2 * Copyright 1996 The Board of Trustees of The Leland Stanford
3 * Junior University. All Rights Reserved.
5 * Permission to use, copy, modify, and distribute this
6 * software and its documentation for any purpose and without
7 * fee is hereby granted, provided that the above copyright
8 * notice appear in all copies. Stanford University
9 * makes no representations about the suitability of this
10 * software for any purpose. It is provided "as is" without
11 * express or implied warranty.
13 * strip.c This module implements Starmode Radio IP (STRIP)
14 * for kernel-based devices like TTY. It interfaces between a
15 * raw TTY, and the kernel's INET protocol layers (via DDI).
17 * Version: @(#)strip.c 1.3 July 1997
19 * Author: Stuart Cheshire <cheshire@cs.stanford.edu>
21 * Fixes: v0.9 12th Feb 1996 (SC)
22 * New byte stuffing (2+6 run-length encoding)
23 * New watchdog timer task
24 * New Protocol key (SIP0)
26 * v0.9.1 3rd March 1996 (SC)
27 * Changed to dynamic device allocation -- no more compile
28 * time (or boot time) limit on the number of STRIP devices.
30 * v0.9.2 13th March 1996 (SC)
31 * Uses arp cache lookups (but doesn't send arp packets yet)
33 * v0.9.3 17th April 1996 (SC)
34 * Fixed bug where STR_ERROR flag was getting set unneccessarily
35 * (causing otherwise good packets to be unneccessarily dropped)
37 * v0.9.4 27th April 1996 (SC)
38 * First attempt at using "&COMMAND" Starmode AT commands
40 * v0.9.5 29th May 1996 (SC)
41 * First attempt at sending (unicast) ARP packets
43 * v0.9.6 5th June 1996 (Elliot)
44 * Put "message level" tags in every "printk" statement
46 * v0.9.7 13th June 1996 (laik)
47 * Added support for the /proc fs
49 * v0.9.8 July 1996 (Mema)
50 * Added packet logging
52 * v1.0 November 1996 (SC)
53 * Fixed (severe) memory leaks in the /proc fs code
54 * Fixed race conditions in the logging code
56 * v1.1 January 1997 (SC)
57 * Deleted packet logging (use tcpdump instead)
58 * Added support for Metricom Firmware v204 features
59 * (like message checksums)
61 * v1.2 January 1997 (SC)
62 * Put portables list back in
65 * Made STRIP driver set the radio's baud rate automatically.
66 * It is no longer necessarily to manually set the radio's
67 * rate permanently to 115200 -- the driver handles setting
68 * the rate automatically.
72 static const char StripVersion
[] = "1.3A-STUART.CHESHIRE-MODULAR";
74 static const char StripVersion
[] = "1.3A-STUART.CHESHIRE";
77 #define TICKLE_TIMERS 0
78 #define EXT_COUNTERS 1
81 /************************************************************************/
84 #include <linux/kernel.h>
85 #include <linux/module.h>
86 #include <linux/init.h>
87 #include <linux/bitops.h>
88 #include <asm/system.h>
89 #include <asm/uaccess.h>
91 # include <linux/ctype.h>
92 #include <linux/string.h>
94 #include <linux/interrupt.h>
96 #include <linux/tty.h>
97 #include <linux/errno.h>
98 #include <linux/netdevice.h>
99 #include <linux/inetdevice.h>
100 #include <linux/etherdevice.h>
101 #include <linux/skbuff.h>
102 #include <linux/if_arp.h>
103 #include <linux/if_strip.h>
104 #include <linux/proc_fs.h>
105 #include <linux/seq_file.h>
106 #include <linux/serial.h>
107 #include <linux/serialP.h>
108 #include <linux/rcupdate.h>
110 #include <net/net_namespace.h>
112 #include <linux/ip.h>
113 #include <linux/tcp.h>
114 #include <linux/time.h>
115 #include <linux/jiffies.h>
117 /************************************************************************/
118 /* Useful structures and definitions */
121 * A MetricomKey identifies the protocol being carried inside a Metricom
131 * An IP address can be viewed as four bytes in memory (which is what it is) or as
132 * a single 32-bit long (which is convenient for assignment, equality testing etc.)
141 * A MetricomAddressString is used to hold a printable representation of
142 * a Metricom address.
147 } MetricomAddressString
;
149 /* Encapsulation can expand packet of size x to 65/64x + 1
150 * Sent packet looks like "<CR>*<address>*<key><encaps payload><CR>"
152 * eg. <CR>*0000-1234*SIP0<encaps payload><CR>
153 * We allow 31 bytes for the stars, the key, the address and the <CR>s
155 #define STRIP_ENCAP_SIZE(X) (32 + (X)*65L/64L)
158 * A STRIP_Header is never really sent over the radio, but making a dummy
159 * header for internal use within the kernel that looks like an Ethernet
160 * header makes certain other software happier. For example, tcpdump
161 * already understands Ethernet headers.
165 MetricomAddress dst_addr
; /* Destination address, e.g. "0000-1234" */
166 MetricomAddress src_addr
; /* Source address, e.g. "0000-5678" */
167 unsigned short protocol
; /* The protocol type, using Ethernet codes */
174 #define NODE_TABLE_SIZE 32
176 struct timeval timestamp
;
178 MetricomNode node
[NODE_TABLE_SIZE
];
181 enum { FALSE
= 0, TRUE
= 1 };
184 * Holds the radio's firmware version.
191 * Holds the radio's serial number.
198 * Holds the radio's battery voltage.
209 NoStructure
= 0, /* Really old firmware */
210 StructuredMessages
= 1, /* Parsable AT response msgs */
211 ChecksummedMessages
= 2 /* Parsable AT response msgs with checksums */
217 * These are pointers to the malloc()ed frame buffers.
220 unsigned char *rx_buff
; /* buffer for received IP packet */
221 unsigned char *sx_buff
; /* buffer for received serial data */
222 int sx_count
; /* received serial data counter */
223 int sx_size
; /* Serial buffer size */
224 unsigned char *tx_buff
; /* transmitter buffer */
225 unsigned char *tx_head
; /* pointer to next byte to XMIT */
226 int tx_left
; /* bytes left in XMIT queue */
227 int tx_size
; /* Serial buffer size */
230 * STRIP interface statistics.
233 unsigned long rx_packets
; /* inbound frames counter */
234 unsigned long tx_packets
; /* outbound frames counter */
235 unsigned long rx_errors
; /* Parity, etc. errors */
236 unsigned long tx_errors
; /* Planned stuff */
237 unsigned long rx_dropped
; /* No memory for skb */
238 unsigned long tx_dropped
; /* When MTU change */
239 unsigned long rx_over_errors
; /* Frame bigger than STRIP buf. */
241 unsigned long pps_timer
; /* Timer to determine pps */
242 unsigned long rx_pps_count
; /* Counter to determine pps */
243 unsigned long tx_pps_count
; /* Counter to determine pps */
244 unsigned long sx_pps_count
; /* Counter to determine pps */
245 unsigned long rx_average_pps
; /* rx packets per second * 8 */
246 unsigned long tx_average_pps
; /* tx packets per second * 8 */
247 unsigned long sx_average_pps
; /* sent packets per second * 8 */
250 unsigned long rx_bytes
; /* total received bytes */
251 unsigned long tx_bytes
; /* total received bytes */
252 unsigned long rx_rbytes
; /* bytes thru radio i/f */
253 unsigned long tx_rbytes
; /* bytes thru radio i/f */
254 unsigned long rx_sbytes
; /* tot bytes thru serial i/f */
255 unsigned long tx_sbytes
; /* tot bytes thru serial i/f */
256 unsigned long rx_ebytes
; /* tot stat/err bytes */
257 unsigned long tx_ebytes
; /* tot stat/err bytes */
261 * Internal variables.
264 struct list_head list
; /* Linked list of devices */
266 int discard
; /* Set if serial error */
267 int working
; /* Is radio working correctly? */
268 int firmware_level
; /* Message structuring level */
269 int next_command
; /* Next periodic command */
270 unsigned int user_baud
; /* The user-selected baud rate */
271 int mtu
; /* Our mtu (to spot changes!) */
272 long watchdog_doprobe
; /* Next time to test the radio */
273 long watchdog_doreset
; /* Time to do next reset */
274 long gratuitous_arp
; /* Time to send next ARP refresh */
275 long arp_interval
; /* Next ARP interval */
276 struct timer_list idle_timer
; /* For periodic wakeup calls */
277 MetricomAddress true_dev_addr
; /* True address of radio */
278 int manual_dev_addr
; /* Hack: See note below */
280 FirmwareVersion firmware_version
; /* The radio's firmware version */
281 SerialNumber serial_number
; /* The radio's serial number */
282 BatteryVoltage battery_voltage
; /* The radio's battery voltage */
285 * Other useful structures.
288 struct tty_struct
*tty
; /* ptr to TTY structure */
289 struct net_device
*dev
; /* Our device structure */
292 * Neighbour radio records
295 MetricomNodeTable portables
;
296 MetricomNodeTable poletops
;
300 * Note: manual_dev_addr hack
302 * It is not possible to change the hardware address of a Metricom radio,
303 * or to send packets with a user-specified hardware source address, thus
304 * trying to manually set a hardware source address is a questionable
305 * thing to do. However, if the user *does* manually set the hardware
306 * source address of a STRIP interface, then the kernel will believe it,
307 * and use it in certain places. For example, the hardware address listed
308 * by ifconfig will be the manual address, not the true one.
309 * (Both addresses are listed in /proc/net/strip.)
310 * Also, ARP packets will be sent out giving the user-specified address as
311 * the source address, not the real address. This is dangerous, because
312 * it means you won't receive any replies -- the ARP replies will go to
313 * the specified address, which will be some other radio. The case where
314 * this is useful is when that other radio is also connected to the same
315 * machine. This allows you to connect a pair of radios to one machine,
316 * and to use one exclusively for inbound traffic, and the other
317 * exclusively for outbound traffic. Pretty neat, huh?
319 * Here's the full procedure to set this up:
321 * 1. "slattach" two interfaces, e.g. st0 for outgoing packets,
322 * and st1 for incoming packets
324 * 2. "ifconfig" st0 (outbound radio) to have the hardware address
325 * which is the real hardware address of st1 (inbound radio).
326 * Now when it sends out packets, it will masquerade as st1, and
327 * replies will be sent to that radio, which is exactly what we want.
329 * 3. Set the route table entry ("route add default ..." or
330 * "route add -net ...", as appropriate) to send packets via the st0
331 * interface (outbound radio). Do not add any route which sends packets
332 * out via the st1 interface -- that radio is for inbound traffic only.
334 * 4. "ifconfig" st1 (inbound radio) to have hardware address zero.
335 * This tells the STRIP driver to "shut down" that interface and not
336 * send any packets through it. In particular, it stops sending the
337 * periodic gratuitous ARP packets that a STRIP interface normally sends.
338 * Also, when packets arrive on that interface, it will search the
339 * interface list to see if there is another interface who's manual
340 * hardware address matches its own real address (i.e. st0 in this
341 * example) and if so it will transfer ownership of the skbuff to
342 * that interface, so that it looks to the kernel as if the packet
343 * arrived on that interface. This is necessary because when the
344 * kernel sends an ARP packet on st0, it expects to get a reply on
345 * st0, and if it sees the reply come from st1 then it will ignore
346 * it (to be accurate, it puts the entry in the ARP table, but
347 * labelled in such a way that st0 can't use it).
349 * Thanks to Petros Maniatis for coming up with the idea of splitting
350 * inbound and outbound traffic between two interfaces, which turned
351 * out to be really easy to implement, even if it is a bit of a hack.
353 * Having set a manual address on an interface, you can restore it
354 * to automatic operation (where the address is automatically kept
355 * consistent with the real address of the radio) by setting a manual
356 * address of all ones, e.g. "ifconfig st0 hw strip FFFFFFFFFFFF"
357 * This 'turns off' manual override mode for the device address.
359 * Note: The IEEE 802 headers reported in tcpdump will show the *real*
360 * radio addresses the packets were sent and received from, so that you
361 * can see what is really going on with packets, and which interfaces
362 * they are really going through.
366 /************************************************************************/
370 * CommandString1 works on all radios
371 * Other CommandStrings are only used with firmware that provides structured responses.
373 * ats319=1 Enables Info message for node additions and deletions
374 * ats319=2 Enables Info message for a new best node
375 * ats319=4 Enables checksums
376 * ats319=8 Enables ACK messages
379 static const int MaxCommandStringLength
= 32;
380 static const int CompatibilityCommand
= 1;
382 static const char CommandString0
[] = "*&COMMAND*ATS319=7"; /* Turn on checksums & info messages */
383 static const char CommandString1
[] = "*&COMMAND*ATS305?"; /* Query radio name */
384 static const char CommandString2
[] = "*&COMMAND*ATS325?"; /* Query battery voltage */
385 static const char CommandString3
[] = "*&COMMAND*ATS300?"; /* Query version information */
386 static const char CommandString4
[] = "*&COMMAND*ATS311?"; /* Query poletop list */
387 static const char CommandString5
[] = "*&COMMAND*AT~LA"; /* Query portables list */
393 static const StringDescriptor CommandString
[] = {
394 {CommandString0
, sizeof(CommandString0
) - 1},
395 {CommandString1
, sizeof(CommandString1
) - 1},
396 {CommandString2
, sizeof(CommandString2
) - 1},
397 {CommandString3
, sizeof(CommandString3
) - 1},
398 {CommandString4
, sizeof(CommandString4
) - 1},
399 {CommandString5
, sizeof(CommandString5
) - 1}
402 #define GOT_ALL_RADIO_INFO(S) \
403 ((S)->firmware_version.c[0] && \
404 (S)->battery_voltage.c[0] && \
405 memcmp(&(S)->true_dev_addr, zero_address.c, sizeof(zero_address)))
407 static const char hextable
[16] = "0123456789ABCDEF";
409 static const MetricomAddress zero_address
;
410 static const MetricomAddress broadcast_address
=
411 { {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF} };
413 static const MetricomKey SIP0Key
= { "SIP0" };
414 static const MetricomKey ARP0Key
= { "ARP0" };
415 static const MetricomKey ATR_Key
= { "ATR " };
416 static const MetricomKey ACK_Key
= { "ACK_" };
417 static const MetricomKey INF_Key
= { "INF_" };
418 static const MetricomKey ERR_Key
= { "ERR_" };
420 static const long MaxARPInterval
= 60 * HZ
; /* One minute */
423 * Maximum Starmode packet length is 1183 bytes. Allowing 4 bytes for
424 * protocol key, 4 bytes for checksum, one byte for CR, and 65/64 expansion
425 * for STRIP encoding, that translates to a maximum payload MTU of 1155.
426 * Note: A standard NFS 1K data packet is a total of 0x480 (1152) bytes
427 * long, including IP header, UDP header, and NFS header. Setting the STRIP
428 * MTU to 1152 allows us to send default sized NFS packets without fragmentation.
430 static const unsigned short MAX_SEND_MTU
= 1152;
431 static const unsigned short MAX_RECV_MTU
= 1500; /* Hoping for Ethernet sized packets in the future! */
432 static const unsigned short DEFAULT_STRIP_MTU
= 1152;
433 static const int STRIP_MAGIC
= 0x5303;
434 static const long LongTime
= 0x7FFFFFFF;
436 /************************************************************************/
437 /* Global variables */
439 static LIST_HEAD(strip_list
);
440 static DEFINE_SPINLOCK(strip_lock
);
442 /************************************************************************/
445 /* Returns TRUE if text T begins with prefix P */
446 #define has_prefix(T,L,P) (((L) >= sizeof(P)-1) && !strncmp((T), (P), sizeof(P)-1))
448 /* Returns TRUE if text T of length L is equal to string S */
449 #define text_equal(T,L,S) (((L) == sizeof(S)-1) && !strncmp((T), (S), sizeof(S)-1))
451 #define READHEX(X) ((X)>='0' && (X)<='9' ? (X)-'0' : \
452 (X)>='a' && (X)<='f' ? (X)-'a'+10 : \
453 (X)>='A' && (X)<='F' ? (X)-'A'+10 : 0 )
455 #define READHEX16(X) ((__u16)(READHEX(X)))
457 #define READDEC(X) ((X)>='0' && (X)<='9' ? (X)-'0' : 0)
459 #define ARRAY_END(X) (&((X)[ARRAY_SIZE(X)]))
461 #define JIFFIE_TO_SEC(X) ((X) / HZ)
464 /************************************************************************/
465 /* Utility routines */
467 static int arp_query(unsigned char *haddr
, u32 paddr
,
468 struct net_device
*dev
)
470 struct neighbour
*neighbor_entry
;
473 neighbor_entry
= neigh_lookup(&arp_tbl
, &paddr
, dev
);
475 if (neighbor_entry
!= NULL
) {
476 neighbor_entry
->used
= jiffies
;
477 if (neighbor_entry
->nud_state
& NUD_VALID
) {
478 memcpy(haddr
, neighbor_entry
->ha
, dev
->addr_len
);
481 neigh_release(neighbor_entry
);
486 static void DumpData(char *msg
, struct strip
*strip_info
, __u8
* ptr
,
489 static const int MAX_DumpData
= 80;
490 __u8 pkt_text
[MAX_DumpData
], *p
= pkt_text
;
494 while (ptr
< end
&& p
< &pkt_text
[MAX_DumpData
- 4]) {
499 if (*ptr
>= 32 && *ptr
<= 126) {
502 sprintf(p
, "\\%02X", *ptr
);
513 printk(KERN_INFO
"%s: %-13s%s\n", strip_info
->dev
->name
, msg
, pkt_text
);
517 /************************************************************************/
518 /* Byte stuffing/unstuffing routines */
521 * 00 Unused (reserved character)
522 * 01-3F Run of 2-64 different characters
523 * 40-7F Run of 1-64 different characters plus a single zero at the end
524 * 80-BF Run of 1-64 of the same character
525 * C0-FF Run of 1-64 zeroes (ASCII 0)
530 Stuff_DiffZero
= 0x40,
533 Stuff_NoCode
= 0xFF, /* Special code, meaning no code selected */
535 Stuff_CodeMask
= 0xC0,
536 Stuff_CountMask
= 0x3F,
537 Stuff_MaxCount
= 0x3F,
538 Stuff_Magic
= 0x0D /* The value we are eliminating */
541 /* StuffData encodes the data starting at "src" for "length" bytes.
542 * It writes it to the buffer pointed to by "dst" (which must be at least
543 * as long as 1 + 65/64 of the input length). The output may be up to 1.6%
544 * larger than the input for pathological input, but will usually be smaller.
545 * StuffData returns the new value of the dst pointer as its result.
546 * "code_ptr_ptr" points to a "__u8 *" which is used to hold encoding state
547 * between calls, allowing an encoded packet to be incrementally built up
548 * from small parts. On the first call, the "__u8 *" pointed to should be
549 * initialized to NULL; between subsequent calls the calling routine should
550 * leave the value alone and simply pass it back unchanged so that the
551 * encoder can recover its current state.
554 #define StuffData_FinishBlock(X) \
555 (*code_ptr = (X) ^ Stuff_Magic, code = Stuff_NoCode)
557 static __u8
*StuffData(__u8
* src
, __u32 length
, __u8
* dst
,
558 __u8
** code_ptr_ptr
)
560 __u8
*end
= src
+ length
;
561 __u8
*code_ptr
= *code_ptr_ptr
;
562 __u8 code
= Stuff_NoCode
, count
= 0;
569 * Recover state from last call, if applicable
571 code
= (*code_ptr
^ Stuff_Magic
) & Stuff_CodeMask
;
572 count
= (*code_ptr
^ Stuff_Magic
) & Stuff_CountMask
;
577 /* Stuff_NoCode: If no current code, select one */
579 /* Record where we're going to put this code */
581 count
= 0; /* Reset the count (zero means one instance) */
582 /* Tentatively start a new block */
588 *dst
++ = *src
++ ^ Stuff_Magic
;
590 /* Note: We optimistically assume run of same -- */
591 /* which will be fixed later in Stuff_Same */
592 /* if it turns out not to be true. */
595 /* Stuff_Zero: We already have at least one zero encoded */
597 /* If another zero, count it, else finish this code block */
602 StuffData_FinishBlock(Stuff_Zero
+ count
);
606 /* Stuff_Same: We already have at least one byte encoded */
608 /* If another one the same, count it */
609 if ((*src
^ Stuff_Magic
) == code_ptr
[1]) {
614 /* else, this byte does not match this block. */
615 /* If we already have two or more bytes encoded, finish this code block */
617 StuffData_FinishBlock(Stuff_Same
+ count
);
620 /* else, we only have one so far, so switch to Stuff_Diff code */
622 /* and fall through to Stuff_Diff case below
623 * Note cunning cleverness here: case Stuff_Diff compares
624 * the current character with the previous two to see if it
625 * has a run of three the same. Won't this be an error if
626 * there aren't two previous characters stored to compare with?
627 * No. Because we know the current character is *not* the same
628 * as the previous one, the first test below will necessarily
629 * fail and the send half of the "if" won't be executed.
632 /* Stuff_Diff: We have at least two *different* bytes encoded */
634 /* If this is a zero, must encode a Stuff_DiffZero, and begin a new block */
636 StuffData_FinishBlock(Stuff_DiffZero
+
639 /* else, if we have three in a row, it is worth starting a Stuff_Same block */
640 else if ((*src
^ Stuff_Magic
) == dst
[-1]
641 && dst
[-1] == dst
[-2]) {
642 /* Back off the last two characters we encoded */
644 /* Note: "Stuff_Diff + 0" is an illegal code */
645 if (code
== Stuff_Diff
+ 0) {
646 code
= Stuff_Same
+ 0;
648 StuffData_FinishBlock(code
);
650 /* dst[-1] already holds the correct value */
651 count
= 2; /* 2 means three bytes encoded */
654 /* else, another different byte, so add it to the block */
656 *dst
++ = *src
^ Stuff_Magic
;
659 src
++; /* Consume the byte */
662 if (count
== Stuff_MaxCount
) {
663 StuffData_FinishBlock(code
+ count
);
666 if (code
== Stuff_NoCode
) {
667 *code_ptr_ptr
= NULL
;
669 *code_ptr_ptr
= code_ptr
;
670 StuffData_FinishBlock(code
+ count
);
676 * UnStuffData decodes the data at "src", up to (but not including) "end".
677 * It writes the decoded data into the buffer pointed to by "dst", up to a
678 * maximum of "dst_length", and returns the new value of "src" so that a
679 * follow-on call can read more data, continuing from where the first left off.
681 * There are three types of results:
682 * 1. The source data runs out before extracting "dst_length" bytes:
683 * UnStuffData returns NULL to indicate failure.
684 * 2. The source data produces exactly "dst_length" bytes:
685 * UnStuffData returns new_src = end to indicate that all bytes were consumed.
686 * 3. "dst_length" bytes are extracted, with more remaining.
687 * UnStuffData returns new_src < end to indicate that there are more bytes
690 * Note: The decoding may be destructive, in that it may alter the source
691 * data in the process of decoding it (this is necessary to allow a follow-on
692 * call to resume correctly).
695 static __u8
*UnStuffData(__u8
* src
, __u8
* end
, __u8
* dst
,
698 __u8
*dst_end
= dst
+ dst_length
;
700 if (!src
|| !end
|| !dst
|| !dst_length
)
702 while (src
< end
&& dst
< dst_end
) {
703 int count
= (*src
^ Stuff_Magic
) & Stuff_CountMask
;
704 switch ((*src
^ Stuff_Magic
) & Stuff_CodeMask
) {
706 if (src
+ 1 + count
>= end
)
709 *dst
++ = *++src
^ Stuff_Magic
;
711 while (--count
>= 0 && dst
< dst_end
);
716 *src
= Stuff_Same
^ Stuff_Magic
;
720 count
) ^ Stuff_Magic
;
724 if (src
+ 1 + count
>= end
)
727 *dst
++ = *++src
^ Stuff_Magic
;
729 while (--count
>= 0 && dst
< dst_end
);
731 *src
= Stuff_Zero
^ Stuff_Magic
;
734 (Stuff_DiffZero
+ count
) ^ Stuff_Magic
;
740 *dst
++ = src
[1] ^ Stuff_Magic
;
742 while (--count
>= 0 && dst
< dst_end
);
746 *src
= (Stuff_Same
+ count
) ^ Stuff_Magic
;
752 while (--count
>= 0 && dst
< dst_end
);
756 *src
= (Stuff_Zero
+ count
) ^ Stuff_Magic
;
767 /************************************************************************/
768 /* General routines for STRIP */
771 * set_baud sets the baud rate to the rate defined by baudcode
773 static void set_baud(struct tty_struct
*tty
, speed_t baudrate
)
775 struct ktermios old_termios
;
777 mutex_lock(&tty
->termios_mutex
);
778 old_termios
=*(tty
->termios
);
779 tty_encode_baud_rate(tty
, baudrate
, baudrate
);
780 tty
->ops
->set_termios(tty
, &old_termios
);
781 mutex_unlock(&tty
->termios_mutex
);
785 * Convert a string to a Metricom Address.
788 #define IS_RADIO_ADDRESS(p) ( \
789 isdigit((p)[0]) && isdigit((p)[1]) && isdigit((p)[2]) && isdigit((p)[3]) && \
791 isdigit((p)[5]) && isdigit((p)[6]) && isdigit((p)[7]) && isdigit((p)[8]) )
793 static int string_to_radio_address(MetricomAddress
* addr
, __u8
* p
)
795 if (!IS_RADIO_ADDRESS(p
))
799 addr
->c
[2] = READHEX(p
[0]) << 4 | READHEX(p
[1]);
800 addr
->c
[3] = READHEX(p
[2]) << 4 | READHEX(p
[3]);
801 addr
->c
[4] = READHEX(p
[5]) << 4 | READHEX(p
[6]);
802 addr
->c
[5] = READHEX(p
[7]) << 4 | READHEX(p
[8]);
807 * Convert a Metricom Address to a string.
810 static __u8
*radio_address_to_string(const MetricomAddress
* addr
,
811 MetricomAddressString
* p
)
813 sprintf(p
->c
, "%02X%02X-%02X%02X", addr
->c
[2], addr
->c
[3],
814 addr
->c
[4], addr
->c
[5]);
819 * Note: Must make sure sx_size is big enough to receive a stuffed
820 * MAX_RECV_MTU packet. Additionally, we also want to ensure that it's
821 * big enough to receive a large radio neighbour list (currently 4K).
824 static int allocate_buffers(struct strip
*strip_info
, int mtu
)
826 struct net_device
*dev
= strip_info
->dev
;
827 int sx_size
= max_t(int, STRIP_ENCAP_SIZE(MAX_RECV_MTU
), 4096);
828 int tx_size
= STRIP_ENCAP_SIZE(mtu
) + MaxCommandStringLength
;
829 __u8
*r
= kmalloc(MAX_RECV_MTU
, GFP_ATOMIC
);
830 __u8
*s
= kmalloc(sx_size
, GFP_ATOMIC
);
831 __u8
*t
= kmalloc(tx_size
, GFP_ATOMIC
);
833 strip_info
->rx_buff
= r
;
834 strip_info
->sx_buff
= s
;
835 strip_info
->tx_buff
= t
;
836 strip_info
->sx_size
= sx_size
;
837 strip_info
->tx_size
= tx_size
;
838 strip_info
->mtu
= dev
->mtu
= mtu
;
848 * MTU has been changed by the IP layer.
850 * an upcall from the tty driver, or in an ip packet queue.
852 static int strip_change_mtu(struct net_device
*dev
, int new_mtu
)
854 struct strip
*strip_info
= netdev_priv(dev
);
855 int old_mtu
= strip_info
->mtu
;
856 unsigned char *orbuff
= strip_info
->rx_buff
;
857 unsigned char *osbuff
= strip_info
->sx_buff
;
858 unsigned char *otbuff
= strip_info
->tx_buff
;
860 if (new_mtu
> MAX_SEND_MTU
) {
862 "%s: MTU exceeds maximum allowable (%d), MTU change cancelled.\n",
863 strip_info
->dev
->name
, MAX_SEND_MTU
);
867 spin_lock_bh(&strip_lock
);
868 if (!allocate_buffers(strip_info
, new_mtu
)) {
869 printk(KERN_ERR
"%s: unable to grow strip buffers, MTU change cancelled.\n",
870 strip_info
->dev
->name
);
871 spin_unlock_bh(&strip_lock
);
875 if (strip_info
->sx_count
) {
876 if (strip_info
->sx_count
<= strip_info
->sx_size
)
877 memcpy(strip_info
->sx_buff
, osbuff
,
878 strip_info
->sx_count
);
880 strip_info
->discard
= strip_info
->sx_count
;
881 strip_info
->rx_over_errors
++;
885 if (strip_info
->tx_left
) {
886 if (strip_info
->tx_left
<= strip_info
->tx_size
)
887 memcpy(strip_info
->tx_buff
, strip_info
->tx_head
,
888 strip_info
->tx_left
);
890 strip_info
->tx_left
= 0;
891 strip_info
->tx_dropped
++;
894 strip_info
->tx_head
= strip_info
->tx_buff
;
895 spin_unlock_bh(&strip_lock
);
897 printk(KERN_NOTICE
"%s: strip MTU changed fom %d to %d.\n",
898 strip_info
->dev
->name
, old_mtu
, strip_info
->mtu
);
906 static void strip_unlock(struct strip
*strip_info
)
909 * Set the timer to go off in one second.
911 strip_info
->idle_timer
.expires
= jiffies
+ 1 * HZ
;
912 add_timer(&strip_info
->idle_timer
);
913 netif_wake_queue(strip_info
->dev
);
919 * If the time is in the near future, time_delta prints the number of
920 * seconds to go into the buffer and returns the address of the buffer.
921 * If the time is not in the near future, it returns the address of the
922 * string "Not scheduled" The buffer must be long enough to contain the
923 * ascii representation of the number plus 9 charactes for the " seconds"
924 * and the null character.
926 #ifdef CONFIG_PROC_FS
927 static char *time_delta(char buffer
[], long time
)
930 if (time
> LongTime
/ 2)
931 return ("Not scheduled");
933 time
= 0; /* Don't print negative times */
934 sprintf(buffer
, "%ld seconds", time
/ HZ
);
938 /* get Nth element of the linked list */
939 static struct strip
*strip_get_idx(loff_t pos
)
944 list_for_each_entry_rcu(str
, &strip_list
, list
) {
952 static void *strip_seq_start(struct seq_file
*seq
, loff_t
*pos
)
956 return *pos
? strip_get_idx(*pos
- 1) : SEQ_START_TOKEN
;
959 static void *strip_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
965 if (v
== SEQ_START_TOKEN
)
966 return strip_get_idx(1);
970 list_for_each_continue_rcu(l
, &strip_list
) {
971 return list_entry(l
, struct strip
, list
);
976 static void strip_seq_stop(struct seq_file
*seq
, void *v
)
982 static void strip_seq_neighbours(struct seq_file
*seq
,
983 const MetricomNodeTable
* table
,
986 /* We wrap this in a do/while loop, so if the table changes */
987 /* while we're reading it, we just go around and try again. */
992 t
= table
->timestamp
;
993 if (table
->num_nodes
)
994 seq_printf(seq
, "\n %s\n", title
);
995 for (i
= 0; i
< table
->num_nodes
; i
++) {
998 spin_lock_bh(&strip_lock
);
999 node
= table
->node
[i
];
1000 spin_unlock_bh(&strip_lock
);
1001 seq_printf(seq
, " %s\n", node
.c
);
1003 } while (table
->timestamp
.tv_sec
!= t
.tv_sec
1004 || table
->timestamp
.tv_usec
!= t
.tv_usec
);
1008 * This function prints radio status information via the seq_file
1009 * interface. The interface takes care of buffer size and over
1012 * The buffer in seq_file is PAGESIZE (4K)
1013 * so this routine should never print more or it will get truncated.
1014 * With the maximum of 32 portables and 32 poletops
1015 * reported, the routine outputs 3107 bytes into the buffer.
1017 static void strip_seq_status_info(struct seq_file
*seq
,
1018 const struct strip
*strip_info
)
1021 MetricomAddressString addr_string
;
1023 /* First, we must copy all of our data to a safe place, */
1024 /* in case a serial interrupt comes in and changes it. */
1025 int tx_left
= strip_info
->tx_left
;
1026 unsigned long rx_average_pps
= strip_info
->rx_average_pps
;
1027 unsigned long tx_average_pps
= strip_info
->tx_average_pps
;
1028 unsigned long sx_average_pps
= strip_info
->sx_average_pps
;
1029 int working
= strip_info
->working
;
1030 int firmware_level
= strip_info
->firmware_level
;
1031 long watchdog_doprobe
= strip_info
->watchdog_doprobe
;
1032 long watchdog_doreset
= strip_info
->watchdog_doreset
;
1033 long gratuitous_arp
= strip_info
->gratuitous_arp
;
1034 long arp_interval
= strip_info
->arp_interval
;
1035 FirmwareVersion firmware_version
= strip_info
->firmware_version
;
1036 SerialNumber serial_number
= strip_info
->serial_number
;
1037 BatteryVoltage battery_voltage
= strip_info
->battery_voltage
;
1038 char *if_name
= strip_info
->dev
->name
;
1039 MetricomAddress true_dev_addr
= strip_info
->true_dev_addr
;
1040 MetricomAddress dev_dev_addr
=
1041 *(MetricomAddress
*) strip_info
->dev
->dev_addr
;
1042 int manual_dev_addr
= strip_info
->manual_dev_addr
;
1044 unsigned long rx_bytes
= strip_info
->rx_bytes
;
1045 unsigned long tx_bytes
= strip_info
->tx_bytes
;
1046 unsigned long rx_rbytes
= strip_info
->rx_rbytes
;
1047 unsigned long tx_rbytes
= strip_info
->tx_rbytes
;
1048 unsigned long rx_sbytes
= strip_info
->rx_sbytes
;
1049 unsigned long tx_sbytes
= strip_info
->tx_sbytes
;
1050 unsigned long rx_ebytes
= strip_info
->rx_ebytes
;
1051 unsigned long tx_ebytes
= strip_info
->tx_ebytes
;
1054 seq_printf(seq
, "\nInterface name\t\t%s\n", if_name
);
1055 seq_printf(seq
, " Radio working:\t\t%s\n", working
? "Yes" : "No");
1056 radio_address_to_string(&true_dev_addr
, &addr_string
);
1057 seq_printf(seq
, " Radio address:\t\t%s\n", addr_string
.c
);
1058 if (manual_dev_addr
) {
1059 radio_address_to_string(&dev_dev_addr
, &addr_string
);
1060 seq_printf(seq
, " Device address:\t%s\n", addr_string
.c
);
1062 seq_printf(seq
, " Firmware version:\t%s", !working
? "Unknown" :
1063 !firmware_level
? "Should be upgraded" :
1064 firmware_version
.c
);
1065 if (firmware_level
>= ChecksummedMessages
)
1066 seq_printf(seq
, " (Checksums Enabled)");
1067 seq_printf(seq
, "\n");
1068 seq_printf(seq
, " Serial number:\t\t%s\n", serial_number
.c
);
1069 seq_printf(seq
, " Battery voltage:\t%s\n", battery_voltage
.c
);
1070 seq_printf(seq
, " Transmit queue (bytes):%d\n", tx_left
);
1071 seq_printf(seq
, " Receive packet rate: %ld packets per second\n",
1072 rx_average_pps
/ 8);
1073 seq_printf(seq
, " Transmit packet rate: %ld packets per second\n",
1074 tx_average_pps
/ 8);
1075 seq_printf(seq
, " Sent packet rate: %ld packets per second\n",
1076 sx_average_pps
/ 8);
1077 seq_printf(seq
, " Next watchdog probe:\t%s\n",
1078 time_delta(temp
, watchdog_doprobe
));
1079 seq_printf(seq
, " Next watchdog reset:\t%s\n",
1080 time_delta(temp
, watchdog_doreset
));
1081 seq_printf(seq
, " Next gratuitous ARP:\t");
1084 (strip_info
->dev
->dev_addr
, zero_address
.c
,
1085 sizeof(zero_address
)))
1086 seq_printf(seq
, "Disabled\n");
1088 seq_printf(seq
, "%s\n", time_delta(temp
, gratuitous_arp
));
1089 seq_printf(seq
, " Next ARP interval:\t%ld seconds\n",
1090 JIFFIE_TO_SEC(arp_interval
));
1095 seq_printf(seq
, "\n");
1097 " Total bytes: \trx:\t%lu\ttx:\t%lu\n",
1098 rx_bytes
, tx_bytes
);
1100 " thru radio: \trx:\t%lu\ttx:\t%lu\n",
1101 rx_rbytes
, tx_rbytes
);
1103 " thru serial port: \trx:\t%lu\ttx:\t%lu\n",
1104 rx_sbytes
, tx_sbytes
);
1106 " Total stat/err bytes:\trx:\t%lu\ttx:\t%lu\n",
1107 rx_ebytes
, tx_ebytes
);
1109 strip_seq_neighbours(seq
, &strip_info
->poletops
,
1111 strip_seq_neighbours(seq
, &strip_info
->portables
,
1117 * This function is exports status information from the STRIP driver through
1118 * the /proc file system.
1120 static int strip_seq_show(struct seq_file
*seq
, void *v
)
1122 if (v
== SEQ_START_TOKEN
)
1123 seq_printf(seq
, "strip_version: %s\n", StripVersion
);
1125 strip_seq_status_info(seq
, (const struct strip
*)v
);
1130 static const struct seq_operations strip_seq_ops
= {
1131 .start
= strip_seq_start
,
1132 .next
= strip_seq_next
,
1133 .stop
= strip_seq_stop
,
1134 .show
= strip_seq_show
,
1137 static int strip_seq_open(struct inode
*inode
, struct file
*file
)
1139 return seq_open(file
, &strip_seq_ops
);
1142 static const struct file_operations strip_seq_fops
= {
1143 .owner
= THIS_MODULE
,
1144 .open
= strip_seq_open
,
1146 .llseek
= seq_lseek
,
1147 .release
= seq_release
,
1153 /************************************************************************/
1154 /* Sending routines */
1156 static void ResetRadio(struct strip
*strip_info
)
1158 struct tty_struct
*tty
= strip_info
->tty
;
1159 static const char init
[] = "ate0q1dt**starmode\r**";
1160 StringDescriptor s
= { init
, sizeof(init
) - 1 };
1163 * If the radio isn't working anymore,
1164 * we should clear the old status information.
1166 if (strip_info
->working
) {
1167 printk(KERN_INFO
"%s: No response: Resetting radio.\n",
1168 strip_info
->dev
->name
);
1169 strip_info
->firmware_version
.c
[0] = '\0';
1170 strip_info
->serial_number
.c
[0] = '\0';
1171 strip_info
->battery_voltage
.c
[0] = '\0';
1172 strip_info
->portables
.num_nodes
= 0;
1173 do_gettimeofday(&strip_info
->portables
.timestamp
);
1174 strip_info
->poletops
.num_nodes
= 0;
1175 do_gettimeofday(&strip_info
->poletops
.timestamp
);
1178 strip_info
->pps_timer
= jiffies
;
1179 strip_info
->rx_pps_count
= 0;
1180 strip_info
->tx_pps_count
= 0;
1181 strip_info
->sx_pps_count
= 0;
1182 strip_info
->rx_average_pps
= 0;
1183 strip_info
->tx_average_pps
= 0;
1184 strip_info
->sx_average_pps
= 0;
1186 /* Mark radio address as unknown */
1187 *(MetricomAddress
*) & strip_info
->true_dev_addr
= zero_address
;
1188 if (!strip_info
->manual_dev_addr
)
1189 *(MetricomAddress
*) strip_info
->dev
->dev_addr
=
1191 strip_info
->working
= FALSE
;
1192 strip_info
->firmware_level
= NoStructure
;
1193 strip_info
->next_command
= CompatibilityCommand
;
1194 strip_info
->watchdog_doprobe
= jiffies
+ 10 * HZ
;
1195 strip_info
->watchdog_doreset
= jiffies
+ 1 * HZ
;
1197 /* If the user has selected a baud rate above 38.4 see what magic we have to do */
1198 if (strip_info
->user_baud
> 38400) {
1200 * Subtle stuff: Pay attention :-)
1201 * If the serial port is currently at the user's selected (>38.4) rate,
1202 * then we temporarily switch to 19.2 and issue the ATS304 command
1203 * to tell the radio to switch to the user's selected rate.
1204 * If the serial port is not currently at that rate, that means we just
1205 * issued the ATS304 command last time through, so this time we restore
1206 * the user's selected rate and issue the normal starmode reset string.
1208 if (strip_info
->user_baud
== tty_get_baud_rate(tty
)) {
1209 static const char b0
[] = "ate0q1s304=57600\r";
1210 static const char b1
[] = "ate0q1s304=115200\r";
1211 static const StringDescriptor baudstring
[2] =
1212 { {b0
, sizeof(b0
) - 1}
1213 , {b1
, sizeof(b1
) - 1}
1215 set_baud(tty
, 19200);
1216 if (strip_info
->user_baud
== 57600)
1218 else if (strip_info
->user_baud
== 115200)
1221 s
= baudstring
[1]; /* For now */
1223 set_baud(tty
, strip_info
->user_baud
);
1226 tty
->ops
->write(tty
, s
.string
, s
.length
);
1228 strip_info
->tx_ebytes
+= s
.length
;
1233 * Called by the driver when there's room for more data. If we have
1234 * more packets to send, we send them here.
1237 static void strip_write_some_more(struct tty_struct
*tty
)
1239 struct strip
*strip_info
= tty
->disc_data
;
1241 /* First make sure we're connected. */
1242 if (!strip_info
|| strip_info
->magic
!= STRIP_MAGIC
||
1243 !netif_running(strip_info
->dev
))
1246 if (strip_info
->tx_left
> 0) {
1248 tty
->ops
->write(tty
, strip_info
->tx_head
,
1249 strip_info
->tx_left
);
1250 strip_info
->tx_left
-= num_written
;
1251 strip_info
->tx_head
+= num_written
;
1253 strip_info
->tx_sbytes
+= num_written
;
1255 } else { /* Else start transmission of another packet */
1257 clear_bit(TTY_DO_WRITE_WAKEUP
, &tty
->flags
);
1258 strip_unlock(strip_info
);
1262 static __u8
*add_checksum(__u8
* buffer
, __u8
* end
)
1268 end
[3] = hextable
[sum
& 0xF];
1270 end
[2] = hextable
[sum
& 0xF];
1272 end
[1] = hextable
[sum
& 0xF];
1274 end
[0] = hextable
[sum
& 0xF];
1278 static unsigned char *strip_make_packet(unsigned char *buffer
,
1279 struct strip
*strip_info
,
1280 struct sk_buff
*skb
)
1283 __u8
*stuffstate
= NULL
;
1284 STRIP_Header
*header
= (STRIP_Header
*) skb
->data
;
1285 MetricomAddress haddr
= header
->dst_addr
;
1286 int len
= skb
->len
- sizeof(STRIP_Header
);
1289 /*HexDump("strip_make_packet", strip_info, skb->data, skb->data + skb->len); */
1291 if (header
->protocol
== htons(ETH_P_IP
))
1293 else if (header
->protocol
== htons(ETH_P_ARP
))
1297 "%s: strip_make_packet: Unknown packet type 0x%04X\n",
1298 strip_info
->dev
->name
, ntohs(header
->protocol
));
1302 if (len
> strip_info
->mtu
) {
1304 "%s: Dropping oversized transmit packet: %d bytes\n",
1305 strip_info
->dev
->name
, len
);
1310 * If we're sending to ourselves, discard the packet.
1311 * (Metricom radios choke if they try to send a packet to their own address.)
1313 if (!memcmp(haddr
.c
, strip_info
->true_dev_addr
.c
, sizeof(haddr
))) {
1314 printk(KERN_ERR
"%s: Dropping packet addressed to self\n",
1315 strip_info
->dev
->name
);
1320 * If this is a broadcast packet, send it to our designated Metricom
1321 * 'broadcast hub' radio (First byte of address being 0xFF means broadcast)
1323 if (haddr
.c
[0] == 0xFF) {
1325 struct in_device
*in_dev
;
1328 in_dev
= __in_dev_get_rcu(strip_info
->dev
);
1329 if (in_dev
== NULL
) {
1333 if (in_dev
->ifa_list
)
1334 brd
= in_dev
->ifa_list
->ifa_broadcast
;
1337 /* arp_query returns 1 if it succeeds in looking up the address, 0 if it fails */
1338 if (!arp_query(haddr
.c
, brd
, strip_info
->dev
)) {
1340 "%s: Unable to send packet (no broadcast hub configured)\n",
1341 strip_info
->dev
->name
);
1345 * If we are the broadcast hub, don't bother sending to ourselves.
1346 * (Metricom radios choke if they try to send a packet to their own address.)
1349 (haddr
.c
, strip_info
->true_dev_addr
.c
, sizeof(haddr
)))
1355 *ptr
++ = hextable
[haddr
.c
[2] >> 4];
1356 *ptr
++ = hextable
[haddr
.c
[2] & 0xF];
1357 *ptr
++ = hextable
[haddr
.c
[3] >> 4];
1358 *ptr
++ = hextable
[haddr
.c
[3] & 0xF];
1360 *ptr
++ = hextable
[haddr
.c
[4] >> 4];
1361 *ptr
++ = hextable
[haddr
.c
[4] & 0xF];
1362 *ptr
++ = hextable
[haddr
.c
[5] >> 4];
1363 *ptr
++ = hextable
[haddr
.c
[5] & 0xF];
1371 StuffData(skb
->data
+ sizeof(STRIP_Header
), len
, ptr
,
1374 if (strip_info
->firmware_level
>= ChecksummedMessages
)
1375 ptr
= add_checksum(buffer
+ 1, ptr
);
1381 static void strip_send(struct strip
*strip_info
, struct sk_buff
*skb
)
1383 MetricomAddress haddr
;
1384 unsigned char *ptr
= strip_info
->tx_buff
;
1385 int doreset
= (long) jiffies
- strip_info
->watchdog_doreset
>= 0;
1386 int doprobe
= (long) jiffies
- strip_info
->watchdog_doprobe
>= 0
1391 * 1. If we have a packet, encapsulate it and put it in the buffer
1394 char *newptr
= strip_make_packet(ptr
, strip_info
, skb
);
1395 strip_info
->tx_pps_count
++;
1397 strip_info
->tx_dropped
++;
1400 strip_info
->sx_pps_count
++;
1401 strip_info
->tx_packets
++; /* Count another successful packet */
1403 strip_info
->tx_bytes
+= skb
->len
;
1404 strip_info
->tx_rbytes
+= ptr
- strip_info
->tx_buff
;
1406 /*DumpData("Sending:", strip_info, strip_info->tx_buff, ptr); */
1407 /*HexDump("Sending", strip_info, strip_info->tx_buff, ptr); */
1412 * 2. If it is time for another tickle, tack it on, after the packet
1415 StringDescriptor ts
= CommandString
[strip_info
->next_command
];
1419 do_gettimeofday(&tv
);
1420 printk(KERN_INFO
"**** Sending tickle string %d at %02d.%06d\n",
1421 strip_info
->next_command
, tv
.tv_sec
% 100,
1425 if (ptr
== strip_info
->tx_buff
)
1428 *ptr
++ = '*'; /* First send "**" to provoke an error message */
1431 /* Then add the command */
1432 memcpy(ptr
, ts
.string
, ts
.length
);
1434 /* Add a checksum ? */
1435 if (strip_info
->firmware_level
< ChecksummedMessages
)
1438 ptr
= add_checksum(ptr
, ptr
+ ts
.length
);
1440 *ptr
++ = 0x0D; /* Terminate the command with a <CR> */
1442 /* Cycle to next periodic command? */
1443 if (strip_info
->firmware_level
>= StructuredMessages
)
1444 if (++strip_info
->next_command
>=
1445 ARRAY_SIZE(CommandString
))
1446 strip_info
->next_command
= 0;
1448 strip_info
->tx_ebytes
+= ts
.length
;
1450 strip_info
->watchdog_doprobe
= jiffies
+ 10 * HZ
;
1451 strip_info
->watchdog_doreset
= jiffies
+ 1 * HZ
;
1452 /*printk(KERN_INFO "%s: Routine radio test.\n", strip_info->dev->name); */
1456 * 3. Set up the strip_info ready to send the data (if any).
1458 strip_info
->tx_head
= strip_info
->tx_buff
;
1459 strip_info
->tx_left
= ptr
- strip_info
->tx_buff
;
1460 set_bit(TTY_DO_WRITE_WAKEUP
, &strip_info
->tty
->flags
);
1462 * 4. Debugging check to make sure we're not overflowing the buffer.
1464 if (strip_info
->tx_size
- strip_info
->tx_left
< 20)
1465 printk(KERN_ERR
"%s: Sending%5d bytes;%5d bytes free.\n",
1466 strip_info
->dev
->name
, strip_info
->tx_left
,
1467 strip_info
->tx_size
- strip_info
->tx_left
);
1470 * 5. If watchdog has expired, reset the radio. Note: if there's data waiting in
1471 * the buffer, strip_write_some_more will send it after the reset has finished
1474 ResetRadio(strip_info
);
1479 struct in_device
*in_dev
;
1483 in_dev
= __in_dev_get_rcu(strip_info
->dev
);
1485 if (in_dev
->ifa_list
) {
1486 brd
= in_dev
->ifa_list
->ifa_broadcast
;
1487 addr
= in_dev
->ifa_list
->ifa_local
;
1495 * 6. If it is time for a periodic ARP, queue one up to be sent.
1496 * We only do this if:
1497 * 1. The radio is working
1498 * 2. It's time to send another periodic ARP
1499 * 3. We really know what our address is (and it is not manually set to zero)
1500 * 4. We have a designated broadcast address configured
1501 * If we queue up an ARP packet when we don't have a designated broadcast
1502 * address configured, then the packet will just have to be discarded in
1503 * strip_make_packet. This is not fatal, but it causes misleading information
1504 * to be displayed in tcpdump. tcpdump will report that periodic APRs are
1505 * being sent, when in fact they are not, because they are all being dropped
1506 * in the strip_make_packet routine.
1508 if (strip_info
->working
1509 && (long) jiffies
- strip_info
->gratuitous_arp
>= 0
1510 && memcmp(strip_info
->dev
->dev_addr
, zero_address
.c
,
1511 sizeof(zero_address
))
1512 && arp_query(haddr
.c
, brd
, strip_info
->dev
)) {
1513 /*printk(KERN_INFO "%s: Sending gratuitous ARP with interval %ld\n",
1514 strip_info->dev->name, strip_info->arp_interval / HZ); */
1515 strip_info
->gratuitous_arp
=
1516 jiffies
+ strip_info
->arp_interval
;
1517 strip_info
->arp_interval
*= 2;
1518 if (strip_info
->arp_interval
> MaxARPInterval
)
1519 strip_info
->arp_interval
= MaxARPInterval
;
1521 arp_send(ARPOP_REPLY
, ETH_P_ARP
, addr
, /* Target address of ARP packet is our address */
1522 strip_info
->dev
, /* Device to send packet on */
1523 addr
, /* Source IP address this ARP packet comes from */
1524 NULL
, /* Destination HW address is NULL (broadcast it) */
1525 strip_info
->dev
->dev_addr
, /* Source HW address is our HW address */
1526 strip_info
->dev
->dev_addr
); /* Target HW address is our HW address (redundant) */
1530 * 7. All ready. Start the transmission
1532 strip_write_some_more(strip_info
->tty
);
1535 /* Encapsulate a datagram and kick it into a TTY queue. */
1536 static int strip_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
1538 struct strip
*strip_info
= netdev_priv(dev
);
1540 if (!netif_running(dev
)) {
1541 printk(KERN_ERR
"%s: xmit call when iface is down\n",
1543 return NETDEV_TX_BUSY
;
1546 netif_stop_queue(dev
);
1548 del_timer(&strip_info
->idle_timer
);
1551 if (time_after(jiffies
, strip_info
->pps_timer
+ HZ
)) {
1552 unsigned long t
= jiffies
- strip_info
->pps_timer
;
1553 unsigned long rx_pps_count
= (strip_info
->rx_pps_count
* HZ
* 8 + t
/ 2) / t
;
1554 unsigned long tx_pps_count
= (strip_info
->tx_pps_count
* HZ
* 8 + t
/ 2) / t
;
1555 unsigned long sx_pps_count
= (strip_info
->sx_pps_count
* HZ
* 8 + t
/ 2) / t
;
1557 strip_info
->pps_timer
= jiffies
;
1558 strip_info
->rx_pps_count
= 0;
1559 strip_info
->tx_pps_count
= 0;
1560 strip_info
->sx_pps_count
= 0;
1562 strip_info
->rx_average_pps
= (strip_info
->rx_average_pps
+ rx_pps_count
+ 1) / 2;
1563 strip_info
->tx_average_pps
= (strip_info
->tx_average_pps
+ tx_pps_count
+ 1) / 2;
1564 strip_info
->sx_average_pps
= (strip_info
->sx_average_pps
+ sx_pps_count
+ 1) / 2;
1566 if (rx_pps_count
/ 8 >= 10)
1567 printk(KERN_INFO
"%s: WARNING: Receiving %ld packets per second.\n",
1568 strip_info
->dev
->name
, rx_pps_count
/ 8);
1569 if (tx_pps_count
/ 8 >= 10)
1570 printk(KERN_INFO
"%s: WARNING: Tx %ld packets per second.\n",
1571 strip_info
->dev
->name
, tx_pps_count
/ 8);
1572 if (sx_pps_count
/ 8 >= 10)
1573 printk(KERN_INFO
"%s: WARNING: Sending %ld packets per second.\n",
1574 strip_info
->dev
->name
, sx_pps_count
/ 8);
1577 spin_lock_bh(&strip_lock
);
1579 strip_send(strip_info
, skb
);
1581 spin_unlock_bh(&strip_lock
);
1589 * IdleTask periodically calls strip_xmit, so even when we have no IP packets
1590 * to send for an extended period of time, the watchdog processing still gets
1591 * done to ensure that the radio stays in Starmode
1594 static void strip_IdleTask(unsigned long parameter
)
1596 strip_xmit(NULL
, (struct net_device
*) parameter
);
1600 * Create the MAC header for an arbitrary protocol layer
1602 * saddr!=NULL means use this specific address (n/a for Metricom)
1603 * saddr==NULL means use default device source address
1604 * daddr!=NULL means use this destination address
1605 * daddr==NULL means leave destination address alone
1606 * (e.g. unresolved arp -- kernel will call
1607 * rebuild_header later to fill in the address)
1610 static int strip_header(struct sk_buff
*skb
, struct net_device
*dev
,
1611 unsigned short type
, const void *daddr
,
1612 const void *saddr
, unsigned len
)
1614 struct strip
*strip_info
= netdev_priv(dev
);
1615 STRIP_Header
*header
= (STRIP_Header
*) skb_push(skb
, sizeof(STRIP_Header
));
1617 /*printk(KERN_INFO "%s: strip_header 0x%04X %s\n", dev->name, type,
1618 type == ETH_P_IP ? "IP" : type == ETH_P_ARP ? "ARP" : ""); */
1620 header
->src_addr
= strip_info
->true_dev_addr
;
1621 header
->protocol
= htons(type
);
1623 /*HexDump("strip_header", netdev_priv(dev), skb->data, skb->data + skb->len); */
1626 return (-dev
->hard_header_len
);
1628 header
->dst_addr
= *(MetricomAddress
*) daddr
;
1629 return (dev
->hard_header_len
);
1633 * Rebuild the MAC header. This is called after an ARP
1634 * (or in future other address resolution) has completed on this
1635 * sk_buff. We now let ARP fill in the other fields.
1636 * I think this should return zero if packet is ready to send,
1637 * or non-zero if it needs more time to do an address lookup
1640 static int strip_rebuild_header(struct sk_buff
*skb
)
1643 STRIP_Header
*header
= (STRIP_Header
*) skb
->data
;
1645 /* Arp find returns zero if if knows the address, */
1646 /* or if it doesn't know the address it sends an ARP packet and returns non-zero */
1647 return arp_find(header
->dst_addr
.c
, skb
) ? 1 : 0;
1654 /************************************************************************/
1655 /* Receiving routines */
1658 * This function parses the response to the ATS300? command,
1659 * extracting the radio version and serial number.
1661 static void get_radio_version(struct strip
*strip_info
, __u8
* ptr
, __u8
* end
)
1663 __u8
*p
, *value_begin
, *value_end
;
1666 /* Determine the beginning of the second line of the payload */
1668 while (p
< end
&& *p
!= 10)
1675 /* Determine the end of line */
1676 while (p
< end
&& *p
!= 10)
1683 len
= value_end
- value_begin
;
1684 len
= min_t(int, len
, sizeof(FirmwareVersion
) - 1);
1685 if (strip_info
->firmware_version
.c
[0] == 0)
1686 printk(KERN_INFO
"%s: Radio Firmware: %.*s\n",
1687 strip_info
->dev
->name
, len
, value_begin
);
1688 sprintf(strip_info
->firmware_version
.c
, "%.*s", len
, value_begin
);
1690 /* Look for the first colon */
1691 while (p
< end
&& *p
!= ':')
1695 /* Skip over the space */
1697 len
= sizeof(SerialNumber
) - 1;
1698 if (p
+ len
<= end
) {
1699 sprintf(strip_info
->serial_number
.c
, "%.*s", len
, p
);
1702 "STRIP: radio serial number shorter (%zd) than expected (%d)\n",
1708 * This function parses the response to the ATS325? command,
1709 * extracting the radio battery voltage.
1711 static void get_radio_voltage(struct strip
*strip_info
, __u8
* ptr
, __u8
* end
)
1715 len
= sizeof(BatteryVoltage
) - 1;
1716 if (ptr
+ len
<= end
) {
1717 sprintf(strip_info
->battery_voltage
.c
, "%.*s", len
, ptr
);
1720 "STRIP: radio voltage string shorter (%zd) than expected (%d)\n",
1726 * This function parses the responses to the AT~LA and ATS311 commands,
1727 * which list the radio's neighbours.
1729 static void get_radio_neighbours(MetricomNodeTable
* table
, __u8
* ptr
, __u8
* end
)
1731 table
->num_nodes
= 0;
1732 while (ptr
< end
&& table
->num_nodes
< NODE_TABLE_SIZE
) {
1733 MetricomNode
*node
= &table
->node
[table
->num_nodes
++];
1734 char *dst
= node
->c
, *limit
= dst
+ sizeof(*node
) - 1;
1735 while (ptr
< end
&& *ptr
<= 32)
1737 while (ptr
< end
&& dst
< limit
&& *ptr
!= 10)
1740 while (ptr
< end
&& ptr
[-1] != 10)
1743 do_gettimeofday(&table
->timestamp
);
1746 static int get_radio_address(struct strip
*strip_info
, __u8
* p
)
1748 MetricomAddress addr
;
1750 if (string_to_radio_address(&addr
, p
))
1753 /* See if our radio address has changed */
1754 if (memcmp(strip_info
->true_dev_addr
.c
, addr
.c
, sizeof(addr
))) {
1755 MetricomAddressString addr_string
;
1756 radio_address_to_string(&addr
, &addr_string
);
1757 printk(KERN_INFO
"%s: Radio address = %s\n",
1758 strip_info
->dev
->name
, addr_string
.c
);
1759 strip_info
->true_dev_addr
= addr
;
1760 if (!strip_info
->manual_dev_addr
)
1761 *(MetricomAddress
*) strip_info
->dev
->dev_addr
=
1763 /* Give the radio a few seconds to get its head straight, then send an arp */
1764 strip_info
->gratuitous_arp
= jiffies
+ 15 * HZ
;
1765 strip_info
->arp_interval
= 1 * HZ
;
1770 static int verify_checksum(struct strip
*strip_info
)
1772 __u8
*p
= strip_info
->sx_buff
;
1773 __u8
*end
= strip_info
->sx_buff
+ strip_info
->sx_count
- 4;
1775 (READHEX16(end
[0]) << 12) | (READHEX16(end
[1]) << 8) |
1776 (READHEX16(end
[2]) << 4) | (READHEX16(end
[3]));
1779 if (sum
== 0 && strip_info
->firmware_level
== StructuredMessages
) {
1780 strip_info
->firmware_level
= ChecksummedMessages
;
1781 printk(KERN_INFO
"%s: Radio provides message checksums\n",
1782 strip_info
->dev
->name
);
1787 static void RecvErr(char *msg
, struct strip
*strip_info
)
1789 __u8
*ptr
= strip_info
->sx_buff
;
1790 __u8
*end
= strip_info
->sx_buff
+ strip_info
->sx_count
;
1791 DumpData(msg
, strip_info
, ptr
, end
);
1792 strip_info
->rx_errors
++;
1795 static void RecvErr_Message(struct strip
*strip_info
, __u8
* sendername
,
1796 const __u8
* msg
, u_long len
)
1798 if (has_prefix(msg
, len
, "001")) { /* Not in StarMode! */
1799 RecvErr("Error Msg:", strip_info
);
1800 printk(KERN_INFO
"%s: Radio %s is not in StarMode\n",
1801 strip_info
->dev
->name
, sendername
);
1804 else if (has_prefix(msg
, len
, "002")) { /* Remap handle */
1805 /* We ignore "Remap handle" messages for now */
1808 else if (has_prefix(msg
, len
, "003")) { /* Can't resolve name */
1809 RecvErr("Error Msg:", strip_info
);
1810 printk(KERN_INFO
"%s: Destination radio name is unknown\n",
1811 strip_info
->dev
->name
);
1814 else if (has_prefix(msg
, len
, "004")) { /* Name too small or missing */
1815 strip_info
->watchdog_doreset
= jiffies
+ LongTime
;
1819 do_gettimeofday(&tv
);
1821 "**** Got ERR_004 response at %02d.%06d\n",
1822 tv
.tv_sec
% 100, tv
.tv_usec
);
1825 if (!strip_info
->working
) {
1826 strip_info
->working
= TRUE
;
1827 printk(KERN_INFO
"%s: Radio now in starmode\n",
1828 strip_info
->dev
->name
);
1830 * If the radio has just entered a working state, we should do our first
1831 * probe ASAP, so that we find out our radio address etc. without delay.
1833 strip_info
->watchdog_doprobe
= jiffies
;
1835 if (strip_info
->firmware_level
== NoStructure
&& sendername
) {
1836 strip_info
->firmware_level
= StructuredMessages
;
1837 strip_info
->next_command
= 0; /* Try to enable checksums ASAP */
1839 "%s: Radio provides structured messages\n",
1840 strip_info
->dev
->name
);
1842 if (strip_info
->firmware_level
>= StructuredMessages
) {
1844 * If this message has a valid checksum on the end, then the call to verify_checksum
1845 * will elevate the firmware_level to ChecksummedMessages for us. (The actual return
1846 * code from verify_checksum is ignored here.)
1848 verify_checksum(strip_info
);
1850 * If the radio has structured messages but we don't yet have all our information about it,
1851 * we should do probes without delay, until we have gathered all the information
1853 if (!GOT_ALL_RADIO_INFO(strip_info
))
1854 strip_info
->watchdog_doprobe
= jiffies
;
1858 else if (has_prefix(msg
, len
, "005")) /* Bad count specification */
1859 RecvErr("Error Msg:", strip_info
);
1861 else if (has_prefix(msg
, len
, "006")) /* Header too big */
1862 RecvErr("Error Msg:", strip_info
);
1864 else if (has_prefix(msg
, len
, "007")) { /* Body too big */
1865 RecvErr("Error Msg:", strip_info
);
1867 "%s: Error! Packet size too big for radio.\n",
1868 strip_info
->dev
->name
);
1871 else if (has_prefix(msg
, len
, "008")) { /* Bad character in name */
1872 RecvErr("Error Msg:", strip_info
);
1874 "%s: Radio name contains illegal character\n",
1875 strip_info
->dev
->name
);
1878 else if (has_prefix(msg
, len
, "009")) /* No count or line terminator */
1879 RecvErr("Error Msg:", strip_info
);
1881 else if (has_prefix(msg
, len
, "010")) /* Invalid checksum */
1882 RecvErr("Error Msg:", strip_info
);
1884 else if (has_prefix(msg
, len
, "011")) /* Checksum didn't match */
1885 RecvErr("Error Msg:", strip_info
);
1887 else if (has_prefix(msg
, len
, "012")) /* Failed to transmit packet */
1888 RecvErr("Error Msg:", strip_info
);
1891 RecvErr("Error Msg:", strip_info
);
1894 static void process_AT_response(struct strip
*strip_info
, __u8
* ptr
,
1899 while (p
< end
&& p
[-1] != 10)
1900 p
++; /* Skip past first newline character */
1901 /* Now ptr points to the AT command, and p points to the text of the response. */
1907 do_gettimeofday(&tv
);
1908 printk(KERN_INFO
"**** Got AT response %.7s at %02d.%06d\n",
1909 ptr
, tv
.tv_sec
% 100, tv
.tv_usec
);
1913 if (has_prefix(ptr
, len
, "ATS300?"))
1914 get_radio_version(strip_info
, p
, end
);
1915 else if (has_prefix(ptr
, len
, "ATS305?"))
1916 get_radio_address(strip_info
, p
);
1917 else if (has_prefix(ptr
, len
, "ATS311?"))
1918 get_radio_neighbours(&strip_info
->poletops
, p
, end
);
1919 else if (has_prefix(ptr
, len
, "ATS319=7"))
1920 verify_checksum(strip_info
);
1921 else if (has_prefix(ptr
, len
, "ATS325?"))
1922 get_radio_voltage(strip_info
, p
, end
);
1923 else if (has_prefix(ptr
, len
, "AT~LA"))
1924 get_radio_neighbours(&strip_info
->portables
, p
, end
);
1926 RecvErr("Unknown AT Response:", strip_info
);
1929 static void process_ACK(struct strip
*strip_info
, __u8
* ptr
, __u8
* end
)
1931 /* Currently we don't do anything with ACKs from the radio */
1934 static void process_Info(struct strip
*strip_info
, __u8
* ptr
, __u8
* end
)
1937 RecvErr("Bad Info Msg:", strip_info
);
1940 static struct net_device
*get_strip_dev(struct strip
*strip_info
)
1942 /* If our hardware address is *manually set* to zero, and we know our */
1943 /* real radio hardware address, try to find another strip device that has been */
1944 /* manually set to that address that we can 'transfer ownership' of this packet to */
1945 if (strip_info
->manual_dev_addr
&&
1946 !memcmp(strip_info
->dev
->dev_addr
, zero_address
.c
,
1947 sizeof(zero_address
))
1948 && memcmp(&strip_info
->true_dev_addr
, zero_address
.c
,
1949 sizeof(zero_address
))) {
1950 struct net_device
*dev
;
1951 read_lock_bh(&dev_base_lock
);
1952 for_each_netdev(&init_net
, dev
) {
1953 if (dev
->type
== strip_info
->dev
->type
&&
1954 !memcmp(dev
->dev_addr
,
1955 &strip_info
->true_dev_addr
,
1956 sizeof(MetricomAddress
))) {
1958 "%s: Transferred packet ownership to %s.\n",
1959 strip_info
->dev
->name
, dev
->name
);
1960 read_unlock_bh(&dev_base_lock
);
1964 read_unlock_bh(&dev_base_lock
);
1966 return (strip_info
->dev
);
1970 * Send one completely decapsulated datagram to the next layer.
1973 static void deliver_packet(struct strip
*strip_info
, STRIP_Header
* header
,
1976 struct sk_buff
*skb
= dev_alloc_skb(sizeof(STRIP_Header
) + packetlen
);
1978 printk(KERN_ERR
"%s: memory squeeze, dropping packet.\n",
1979 strip_info
->dev
->name
);
1980 strip_info
->rx_dropped
++;
1982 memcpy(skb_put(skb
, sizeof(STRIP_Header
)), header
,
1983 sizeof(STRIP_Header
));
1984 memcpy(skb_put(skb
, packetlen
), strip_info
->rx_buff
,
1986 skb
->dev
= get_strip_dev(strip_info
);
1987 skb
->protocol
= header
->protocol
;
1988 skb_reset_mac_header(skb
);
1990 /* Having put a fake header on the front of the sk_buff for the */
1991 /* benefit of tools like tcpdump, skb_pull now 'consumes' that */
1992 /* fake header before we hand the packet up to the next layer. */
1993 skb_pull(skb
, sizeof(STRIP_Header
));
1995 /* Finally, hand the packet up to the next layer (e.g. IP or ARP, etc.) */
1996 strip_info
->rx_packets
++;
1997 strip_info
->rx_pps_count
++;
1999 strip_info
->rx_bytes
+= packetlen
;
2005 static void process_IP_packet(struct strip
*strip_info
,
2006 STRIP_Header
* header
, __u8
* ptr
,
2011 /* Decode start of the IP packet header */
2012 ptr
= UnStuffData(ptr
, end
, strip_info
->rx_buff
, 4);
2014 RecvErr("IP Packet too short", strip_info
);
2018 packetlen
= ((__u16
) strip_info
->rx_buff
[2] << 8) | strip_info
->rx_buff
[3];
2020 if (packetlen
> MAX_RECV_MTU
) {
2021 printk(KERN_INFO
"%s: Dropping oversized received IP packet: %d bytes\n",
2022 strip_info
->dev
->name
, packetlen
);
2023 strip_info
->rx_dropped
++;
2027 /*printk(KERN_INFO "%s: Got %d byte IP packet\n", strip_info->dev->name, packetlen); */
2029 /* Decode remainder of the IP packet */
2031 UnStuffData(ptr
, end
, strip_info
->rx_buff
+ 4, packetlen
- 4);
2033 RecvErr("IP Packet too short", strip_info
);
2038 RecvErr("IP Packet too long", strip_info
);
2042 header
->protocol
= htons(ETH_P_IP
);
2044 deliver_packet(strip_info
, header
, packetlen
);
2047 static void process_ARP_packet(struct strip
*strip_info
,
2048 STRIP_Header
* header
, __u8
* ptr
,
2052 struct arphdr
*arphdr
= (struct arphdr
*) strip_info
->rx_buff
;
2054 /* Decode start of the ARP packet */
2055 ptr
= UnStuffData(ptr
, end
, strip_info
->rx_buff
, 8);
2057 RecvErr("ARP Packet too short", strip_info
);
2061 packetlen
= 8 + (arphdr
->ar_hln
+ arphdr
->ar_pln
) * 2;
2063 if (packetlen
> MAX_RECV_MTU
) {
2065 "%s: Dropping oversized received ARP packet: %d bytes\n",
2066 strip_info
->dev
->name
, packetlen
);
2067 strip_info
->rx_dropped
++;
2071 /*printk(KERN_INFO "%s: Got %d byte ARP %s\n",
2072 strip_info->dev->name, packetlen,
2073 ntohs(arphdr->ar_op) == ARPOP_REQUEST ? "request" : "reply"); */
2075 /* Decode remainder of the ARP packet */
2077 UnStuffData(ptr
, end
, strip_info
->rx_buff
+ 8, packetlen
- 8);
2079 RecvErr("ARP Packet too short", strip_info
);
2084 RecvErr("ARP Packet too long", strip_info
);
2088 header
->protocol
= htons(ETH_P_ARP
);
2090 deliver_packet(strip_info
, header
, packetlen
);
2094 * process_text_message processes a <CR>-terminated block of data received
2095 * from the radio that doesn't begin with a '*' character. All normal
2096 * Starmode communication messages with the radio begin with a '*',
2097 * so any text that does not indicates a serial port error, a radio that
2098 * is in Hayes command mode instead of Starmode, or a radio with really
2099 * old firmware that doesn't frame its Starmode responses properly.
2101 static void process_text_message(struct strip
*strip_info
)
2103 __u8
*msg
= strip_info
->sx_buff
;
2104 int len
= strip_info
->sx_count
;
2106 /* Check for anything that looks like it might be our radio name */
2107 /* (This is here for backwards compatibility with old firmware) */
2108 if (len
== 9 && get_radio_address(strip_info
, msg
) == 0)
2111 if (text_equal(msg
, len
, "OK"))
2112 return; /* Ignore 'OK' responses from prior commands */
2113 if (text_equal(msg
, len
, "ERROR"))
2114 return; /* Ignore 'ERROR' messages */
2115 if (has_prefix(msg
, len
, "ate0q1"))
2116 return; /* Ignore character echo back from the radio */
2118 /* Catch other error messages */
2119 /* (This is here for backwards compatibility with old firmware) */
2120 if (has_prefix(msg
, len
, "ERR_")) {
2121 RecvErr_Message(strip_info
, NULL
, &msg
[4], len
- 4);
2125 RecvErr("No initial *", strip_info
);
2129 * process_message processes a <CR>-terminated block of data received
2130 * from the radio. If the radio is not in Starmode or has old firmware,
2131 * it may be a line of text in response to an AT command. Ideally, with
2132 * a current radio that's properly in Starmode, all data received should
2133 * be properly framed and checksummed radio message blocks, containing
2134 * either a starmode packet, or a other communication from the radio
2135 * firmware, like "INF_" Info messages and &COMMAND responses.
2137 static void process_message(struct strip
*strip_info
)
2139 STRIP_Header header
= { zero_address
, zero_address
, 0 };
2140 __u8
*ptr
= strip_info
->sx_buff
;
2141 __u8
*end
= strip_info
->sx_buff
+ strip_info
->sx_count
;
2142 __u8 sendername
[32], *sptr
= sendername
;
2145 /*HexDump("Receiving", strip_info, ptr, end); */
2147 /* Check for start of address marker, and then skip over it */
2151 process_text_message(strip_info
);
2155 /* Copy out the return address */
2156 while (ptr
< end
&& *ptr
!= '*'
2157 && sptr
< ARRAY_END(sendername
) - 1)
2159 *sptr
= 0; /* Null terminate the sender name */
2161 /* Check for end of address marker, and skip over it */
2162 if (ptr
>= end
|| *ptr
!= '*') {
2163 RecvErr("No second *", strip_info
);
2166 ptr
++; /* Skip the second '*' */
2168 /* If the sender name is "&COMMAND", ignore this 'packet' */
2169 /* (This is here for backwards compatibility with old firmware) */
2170 if (!strcmp(sendername
, "&COMMAND")) {
2171 strip_info
->firmware_level
= NoStructure
;
2172 strip_info
->next_command
= CompatibilityCommand
;
2176 if (ptr
+ 4 > end
) {
2177 RecvErr("No proto key", strip_info
);
2181 /* Get the protocol key out of the buffer */
2187 /* If we're using checksums, verify the checksum at the end of the packet */
2188 if (strip_info
->firmware_level
>= ChecksummedMessages
) {
2189 end
-= 4; /* Chop the last four bytes off the packet (they're the checksum) */
2191 RecvErr("Missing Checksum", strip_info
);
2194 if (!verify_checksum(strip_info
)) {
2195 RecvErr("Bad Checksum", strip_info
);
2200 /*printk(KERN_INFO "%s: Got packet from \"%s\".\n", strip_info->dev->name, sendername); */
2203 * Fill in (pseudo) source and destination addresses in the packet.
2204 * We assume that the destination address was our address (the radio does not
2205 * tell us this). If the radio supplies a source address, then we use it.
2207 header
.dst_addr
= strip_info
->true_dev_addr
;
2208 string_to_radio_address(&header
.src_addr
, sendername
);
2211 if (key
.l
== SIP0Key
.l
) {
2212 strip_info
->rx_rbytes
+= (end
- ptr
);
2213 process_IP_packet(strip_info
, &header
, ptr
, end
);
2214 } else if (key
.l
== ARP0Key
.l
) {
2215 strip_info
->rx_rbytes
+= (end
- ptr
);
2216 process_ARP_packet(strip_info
, &header
, ptr
, end
);
2217 } else if (key
.l
== ATR_Key
.l
) {
2218 strip_info
->rx_ebytes
+= (end
- ptr
);
2219 process_AT_response(strip_info
, ptr
, end
);
2220 } else if (key
.l
== ACK_Key
.l
) {
2221 strip_info
->rx_ebytes
+= (end
- ptr
);
2222 process_ACK(strip_info
, ptr
, end
);
2223 } else if (key
.l
== INF_Key
.l
) {
2224 strip_info
->rx_ebytes
+= (end
- ptr
);
2225 process_Info(strip_info
, ptr
, end
);
2226 } else if (key
.l
== ERR_Key
.l
) {
2227 strip_info
->rx_ebytes
+= (end
- ptr
);
2228 RecvErr_Message(strip_info
, sendername
, ptr
, end
- ptr
);
2230 RecvErr("Unrecognized protocol key", strip_info
);
2232 if (key
.l
== SIP0Key
.l
)
2233 process_IP_packet(strip_info
, &header
, ptr
, end
);
2234 else if (key
.l
== ARP0Key
.l
)
2235 process_ARP_packet(strip_info
, &header
, ptr
, end
);
2236 else if (key
.l
== ATR_Key
.l
)
2237 process_AT_response(strip_info
, ptr
, end
);
2238 else if (key
.l
== ACK_Key
.l
)
2239 process_ACK(strip_info
, ptr
, end
);
2240 else if (key
.l
== INF_Key
.l
)
2241 process_Info(strip_info
, ptr
, end
);
2242 else if (key
.l
== ERR_Key
.l
)
2243 RecvErr_Message(strip_info
, sendername
, ptr
, end
- ptr
);
2245 RecvErr("Unrecognized protocol key", strip_info
);
2249 #define TTYERROR(X) ((X) == TTY_BREAK ? "Break" : \
2250 (X) == TTY_FRAME ? "Framing Error" : \
2251 (X) == TTY_PARITY ? "Parity Error" : \
2252 (X) == TTY_OVERRUN ? "Hardware Overrun" : "Unknown Error")
2255 * Handle the 'receiver data ready' interrupt.
2256 * This function is called by the 'tty_io' module in the kernel when
2257 * a block of STRIP data has been received, which can now be decapsulated
2258 * and sent on to some IP layer for further processing.
2261 static void strip_receive_buf(struct tty_struct
*tty
, const unsigned char *cp
,
2262 char *fp
, int count
)
2264 struct strip
*strip_info
= tty
->disc_data
;
2265 const unsigned char *end
= cp
+ count
;
2267 if (!strip_info
|| strip_info
->magic
!= STRIP_MAGIC
2268 || !netif_running(strip_info
->dev
))
2271 spin_lock_bh(&strip_lock
);
2275 do_gettimeofday(&tv
);
2277 "**** strip_receive_buf: %3d bytes at %02d.%06d\n",
2278 count
, tv
.tv_sec
% 100, tv
.tv_usec
);
2283 strip_info
->rx_sbytes
+= count
;
2286 /* Read the characters out of the buffer */
2289 printk(KERN_INFO
"%s: %s on serial port\n",
2290 strip_info
->dev
->name
, TTYERROR(*fp
));
2291 if (fp
&& *fp
++ && !strip_info
->discard
) { /* If there's a serial error, record it */
2292 /* If we have some characters in the buffer, discard them */
2293 strip_info
->discard
= strip_info
->sx_count
;
2294 strip_info
->rx_errors
++;
2297 /* Leading control characters (CR, NL, Tab, etc.) are ignored */
2298 if (strip_info
->sx_count
> 0 || *cp
>= ' ') {
2299 if (*cp
== 0x0D) { /* If end of packet, decide what to do with it */
2300 if (strip_info
->sx_count
> 3000)
2302 "%s: Cut a %d byte packet (%zd bytes remaining)%s\n",
2303 strip_info
->dev
->name
,
2304 strip_info
->sx_count
,
2307 discard
? " (discarded)" :
2309 if (strip_info
->sx_count
>
2310 strip_info
->sx_size
) {
2311 strip_info
->rx_over_errors
++;
2313 "%s: sx_buff overflow (%d bytes total)\n",
2314 strip_info
->dev
->name
,
2315 strip_info
->sx_count
);
2316 } else if (strip_info
->discard
)
2318 "%s: Discarding bad packet (%d/%d)\n",
2319 strip_info
->dev
->name
,
2320 strip_info
->discard
,
2321 strip_info
->sx_count
);
2323 process_message(strip_info
);
2324 strip_info
->discard
= 0;
2325 strip_info
->sx_count
= 0;
2327 /* Make sure we have space in the buffer */
2328 if (strip_info
->sx_count
<
2329 strip_info
->sx_size
)
2330 strip_info
->sx_buff
[strip_info
->
2333 strip_info
->sx_count
++;
2338 spin_unlock_bh(&strip_lock
);
2342 /************************************************************************/
2343 /* General control routines */
2345 static int set_mac_address(struct strip
*strip_info
,
2346 MetricomAddress
* addr
)
2349 * We're using a manually specified address if the address is set
2350 * to anything other than all ones. Setting the address to all ones
2351 * disables manual mode and goes back to automatic address determination
2352 * (tracking the true address that the radio has).
2354 strip_info
->manual_dev_addr
=
2355 memcmp(addr
->c
, broadcast_address
.c
,
2356 sizeof(broadcast_address
));
2357 if (strip_info
->manual_dev_addr
)
2358 *(MetricomAddress
*) strip_info
->dev
->dev_addr
= *addr
;
2360 *(MetricomAddress
*) strip_info
->dev
->dev_addr
=
2361 strip_info
->true_dev_addr
;
2365 static int strip_set_mac_address(struct net_device
*dev
, void *addr
)
2367 struct strip
*strip_info
= netdev_priv(dev
);
2368 struct sockaddr
*sa
= addr
;
2369 printk(KERN_INFO
"%s: strip_set_dev_mac_address called\n", dev
->name
);
2370 set_mac_address(strip_info
, (MetricomAddress
*) sa
->sa_data
);
2374 static struct net_device_stats
*strip_get_stats(struct net_device
*dev
)
2376 struct strip
*strip_info
= netdev_priv(dev
);
2377 static struct net_device_stats stats
;
2379 memset(&stats
, 0, sizeof(struct net_device_stats
));
2381 stats
.rx_packets
= strip_info
->rx_packets
;
2382 stats
.tx_packets
= strip_info
->tx_packets
;
2383 stats
.rx_dropped
= strip_info
->rx_dropped
;
2384 stats
.tx_dropped
= strip_info
->tx_dropped
;
2385 stats
.tx_errors
= strip_info
->tx_errors
;
2386 stats
.rx_errors
= strip_info
->rx_errors
;
2387 stats
.rx_over_errors
= strip_info
->rx_over_errors
;
2392 /************************************************************************/
2393 /* Opening and closing */
2396 * Here's the order things happen:
2397 * When the user runs "slattach -p strip ..."
2398 * 1. The TTY module calls strip_open;;
2399 * 2. strip_open calls strip_alloc
2400 * 3. strip_alloc calls register_netdev
2401 * 4. register_netdev calls strip_dev_init
2402 * 5. then strip_open finishes setting up the strip_info
2404 * When the user runs "ifconfig st<x> up address netmask ..."
2405 * 6. strip_open_low gets called
2407 * When the user runs "ifconfig st<x> down"
2408 * 7. strip_close_low gets called
2410 * When the user kills the slattach process
2411 * 8. strip_close gets called
2412 * 9. strip_close calls dev_close
2413 * 10. if the device is still up, then dev_close calls strip_close_low
2414 * 11. strip_close calls strip_free
2417 /* Open the low-level part of the STRIP channel. Easy! */
2419 static int strip_open_low(struct net_device
*dev
)
2421 struct strip
*strip_info
= netdev_priv(dev
);
2423 if (strip_info
->tty
== NULL
)
2426 if (!allocate_buffers(strip_info
, dev
->mtu
))
2429 strip_info
->sx_count
= 0;
2430 strip_info
->tx_left
= 0;
2432 strip_info
->discard
= 0;
2433 strip_info
->working
= FALSE
;
2434 strip_info
->firmware_level
= NoStructure
;
2435 strip_info
->next_command
= CompatibilityCommand
;
2436 strip_info
->user_baud
= tty_get_baud_rate(strip_info
->tty
);
2438 printk(KERN_INFO
"%s: Initializing Radio.\n",
2439 strip_info
->dev
->name
);
2440 ResetRadio(strip_info
);
2441 strip_info
->idle_timer
.expires
= jiffies
+ 1 * HZ
;
2442 add_timer(&strip_info
->idle_timer
);
2443 netif_wake_queue(dev
);
2449 * Close the low-level part of the STRIP channel. Easy!
2452 static int strip_close_low(struct net_device
*dev
)
2454 struct strip
*strip_info
= netdev_priv(dev
);
2456 if (strip_info
->tty
== NULL
)
2458 clear_bit(TTY_DO_WRITE_WAKEUP
, &strip_info
->tty
->flags
);
2459 netif_stop_queue(dev
);
2462 * Free all STRIP frame buffers.
2464 kfree(strip_info
->rx_buff
);
2465 strip_info
->rx_buff
= NULL
;
2466 kfree(strip_info
->sx_buff
);
2467 strip_info
->sx_buff
= NULL
;
2468 kfree(strip_info
->tx_buff
);
2469 strip_info
->tx_buff
= NULL
;
2471 del_timer(&strip_info
->idle_timer
);
2475 static const struct header_ops strip_header_ops
= {
2476 .create
= strip_header
,
2477 .rebuild
= strip_rebuild_header
,
2481 static const struct net_device_ops strip_netdev_ops
= {
2482 .ndo_open
= strip_open_low
,
2483 .ndo_stop
= strip_close_low
,
2484 .ndo_start_xmit
= strip_xmit
,
2485 .ndo_set_mac_address
= strip_set_mac_address
,
2486 .ndo_get_stats
= strip_get_stats
,
2487 .ndo_change_mtu
= strip_change_mtu
,
2491 * This routine is called by DDI when the
2492 * (dynamically assigned) device is registered
2495 static void strip_dev_setup(struct net_device
*dev
)
2498 * Finish setting up the DEVICE info.
2501 dev
->trans_start
= 0;
2502 dev
->tx_queue_len
= 30; /* Drop after 30 frames queued */
2505 dev
->mtu
= DEFAULT_STRIP_MTU
;
2506 dev
->type
= ARPHRD_METRICOM
; /* dtang */
2507 dev
->hard_header_len
= sizeof(STRIP_Header
);
2509 * netdev_priv(dev) Already holds a pointer to our struct strip
2512 *(MetricomAddress
*)dev
->broadcast
= broadcast_address
;
2513 dev
->dev_addr
[0] = 0;
2514 dev
->addr_len
= sizeof(MetricomAddress
);
2516 dev
->header_ops
= &strip_header_ops
,
2517 dev
->netdev_ops
= &strip_netdev_ops
;
2521 * Free a STRIP channel.
2524 static void strip_free(struct strip
*strip_info
)
2526 spin_lock_bh(&strip_lock
);
2527 list_del_rcu(&strip_info
->list
);
2528 spin_unlock_bh(&strip_lock
);
2530 strip_info
->magic
= 0;
2532 free_netdev(strip_info
->dev
);
2537 * Allocate a new free STRIP channel
2539 static struct strip
*strip_alloc(void)
2541 struct list_head
*n
;
2542 struct net_device
*dev
;
2543 struct strip
*strip_info
;
2545 dev
= alloc_netdev(sizeof(struct strip
), "st%d",
2549 return NULL
; /* If no more memory, return */
2552 strip_info
= netdev_priv(dev
);
2553 strip_info
->dev
= dev
;
2555 strip_info
->magic
= STRIP_MAGIC
;
2556 strip_info
->tty
= NULL
;
2558 strip_info
->gratuitous_arp
= jiffies
+ LongTime
;
2559 strip_info
->arp_interval
= 0;
2560 init_timer(&strip_info
->idle_timer
);
2561 strip_info
->idle_timer
.data
= (long) dev
;
2562 strip_info
->idle_timer
.function
= strip_IdleTask
;
2565 spin_lock_bh(&strip_lock
);
2568 * Search the list to find where to put our new entry
2569 * (and in the process decide what channel number it is
2572 list_for_each(n
, &strip_list
) {
2573 struct strip
*s
= hlist_entry(n
, struct strip
, list
);
2575 if (s
->dev
->base_addr
== dev
->base_addr
) {
2581 sprintf(dev
->name
, "st%ld", dev
->base_addr
);
2583 list_add_tail_rcu(&strip_info
->list
, &strip_list
);
2584 spin_unlock_bh(&strip_lock
);
2590 * Open the high-level part of the STRIP channel.
2591 * This function is called by the TTY module when the
2592 * STRIP line discipline is called for. Because we are
2593 * sure the tty line exists, we only have to link it to
2594 * a free STRIP channel...
2597 static int strip_open(struct tty_struct
*tty
)
2599 struct strip
*strip_info
= tty
->disc_data
;
2602 * First make sure we're not already connected.
2605 if (strip_info
&& strip_info
->magic
== STRIP_MAGIC
)
2609 * We need a write method.
2612 if (tty
->ops
->write
== NULL
|| tty
->ops
->set_termios
== NULL
)
2616 * OK. Find a free STRIP channel to use.
2618 if ((strip_info
= strip_alloc()) == NULL
)
2622 * Register our newly created device so it can be ifconfig'd
2623 * strip_dev_init() will be called as a side-effect
2626 if (register_netdev(strip_info
->dev
) != 0) {
2627 printk(KERN_ERR
"strip: register_netdev() failed.\n");
2628 strip_free(strip_info
);
2632 strip_info
->tty
= tty
;
2633 tty
->disc_data
= strip_info
;
2634 tty
->receive_room
= 65536;
2636 tty_driver_flush_buffer(tty
);
2639 * Restore default settings
2642 strip_info
->dev
->type
= ARPHRD_METRICOM
; /* dtang */
2648 tty
->termios
->c_iflag
|= IGNBRK
| IGNPAR
; /* Ignore breaks and parity errors. */
2649 tty
->termios
->c_cflag
|= CLOCAL
; /* Ignore modem control signals. */
2650 tty
->termios
->c_cflag
&= ~HUPCL
; /* Don't close on hup */
2652 printk(KERN_INFO
"STRIP: device \"%s\" activated\n",
2653 strip_info
->dev
->name
);
2656 * Done. We have linked the TTY line to a channel.
2658 return (strip_info
->dev
->base_addr
);
2662 * Close down a STRIP channel.
2663 * This means flushing out any pending queues, and then restoring the
2664 * TTY line discipline to what it was before it got hooked to STRIP
2665 * (which usually is TTY again).
2668 static void strip_close(struct tty_struct
*tty
)
2670 struct strip
*strip_info
= tty
->disc_data
;
2673 * First make sure we're connected.
2676 if (!strip_info
|| strip_info
->magic
!= STRIP_MAGIC
)
2679 unregister_netdev(strip_info
->dev
);
2681 tty
->disc_data
= NULL
;
2682 strip_info
->tty
= NULL
;
2683 printk(KERN_INFO
"STRIP: device \"%s\" closed down\n",
2684 strip_info
->dev
->name
);
2685 strip_free(strip_info
);
2686 tty
->disc_data
= NULL
;
2690 /************************************************************************/
2691 /* Perform I/O control calls on an active STRIP channel. */
2693 static int strip_ioctl(struct tty_struct
*tty
, struct file
*file
,
2694 unsigned int cmd
, unsigned long arg
)
2696 struct strip
*strip_info
= tty
->disc_data
;
2699 * First make sure we're connected.
2702 if (!strip_info
|| strip_info
->magic
!= STRIP_MAGIC
)
2707 if(copy_to_user((void __user
*) arg
, strip_info
->dev
->name
, strlen(strip_info
->dev
->name
) + 1))
2712 MetricomAddress addr
;
2713 //printk(KERN_INFO "%s: SIOCSIFHWADDR\n", strip_info->dev->name);
2714 if(copy_from_user(&addr
, (void __user
*) arg
, sizeof(MetricomAddress
)))
2716 return set_mac_address(strip_info
, &addr
);
2719 return tty_mode_ioctl(tty
, file
, cmd
, arg
);
2726 /************************************************************************/
2727 /* Initialization */
2729 static struct tty_ldisc_ops strip_ldisc
= {
2730 .magic
= TTY_LDISC_MAGIC
,
2732 .owner
= THIS_MODULE
,
2734 .close
= strip_close
,
2735 .ioctl
= strip_ioctl
,
2736 .receive_buf
= strip_receive_buf
,
2737 .write_wakeup
= strip_write_some_more
,
2741 * Initialize the STRIP driver.
2742 * This routine is called at boot time, to bootstrap the multi-channel
2746 static char signon
[] __initdata
=
2747 KERN_INFO
"STRIP: Version %s (unlimited channels)\n";
2749 static int __init
strip_init_driver(void)
2753 printk(signon
, StripVersion
);
2757 * Fill in our line protocol discipline, and register it
2759 if ((status
= tty_register_ldisc(N_STRIP
, &strip_ldisc
)))
2760 printk(KERN_ERR
"STRIP: can't register line discipline (err = %d)\n",
2764 * Register the status file with /proc
2766 proc_net_fops_create(&init_net
, "strip", S_IFREG
| S_IRUGO
, &strip_seq_fops
);
2771 module_init(strip_init_driver
);
2773 static const char signoff
[] __exitdata
=
2774 KERN_INFO
"STRIP: Module Unloaded\n";
2776 static void __exit
strip_exit_driver(void)
2779 struct list_head
*p
,*n
;
2781 /* module ref count rules assure that all entries are unregistered */
2782 list_for_each_safe(p
, n
, &strip_list
) {
2783 struct strip
*s
= list_entry(p
, struct strip
, list
);
2787 /* Unregister with the /proc/net file here. */
2788 proc_net_remove(&init_net
, "strip");
2790 if ((i
= tty_unregister_ldisc(N_STRIP
)))
2791 printk(KERN_ERR
"STRIP: can't unregister line discipline (err = %d)\n", i
);
2796 module_exit(strip_exit_driver
);
2798 MODULE_AUTHOR("Stuart Cheshire <cheshire@cs.stanford.edu>");
2799 MODULE_DESCRIPTION("Starmode Radio IP (STRIP) Device Driver");
2800 MODULE_LICENSE("Dual BSD/GPL");
2802 MODULE_SUPPORTED_DEVICE("Starmode Radio IP (STRIP) modem");