061 upper2 = be32_to_cpu (cmd.args.bia.upper2);
2062 PRINTD (DBG_LOAD, "BIA: lower4: %08x, upper2 %04x", lower4, upper2);
2064 if (esi) {
2065 unsigned int i;
2067 PRINTDB (DBG_INIT, "ESI:");
2068 for (i = 0; i < ESI_LEN; ++i) {
2069 if (i < 4)
2070 esi[i] = bitrev8(lower4>>(8*i));
2071 else
2072 esi[i] = bitrev8(upper2>>(8*(i-4)));
2073 PRINTDM (DBG_INIT, " %02x", esi[i]);
2076 PRINTDE (DBG_INIT, "");
2079 return;
2082 static void fixup_plx_window (amb_dev *dev, loader_block *lb)
2084 // fix up the PLX-mapped window base address to match the block
2085 unsigned long blb;
2086 u32 mapreg;
2087 blb = virt_to_bus(lb);
2088 // the kernel stack had better not ever cross a 1Gb boundary!
2089 mapreg = rd_plain (dev, offsetof(amb_mem, stuff[10]));
2090 mapreg &= ~onegigmask;
2091 mapreg |= blb & onegigmask;
2092 wr_plain (dev, offsetof(amb_mem, stuff[10]), mapreg);
2093 return;
2096 static int __devinit amb_init (amb_dev * dev)
2098 loader_block lb;
2100 u32 version;
2102 if (amb_reset (dev, 1)) {
2103 PRINTK (KERN_ERR, "card reset failed!");
2104 } else {
2105 fixup_plx_window (dev, &lb);
2107 if (get_loader_version (&lb, dev, &version)) {
2108 PRINTK (KERN_INFO, "failed to get loader version");
2109 } else {
2110 PRINTK (KERN_INFO, "loader version is %08x", version);
2112 if (ucode_init (&lb, dev)) {
2113 PRINTK (KERN_ERR, "microcode failure");
2114 } else if (create_queues (dev, cmds, txs, rxs, rxs_bs)) {
2115 PRINTK (KERN_ERR, "failed to get memory for queues");
2116 } else {
2118 if (amb_talk (dev)) {
2119 PRINTK (KERN_ERR, "adapter did not accept queues");
2120 } else {
2122 amb_ucode_version (dev);
2123 return 0;
2125 } /* amb_talk */
2127 destroy_queues (dev);
2128 } /* create_queues, ucode_init */
2130 amb_reset (dev, 0);
2131 } /* get_loader_version */
2133 } /* amb_reset */
2135 return -EINVAL;
2138 static void setup_dev(amb_dev *dev, struct pci_dev *pci_dev)
2140 unsigned char pool;
2142 // set up known dev items straight away
2143 dev->pci_dev = pci_dev;
2144 pci_set_drvdata(pci_dev, dev);
2146 dev->iobase = pci_resource_start (pci_dev, 1);
2147 dev->irq = pci_dev->irq;
2148 dev->membase = bus_to_virt(pci_resource_start(pci_dev, 0));
2150 // flags (currently only dead)
2151 dev->flags = 0;
2153 // Allocate cell rates (fibre)
2154 // ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2155 // to be really pedantic, this should be ATM_OC3c_PCR
2156 dev->tx_avail = ATM_OC3_PCR;
2157 dev->rx_avail = ATM_OC3_PCR;
2159 #ifdef FILL_RX_POOLS_IN_BH
2160 // initialise bottom half
2161 INIT_WORK(&dev->bh, (void (*)(void *)) fill_rx_pools, dev);
2162 #endif
2164 // semaphore for txer/rxer modifications - we cannot use a
2165 // spinlock as the critical region needs to switch processes
2166 mutex_init(&dev->vcc_sf);
2167 // queue manipulation spinlocks; we want atomic reads and
2168 // writes to the queue descriptors (handles IRQ and SMP)
2169 // consider replacing "int pending" -> "atomic_t available"
2170 // => problem related to who gets to move queue pointers
2171 spin_lock_init (&dev->cq.lock);
2172 spin_lock_init (&dev->txq.lock);
2173 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2174 spin_lock_init (&dev->rxq[pool].lock);
2177 static void setup_pci_dev(struct pci_dev *pci_dev)
2179 unsigned char lat;
2181 // enable bus master accesses
2182 pci_set_master(pci_dev);
2184 // frobnicate latency (upwards, usually)
2185 pci_read_config_byte (pci_dev, PCI_LATENCY_TIMER, &lat);
2187 if (!pci_lat)
2188 pci_lat = (lat < MIN_PCI_LATENCY) ? MIN_PCI_LATENCY : lat;
2190 if (lat != pci_lat) {
2191 PRINTK (KERN_INFO, "Changing PCI latency timer from %hu to %hu",
2192 lat, pci_lat);
2193 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2197 static int __devinit amb_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent)
2199 amb_dev * dev;
2200 int err;
2201 unsigned int irq;
2203 err = pci_enable_device(pci_dev);
2204 if (err < 0) {
2205 PRINTK (KERN_ERR, "skipped broken (PLX rev 2) card");
2206 goto out;
2209 // read resources from PCI configuration space
2210 irq = pci_dev->irq;
2212 if (pci_dev->device == PCI_DEVICE_ID_MADGE_AMBASSADOR_BAD) {
2213 PRINTK (KERN_ERR, "skipped broken (PLX rev 2) card");
2214 err = -EINVAL;
2215 goto out_disable;
2218 PRINTD (DBG_INFO, "found Madge ATM adapter (amb) at"
2219 " IO %llx, IRQ %u, MEM %p",
2220 (unsigned long long)pci_resource_start(pci_dev, 1),
2221 irq, bus_to_virt(pci_resource_start(pci_dev, 0)));
2223 // check IO region
2224 err = pci_request_region(pci_dev, 1, DEV_LABEL);
2225 if (err < 0) {
2226 PRINTK (KERN_ERR, "IO range already in use!");
2227 goto out_disable;
2230 dev = kzalloc(sizeof(amb_dev), GFP_KERNEL);
2231 if (!dev) {
2232 PRINTK (KERN_ERR, "out of memory!");
2233 err = -ENOMEM;
2234 goto out_release;
2237 setup_dev(dev, pci_dev);
2239 err = amb_init(dev);
2240 if (err < 0) {
2241 PRINTK (KERN_ERR, "adapter initialisation failure");
2242 goto out_free;
2245 setup_pci_dev(pci_dev);
2247 // grab (but share) IRQ and install handler
2248 err = request_irq(irq, interrupt_handler, IRQF_SHARED, DEV_LABEL, dev);
2249 if (err < 0) {
2250 PRINTK (KERN_ERR, "request IRQ failed!");
2251 goto out_reset;
2254 dev->atm_dev = atm_dev_register (DEV_LABEL, &amb_ops, -1, NULL);
2255 if (!dev->atm_dev) {
2256 PRINTD (DBG_ERR, "failed to register Madge ATM adapter");
2257 err = -EINVAL;
2258 goto out_free_irq;
2261 PRINTD (DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2262 dev->atm_dev->number, dev, dev->atm_dev);
2263 dev->atm_dev->dev_data = (void *) dev;
2265 // register our address
2266 amb_esi (dev, dev->atm_dev->esi);
2268 // 0 bits for vpi, 10 bits for vci
2269 dev->atm_dev->ci_range.vpi_bits = NUM_VPI_BITS;
2270 dev->atm_dev->ci_range.vci_bits = NUM_VCI_BITS;
2272 init_timer(&dev->housekeeping);
2273 dev->housekeeping.function = do_housekeeping;
2274 dev->housekeeping.data = (unsigned long) dev;
2275 mod_timer(&dev->housekeeping, jiffies);
2277 // enable host interrupts
2278 interrupts_on (dev);
2280 out:
2281 return err;
2283 out_free_irq:
2284 free_irq(irq, dev);
2285 out_reset:
2286 amb_reset(dev, 0);
2287 out_free:
2288 kfree(dev);
2289 out_release:
2290 pci_release_region(pci_dev, 1);
2291 out_disable:
2292 pci_disable_device(pci_dev);
2293 goto out;
2297 static void __devexit amb_remove_one(struct pci_dev *pci_dev)
2299 struct amb_dev *dev;
2301 dev = pci_get_drvdata(pci_dev);
2303 PRINTD(DBG_INFO|DBG_INIT, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2304 del_timer_sync(&dev->housekeeping);
2305 // the drain should not be necessary
2306 drain_rx_pools(dev);
2307 interrupts_off(dev);
2308 amb_reset(dev, 0);
2309 free_irq(dev->irq, dev);
2310 pci_disable_device(pci_dev);
2311 destroy_queues(dev);
2312 atm_dev_deregister(dev->atm_dev);
2313 kfree(dev);
2314 pci_release_region(pci_dev, 1);
2317 static void __init amb_check_args (void) {
2318 unsigned char pool;
2319 unsigned int max_rx_size;
2321 #ifdef DEBUG_AMBASSADOR
2322 PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2323 #else
2324 if (debug)
2325 PRINTK (KERN_NOTICE, "no debugging support");
2326 #endif
2328 if (cmds < MIN_QUEUE_SIZE)
2329 PRINTK (KERN_NOTICE, "cmds has been raised to %u",
2330 cmds = MIN_QUEUE_SIZE);
2332 if (txs < MIN_QUEUE_SIZE)
2333 PRINTK (KERN_NOTICE, "txs has been raised to %u",
2334 txs = MIN_QUEUE_SIZE);
2336 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2337 if (rxs[pool] < MIN_QUEUE_SIZE)
2338 PRINTK (KERN_NOTICE, "rxs[%hu] has been raised to %u",
2339 pool, rxs[pool] = MIN_QUEUE_SIZE);
2341 // buffers sizes should be greater than zero and strictly increasing
2342 max_rx_size = 0;
2343 for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2344 if (rxs_bs[pool] <= max_rx_size)
2345 PRINTK (KERN_NOTICE, "useless pool (rxs_bs[%hu] = %u)",
2346 pool, rxs_bs[pool]);
2347 else
2348 max_rx_size = rxs_bs[pool];
2350 if (rx_lats < MIN_RX_BUFFERS)
2351 PRINTK (KERN_NOTICE, "rx_lats has been raised to %u",
2352 rx_lats = MIN_RX_BUFFERS);
2354 return;
2357 /********** module stuff **********/
2359 MODULE_AUTHOR(maintainer_string);
2360 MODULE_DESCRIPTION(description_string);
2361 MODULE_LICENSE("GPL");
2362 module_param(debug, ushort, 0644);
2363 module_param(cmds, uint, 0);
2364 module_param(txs, uint, 0);
2365 module_param_array(rxs, uint, NULL, 0);
2366 module_param_array(rxs_bs, uint, NULL, 0);
2367 module_param(rx_lats, uint, 0);
2368 module_param(pci_lat, byte, 0);
2369 MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2370 MODULE_PARM_DESC(cmds, "number of command queue entries");
2371 MODULE_PARM_DESC(txs, "number of TX queue entries");
2372 MODULE_PARM_DESC(rxs, "number of RX queue entries [" __MODULE_STRING(NUM_RX_POOLS) "]");
2373 MODULE_PARM_DESC(rxs_bs, "size of RX buffers [" __MODULE_STRING(NUM_RX_POOLS) "]");
2374 MODULE_PARM_DESC(rx_lats, "number of extra buffers to cope with RX latencies");
2375 MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2377 /********** module entry **********/
2379 static struct pci_device_id amb_pci_tbl[] = {
2380 { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_AMBASSADOR, PCI_ANY_ID, PCI_ANY_ID,
2381 0, 0, 0 },
2382 { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_AMBASSADOR_BAD, PCI_ANY_ID, PCI_ANY_ID,
2383 0, 0, 0 },
2384 { 0, }
2387 MODULE_DEVICE_TABLE(pci, amb_pci_tbl);
2389 static struct pci_driver amb_driver = {
2390 .name = "amb",
2391 .probe = amb_probe,
2392 .remove = __devexit_p(amb_remove_one),
2393 .id_table = amb_pci_tbl,
2396 static int __init amb_module_init (void)
2398 PRINTD (DBG_FLOW|DBG_INIT, "init_module");
2400 // sanity check - cast needed as printk does not support %Zu
2401 if (sizeof(amb_mem) != 4*16 + 4*12) {
2402 PRINTK (KERN_ERR, "Fix amb_mem (is %lu words).",
2403 (unsigned long) sizeof(amb_mem));
2404 return -ENOMEM;
2407 show_version();
2409 amb_check_args();
2411 // get the juice
2412 return pci_register_driver(&amb_driver);
2415 /********** module exit **********/
2417 static void __exit amb_module_exit (void)
2419 PRINTD (DBG_FLOW|DBG_INIT, "cleanup_module");
2421 pci_unregister_driver(&amb_driver);
2424 module_init(amb_module_init);
2425 module_exit(amb_module_exit);