e1000e: add support for 82577/82578 GbE LOM parts
[linux-2.6/mini2440.git] / drivers / net / e1000e / ich8lan.c
blobb69c8190da308c66a3f3a4383e241e0938aee43a
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82562G 10/100 Network Connection
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
44 * 82567V Gigabit Network Connection
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
50 * 82567LM-4 Gigabit Network Connection
51 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
57 #include <linux/netdevice.h>
58 #include <linux/ethtool.h>
59 #include <linux/delay.h>
60 #include <linux/pci.h>
62 #include "e1000.h"
64 #define ICH_FLASH_GFPREG 0x0000
65 #define ICH_FLASH_HSFSTS 0x0004
66 #define ICH_FLASH_HSFCTL 0x0006
67 #define ICH_FLASH_FADDR 0x0008
68 #define ICH_FLASH_FDATA0 0x0010
69 #define ICH_FLASH_PR0 0x0074
71 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500
72 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
73 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
74 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
75 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10
77 #define ICH_CYCLE_READ 0
78 #define ICH_CYCLE_WRITE 2
79 #define ICH_CYCLE_ERASE 3
81 #define FLASH_GFPREG_BASE_MASK 0x1FFF
82 #define FLASH_SECTOR_ADDR_SHIFT 12
84 #define ICH_FLASH_SEG_SIZE_256 256
85 #define ICH_FLASH_SEG_SIZE_4K 4096
86 #define ICH_FLASH_SEG_SIZE_8K 8192
87 #define ICH_FLASH_SEG_SIZE_64K 65536
90 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
92 #define E1000_ICH_MNG_IAMT_MODE 0x2
94 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
95 (ID_LED_DEF1_OFF2 << 8) | \
96 (ID_LED_DEF1_ON2 << 4) | \
97 (ID_LED_DEF1_DEF2))
99 #define E1000_ICH_NVM_SIG_WORD 0x13
100 #define E1000_ICH_NVM_SIG_MASK 0xC000
101 #define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
102 #define E1000_ICH_NVM_SIG_VALUE 0x80
104 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500
106 #define E1000_FEXTNVM_SW_CONFIG 1
107 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
109 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
111 #define E1000_ICH_RAR_ENTRIES 7
113 #define PHY_PAGE_SHIFT 5
114 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
115 ((reg) & MAX_PHY_REG_ADDRESS))
116 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
117 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
119 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
120 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
121 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
123 #define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
125 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
126 /* Offset 04h HSFSTS */
127 union ich8_hws_flash_status {
128 struct ich8_hsfsts {
129 u16 flcdone :1; /* bit 0 Flash Cycle Done */
130 u16 flcerr :1; /* bit 1 Flash Cycle Error */
131 u16 dael :1; /* bit 2 Direct Access error Log */
132 u16 berasesz :2; /* bit 4:3 Sector Erase Size */
133 u16 flcinprog :1; /* bit 5 flash cycle in Progress */
134 u16 reserved1 :2; /* bit 13:6 Reserved */
135 u16 reserved2 :6; /* bit 13:6 Reserved */
136 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
137 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
138 } hsf_status;
139 u16 regval;
142 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
143 /* Offset 06h FLCTL */
144 union ich8_hws_flash_ctrl {
145 struct ich8_hsflctl {
146 u16 flcgo :1; /* 0 Flash Cycle Go */
147 u16 flcycle :2; /* 2:1 Flash Cycle */
148 u16 reserved :5; /* 7:3 Reserved */
149 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
150 u16 flockdn :6; /* 15:10 Reserved */
151 } hsf_ctrl;
152 u16 regval;
155 /* ICH Flash Region Access Permissions */
156 union ich8_hws_flash_regacc {
157 struct ich8_flracc {
158 u32 grra :8; /* 0:7 GbE region Read Access */
159 u32 grwa :8; /* 8:15 GbE region Write Access */
160 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
161 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
162 } hsf_flregacc;
163 u16 regval;
166 /* ICH Flash Protected Region */
167 union ich8_flash_protected_range {
168 struct ich8_pr {
169 u32 base:13; /* 0:12 Protected Range Base */
170 u32 reserved1:2; /* 13:14 Reserved */
171 u32 rpe:1; /* 15 Read Protection Enable */
172 u32 limit:13; /* 16:28 Protected Range Limit */
173 u32 reserved2:2; /* 29:30 Reserved */
174 u32 wpe:1; /* 31 Write Protection Enable */
175 } range;
176 u32 regval;
179 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
180 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
181 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
182 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
183 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
184 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
185 u32 offset, u8 byte);
186 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
187 u8 *data);
188 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
189 u16 *data);
190 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
191 u8 size, u16 *data);
192 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
193 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
194 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
195 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
196 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
197 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
198 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
199 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
200 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
201 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
202 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
204 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
206 return readw(hw->flash_address + reg);
209 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
211 return readl(hw->flash_address + reg);
214 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
216 writew(val, hw->flash_address + reg);
219 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
221 writel(val, hw->flash_address + reg);
224 #define er16flash(reg) __er16flash(hw, (reg))
225 #define er32flash(reg) __er32flash(hw, (reg))
226 #define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
227 #define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
230 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
231 * @hw: pointer to the HW structure
233 * Initialize family-specific PHY parameters and function pointers.
235 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
237 struct e1000_phy_info *phy = &hw->phy;
238 s32 ret_val = 0;
240 phy->addr = 1;
241 phy->reset_delay_us = 100;
243 phy->ops.check_polarity = e1000_check_polarity_ife_ich8lan;
244 phy->ops.read_phy_reg = e1000_read_phy_reg_hv;
245 phy->ops.write_phy_reg = e1000_write_phy_reg_hv;
246 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
248 phy->id = e1000_phy_unknown;
249 e1000e_get_phy_id(hw);
250 phy->type = e1000e_get_phy_type_from_id(phy->id);
252 if (phy->type == e1000_phy_82577) {
253 phy->ops.check_polarity = e1000_check_polarity_82577;
254 phy->ops.force_speed_duplex =
255 e1000_phy_force_speed_duplex_82577;
256 phy->ops.get_cable_length = e1000_get_cable_length_82577;
257 phy->ops.get_phy_info = e1000_get_phy_info_82577;
258 phy->ops.commit_phy = e1000e_phy_sw_reset;
261 return ret_val;
265 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
266 * @hw: pointer to the HW structure
268 * Initialize family-specific PHY parameters and function pointers.
270 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
272 struct e1000_phy_info *phy = &hw->phy;
273 s32 ret_val;
274 u16 i = 0;
276 phy->addr = 1;
277 phy->reset_delay_us = 100;
280 * We may need to do this twice - once for IGP and if that fails,
281 * we'll set BM func pointers and try again
283 ret_val = e1000e_determine_phy_address(hw);
284 if (ret_val) {
285 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
286 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
287 ret_val = e1000e_determine_phy_address(hw);
288 if (ret_val)
289 return ret_val;
292 phy->id = 0;
293 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
294 (i++ < 100)) {
295 msleep(1);
296 ret_val = e1000e_get_phy_id(hw);
297 if (ret_val)
298 return ret_val;
301 /* Verify phy id */
302 switch (phy->id) {
303 case IGP03E1000_E_PHY_ID:
304 phy->type = e1000_phy_igp_3;
305 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
306 break;
307 case IFE_E_PHY_ID:
308 case IFE_PLUS_E_PHY_ID:
309 case IFE_C_E_PHY_ID:
310 phy->type = e1000_phy_ife;
311 phy->autoneg_mask = E1000_ALL_NOT_GIG;
312 break;
313 case BME1000_E_PHY_ID:
314 phy->type = e1000_phy_bm;
315 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
316 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
317 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
318 hw->phy.ops.commit_phy = e1000e_phy_sw_reset;
319 break;
320 default:
321 return -E1000_ERR_PHY;
322 break;
325 phy->ops.check_polarity = e1000_check_polarity_ife_ich8lan;
327 return 0;
331 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
332 * @hw: pointer to the HW structure
334 * Initialize family-specific NVM parameters and function
335 * pointers.
337 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
339 struct e1000_nvm_info *nvm = &hw->nvm;
340 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
341 u32 gfpreg;
342 u32 sector_base_addr;
343 u32 sector_end_addr;
344 u16 i;
346 /* Can't read flash registers if the register set isn't mapped. */
347 if (!hw->flash_address) {
348 hw_dbg(hw, "ERROR: Flash registers not mapped\n");
349 return -E1000_ERR_CONFIG;
352 nvm->type = e1000_nvm_flash_sw;
354 gfpreg = er32flash(ICH_FLASH_GFPREG);
357 * sector_X_addr is a "sector"-aligned address (4096 bytes)
358 * Add 1 to sector_end_addr since this sector is included in
359 * the overall size.
361 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
362 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
364 /* flash_base_addr is byte-aligned */
365 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
368 * find total size of the NVM, then cut in half since the total
369 * size represents two separate NVM banks.
371 nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
372 << FLASH_SECTOR_ADDR_SHIFT;
373 nvm->flash_bank_size /= 2;
374 /* Adjust to word count */
375 nvm->flash_bank_size /= sizeof(u16);
377 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
379 /* Clear shadow ram */
380 for (i = 0; i < nvm->word_size; i++) {
381 dev_spec->shadow_ram[i].modified = 0;
382 dev_spec->shadow_ram[i].value = 0xFFFF;
385 return 0;
389 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
390 * @hw: pointer to the HW structure
392 * Initialize family-specific MAC parameters and function
393 * pointers.
395 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
397 struct e1000_hw *hw = &adapter->hw;
398 struct e1000_mac_info *mac = &hw->mac;
400 /* Set media type function pointer */
401 hw->phy.media_type = e1000_media_type_copper;
403 /* Set mta register count */
404 mac->mta_reg_count = 32;
405 /* Set rar entry count */
406 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
407 if (mac->type == e1000_ich8lan)
408 mac->rar_entry_count--;
409 /* Set if manageability features are enabled. */
410 mac->arc_subsystem_valid = 1;
412 /* LED operations */
413 switch (mac->type) {
414 case e1000_ich8lan:
415 case e1000_ich9lan:
416 case e1000_ich10lan:
417 /* ID LED init */
418 mac->ops.id_led_init = e1000e_id_led_init;
419 /* setup LED */
420 mac->ops.setup_led = e1000e_setup_led_generic;
421 /* cleanup LED */
422 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
423 /* turn on/off LED */
424 mac->ops.led_on = e1000_led_on_ich8lan;
425 mac->ops.led_off = e1000_led_off_ich8lan;
426 break;
427 case e1000_pchlan:
428 /* ID LED init */
429 mac->ops.id_led_init = e1000_id_led_init_pchlan;
430 /* setup LED */
431 mac->ops.setup_led = e1000_setup_led_pchlan;
432 /* cleanup LED */
433 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
434 /* turn on/off LED */
435 mac->ops.led_on = e1000_led_on_pchlan;
436 mac->ops.led_off = e1000_led_off_pchlan;
437 break;
438 default:
439 break;
442 /* Enable PCS Lock-loss workaround for ICH8 */
443 if (mac->type == e1000_ich8lan)
444 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, 1);
446 return 0;
449 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
451 struct e1000_hw *hw = &adapter->hw;
452 s32 rc;
454 rc = e1000_init_mac_params_ich8lan(adapter);
455 if (rc)
456 return rc;
458 rc = e1000_init_nvm_params_ich8lan(hw);
459 if (rc)
460 return rc;
462 if (hw->mac.type == e1000_pchlan)
463 rc = e1000_init_phy_params_pchlan(hw);
464 else
465 rc = e1000_init_phy_params_ich8lan(hw);
466 if (rc)
467 return rc;
469 if (adapter->hw.phy.type == e1000_phy_ife) {
470 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
471 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
474 if ((adapter->hw.mac.type == e1000_ich8lan) &&
475 (adapter->hw.phy.type == e1000_phy_igp_3))
476 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
478 return 0;
481 static DEFINE_MUTEX(nvm_mutex);
484 * e1000_acquire_swflag_ich8lan - Acquire software control flag
485 * @hw: pointer to the HW structure
487 * Acquires the software control flag for performing NVM and PHY
488 * operations. This is a function pointer entry point only called by
489 * read/write routines for the PHY and NVM parts.
491 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
493 u32 extcnf_ctrl;
494 u32 timeout = PHY_CFG_TIMEOUT;
496 might_sleep();
498 mutex_lock(&nvm_mutex);
500 while (timeout) {
501 extcnf_ctrl = er32(EXTCNF_CTRL);
503 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) {
504 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
505 ew32(EXTCNF_CTRL, extcnf_ctrl);
507 extcnf_ctrl = er32(EXTCNF_CTRL);
508 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
509 break;
511 mdelay(1);
512 timeout--;
515 if (!timeout) {
516 hw_dbg(hw, "FW or HW has locked the resource for too long.\n");
517 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
518 ew32(EXTCNF_CTRL, extcnf_ctrl);
519 mutex_unlock(&nvm_mutex);
520 return -E1000_ERR_CONFIG;
523 return 0;
527 * e1000_release_swflag_ich8lan - Release software control flag
528 * @hw: pointer to the HW structure
530 * Releases the software control flag for performing NVM and PHY operations.
531 * This is a function pointer entry point only called by read/write
532 * routines for the PHY and NVM parts.
534 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
536 u32 extcnf_ctrl;
538 extcnf_ctrl = er32(EXTCNF_CTRL);
539 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
540 ew32(EXTCNF_CTRL, extcnf_ctrl);
542 mutex_unlock(&nvm_mutex);
546 * e1000_check_mng_mode_ich8lan - Checks management mode
547 * @hw: pointer to the HW structure
549 * This checks if the adapter has manageability enabled.
550 * This is a function pointer entry point only called by read/write
551 * routines for the PHY and NVM parts.
553 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
555 u32 fwsm = er32(FWSM);
557 return (fwsm & E1000_FWSM_MODE_MASK) ==
558 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
562 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
563 * @hw: pointer to the HW structure
565 * Checks if firmware is blocking the reset of the PHY.
566 * This is a function pointer entry point only called by
567 * reset routines.
569 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
571 u32 fwsm;
573 fwsm = er32(FWSM);
575 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
579 * e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
580 * @hw: pointer to the HW structure
582 * Forces the speed and duplex settings of the PHY.
583 * This is a function pointer entry point only called by
584 * PHY setup routines.
586 static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
588 struct e1000_phy_info *phy = &hw->phy;
589 s32 ret_val;
590 u16 data;
591 bool link;
593 if (phy->type != e1000_phy_ife) {
594 ret_val = e1000e_phy_force_speed_duplex_igp(hw);
595 return ret_val;
598 ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
599 if (ret_val)
600 return ret_val;
602 e1000e_phy_force_speed_duplex_setup(hw, &data);
604 ret_val = e1e_wphy(hw, PHY_CONTROL, data);
605 if (ret_val)
606 return ret_val;
608 /* Disable MDI-X support for 10/100 */
609 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
610 if (ret_val)
611 return ret_val;
613 data &= ~IFE_PMC_AUTO_MDIX;
614 data &= ~IFE_PMC_FORCE_MDIX;
616 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
617 if (ret_val)
618 return ret_val;
620 hw_dbg(hw, "IFE PMC: %X\n", data);
622 udelay(1);
624 if (phy->autoneg_wait_to_complete) {
625 hw_dbg(hw, "Waiting for forced speed/duplex link on IFE phy.\n");
627 ret_val = e1000e_phy_has_link_generic(hw,
628 PHY_FORCE_LIMIT,
629 100000,
630 &link);
631 if (ret_val)
632 return ret_val;
634 if (!link)
635 hw_dbg(hw, "Link taking longer than expected.\n");
637 /* Try once more */
638 ret_val = e1000e_phy_has_link_generic(hw,
639 PHY_FORCE_LIMIT,
640 100000,
641 &link);
642 if (ret_val)
643 return ret_val;
646 return 0;
650 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
651 * done after every PHY reset.
653 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
655 s32 ret_val = 0;
657 if (hw->mac.type != e1000_pchlan)
658 return ret_val;
660 if (((hw->phy.type == e1000_phy_82577) &&
661 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
662 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
663 /* Disable generation of early preamble */
664 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
665 if (ret_val)
666 return ret_val;
668 /* Preamble tuning for SSC */
669 ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
670 if (ret_val)
671 return ret_val;
674 if (hw->phy.type == e1000_phy_82578) {
676 * Return registers to default by doing a soft reset then
677 * writing 0x3140 to the control register.
679 if (hw->phy.revision < 2) {
680 e1000e_phy_sw_reset(hw);
681 ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
685 /* Select page 0 */
686 ret_val = hw->phy.ops.acquire_phy(hw);
687 if (ret_val)
688 return ret_val;
689 hw->phy.addr = 1;
690 e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
691 hw->phy.ops.release_phy(hw);
693 return ret_val;
697 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
698 * @hw: pointer to the HW structure
700 * Resets the PHY
701 * This is a function pointer entry point called by drivers
702 * or other shared routines.
704 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
706 struct e1000_phy_info *phy = &hw->phy;
707 u32 i;
708 u32 data, cnf_size, cnf_base_addr, sw_cfg_mask;
709 s32 ret_val;
710 u16 loop = E1000_ICH8_LAN_INIT_TIMEOUT;
711 u16 word_addr, reg_data, reg_addr, phy_page = 0;
713 ret_val = e1000e_phy_hw_reset_generic(hw);
714 if (ret_val)
715 return ret_val;
717 if (hw->mac.type == e1000_pchlan) {
718 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
719 if (ret_val)
720 return ret_val;
724 * Initialize the PHY from the NVM on ICH platforms. This
725 * is needed due to an issue where the NVM configuration is
726 * not properly autoloaded after power transitions.
727 * Therefore, after each PHY reset, we will load the
728 * configuration data out of the NVM manually.
730 if (hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) {
731 struct e1000_adapter *adapter = hw->adapter;
733 /* Check if SW needs configure the PHY */
734 if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
735 (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M))
736 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
737 else
738 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
740 data = er32(FEXTNVM);
741 if (!(data & sw_cfg_mask))
742 return 0;
744 /* Wait for basic configuration completes before proceeding*/
745 do {
746 data = er32(STATUS);
747 data &= E1000_STATUS_LAN_INIT_DONE;
748 udelay(100);
749 } while ((!data) && --loop);
752 * If basic configuration is incomplete before the above loop
753 * count reaches 0, loading the configuration from NVM will
754 * leave the PHY in a bad state possibly resulting in no link.
756 if (loop == 0) {
757 hw_dbg(hw, "LAN_INIT_DONE not set, increase timeout\n");
760 /* Clear the Init Done bit for the next init event */
761 data = er32(STATUS);
762 data &= ~E1000_STATUS_LAN_INIT_DONE;
763 ew32(STATUS, data);
766 * Make sure HW does not configure LCD from PHY
767 * extended configuration before SW configuration
769 data = er32(EXTCNF_CTRL);
770 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
771 return 0;
773 cnf_size = er32(EXTCNF_SIZE);
774 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
775 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
776 if (!cnf_size)
777 return 0;
779 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
780 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
782 /* Configure LCD from extended configuration region. */
784 /* cnf_base_addr is in DWORD */
785 word_addr = (u16)(cnf_base_addr << 1);
787 for (i = 0; i < cnf_size; i++) {
788 ret_val = e1000_read_nvm(hw,
789 (word_addr + i * 2),
791 &reg_data);
792 if (ret_val)
793 return ret_val;
795 ret_val = e1000_read_nvm(hw,
796 (word_addr + i * 2 + 1),
798 &reg_addr);
799 if (ret_val)
800 return ret_val;
802 /* Save off the PHY page for future writes. */
803 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
804 phy_page = reg_data;
805 continue;
808 reg_addr |= phy_page;
810 ret_val = e1e_wphy(hw, (u32)reg_addr, reg_data);
811 if (ret_val)
812 return ret_val;
816 return 0;
820 * e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
821 * @hw: pointer to the HW structure
823 * Populates "phy" structure with various feature states.
824 * This function is only called by other family-specific
825 * routines.
827 static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
829 struct e1000_phy_info *phy = &hw->phy;
830 s32 ret_val;
831 u16 data;
832 bool link;
834 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
835 if (ret_val)
836 return ret_val;
838 if (!link) {
839 hw_dbg(hw, "Phy info is only valid if link is up\n");
840 return -E1000_ERR_CONFIG;
843 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
844 if (ret_val)
845 return ret_val;
846 phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE));
848 if (phy->polarity_correction) {
849 ret_val = phy->ops.check_polarity(hw);
850 if (ret_val)
851 return ret_val;
852 } else {
853 /* Polarity is forced */
854 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
855 ? e1000_rev_polarity_reversed
856 : e1000_rev_polarity_normal;
859 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
860 if (ret_val)
861 return ret_val;
863 phy->is_mdix = (data & IFE_PMC_MDIX_STATUS);
865 /* The following parameters are undefined for 10/100 operation. */
866 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
867 phy->local_rx = e1000_1000t_rx_status_undefined;
868 phy->remote_rx = e1000_1000t_rx_status_undefined;
870 return 0;
874 * e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
875 * @hw: pointer to the HW structure
877 * Wrapper for calling the get_phy_info routines for the appropriate phy type.
878 * This is a function pointer entry point called by drivers
879 * or other shared routines.
881 static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
883 switch (hw->phy.type) {
884 case e1000_phy_ife:
885 return e1000_get_phy_info_ife_ich8lan(hw);
886 break;
887 case e1000_phy_igp_3:
888 case e1000_phy_bm:
889 case e1000_phy_82578:
890 case e1000_phy_82577:
891 return e1000e_get_phy_info_igp(hw);
892 break;
893 default:
894 break;
897 return -E1000_ERR_PHY_TYPE;
901 * e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
902 * @hw: pointer to the HW structure
904 * Polarity is determined on the polarity reversal feature being enabled.
905 * This function is only called by other family-specific
906 * routines.
908 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
910 struct e1000_phy_info *phy = &hw->phy;
911 s32 ret_val;
912 u16 phy_data, offset, mask;
915 * Polarity is determined based on the reversal feature being enabled.
917 if (phy->polarity_correction) {
918 offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
919 mask = IFE_PESC_POLARITY_REVERSED;
920 } else {
921 offset = IFE_PHY_SPECIAL_CONTROL;
922 mask = IFE_PSC_FORCE_POLARITY;
925 ret_val = e1e_rphy(hw, offset, &phy_data);
927 if (!ret_val)
928 phy->cable_polarity = (phy_data & mask)
929 ? e1000_rev_polarity_reversed
930 : e1000_rev_polarity_normal;
932 return ret_val;
936 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
937 * @hw: pointer to the HW structure
938 * @active: TRUE to enable LPLU, FALSE to disable
940 * Sets the LPLU D0 state according to the active flag. When
941 * activating LPLU this function also disables smart speed
942 * and vice versa. LPLU will not be activated unless the
943 * device autonegotiation advertisement meets standards of
944 * either 10 or 10/100 or 10/100/1000 at all duplexes.
945 * This is a function pointer entry point only called by
946 * PHY setup routines.
948 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
950 struct e1000_phy_info *phy = &hw->phy;
951 u32 phy_ctrl;
952 s32 ret_val = 0;
953 u16 data;
955 if (phy->type == e1000_phy_ife)
956 return ret_val;
958 phy_ctrl = er32(PHY_CTRL);
960 if (active) {
961 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
962 ew32(PHY_CTRL, phy_ctrl);
965 * Call gig speed drop workaround on LPLU before accessing
966 * any PHY registers
968 if ((hw->mac.type == e1000_ich8lan) &&
969 (hw->phy.type == e1000_phy_igp_3))
970 e1000e_gig_downshift_workaround_ich8lan(hw);
972 /* When LPLU is enabled, we should disable SmartSpeed */
973 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
974 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
975 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
976 if (ret_val)
977 return ret_val;
978 } else {
979 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
980 ew32(PHY_CTRL, phy_ctrl);
983 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
984 * during Dx states where the power conservation is most
985 * important. During driver activity we should enable
986 * SmartSpeed, so performance is maintained.
988 if (phy->smart_speed == e1000_smart_speed_on) {
989 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
990 &data);
991 if (ret_val)
992 return ret_val;
994 data |= IGP01E1000_PSCFR_SMART_SPEED;
995 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
996 data);
997 if (ret_val)
998 return ret_val;
999 } else if (phy->smart_speed == e1000_smart_speed_off) {
1000 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1001 &data);
1002 if (ret_val)
1003 return ret_val;
1005 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1006 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1007 data);
1008 if (ret_val)
1009 return ret_val;
1013 return 0;
1017 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1018 * @hw: pointer to the HW structure
1019 * @active: TRUE to enable LPLU, FALSE to disable
1021 * Sets the LPLU D3 state according to the active flag. When
1022 * activating LPLU this function also disables smart speed
1023 * and vice versa. LPLU will not be activated unless the
1024 * device autonegotiation advertisement meets standards of
1025 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1026 * This is a function pointer entry point only called by
1027 * PHY setup routines.
1029 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1031 struct e1000_phy_info *phy = &hw->phy;
1032 u32 phy_ctrl;
1033 s32 ret_val;
1034 u16 data;
1036 phy_ctrl = er32(PHY_CTRL);
1038 if (!active) {
1039 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
1040 ew32(PHY_CTRL, phy_ctrl);
1042 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1043 * during Dx states where the power conservation is most
1044 * important. During driver activity we should enable
1045 * SmartSpeed, so performance is maintained.
1047 if (phy->smart_speed == e1000_smart_speed_on) {
1048 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1049 &data);
1050 if (ret_val)
1051 return ret_val;
1053 data |= IGP01E1000_PSCFR_SMART_SPEED;
1054 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1055 data);
1056 if (ret_val)
1057 return ret_val;
1058 } else if (phy->smart_speed == e1000_smart_speed_off) {
1059 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1060 &data);
1061 if (ret_val)
1062 return ret_val;
1064 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1065 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1066 data);
1067 if (ret_val)
1068 return ret_val;
1070 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1071 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1072 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1073 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
1074 ew32(PHY_CTRL, phy_ctrl);
1077 * Call gig speed drop workaround on LPLU before accessing
1078 * any PHY registers
1080 if ((hw->mac.type == e1000_ich8lan) &&
1081 (hw->phy.type == e1000_phy_igp_3))
1082 e1000e_gig_downshift_workaround_ich8lan(hw);
1084 /* When LPLU is enabled, we should disable SmartSpeed */
1085 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1086 if (ret_val)
1087 return ret_val;
1089 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1090 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1093 return 0;
1097 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
1098 * @hw: pointer to the HW structure
1099 * @bank: pointer to the variable that returns the active bank
1101 * Reads signature byte from the NVM using the flash access registers.
1102 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
1104 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
1106 u32 eecd;
1107 struct e1000_nvm_info *nvm = &hw->nvm;
1108 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
1109 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
1110 u8 sig_byte = 0;
1111 s32 ret_val = 0;
1113 switch (hw->mac.type) {
1114 case e1000_ich8lan:
1115 case e1000_ich9lan:
1116 eecd = er32(EECD);
1117 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
1118 E1000_EECD_SEC1VAL_VALID_MASK) {
1119 if (eecd & E1000_EECD_SEC1VAL)
1120 *bank = 1;
1121 else
1122 *bank = 0;
1124 return 0;
1126 hw_dbg(hw, "Unable to determine valid NVM bank via EEC - "
1127 "reading flash signature\n");
1128 /* fall-thru */
1129 default:
1130 /* set bank to 0 in case flash read fails */
1131 *bank = 0;
1133 /* Check bank 0 */
1134 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
1135 &sig_byte);
1136 if (ret_val)
1137 return ret_val;
1138 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1139 E1000_ICH_NVM_SIG_VALUE) {
1140 *bank = 0;
1141 return 0;
1144 /* Check bank 1 */
1145 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
1146 bank1_offset,
1147 &sig_byte);
1148 if (ret_val)
1149 return ret_val;
1150 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1151 E1000_ICH_NVM_SIG_VALUE) {
1152 *bank = 1;
1153 return 0;
1156 hw_dbg(hw, "ERROR: No valid NVM bank present\n");
1157 return -E1000_ERR_NVM;
1160 return 0;
1164 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
1165 * @hw: pointer to the HW structure
1166 * @offset: The offset (in bytes) of the word(s) to read.
1167 * @words: Size of data to read in words
1168 * @data: Pointer to the word(s) to read at offset.
1170 * Reads a word(s) from the NVM using the flash access registers.
1172 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1173 u16 *data)
1175 struct e1000_nvm_info *nvm = &hw->nvm;
1176 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1177 u32 act_offset;
1178 s32 ret_val;
1179 u32 bank = 0;
1180 u16 i, word;
1182 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1183 (words == 0)) {
1184 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1185 return -E1000_ERR_NVM;
1188 ret_val = e1000_acquire_swflag_ich8lan(hw);
1189 if (ret_val)
1190 goto out;
1192 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1193 if (ret_val)
1194 goto release;
1196 act_offset = (bank) ? nvm->flash_bank_size : 0;
1197 act_offset += offset;
1199 for (i = 0; i < words; i++) {
1200 if ((dev_spec->shadow_ram) &&
1201 (dev_spec->shadow_ram[offset+i].modified)) {
1202 data[i] = dev_spec->shadow_ram[offset+i].value;
1203 } else {
1204 ret_val = e1000_read_flash_word_ich8lan(hw,
1205 act_offset + i,
1206 &word);
1207 if (ret_val)
1208 break;
1209 data[i] = word;
1213 release:
1214 e1000_release_swflag_ich8lan(hw);
1216 out:
1217 if (ret_val)
1218 hw_dbg(hw, "NVM read error: %d\n", ret_val);
1220 return ret_val;
1224 * e1000_flash_cycle_init_ich8lan - Initialize flash
1225 * @hw: pointer to the HW structure
1227 * This function does initial flash setup so that a new read/write/erase cycle
1228 * can be started.
1230 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
1232 union ich8_hws_flash_status hsfsts;
1233 s32 ret_val = -E1000_ERR_NVM;
1234 s32 i = 0;
1236 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1238 /* Check if the flash descriptor is valid */
1239 if (hsfsts.hsf_status.fldesvalid == 0) {
1240 hw_dbg(hw, "Flash descriptor invalid. "
1241 "SW Sequencing must be used.");
1242 return -E1000_ERR_NVM;
1245 /* Clear FCERR and DAEL in hw status by writing 1 */
1246 hsfsts.hsf_status.flcerr = 1;
1247 hsfsts.hsf_status.dael = 1;
1249 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1252 * Either we should have a hardware SPI cycle in progress
1253 * bit to check against, in order to start a new cycle or
1254 * FDONE bit should be changed in the hardware so that it
1255 * is 1 after hardware reset, which can then be used as an
1256 * indication whether a cycle is in progress or has been
1257 * completed.
1260 if (hsfsts.hsf_status.flcinprog == 0) {
1262 * There is no cycle running at present,
1263 * so we can start a cycle
1264 * Begin by setting Flash Cycle Done.
1266 hsfsts.hsf_status.flcdone = 1;
1267 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1268 ret_val = 0;
1269 } else {
1271 * otherwise poll for sometime so the current
1272 * cycle has a chance to end before giving up.
1274 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
1275 hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
1276 if (hsfsts.hsf_status.flcinprog == 0) {
1277 ret_val = 0;
1278 break;
1280 udelay(1);
1282 if (ret_val == 0) {
1284 * Successful in waiting for previous cycle to timeout,
1285 * now set the Flash Cycle Done.
1287 hsfsts.hsf_status.flcdone = 1;
1288 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1289 } else {
1290 hw_dbg(hw, "Flash controller busy, cannot get access");
1294 return ret_val;
1298 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1299 * @hw: pointer to the HW structure
1300 * @timeout: maximum time to wait for completion
1302 * This function starts a flash cycle and waits for its completion.
1304 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
1306 union ich8_hws_flash_ctrl hsflctl;
1307 union ich8_hws_flash_status hsfsts;
1308 s32 ret_val = -E1000_ERR_NVM;
1309 u32 i = 0;
1311 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1312 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1313 hsflctl.hsf_ctrl.flcgo = 1;
1314 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1316 /* wait till FDONE bit is set to 1 */
1317 do {
1318 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1319 if (hsfsts.hsf_status.flcdone == 1)
1320 break;
1321 udelay(1);
1322 } while (i++ < timeout);
1324 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
1325 return 0;
1327 return ret_val;
1331 * e1000_read_flash_word_ich8lan - Read word from flash
1332 * @hw: pointer to the HW structure
1333 * @offset: offset to data location
1334 * @data: pointer to the location for storing the data
1336 * Reads the flash word at offset into data. Offset is converted
1337 * to bytes before read.
1339 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
1340 u16 *data)
1342 /* Must convert offset into bytes. */
1343 offset <<= 1;
1345 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
1349 * e1000_read_flash_byte_ich8lan - Read byte from flash
1350 * @hw: pointer to the HW structure
1351 * @offset: The offset of the byte to read.
1352 * @data: Pointer to a byte to store the value read.
1354 * Reads a single byte from the NVM using the flash access registers.
1356 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1357 u8 *data)
1359 s32 ret_val;
1360 u16 word = 0;
1362 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
1363 if (ret_val)
1364 return ret_val;
1366 *data = (u8)word;
1368 return 0;
1372 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
1373 * @hw: pointer to the HW structure
1374 * @offset: The offset (in bytes) of the byte or word to read.
1375 * @size: Size of data to read, 1=byte 2=word
1376 * @data: Pointer to the word to store the value read.
1378 * Reads a byte or word from the NVM using the flash access registers.
1380 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1381 u8 size, u16 *data)
1383 union ich8_hws_flash_status hsfsts;
1384 union ich8_hws_flash_ctrl hsflctl;
1385 u32 flash_linear_addr;
1386 u32 flash_data = 0;
1387 s32 ret_val = -E1000_ERR_NVM;
1388 u8 count = 0;
1390 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
1391 return -E1000_ERR_NVM;
1393 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1394 hw->nvm.flash_base_addr;
1396 do {
1397 udelay(1);
1398 /* Steps */
1399 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1400 if (ret_val != 0)
1401 break;
1403 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1404 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1405 hsflctl.hsf_ctrl.fldbcount = size - 1;
1406 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
1407 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1409 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1411 ret_val = e1000_flash_cycle_ich8lan(hw,
1412 ICH_FLASH_READ_COMMAND_TIMEOUT);
1415 * Check if FCERR is set to 1, if set to 1, clear it
1416 * and try the whole sequence a few more times, else
1417 * read in (shift in) the Flash Data0, the order is
1418 * least significant byte first msb to lsb
1420 if (ret_val == 0) {
1421 flash_data = er32flash(ICH_FLASH_FDATA0);
1422 if (size == 1) {
1423 *data = (u8)(flash_data & 0x000000FF);
1424 } else if (size == 2) {
1425 *data = (u16)(flash_data & 0x0000FFFF);
1427 break;
1428 } else {
1430 * If we've gotten here, then things are probably
1431 * completely hosed, but if the error condition is
1432 * detected, it won't hurt to give it another try...
1433 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1435 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1436 if (hsfsts.hsf_status.flcerr == 1) {
1437 /* Repeat for some time before giving up. */
1438 continue;
1439 } else if (hsfsts.hsf_status.flcdone == 0) {
1440 hw_dbg(hw, "Timeout error - flash cycle "
1441 "did not complete.");
1442 break;
1445 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1447 return ret_val;
1451 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
1452 * @hw: pointer to the HW structure
1453 * @offset: The offset (in bytes) of the word(s) to write.
1454 * @words: Size of data to write in words
1455 * @data: Pointer to the word(s) to write at offset.
1457 * Writes a byte or word to the NVM using the flash access registers.
1459 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1460 u16 *data)
1462 struct e1000_nvm_info *nvm = &hw->nvm;
1463 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1464 s32 ret_val;
1465 u16 i;
1467 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1468 (words == 0)) {
1469 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1470 return -E1000_ERR_NVM;
1473 ret_val = e1000_acquire_swflag_ich8lan(hw);
1474 if (ret_val)
1475 return ret_val;
1477 for (i = 0; i < words; i++) {
1478 dev_spec->shadow_ram[offset+i].modified = 1;
1479 dev_spec->shadow_ram[offset+i].value = data[i];
1482 e1000_release_swflag_ich8lan(hw);
1484 return 0;
1488 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1489 * @hw: pointer to the HW structure
1491 * The NVM checksum is updated by calling the generic update_nvm_checksum,
1492 * which writes the checksum to the shadow ram. The changes in the shadow
1493 * ram are then committed to the EEPROM by processing each bank at a time
1494 * checking for the modified bit and writing only the pending changes.
1495 * After a successful commit, the shadow ram is cleared and is ready for
1496 * future writes.
1498 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
1500 struct e1000_nvm_info *nvm = &hw->nvm;
1501 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1502 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
1503 s32 ret_val;
1504 u16 data;
1506 ret_val = e1000e_update_nvm_checksum_generic(hw);
1507 if (ret_val)
1508 goto out;
1510 if (nvm->type != e1000_nvm_flash_sw)
1511 goto out;
1513 ret_val = e1000_acquire_swflag_ich8lan(hw);
1514 if (ret_val)
1515 goto out;
1518 * We're writing to the opposite bank so if we're on bank 1,
1519 * write to bank 0 etc. We also need to erase the segment that
1520 * is going to be written
1522 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1523 if (ret_val) {
1524 e1000_release_swflag_ich8lan(hw);
1525 goto out;
1528 if (bank == 0) {
1529 new_bank_offset = nvm->flash_bank_size;
1530 old_bank_offset = 0;
1531 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
1532 if (ret_val) {
1533 e1000_release_swflag_ich8lan(hw);
1534 goto out;
1536 } else {
1537 old_bank_offset = nvm->flash_bank_size;
1538 new_bank_offset = 0;
1539 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
1540 if (ret_val) {
1541 e1000_release_swflag_ich8lan(hw);
1542 goto out;
1546 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1548 * Determine whether to write the value stored
1549 * in the other NVM bank or a modified value stored
1550 * in the shadow RAM
1552 if (dev_spec->shadow_ram[i].modified) {
1553 data = dev_spec->shadow_ram[i].value;
1554 } else {
1555 ret_val = e1000_read_flash_word_ich8lan(hw, i +
1556 old_bank_offset,
1557 &data);
1558 if (ret_val)
1559 break;
1563 * If the word is 0x13, then make sure the signature bits
1564 * (15:14) are 11b until the commit has completed.
1565 * This will allow us to write 10b which indicates the
1566 * signature is valid. We want to do this after the write
1567 * has completed so that we don't mark the segment valid
1568 * while the write is still in progress
1570 if (i == E1000_ICH_NVM_SIG_WORD)
1571 data |= E1000_ICH_NVM_SIG_MASK;
1573 /* Convert offset to bytes. */
1574 act_offset = (i + new_bank_offset) << 1;
1576 udelay(100);
1577 /* Write the bytes to the new bank. */
1578 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1579 act_offset,
1580 (u8)data);
1581 if (ret_val)
1582 break;
1584 udelay(100);
1585 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1586 act_offset + 1,
1587 (u8)(data >> 8));
1588 if (ret_val)
1589 break;
1593 * Don't bother writing the segment valid bits if sector
1594 * programming failed.
1596 if (ret_val) {
1597 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
1598 hw_dbg(hw, "Flash commit failed.\n");
1599 e1000_release_swflag_ich8lan(hw);
1600 goto out;
1604 * Finally validate the new segment by setting bit 15:14
1605 * to 10b in word 0x13 , this can be done without an
1606 * erase as well since these bits are 11 to start with
1607 * and we need to change bit 14 to 0b
1609 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
1610 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
1611 if (ret_val) {
1612 e1000_release_swflag_ich8lan(hw);
1613 goto out;
1615 data &= 0xBFFF;
1616 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1617 act_offset * 2 + 1,
1618 (u8)(data >> 8));
1619 if (ret_val) {
1620 e1000_release_swflag_ich8lan(hw);
1621 goto out;
1625 * And invalidate the previously valid segment by setting
1626 * its signature word (0x13) high_byte to 0b. This can be
1627 * done without an erase because flash erase sets all bits
1628 * to 1's. We can write 1's to 0's without an erase
1630 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
1631 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
1632 if (ret_val) {
1633 e1000_release_swflag_ich8lan(hw);
1634 goto out;
1637 /* Great! Everything worked, we can now clear the cached entries. */
1638 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1639 dev_spec->shadow_ram[i].modified = 0;
1640 dev_spec->shadow_ram[i].value = 0xFFFF;
1643 e1000_release_swflag_ich8lan(hw);
1646 * Reload the EEPROM, or else modifications will not appear
1647 * until after the next adapter reset.
1649 e1000e_reload_nvm(hw);
1650 msleep(10);
1652 out:
1653 if (ret_val)
1654 hw_dbg(hw, "NVM update error: %d\n", ret_val);
1656 return ret_val;
1660 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
1661 * @hw: pointer to the HW structure
1663 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
1664 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
1665 * calculated, in which case we need to calculate the checksum and set bit 6.
1667 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
1669 s32 ret_val;
1670 u16 data;
1673 * Read 0x19 and check bit 6. If this bit is 0, the checksum
1674 * needs to be fixed. This bit is an indication that the NVM
1675 * was prepared by OEM software and did not calculate the
1676 * checksum...a likely scenario.
1678 ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
1679 if (ret_val)
1680 return ret_val;
1682 if ((data & 0x40) == 0) {
1683 data |= 0x40;
1684 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
1685 if (ret_val)
1686 return ret_val;
1687 ret_val = e1000e_update_nvm_checksum(hw);
1688 if (ret_val)
1689 return ret_val;
1692 return e1000e_validate_nvm_checksum_generic(hw);
1696 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
1697 * @hw: pointer to the HW structure
1699 * To prevent malicious write/erase of the NVM, set it to be read-only
1700 * so that the hardware ignores all write/erase cycles of the NVM via
1701 * the flash control registers. The shadow-ram copy of the NVM will
1702 * still be updated, however any updates to this copy will not stick
1703 * across driver reloads.
1705 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
1707 union ich8_flash_protected_range pr0;
1708 union ich8_hws_flash_status hsfsts;
1709 u32 gfpreg;
1710 s32 ret_val;
1712 ret_val = e1000_acquire_swflag_ich8lan(hw);
1713 if (ret_val)
1714 return;
1716 gfpreg = er32flash(ICH_FLASH_GFPREG);
1718 /* Write-protect GbE Sector of NVM */
1719 pr0.regval = er32flash(ICH_FLASH_PR0);
1720 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
1721 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
1722 pr0.range.wpe = true;
1723 ew32flash(ICH_FLASH_PR0, pr0.regval);
1726 * Lock down a subset of GbE Flash Control Registers, e.g.
1727 * PR0 to prevent the write-protection from being lifted.
1728 * Once FLOCKDN is set, the registers protected by it cannot
1729 * be written until FLOCKDN is cleared by a hardware reset.
1731 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1732 hsfsts.hsf_status.flockdn = true;
1733 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1735 e1000_release_swflag_ich8lan(hw);
1739 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
1740 * @hw: pointer to the HW structure
1741 * @offset: The offset (in bytes) of the byte/word to read.
1742 * @size: Size of data to read, 1=byte 2=word
1743 * @data: The byte(s) to write to the NVM.
1745 * Writes one/two bytes to the NVM using the flash access registers.
1747 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1748 u8 size, u16 data)
1750 union ich8_hws_flash_status hsfsts;
1751 union ich8_hws_flash_ctrl hsflctl;
1752 u32 flash_linear_addr;
1753 u32 flash_data = 0;
1754 s32 ret_val;
1755 u8 count = 0;
1757 if (size < 1 || size > 2 || data > size * 0xff ||
1758 offset > ICH_FLASH_LINEAR_ADDR_MASK)
1759 return -E1000_ERR_NVM;
1761 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1762 hw->nvm.flash_base_addr;
1764 do {
1765 udelay(1);
1766 /* Steps */
1767 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1768 if (ret_val)
1769 break;
1771 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1772 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1773 hsflctl.hsf_ctrl.fldbcount = size -1;
1774 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
1775 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1777 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1779 if (size == 1)
1780 flash_data = (u32)data & 0x00FF;
1781 else
1782 flash_data = (u32)data;
1784 ew32flash(ICH_FLASH_FDATA0, flash_data);
1787 * check if FCERR is set to 1 , if set to 1, clear it
1788 * and try the whole sequence a few more times else done
1790 ret_val = e1000_flash_cycle_ich8lan(hw,
1791 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
1792 if (!ret_val)
1793 break;
1796 * If we're here, then things are most likely
1797 * completely hosed, but if the error condition
1798 * is detected, it won't hurt to give it another
1799 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
1801 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1802 if (hsfsts.hsf_status.flcerr == 1)
1803 /* Repeat for some time before giving up. */
1804 continue;
1805 if (hsfsts.hsf_status.flcdone == 0) {
1806 hw_dbg(hw, "Timeout error - flash cycle "
1807 "did not complete.");
1808 break;
1810 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1812 return ret_val;
1816 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
1817 * @hw: pointer to the HW structure
1818 * @offset: The index of the byte to read.
1819 * @data: The byte to write to the NVM.
1821 * Writes a single byte to the NVM using the flash access registers.
1823 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1824 u8 data)
1826 u16 word = (u16)data;
1828 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
1832 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
1833 * @hw: pointer to the HW structure
1834 * @offset: The offset of the byte to write.
1835 * @byte: The byte to write to the NVM.
1837 * Writes a single byte to the NVM using the flash access registers.
1838 * Goes through a retry algorithm before giving up.
1840 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
1841 u32 offset, u8 byte)
1843 s32 ret_val;
1844 u16 program_retries;
1846 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1847 if (!ret_val)
1848 return ret_val;
1850 for (program_retries = 0; program_retries < 100; program_retries++) {
1851 hw_dbg(hw, "Retrying Byte %2.2X at offset %u\n", byte, offset);
1852 udelay(100);
1853 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1854 if (!ret_val)
1855 break;
1857 if (program_retries == 100)
1858 return -E1000_ERR_NVM;
1860 return 0;
1864 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
1865 * @hw: pointer to the HW structure
1866 * @bank: 0 for first bank, 1 for second bank, etc.
1868 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
1869 * bank N is 4096 * N + flash_reg_addr.
1871 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
1873 struct e1000_nvm_info *nvm = &hw->nvm;
1874 union ich8_hws_flash_status hsfsts;
1875 union ich8_hws_flash_ctrl hsflctl;
1876 u32 flash_linear_addr;
1877 /* bank size is in 16bit words - adjust to bytes */
1878 u32 flash_bank_size = nvm->flash_bank_size * 2;
1879 s32 ret_val;
1880 s32 count = 0;
1881 s32 iteration;
1882 s32 sector_size;
1883 s32 j;
1885 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1888 * Determine HW Sector size: Read BERASE bits of hw flash status
1889 * register
1890 * 00: The Hw sector is 256 bytes, hence we need to erase 16
1891 * consecutive sectors. The start index for the nth Hw sector
1892 * can be calculated as = bank * 4096 + n * 256
1893 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
1894 * The start index for the nth Hw sector can be calculated
1895 * as = bank * 4096
1896 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
1897 * (ich9 only, otherwise error condition)
1898 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
1900 switch (hsfsts.hsf_status.berasesz) {
1901 case 0:
1902 /* Hw sector size 256 */
1903 sector_size = ICH_FLASH_SEG_SIZE_256;
1904 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
1905 break;
1906 case 1:
1907 sector_size = ICH_FLASH_SEG_SIZE_4K;
1908 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_4K;
1909 break;
1910 case 2:
1911 if (hw->mac.type == e1000_ich9lan) {
1912 sector_size = ICH_FLASH_SEG_SIZE_8K;
1913 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_8K;
1914 } else {
1915 return -E1000_ERR_NVM;
1917 break;
1918 case 3:
1919 sector_size = ICH_FLASH_SEG_SIZE_64K;
1920 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_64K;
1921 break;
1922 default:
1923 return -E1000_ERR_NVM;
1926 /* Start with the base address, then add the sector offset. */
1927 flash_linear_addr = hw->nvm.flash_base_addr;
1928 flash_linear_addr += (bank) ? (sector_size * iteration) : 0;
1930 for (j = 0; j < iteration ; j++) {
1931 do {
1932 /* Steps */
1933 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1934 if (ret_val)
1935 return ret_val;
1938 * Write a value 11 (block Erase) in Flash
1939 * Cycle field in hw flash control
1941 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1942 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
1943 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1946 * Write the last 24 bits of an index within the
1947 * block into Flash Linear address field in Flash
1948 * Address.
1950 flash_linear_addr += (j * sector_size);
1951 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1953 ret_val = e1000_flash_cycle_ich8lan(hw,
1954 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
1955 if (ret_val == 0)
1956 break;
1959 * Check if FCERR is set to 1. If 1,
1960 * clear it and try the whole sequence
1961 * a few more times else Done
1963 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1964 if (hsfsts.hsf_status.flcerr == 1)
1965 /* repeat for some time before giving up */
1966 continue;
1967 else if (hsfsts.hsf_status.flcdone == 0)
1968 return ret_val;
1969 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
1972 return 0;
1976 * e1000_valid_led_default_ich8lan - Set the default LED settings
1977 * @hw: pointer to the HW structure
1978 * @data: Pointer to the LED settings
1980 * Reads the LED default settings from the NVM to data. If the NVM LED
1981 * settings is all 0's or F's, set the LED default to a valid LED default
1982 * setting.
1984 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
1986 s32 ret_val;
1988 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1989 if (ret_val) {
1990 hw_dbg(hw, "NVM Read Error\n");
1991 return ret_val;
1994 if (*data == ID_LED_RESERVED_0000 ||
1995 *data == ID_LED_RESERVED_FFFF)
1996 *data = ID_LED_DEFAULT_ICH8LAN;
1998 return 0;
2002 * e1000_id_led_init_pchlan - store LED configurations
2003 * @hw: pointer to the HW structure
2005 * PCH does not control LEDs via the LEDCTL register, rather it uses
2006 * the PHY LED configuration register.
2008 * PCH also does not have an "always on" or "always off" mode which
2009 * complicates the ID feature. Instead of using the "on" mode to indicate
2010 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2011 * use "link_up" mode. The LEDs will still ID on request if there is no
2012 * link based on logic in e1000_led_[on|off]_pchlan().
2014 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2016 struct e1000_mac_info *mac = &hw->mac;
2017 s32 ret_val;
2018 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2019 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2020 u16 data, i, temp, shift;
2022 /* Get default ID LED modes */
2023 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2024 if (ret_val)
2025 goto out;
2027 mac->ledctl_default = er32(LEDCTL);
2028 mac->ledctl_mode1 = mac->ledctl_default;
2029 mac->ledctl_mode2 = mac->ledctl_default;
2031 for (i = 0; i < 4; i++) {
2032 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2033 shift = (i * 5);
2034 switch (temp) {
2035 case ID_LED_ON1_DEF2:
2036 case ID_LED_ON1_ON2:
2037 case ID_LED_ON1_OFF2:
2038 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2039 mac->ledctl_mode1 |= (ledctl_on << shift);
2040 break;
2041 case ID_LED_OFF1_DEF2:
2042 case ID_LED_OFF1_ON2:
2043 case ID_LED_OFF1_OFF2:
2044 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2045 mac->ledctl_mode1 |= (ledctl_off << shift);
2046 break;
2047 default:
2048 /* Do nothing */
2049 break;
2051 switch (temp) {
2052 case ID_LED_DEF1_ON2:
2053 case ID_LED_ON1_ON2:
2054 case ID_LED_OFF1_ON2:
2055 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2056 mac->ledctl_mode2 |= (ledctl_on << shift);
2057 break;
2058 case ID_LED_DEF1_OFF2:
2059 case ID_LED_ON1_OFF2:
2060 case ID_LED_OFF1_OFF2:
2061 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2062 mac->ledctl_mode2 |= (ledctl_off << shift);
2063 break;
2064 default:
2065 /* Do nothing */
2066 break;
2070 out:
2071 return ret_val;
2075 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2076 * @hw: pointer to the HW structure
2078 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2079 * register, so the the bus width is hard coded.
2081 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
2083 struct e1000_bus_info *bus = &hw->bus;
2084 s32 ret_val;
2086 ret_val = e1000e_get_bus_info_pcie(hw);
2089 * ICH devices are "PCI Express"-ish. They have
2090 * a configuration space, but do not contain
2091 * PCI Express Capability registers, so bus width
2092 * must be hardcoded.
2094 if (bus->width == e1000_bus_width_unknown)
2095 bus->width = e1000_bus_width_pcie_x1;
2097 return ret_val;
2101 * e1000_reset_hw_ich8lan - Reset the hardware
2102 * @hw: pointer to the HW structure
2104 * Does a full reset of the hardware which includes a reset of the PHY and
2105 * MAC.
2107 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
2109 u32 ctrl, icr, kab;
2110 s32 ret_val;
2113 * Prevent the PCI-E bus from sticking if there is no TLP connection
2114 * on the last TLP read/write transaction when MAC is reset.
2116 ret_val = e1000e_disable_pcie_master(hw);
2117 if (ret_val) {
2118 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
2121 hw_dbg(hw, "Masking off all interrupts\n");
2122 ew32(IMC, 0xffffffff);
2125 * Disable the Transmit and Receive units. Then delay to allow
2126 * any pending transactions to complete before we hit the MAC
2127 * with the global reset.
2129 ew32(RCTL, 0);
2130 ew32(TCTL, E1000_TCTL_PSP);
2131 e1e_flush();
2133 msleep(10);
2135 /* Workaround for ICH8 bit corruption issue in FIFO memory */
2136 if (hw->mac.type == e1000_ich8lan) {
2137 /* Set Tx and Rx buffer allocation to 8k apiece. */
2138 ew32(PBA, E1000_PBA_8K);
2139 /* Set Packet Buffer Size to 16k. */
2140 ew32(PBS, E1000_PBS_16K);
2143 ctrl = er32(CTRL);
2145 if (!e1000_check_reset_block(hw)) {
2147 * PHY HW reset requires MAC CORE reset at the same
2148 * time to make sure the interface between MAC and the
2149 * external PHY is reset.
2151 ctrl |= E1000_CTRL_PHY_RST;
2153 ret_val = e1000_acquire_swflag_ich8lan(hw);
2154 /* Whether or not the swflag was acquired, we need to reset the part */
2155 hw_dbg(hw, "Issuing a global reset to ich8lan\n");
2156 ew32(CTRL, (ctrl | E1000_CTRL_RST));
2157 msleep(20);
2159 if (!ret_val) {
2160 /* release the swflag because it is not reset by
2161 * hardware reset
2163 e1000_release_swflag_ich8lan(hw);
2166 ret_val = e1000e_get_auto_rd_done(hw);
2167 if (ret_val) {
2169 * When auto config read does not complete, do not
2170 * return with an error. This can happen in situations
2171 * where there is no eeprom and prevents getting link.
2173 hw_dbg(hw, "Auto Read Done did not complete\n");
2176 ew32(IMC, 0xffffffff);
2177 icr = er32(ICR);
2179 kab = er32(KABGTXD);
2180 kab |= E1000_KABGTXD_BGSQLBIAS;
2181 ew32(KABGTXD, kab);
2183 if (hw->mac.type == e1000_pchlan)
2184 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2186 return ret_val;
2190 * e1000_init_hw_ich8lan - Initialize the hardware
2191 * @hw: pointer to the HW structure
2193 * Prepares the hardware for transmit and receive by doing the following:
2194 * - initialize hardware bits
2195 * - initialize LED identification
2196 * - setup receive address registers
2197 * - setup flow control
2198 * - setup transmit descriptors
2199 * - clear statistics
2201 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
2203 struct e1000_mac_info *mac = &hw->mac;
2204 u32 ctrl_ext, txdctl, snoop;
2205 s32 ret_val;
2206 u16 i;
2208 e1000_initialize_hw_bits_ich8lan(hw);
2210 /* Initialize identification LED */
2211 ret_val = mac->ops.id_led_init(hw);
2212 if (ret_val) {
2213 hw_dbg(hw, "Error initializing identification LED\n");
2214 return ret_val;
2217 /* Setup the receive address. */
2218 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
2220 /* Zero out the Multicast HASH table */
2221 hw_dbg(hw, "Zeroing the MTA\n");
2222 for (i = 0; i < mac->mta_reg_count; i++)
2223 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
2225 /* Setup link and flow control */
2226 ret_val = e1000_setup_link_ich8lan(hw);
2228 /* Set the transmit descriptor write-back policy for both queues */
2229 txdctl = er32(TXDCTL(0));
2230 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2231 E1000_TXDCTL_FULL_TX_DESC_WB;
2232 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2233 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2234 ew32(TXDCTL(0), txdctl);
2235 txdctl = er32(TXDCTL(1));
2236 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2237 E1000_TXDCTL_FULL_TX_DESC_WB;
2238 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2239 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2240 ew32(TXDCTL(1), txdctl);
2243 * ICH8 has opposite polarity of no_snoop bits.
2244 * By default, we should use snoop behavior.
2246 if (mac->type == e1000_ich8lan)
2247 snoop = PCIE_ICH8_SNOOP_ALL;
2248 else
2249 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
2250 e1000e_set_pcie_no_snoop(hw, snoop);
2252 ctrl_ext = er32(CTRL_EXT);
2253 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
2254 ew32(CTRL_EXT, ctrl_ext);
2257 * The 82578 Rx buffer will stall if wakeup is enabled in host and
2258 * the ME. Reading the BM_WUC register will clear the host wakeup bit.
2259 * Reset the phy after disabling host wakeup to reset the Rx buffer.
2261 if (hw->phy.type == e1000_phy_82578) {
2262 e1e_rphy(hw, BM_WUC, &i);
2263 e1000e_phy_hw_reset_generic(hw);
2267 * Clear all of the statistics registers (clear on read). It is
2268 * important that we do this after we have tried to establish link
2269 * because the symbol error count will increment wildly if there
2270 * is no link.
2272 e1000_clear_hw_cntrs_ich8lan(hw);
2274 return 0;
2277 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
2278 * @hw: pointer to the HW structure
2280 * Sets/Clears required hardware bits necessary for correctly setting up the
2281 * hardware for transmit and receive.
2283 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
2285 u32 reg;
2287 /* Extended Device Control */
2288 reg = er32(CTRL_EXT);
2289 reg |= (1 << 22);
2290 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
2291 if (hw->mac.type >= e1000_pchlan)
2292 reg |= E1000_CTRL_EXT_PHYPDEN;
2293 ew32(CTRL_EXT, reg);
2295 /* Transmit Descriptor Control 0 */
2296 reg = er32(TXDCTL(0));
2297 reg |= (1 << 22);
2298 ew32(TXDCTL(0), reg);
2300 /* Transmit Descriptor Control 1 */
2301 reg = er32(TXDCTL(1));
2302 reg |= (1 << 22);
2303 ew32(TXDCTL(1), reg);
2305 /* Transmit Arbitration Control 0 */
2306 reg = er32(TARC(0));
2307 if (hw->mac.type == e1000_ich8lan)
2308 reg |= (1 << 28) | (1 << 29);
2309 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
2310 ew32(TARC(0), reg);
2312 /* Transmit Arbitration Control 1 */
2313 reg = er32(TARC(1));
2314 if (er32(TCTL) & E1000_TCTL_MULR)
2315 reg &= ~(1 << 28);
2316 else
2317 reg |= (1 << 28);
2318 reg |= (1 << 24) | (1 << 26) | (1 << 30);
2319 ew32(TARC(1), reg);
2321 /* Device Status */
2322 if (hw->mac.type == e1000_ich8lan) {
2323 reg = er32(STATUS);
2324 reg &= ~(1 << 31);
2325 ew32(STATUS, reg);
2330 * e1000_setup_link_ich8lan - Setup flow control and link settings
2331 * @hw: pointer to the HW structure
2333 * Determines which flow control settings to use, then configures flow
2334 * control. Calls the appropriate media-specific link configuration
2335 * function. Assuming the adapter has a valid link partner, a valid link
2336 * should be established. Assumes the hardware has previously been reset
2337 * and the transmitter and receiver are not enabled.
2339 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
2341 s32 ret_val;
2343 if (e1000_check_reset_block(hw))
2344 return 0;
2347 * ICH parts do not have a word in the NVM to determine
2348 * the default flow control setting, so we explicitly
2349 * set it to full.
2351 if (hw->fc.requested_mode == e1000_fc_default)
2352 hw->fc.requested_mode = e1000_fc_full;
2355 * Save off the requested flow control mode for use later. Depending
2356 * on the link partner's capabilities, we may or may not use this mode.
2358 hw->fc.current_mode = hw->fc.requested_mode;
2360 hw_dbg(hw, "After fix-ups FlowControl is now = %x\n",
2361 hw->fc.current_mode);
2363 /* Continue to configure the copper link. */
2364 ret_val = e1000_setup_copper_link_ich8lan(hw);
2365 if (ret_val)
2366 return ret_val;
2368 ew32(FCTTV, hw->fc.pause_time);
2369 if ((hw->phy.type == e1000_phy_82578) ||
2370 (hw->phy.type == e1000_phy_82577)) {
2371 ret_val = hw->phy.ops.write_phy_reg(hw,
2372 PHY_REG(BM_PORT_CTRL_PAGE, 27),
2373 hw->fc.pause_time);
2374 if (ret_val)
2375 return ret_val;
2378 return e1000e_set_fc_watermarks(hw);
2382 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
2383 * @hw: pointer to the HW structure
2385 * Configures the kumeran interface to the PHY to wait the appropriate time
2386 * when polling the PHY, then call the generic setup_copper_link to finish
2387 * configuring the copper link.
2389 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
2391 u32 ctrl;
2392 s32 ret_val;
2393 u16 reg_data;
2395 ctrl = er32(CTRL);
2396 ctrl |= E1000_CTRL_SLU;
2397 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2398 ew32(CTRL, ctrl);
2401 * Set the mac to wait the maximum time between each iteration
2402 * and increase the max iterations when polling the phy;
2403 * this fixes erroneous timeouts at 10Mbps.
2405 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
2406 if (ret_val)
2407 return ret_val;
2408 ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
2409 if (ret_val)
2410 return ret_val;
2411 reg_data |= 0x3F;
2412 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
2413 if (ret_val)
2414 return ret_val;
2416 switch (hw->phy.type) {
2417 case e1000_phy_igp_3:
2418 ret_val = e1000e_copper_link_setup_igp(hw);
2419 if (ret_val)
2420 return ret_val;
2421 break;
2422 case e1000_phy_bm:
2423 case e1000_phy_82578:
2424 ret_val = e1000e_copper_link_setup_m88(hw);
2425 if (ret_val)
2426 return ret_val;
2427 break;
2428 case e1000_phy_82577:
2429 ret_val = e1000_copper_link_setup_82577(hw);
2430 if (ret_val)
2431 return ret_val;
2432 break;
2433 case e1000_phy_ife:
2434 ret_val = hw->phy.ops.read_phy_reg(hw, IFE_PHY_MDIX_CONTROL,
2435 &reg_data);
2436 if (ret_val)
2437 return ret_val;
2439 reg_data &= ~IFE_PMC_AUTO_MDIX;
2441 switch (hw->phy.mdix) {
2442 case 1:
2443 reg_data &= ~IFE_PMC_FORCE_MDIX;
2444 break;
2445 case 2:
2446 reg_data |= IFE_PMC_FORCE_MDIX;
2447 break;
2448 case 0:
2449 default:
2450 reg_data |= IFE_PMC_AUTO_MDIX;
2451 break;
2453 ret_val = hw->phy.ops.write_phy_reg(hw, IFE_PHY_MDIX_CONTROL,
2454 reg_data);
2455 if (ret_val)
2456 return ret_val;
2457 break;
2458 default:
2459 break;
2461 return e1000e_setup_copper_link(hw);
2465 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2466 * @hw: pointer to the HW structure
2467 * @speed: pointer to store current link speed
2468 * @duplex: pointer to store the current link duplex
2470 * Calls the generic get_speed_and_duplex to retrieve the current link
2471 * information and then calls the Kumeran lock loss workaround for links at
2472 * gigabit speeds.
2474 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
2475 u16 *duplex)
2477 s32 ret_val;
2479 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
2480 if (ret_val)
2481 return ret_val;
2483 if ((hw->mac.type == e1000_ich8lan) &&
2484 (hw->phy.type == e1000_phy_igp_3) &&
2485 (*speed == SPEED_1000)) {
2486 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
2489 return ret_val;
2493 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
2494 * @hw: pointer to the HW structure
2496 * Work-around for 82566 Kumeran PCS lock loss:
2497 * On link status change (i.e. PCI reset, speed change) and link is up and
2498 * speed is gigabit-
2499 * 0) if workaround is optionally disabled do nothing
2500 * 1) wait 1ms for Kumeran link to come up
2501 * 2) check Kumeran Diagnostic register PCS lock loss bit
2502 * 3) if not set the link is locked (all is good), otherwise...
2503 * 4) reset the PHY
2504 * 5) repeat up to 10 times
2505 * Note: this is only called for IGP3 copper when speed is 1gb.
2507 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
2509 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2510 u32 phy_ctrl;
2511 s32 ret_val;
2512 u16 i, data;
2513 bool link;
2515 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
2516 return 0;
2519 * Make sure link is up before proceeding. If not just return.
2520 * Attempting this while link is negotiating fouled up link
2521 * stability
2523 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2524 if (!link)
2525 return 0;
2527 for (i = 0; i < 10; i++) {
2528 /* read once to clear */
2529 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2530 if (ret_val)
2531 return ret_val;
2532 /* and again to get new status */
2533 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2534 if (ret_val)
2535 return ret_val;
2537 /* check for PCS lock */
2538 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
2539 return 0;
2541 /* Issue PHY reset */
2542 e1000_phy_hw_reset(hw);
2543 mdelay(5);
2545 /* Disable GigE link negotiation */
2546 phy_ctrl = er32(PHY_CTRL);
2547 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
2548 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2549 ew32(PHY_CTRL, phy_ctrl);
2552 * Call gig speed drop workaround on Gig disable before accessing
2553 * any PHY registers
2555 e1000e_gig_downshift_workaround_ich8lan(hw);
2557 /* unable to acquire PCS lock */
2558 return -E1000_ERR_PHY;
2562 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
2563 * @hw: pointer to the HW structure
2564 * @state: boolean value used to set the current Kumeran workaround state
2566 * If ICH8, set the current Kumeran workaround state (enabled - TRUE
2567 * /disabled - FALSE).
2569 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
2570 bool state)
2572 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2574 if (hw->mac.type != e1000_ich8lan) {
2575 hw_dbg(hw, "Workaround applies to ICH8 only.\n");
2576 return;
2579 dev_spec->kmrn_lock_loss_workaround_enabled = state;
2583 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
2584 * @hw: pointer to the HW structure
2586 * Workaround for 82566 power-down on D3 entry:
2587 * 1) disable gigabit link
2588 * 2) write VR power-down enable
2589 * 3) read it back
2590 * Continue if successful, else issue LCD reset and repeat
2592 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
2594 u32 reg;
2595 u16 data;
2596 u8 retry = 0;
2598 if (hw->phy.type != e1000_phy_igp_3)
2599 return;
2601 /* Try the workaround twice (if needed) */
2602 do {
2603 /* Disable link */
2604 reg = er32(PHY_CTRL);
2605 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
2606 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2607 ew32(PHY_CTRL, reg);
2610 * Call gig speed drop workaround on Gig disable before
2611 * accessing any PHY registers
2613 if (hw->mac.type == e1000_ich8lan)
2614 e1000e_gig_downshift_workaround_ich8lan(hw);
2616 /* Write VR power-down enable */
2617 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2618 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2619 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
2621 /* Read it back and test */
2622 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2623 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2624 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
2625 break;
2627 /* Issue PHY reset and repeat at most one more time */
2628 reg = er32(CTRL);
2629 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
2630 retry++;
2631 } while (retry);
2635 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
2636 * @hw: pointer to the HW structure
2638 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
2639 * LPLU, Gig disable, MDIC PHY reset):
2640 * 1) Set Kumeran Near-end loopback
2641 * 2) Clear Kumeran Near-end loopback
2642 * Should only be called for ICH8[m] devices with IGP_3 Phy.
2644 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
2646 s32 ret_val;
2647 u16 reg_data;
2649 if ((hw->mac.type != e1000_ich8lan) ||
2650 (hw->phy.type != e1000_phy_igp_3))
2651 return;
2653 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2654 &reg_data);
2655 if (ret_val)
2656 return;
2657 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
2658 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2659 reg_data);
2660 if (ret_val)
2661 return;
2662 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
2663 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2664 reg_data);
2668 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
2669 * @hw: pointer to the HW structure
2671 * During S0 to Sx transition, it is possible the link remains at gig
2672 * instead of negotiating to a lower speed. Before going to Sx, set
2673 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
2674 * to a lower speed.
2676 * Should only be called for applicable parts.
2678 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
2680 u32 phy_ctrl;
2682 switch (hw->mac.type) {
2683 case e1000_ich9lan:
2684 case e1000_ich10lan:
2685 case e1000_pchlan:
2686 phy_ctrl = er32(PHY_CTRL);
2687 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
2688 E1000_PHY_CTRL_GBE_DISABLE;
2689 ew32(PHY_CTRL, phy_ctrl);
2691 /* Workaround SWFLAG unexpectedly set during S0->Sx */
2692 if (hw->mac.type == e1000_pchlan)
2693 udelay(500);
2694 default:
2695 break;
2698 return;
2702 * e1000_cleanup_led_ich8lan - Restore the default LED operation
2703 * @hw: pointer to the HW structure
2705 * Return the LED back to the default configuration.
2707 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
2709 if (hw->phy.type == e1000_phy_ife)
2710 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
2712 ew32(LEDCTL, hw->mac.ledctl_default);
2713 return 0;
2717 * e1000_led_on_ich8lan - Turn LEDs on
2718 * @hw: pointer to the HW structure
2720 * Turn on the LEDs.
2722 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
2724 if (hw->phy.type == e1000_phy_ife)
2725 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2726 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
2728 ew32(LEDCTL, hw->mac.ledctl_mode2);
2729 return 0;
2733 * e1000_led_off_ich8lan - Turn LEDs off
2734 * @hw: pointer to the HW structure
2736 * Turn off the LEDs.
2738 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
2740 if (hw->phy.type == e1000_phy_ife)
2741 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2742 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
2744 ew32(LEDCTL, hw->mac.ledctl_mode1);
2745 return 0;
2749 * e1000_setup_led_pchlan - Configures SW controllable LED
2750 * @hw: pointer to the HW structure
2752 * This prepares the SW controllable LED for use.
2754 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
2756 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG,
2757 (u16)hw->mac.ledctl_mode1);
2761 * e1000_cleanup_led_pchlan - Restore the default LED operation
2762 * @hw: pointer to the HW structure
2764 * Return the LED back to the default configuration.
2766 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
2768 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG,
2769 (u16)hw->mac.ledctl_default);
2773 * e1000_led_on_pchlan - Turn LEDs on
2774 * @hw: pointer to the HW structure
2776 * Turn on the LEDs.
2778 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
2780 u16 data = (u16)hw->mac.ledctl_mode2;
2781 u32 i, led;
2784 * If no link, then turn LED on by setting the invert bit
2785 * for each LED that's mode is "link_up" in ledctl_mode2.
2787 if (!(er32(STATUS) & E1000_STATUS_LU)) {
2788 for (i = 0; i < 3; i++) {
2789 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
2790 if ((led & E1000_PHY_LED0_MODE_MASK) !=
2791 E1000_LEDCTL_MODE_LINK_UP)
2792 continue;
2793 if (led & E1000_PHY_LED0_IVRT)
2794 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
2795 else
2796 data |= (E1000_PHY_LED0_IVRT << (i * 5));
2800 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG, data);
2804 * e1000_led_off_pchlan - Turn LEDs off
2805 * @hw: pointer to the HW structure
2807 * Turn off the LEDs.
2809 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
2811 u16 data = (u16)hw->mac.ledctl_mode1;
2812 u32 i, led;
2815 * If no link, then turn LED off by clearing the invert bit
2816 * for each LED that's mode is "link_up" in ledctl_mode1.
2818 if (!(er32(STATUS) & E1000_STATUS_LU)) {
2819 for (i = 0; i < 3; i++) {
2820 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
2821 if ((led & E1000_PHY_LED0_MODE_MASK) !=
2822 E1000_LEDCTL_MODE_LINK_UP)
2823 continue;
2824 if (led & E1000_PHY_LED0_IVRT)
2825 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
2826 else
2827 data |= (E1000_PHY_LED0_IVRT << (i * 5));
2831 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG, data);
2835 * e1000_get_cfg_done_ich8lan - Read config done bit
2836 * @hw: pointer to the HW structure
2838 * Read the management control register for the config done bit for
2839 * completion status. NOTE: silicon which is EEPROM-less will fail trying
2840 * to read the config done bit, so an error is *ONLY* logged and returns
2841 * 0. If we were to return with error, EEPROM-less silicon
2842 * would not be able to be reset or change link.
2844 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
2846 u32 bank = 0;
2848 e1000e_get_cfg_done(hw);
2850 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
2851 if ((hw->mac.type != e1000_ich10lan) &&
2852 (hw->mac.type != e1000_pchlan)) {
2853 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
2854 (hw->phy.type == e1000_phy_igp_3)) {
2855 e1000e_phy_init_script_igp3(hw);
2857 } else {
2858 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
2859 /* Maybe we should do a basic PHY config */
2860 hw_dbg(hw, "EEPROM not present\n");
2861 return -E1000_ERR_CONFIG;
2865 return 0;
2869 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
2870 * @hw: pointer to the HW structure
2872 * Clears hardware counters specific to the silicon family and calls
2873 * clear_hw_cntrs_generic to clear all general purpose counters.
2875 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
2877 u32 temp;
2878 u16 phy_data;
2880 e1000e_clear_hw_cntrs_base(hw);
2882 temp = er32(ALGNERRC);
2883 temp = er32(RXERRC);
2884 temp = er32(TNCRS);
2885 temp = er32(CEXTERR);
2886 temp = er32(TSCTC);
2887 temp = er32(TSCTFC);
2889 temp = er32(MGTPRC);
2890 temp = er32(MGTPDC);
2891 temp = er32(MGTPTC);
2893 temp = er32(IAC);
2894 temp = er32(ICRXOC);
2896 /* Clear PHY statistics registers */
2897 if ((hw->phy.type == e1000_phy_82578) ||
2898 (hw->phy.type == e1000_phy_82577)) {
2899 hw->phy.ops.read_phy_reg(hw, HV_SCC_UPPER, &phy_data);
2900 hw->phy.ops.read_phy_reg(hw, HV_SCC_LOWER, &phy_data);
2901 hw->phy.ops.read_phy_reg(hw, HV_ECOL_UPPER, &phy_data);
2902 hw->phy.ops.read_phy_reg(hw, HV_ECOL_LOWER, &phy_data);
2903 hw->phy.ops.read_phy_reg(hw, HV_MCC_UPPER, &phy_data);
2904 hw->phy.ops.read_phy_reg(hw, HV_MCC_LOWER, &phy_data);
2905 hw->phy.ops.read_phy_reg(hw, HV_LATECOL_UPPER, &phy_data);
2906 hw->phy.ops.read_phy_reg(hw, HV_LATECOL_LOWER, &phy_data);
2907 hw->phy.ops.read_phy_reg(hw, HV_COLC_UPPER, &phy_data);
2908 hw->phy.ops.read_phy_reg(hw, HV_COLC_LOWER, &phy_data);
2909 hw->phy.ops.read_phy_reg(hw, HV_DC_UPPER, &phy_data);
2910 hw->phy.ops.read_phy_reg(hw, HV_DC_LOWER, &phy_data);
2911 hw->phy.ops.read_phy_reg(hw, HV_TNCRS_UPPER, &phy_data);
2912 hw->phy.ops.read_phy_reg(hw, HV_TNCRS_LOWER, &phy_data);
2916 static struct e1000_mac_operations ich8_mac_ops = {
2917 .id_led_init = e1000e_id_led_init,
2918 .check_mng_mode = e1000_check_mng_mode_ich8lan,
2919 .check_for_link = e1000e_check_for_copper_link,
2920 /* cleanup_led dependent on mac type */
2921 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
2922 .get_bus_info = e1000_get_bus_info_ich8lan,
2923 .get_link_up_info = e1000_get_link_up_info_ich8lan,
2924 /* led_on dependent on mac type */
2925 /* led_off dependent on mac type */
2926 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
2927 .reset_hw = e1000_reset_hw_ich8lan,
2928 .init_hw = e1000_init_hw_ich8lan,
2929 .setup_link = e1000_setup_link_ich8lan,
2930 .setup_physical_interface= e1000_setup_copper_link_ich8lan,
2931 /* id_led_init dependent on mac type */
2934 static struct e1000_phy_operations ich8_phy_ops = {
2935 .acquire_phy = e1000_acquire_swflag_ich8lan,
2936 .check_reset_block = e1000_check_reset_block_ich8lan,
2937 .commit_phy = NULL,
2938 .force_speed_duplex = e1000_phy_force_speed_duplex_ich8lan,
2939 .get_cfg_done = e1000_get_cfg_done_ich8lan,
2940 .get_cable_length = e1000e_get_cable_length_igp_2,
2941 .get_phy_info = e1000_get_phy_info_ich8lan,
2942 .read_phy_reg = e1000e_read_phy_reg_igp,
2943 .release_phy = e1000_release_swflag_ich8lan,
2944 .reset_phy = e1000_phy_hw_reset_ich8lan,
2945 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
2946 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
2947 .write_phy_reg = e1000e_write_phy_reg_igp,
2950 static struct e1000_nvm_operations ich8_nvm_ops = {
2951 .acquire_nvm = e1000_acquire_swflag_ich8lan,
2952 .read_nvm = e1000_read_nvm_ich8lan,
2953 .release_nvm = e1000_release_swflag_ich8lan,
2954 .update_nvm = e1000_update_nvm_checksum_ich8lan,
2955 .valid_led_default = e1000_valid_led_default_ich8lan,
2956 .validate_nvm = e1000_validate_nvm_checksum_ich8lan,
2957 .write_nvm = e1000_write_nvm_ich8lan,
2960 struct e1000_info e1000_ich8_info = {
2961 .mac = e1000_ich8lan,
2962 .flags = FLAG_HAS_WOL
2963 | FLAG_IS_ICH
2964 | FLAG_RX_CSUM_ENABLED
2965 | FLAG_HAS_CTRLEXT_ON_LOAD
2966 | FLAG_HAS_AMT
2967 | FLAG_HAS_FLASH
2968 | FLAG_APME_IN_WUC,
2969 .pba = 8,
2970 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
2971 .get_variants = e1000_get_variants_ich8lan,
2972 .mac_ops = &ich8_mac_ops,
2973 .phy_ops = &ich8_phy_ops,
2974 .nvm_ops = &ich8_nvm_ops,
2977 struct e1000_info e1000_ich9_info = {
2978 .mac = e1000_ich9lan,
2979 .flags = FLAG_HAS_JUMBO_FRAMES
2980 | FLAG_IS_ICH
2981 | FLAG_HAS_WOL
2982 | FLAG_RX_CSUM_ENABLED
2983 | FLAG_HAS_CTRLEXT_ON_LOAD
2984 | FLAG_HAS_AMT
2985 | FLAG_HAS_ERT
2986 | FLAG_HAS_FLASH
2987 | FLAG_APME_IN_WUC,
2988 .pba = 10,
2989 .max_hw_frame_size = DEFAULT_JUMBO,
2990 .get_variants = e1000_get_variants_ich8lan,
2991 .mac_ops = &ich8_mac_ops,
2992 .phy_ops = &ich8_phy_ops,
2993 .nvm_ops = &ich8_nvm_ops,
2996 struct e1000_info e1000_ich10_info = {
2997 .mac = e1000_ich10lan,
2998 .flags = FLAG_HAS_JUMBO_FRAMES
2999 | FLAG_IS_ICH
3000 | FLAG_HAS_WOL
3001 | FLAG_RX_CSUM_ENABLED
3002 | FLAG_HAS_CTRLEXT_ON_LOAD
3003 | FLAG_HAS_AMT
3004 | FLAG_HAS_ERT
3005 | FLAG_HAS_FLASH
3006 | FLAG_APME_IN_WUC,
3007 .pba = 10,
3008 .max_hw_frame_size = DEFAULT_JUMBO,
3009 .get_variants = e1000_get_variants_ich8lan,
3010 .mac_ops = &ich8_mac_ops,
3011 .phy_ops = &ich8_phy_ops,
3012 .nvm_ops = &ich8_nvm_ops,
3015 struct e1000_info e1000_pch_info = {
3016 .mac = e1000_pchlan,
3017 .flags = FLAG_IS_ICH
3018 | FLAG_HAS_WOL
3019 | FLAG_RX_CSUM_ENABLED
3020 | FLAG_HAS_CTRLEXT_ON_LOAD
3021 | FLAG_HAS_AMT
3022 | FLAG_HAS_FLASH
3023 | FLAG_HAS_JUMBO_FRAMES
3024 | FLAG_APME_IN_WUC,
3025 .pba = 26,
3026 .max_hw_frame_size = 4096,
3027 .get_variants = e1000_get_variants_ich8lan,
3028 .mac_ops = &ich8_mac_ops,
3029 .phy_ops = &ich8_phy_ops,
3030 .nvm_ops = &ich8_nvm_ops,