e1000e: add support for 82577/82578 GbE LOM parts
[linux-2.6/mini2440.git] / drivers / net / e1000e / 82571.c
blobc4b3f4fe91aee1a0bf27d611b23bb5896886400f
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82571EB Gigabit Ethernet Controller
31 * 82571EB Gigabit Ethernet Controller (Copper)
32 * 82571EB Gigabit Ethernet Controller (Fiber)
33 * 82571EB Dual Port Gigabit Mezzanine Adapter
34 * 82571EB Quad Port Gigabit Mezzanine Adapter
35 * 82571PT Gigabit PT Quad Port Server ExpressModule
36 * 82572EI Gigabit Ethernet Controller (Copper)
37 * 82572EI Gigabit Ethernet Controller (Fiber)
38 * 82572EI Gigabit Ethernet Controller
39 * 82573V Gigabit Ethernet Controller (Copper)
40 * 82573E Gigabit Ethernet Controller (Copper)
41 * 82573L Gigabit Ethernet Controller
42 * 82574L Gigabit Network Connection
43 * 82583V Gigabit Network Connection
46 #include <linux/netdevice.h>
47 #include <linux/delay.h>
48 #include <linux/pci.h>
50 #include "e1000.h"
52 #define ID_LED_RESERVED_F746 0xF746
53 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
54 (ID_LED_OFF1_ON2 << 8) | \
55 (ID_LED_DEF1_DEF2 << 4) | \
56 (ID_LED_DEF1_DEF2))
58 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
60 #define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
62 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
63 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
64 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
65 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
66 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
67 u16 words, u16 *data);
68 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
69 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
70 static s32 e1000_setup_link_82571(struct e1000_hw *hw);
71 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
72 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
73 static s32 e1000_led_on_82574(struct e1000_hw *hw);
75 /**
76 * e1000_init_phy_params_82571 - Init PHY func ptrs.
77 * @hw: pointer to the HW structure
79 * This is a function pointer entry point called by the api module.
80 **/
81 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
83 struct e1000_phy_info *phy = &hw->phy;
84 s32 ret_val;
86 if (hw->phy.media_type != e1000_media_type_copper) {
87 phy->type = e1000_phy_none;
88 return 0;
91 phy->addr = 1;
92 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
93 phy->reset_delay_us = 100;
95 switch (hw->mac.type) {
96 case e1000_82571:
97 case e1000_82572:
98 phy->type = e1000_phy_igp_2;
99 break;
100 case e1000_82573:
101 phy->type = e1000_phy_m88;
102 break;
103 case e1000_82574:
104 case e1000_82583:
105 phy->type = e1000_phy_bm;
106 break;
107 default:
108 return -E1000_ERR_PHY;
109 break;
112 /* This can only be done after all function pointers are setup. */
113 ret_val = e1000_get_phy_id_82571(hw);
115 /* Verify phy id */
116 switch (hw->mac.type) {
117 case e1000_82571:
118 case e1000_82572:
119 if (phy->id != IGP01E1000_I_PHY_ID)
120 return -E1000_ERR_PHY;
121 break;
122 case e1000_82573:
123 if (phy->id != M88E1111_I_PHY_ID)
124 return -E1000_ERR_PHY;
125 break;
126 case e1000_82574:
127 case e1000_82583:
128 if (phy->id != BME1000_E_PHY_ID_R2)
129 return -E1000_ERR_PHY;
130 break;
131 default:
132 return -E1000_ERR_PHY;
133 break;
136 return 0;
140 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
141 * @hw: pointer to the HW structure
143 * This is a function pointer entry point called by the api module.
145 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
147 struct e1000_nvm_info *nvm = &hw->nvm;
148 u32 eecd = er32(EECD);
149 u16 size;
151 nvm->opcode_bits = 8;
152 nvm->delay_usec = 1;
153 switch (nvm->override) {
154 case e1000_nvm_override_spi_large:
155 nvm->page_size = 32;
156 nvm->address_bits = 16;
157 break;
158 case e1000_nvm_override_spi_small:
159 nvm->page_size = 8;
160 nvm->address_bits = 8;
161 break;
162 default:
163 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
164 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
165 break;
168 switch (hw->mac.type) {
169 case e1000_82573:
170 case e1000_82574:
171 case e1000_82583:
172 if (((eecd >> 15) & 0x3) == 0x3) {
173 nvm->type = e1000_nvm_flash_hw;
174 nvm->word_size = 2048;
176 * Autonomous Flash update bit must be cleared due
177 * to Flash update issue.
179 eecd &= ~E1000_EECD_AUPDEN;
180 ew32(EECD, eecd);
181 break;
183 /* Fall Through */
184 default:
185 nvm->type = e1000_nvm_eeprom_spi;
186 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
187 E1000_EECD_SIZE_EX_SHIFT);
189 * Added to a constant, "size" becomes the left-shift value
190 * for setting word_size.
192 size += NVM_WORD_SIZE_BASE_SHIFT;
194 /* EEPROM access above 16k is unsupported */
195 if (size > 14)
196 size = 14;
197 nvm->word_size = 1 << size;
198 break;
201 return 0;
205 * e1000_init_mac_params_82571 - Init MAC func ptrs.
206 * @hw: pointer to the HW structure
208 * This is a function pointer entry point called by the api module.
210 static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
212 struct e1000_hw *hw = &adapter->hw;
213 struct e1000_mac_info *mac = &hw->mac;
214 struct e1000_mac_operations *func = &mac->ops;
216 /* Set media type */
217 switch (adapter->pdev->device) {
218 case E1000_DEV_ID_82571EB_FIBER:
219 case E1000_DEV_ID_82572EI_FIBER:
220 case E1000_DEV_ID_82571EB_QUAD_FIBER:
221 hw->phy.media_type = e1000_media_type_fiber;
222 break;
223 case E1000_DEV_ID_82571EB_SERDES:
224 case E1000_DEV_ID_82572EI_SERDES:
225 case E1000_DEV_ID_82571EB_SERDES_DUAL:
226 case E1000_DEV_ID_82571EB_SERDES_QUAD:
227 hw->phy.media_type = e1000_media_type_internal_serdes;
228 break;
229 default:
230 hw->phy.media_type = e1000_media_type_copper;
231 break;
234 /* Set mta register count */
235 mac->mta_reg_count = 128;
236 /* Set rar entry count */
237 mac->rar_entry_count = E1000_RAR_ENTRIES;
238 /* Set if manageability features are enabled. */
239 mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
241 /* check for link */
242 switch (hw->phy.media_type) {
243 case e1000_media_type_copper:
244 func->setup_physical_interface = e1000_setup_copper_link_82571;
245 func->check_for_link = e1000e_check_for_copper_link;
246 func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
247 break;
248 case e1000_media_type_fiber:
249 func->setup_physical_interface =
250 e1000_setup_fiber_serdes_link_82571;
251 func->check_for_link = e1000e_check_for_fiber_link;
252 func->get_link_up_info =
253 e1000e_get_speed_and_duplex_fiber_serdes;
254 break;
255 case e1000_media_type_internal_serdes:
256 func->setup_physical_interface =
257 e1000_setup_fiber_serdes_link_82571;
258 func->check_for_link = e1000_check_for_serdes_link_82571;
259 func->get_link_up_info =
260 e1000e_get_speed_and_duplex_fiber_serdes;
261 break;
262 default:
263 return -E1000_ERR_CONFIG;
264 break;
267 switch (hw->mac.type) {
268 case e1000_82574:
269 case e1000_82583:
270 func->check_mng_mode = e1000_check_mng_mode_82574;
271 func->led_on = e1000_led_on_82574;
272 break;
273 default:
274 func->check_mng_mode = e1000e_check_mng_mode_generic;
275 func->led_on = e1000e_led_on_generic;
276 break;
279 return 0;
282 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
284 struct e1000_hw *hw = &adapter->hw;
285 static int global_quad_port_a; /* global port a indication */
286 struct pci_dev *pdev = adapter->pdev;
287 u16 eeprom_data = 0;
288 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
289 s32 rc;
291 rc = e1000_init_mac_params_82571(adapter);
292 if (rc)
293 return rc;
295 rc = e1000_init_nvm_params_82571(hw);
296 if (rc)
297 return rc;
299 rc = e1000_init_phy_params_82571(hw);
300 if (rc)
301 return rc;
303 /* tag quad port adapters first, it's used below */
304 switch (pdev->device) {
305 case E1000_DEV_ID_82571EB_QUAD_COPPER:
306 case E1000_DEV_ID_82571EB_QUAD_FIBER:
307 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
308 case E1000_DEV_ID_82571PT_QUAD_COPPER:
309 adapter->flags |= FLAG_IS_QUAD_PORT;
310 /* mark the first port */
311 if (global_quad_port_a == 0)
312 adapter->flags |= FLAG_IS_QUAD_PORT_A;
313 /* Reset for multiple quad port adapters */
314 global_quad_port_a++;
315 if (global_quad_port_a == 4)
316 global_quad_port_a = 0;
317 break;
318 default:
319 break;
322 switch (adapter->hw.mac.type) {
323 case e1000_82571:
324 /* these dual ports don't have WoL on port B at all */
325 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
326 (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
327 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
328 (is_port_b))
329 adapter->flags &= ~FLAG_HAS_WOL;
330 /* quad ports only support WoL on port A */
331 if (adapter->flags & FLAG_IS_QUAD_PORT &&
332 (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
333 adapter->flags &= ~FLAG_HAS_WOL;
334 /* Does not support WoL on any port */
335 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
336 adapter->flags &= ~FLAG_HAS_WOL;
337 break;
339 case e1000_82573:
340 if (pdev->device == E1000_DEV_ID_82573L) {
341 if (e1000_read_nvm(&adapter->hw, NVM_INIT_3GIO_3, 1,
342 &eeprom_data) < 0)
343 break;
344 if (!(eeprom_data & NVM_WORD1A_ASPM_MASK)) {
345 adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
346 adapter->max_hw_frame_size = DEFAULT_JUMBO;
349 break;
350 default:
351 break;
354 return 0;
358 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
359 * @hw: pointer to the HW structure
361 * Reads the PHY registers and stores the PHY ID and possibly the PHY
362 * revision in the hardware structure.
364 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
366 struct e1000_phy_info *phy = &hw->phy;
367 s32 ret_val;
368 u16 phy_id = 0;
370 switch (hw->mac.type) {
371 case e1000_82571:
372 case e1000_82572:
374 * The 82571 firmware may still be configuring the PHY.
375 * In this case, we cannot access the PHY until the
376 * configuration is done. So we explicitly set the
377 * PHY ID.
379 phy->id = IGP01E1000_I_PHY_ID;
380 break;
381 case e1000_82573:
382 return e1000e_get_phy_id(hw);
383 break;
384 case e1000_82574:
385 case e1000_82583:
386 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
387 if (ret_val)
388 return ret_val;
390 phy->id = (u32)(phy_id << 16);
391 udelay(20);
392 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
393 if (ret_val)
394 return ret_val;
396 phy->id |= (u32)(phy_id);
397 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
398 break;
399 default:
400 return -E1000_ERR_PHY;
401 break;
404 return 0;
408 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
409 * @hw: pointer to the HW structure
411 * Acquire the HW semaphore to access the PHY or NVM
413 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
415 u32 swsm;
416 s32 timeout = hw->nvm.word_size + 1;
417 s32 i = 0;
419 /* Get the FW semaphore. */
420 for (i = 0; i < timeout; i++) {
421 swsm = er32(SWSM);
422 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
424 /* Semaphore acquired if bit latched */
425 if (er32(SWSM) & E1000_SWSM_SWESMBI)
426 break;
428 udelay(50);
431 if (i == timeout) {
432 /* Release semaphores */
433 e1000e_put_hw_semaphore(hw);
434 hw_dbg(hw, "Driver can't access the NVM\n");
435 return -E1000_ERR_NVM;
438 return 0;
442 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
443 * @hw: pointer to the HW structure
445 * Release hardware semaphore used to access the PHY or NVM
447 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
449 u32 swsm;
451 swsm = er32(SWSM);
453 swsm &= ~E1000_SWSM_SWESMBI;
455 ew32(SWSM, swsm);
459 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
460 * @hw: pointer to the HW structure
462 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
463 * Then for non-82573 hardware, set the EEPROM access request bit and wait
464 * for EEPROM access grant bit. If the access grant bit is not set, release
465 * hardware semaphore.
467 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
469 s32 ret_val;
471 ret_val = e1000_get_hw_semaphore_82571(hw);
472 if (ret_val)
473 return ret_val;
475 switch (hw->mac.type) {
476 case e1000_82573:
477 case e1000_82574:
478 case e1000_82583:
479 break;
480 default:
481 ret_val = e1000e_acquire_nvm(hw);
482 break;
485 if (ret_val)
486 e1000_put_hw_semaphore_82571(hw);
488 return ret_val;
492 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
493 * @hw: pointer to the HW structure
495 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
497 static void e1000_release_nvm_82571(struct e1000_hw *hw)
499 e1000e_release_nvm(hw);
500 e1000_put_hw_semaphore_82571(hw);
504 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
505 * @hw: pointer to the HW structure
506 * @offset: offset within the EEPROM to be written to
507 * @words: number of words to write
508 * @data: 16 bit word(s) to be written to the EEPROM
510 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
512 * If e1000e_update_nvm_checksum is not called after this function, the
513 * EEPROM will most likely contain an invalid checksum.
515 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
516 u16 *data)
518 s32 ret_val;
520 switch (hw->mac.type) {
521 case e1000_82573:
522 case e1000_82574:
523 case e1000_82583:
524 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
525 break;
526 case e1000_82571:
527 case e1000_82572:
528 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
529 break;
530 default:
531 ret_val = -E1000_ERR_NVM;
532 break;
535 return ret_val;
539 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
540 * @hw: pointer to the HW structure
542 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
543 * up to the checksum. Then calculates the EEPROM checksum and writes the
544 * value to the EEPROM.
546 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
548 u32 eecd;
549 s32 ret_val;
550 u16 i;
552 ret_val = e1000e_update_nvm_checksum_generic(hw);
553 if (ret_val)
554 return ret_val;
557 * If our nvm is an EEPROM, then we're done
558 * otherwise, commit the checksum to the flash NVM.
560 if (hw->nvm.type != e1000_nvm_flash_hw)
561 return ret_val;
563 /* Check for pending operations. */
564 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
565 msleep(1);
566 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
567 break;
570 if (i == E1000_FLASH_UPDATES)
571 return -E1000_ERR_NVM;
573 /* Reset the firmware if using STM opcode. */
574 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
576 * The enabling of and the actual reset must be done
577 * in two write cycles.
579 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
580 e1e_flush();
581 ew32(HICR, E1000_HICR_FW_RESET);
584 /* Commit the write to flash */
585 eecd = er32(EECD) | E1000_EECD_FLUPD;
586 ew32(EECD, eecd);
588 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
589 msleep(1);
590 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
591 break;
594 if (i == E1000_FLASH_UPDATES)
595 return -E1000_ERR_NVM;
597 return 0;
601 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
602 * @hw: pointer to the HW structure
604 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
605 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
607 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
609 if (hw->nvm.type == e1000_nvm_flash_hw)
610 e1000_fix_nvm_checksum_82571(hw);
612 return e1000e_validate_nvm_checksum_generic(hw);
616 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
617 * @hw: pointer to the HW structure
618 * @offset: offset within the EEPROM to be written to
619 * @words: number of words to write
620 * @data: 16 bit word(s) to be written to the EEPROM
622 * After checking for invalid values, poll the EEPROM to ensure the previous
623 * command has completed before trying to write the next word. After write
624 * poll for completion.
626 * If e1000e_update_nvm_checksum is not called after this function, the
627 * EEPROM will most likely contain an invalid checksum.
629 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
630 u16 words, u16 *data)
632 struct e1000_nvm_info *nvm = &hw->nvm;
633 u32 i;
634 u32 eewr = 0;
635 s32 ret_val = 0;
638 * A check for invalid values: offset too large, too many words,
639 * and not enough words.
641 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
642 (words == 0)) {
643 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
644 return -E1000_ERR_NVM;
647 for (i = 0; i < words; i++) {
648 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
649 ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
650 E1000_NVM_RW_REG_START;
652 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
653 if (ret_val)
654 break;
656 ew32(EEWR, eewr);
658 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
659 if (ret_val)
660 break;
663 return ret_val;
667 * e1000_get_cfg_done_82571 - Poll for configuration done
668 * @hw: pointer to the HW structure
670 * Reads the management control register for the config done bit to be set.
672 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
674 s32 timeout = PHY_CFG_TIMEOUT;
676 while (timeout) {
677 if (er32(EEMNGCTL) &
678 E1000_NVM_CFG_DONE_PORT_0)
679 break;
680 msleep(1);
681 timeout--;
683 if (!timeout) {
684 hw_dbg(hw, "MNG configuration cycle has not completed.\n");
685 return -E1000_ERR_RESET;
688 return 0;
692 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
693 * @hw: pointer to the HW structure
694 * @active: TRUE to enable LPLU, FALSE to disable
696 * Sets the LPLU D0 state according to the active flag. When activating LPLU
697 * this function also disables smart speed and vice versa. LPLU will not be
698 * activated unless the device autonegotiation advertisement meets standards
699 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
700 * pointer entry point only called by PHY setup routines.
702 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
704 struct e1000_phy_info *phy = &hw->phy;
705 s32 ret_val;
706 u16 data;
708 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
709 if (ret_val)
710 return ret_val;
712 if (active) {
713 data |= IGP02E1000_PM_D0_LPLU;
714 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
715 if (ret_val)
716 return ret_val;
718 /* When LPLU is enabled, we should disable SmartSpeed */
719 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
720 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
721 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
722 if (ret_val)
723 return ret_val;
724 } else {
725 data &= ~IGP02E1000_PM_D0_LPLU;
726 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
728 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
729 * during Dx states where the power conservation is most
730 * important. During driver activity we should enable
731 * SmartSpeed, so performance is maintained.
733 if (phy->smart_speed == e1000_smart_speed_on) {
734 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
735 &data);
736 if (ret_val)
737 return ret_val;
739 data |= IGP01E1000_PSCFR_SMART_SPEED;
740 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
741 data);
742 if (ret_val)
743 return ret_val;
744 } else if (phy->smart_speed == e1000_smart_speed_off) {
745 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
746 &data);
747 if (ret_val)
748 return ret_val;
750 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
751 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
752 data);
753 if (ret_val)
754 return ret_val;
758 return 0;
762 * e1000_reset_hw_82571 - Reset hardware
763 * @hw: pointer to the HW structure
765 * This resets the hardware into a known state. This is a
766 * function pointer entry point called by the api module.
768 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
770 u32 ctrl;
771 u32 extcnf_ctrl;
772 u32 ctrl_ext;
773 u32 icr;
774 s32 ret_val;
775 u16 i = 0;
778 * Prevent the PCI-E bus from sticking if there is no TLP connection
779 * on the last TLP read/write transaction when MAC is reset.
781 ret_val = e1000e_disable_pcie_master(hw);
782 if (ret_val)
783 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
785 hw_dbg(hw, "Masking off all interrupts\n");
786 ew32(IMC, 0xffffffff);
788 ew32(RCTL, 0);
789 ew32(TCTL, E1000_TCTL_PSP);
790 e1e_flush();
792 msleep(10);
795 * Must acquire the MDIO ownership before MAC reset.
796 * Ownership defaults to firmware after a reset.
798 switch (hw->mac.type) {
799 case e1000_82573:
800 case e1000_82574:
801 case e1000_82583:
802 extcnf_ctrl = er32(EXTCNF_CTRL);
803 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
805 do {
806 ew32(EXTCNF_CTRL, extcnf_ctrl);
807 extcnf_ctrl = er32(EXTCNF_CTRL);
809 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
810 break;
812 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
814 msleep(2);
815 i++;
816 } while (i < MDIO_OWNERSHIP_TIMEOUT);
817 break;
818 default:
819 break;
822 ctrl = er32(CTRL);
824 hw_dbg(hw, "Issuing a global reset to MAC\n");
825 ew32(CTRL, ctrl | E1000_CTRL_RST);
827 if (hw->nvm.type == e1000_nvm_flash_hw) {
828 udelay(10);
829 ctrl_ext = er32(CTRL_EXT);
830 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
831 ew32(CTRL_EXT, ctrl_ext);
832 e1e_flush();
835 ret_val = e1000e_get_auto_rd_done(hw);
836 if (ret_val)
837 /* We don't want to continue accessing MAC registers. */
838 return ret_val;
841 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
842 * Need to wait for Phy configuration completion before accessing
843 * NVM and Phy.
846 switch (hw->mac.type) {
847 case e1000_82573:
848 case e1000_82574:
849 case e1000_82583:
850 msleep(25);
851 break;
852 default:
853 break;
856 /* Clear any pending interrupt events. */
857 ew32(IMC, 0xffffffff);
858 icr = er32(ICR);
860 if (hw->mac.type == e1000_82571 &&
861 hw->dev_spec.e82571.alt_mac_addr_is_present)
862 e1000e_set_laa_state_82571(hw, true);
864 /* Reinitialize the 82571 serdes link state machine */
865 if (hw->phy.media_type == e1000_media_type_internal_serdes)
866 hw->mac.serdes_link_state = e1000_serdes_link_down;
868 return 0;
872 * e1000_init_hw_82571 - Initialize hardware
873 * @hw: pointer to the HW structure
875 * This inits the hardware readying it for operation.
877 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
879 struct e1000_mac_info *mac = &hw->mac;
880 u32 reg_data;
881 s32 ret_val;
882 u16 i;
883 u16 rar_count = mac->rar_entry_count;
885 e1000_initialize_hw_bits_82571(hw);
887 /* Initialize identification LED */
888 ret_val = e1000e_id_led_init(hw);
889 if (ret_val) {
890 hw_dbg(hw, "Error initializing identification LED\n");
891 return ret_val;
894 /* Disabling VLAN filtering */
895 hw_dbg(hw, "Initializing the IEEE VLAN\n");
896 e1000e_clear_vfta(hw);
898 /* Setup the receive address. */
900 * If, however, a locally administered address was assigned to the
901 * 82571, we must reserve a RAR for it to work around an issue where
902 * resetting one port will reload the MAC on the other port.
904 if (e1000e_get_laa_state_82571(hw))
905 rar_count--;
906 e1000e_init_rx_addrs(hw, rar_count);
908 /* Zero out the Multicast HASH table */
909 hw_dbg(hw, "Zeroing the MTA\n");
910 for (i = 0; i < mac->mta_reg_count; i++)
911 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
913 /* Setup link and flow control */
914 ret_val = e1000_setup_link_82571(hw);
916 /* Set the transmit descriptor write-back policy */
917 reg_data = er32(TXDCTL(0));
918 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
919 E1000_TXDCTL_FULL_TX_DESC_WB |
920 E1000_TXDCTL_COUNT_DESC;
921 ew32(TXDCTL(0), reg_data);
923 /* ...for both queues. */
924 switch (mac->type) {
925 case e1000_82573:
926 case e1000_82574:
927 case e1000_82583:
928 e1000e_enable_tx_pkt_filtering(hw);
929 reg_data = er32(GCR);
930 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
931 ew32(GCR, reg_data);
932 break;
933 default:
934 reg_data = er32(TXDCTL(1));
935 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
936 E1000_TXDCTL_FULL_TX_DESC_WB |
937 E1000_TXDCTL_COUNT_DESC;
938 ew32(TXDCTL(1), reg_data);
939 break;
943 * Clear all of the statistics registers (clear on read). It is
944 * important that we do this after we have tried to establish link
945 * because the symbol error count will increment wildly if there
946 * is no link.
948 e1000_clear_hw_cntrs_82571(hw);
950 return ret_val;
954 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
955 * @hw: pointer to the HW structure
957 * Initializes required hardware-dependent bits needed for normal operation.
959 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
961 u32 reg;
963 /* Transmit Descriptor Control 0 */
964 reg = er32(TXDCTL(0));
965 reg |= (1 << 22);
966 ew32(TXDCTL(0), reg);
968 /* Transmit Descriptor Control 1 */
969 reg = er32(TXDCTL(1));
970 reg |= (1 << 22);
971 ew32(TXDCTL(1), reg);
973 /* Transmit Arbitration Control 0 */
974 reg = er32(TARC(0));
975 reg &= ~(0xF << 27); /* 30:27 */
976 switch (hw->mac.type) {
977 case e1000_82571:
978 case e1000_82572:
979 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
980 break;
981 default:
982 break;
984 ew32(TARC(0), reg);
986 /* Transmit Arbitration Control 1 */
987 reg = er32(TARC(1));
988 switch (hw->mac.type) {
989 case e1000_82571:
990 case e1000_82572:
991 reg &= ~((1 << 29) | (1 << 30));
992 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
993 if (er32(TCTL) & E1000_TCTL_MULR)
994 reg &= ~(1 << 28);
995 else
996 reg |= (1 << 28);
997 ew32(TARC(1), reg);
998 break;
999 default:
1000 break;
1003 /* Device Control */
1004 switch (hw->mac.type) {
1005 case e1000_82573:
1006 case e1000_82574:
1007 case e1000_82583:
1008 reg = er32(CTRL);
1009 reg &= ~(1 << 29);
1010 ew32(CTRL, reg);
1011 break;
1012 default:
1013 break;
1016 /* Extended Device Control */
1017 switch (hw->mac.type) {
1018 case e1000_82573:
1019 case e1000_82574:
1020 case e1000_82583:
1021 reg = er32(CTRL_EXT);
1022 reg &= ~(1 << 23);
1023 reg |= (1 << 22);
1024 ew32(CTRL_EXT, reg);
1025 break;
1026 default:
1027 break;
1030 if (hw->mac.type == e1000_82571) {
1031 reg = er32(PBA_ECC);
1032 reg |= E1000_PBA_ECC_CORR_EN;
1033 ew32(PBA_ECC, reg);
1036 * Workaround for hardware errata.
1037 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1040 if ((hw->mac.type == e1000_82571) ||
1041 (hw->mac.type == e1000_82572)) {
1042 reg = er32(CTRL_EXT);
1043 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1044 ew32(CTRL_EXT, reg);
1048 /* PCI-Ex Control Registers */
1049 switch (hw->mac.type) {
1050 case e1000_82574:
1051 case e1000_82583:
1052 reg = er32(GCR);
1053 reg |= (1 << 22);
1054 ew32(GCR, reg);
1056 reg = er32(GCR2);
1057 reg |= 1;
1058 ew32(GCR2, reg);
1059 break;
1060 default:
1061 break;
1064 return;
1068 * e1000e_clear_vfta - Clear VLAN filter table
1069 * @hw: pointer to the HW structure
1071 * Clears the register array which contains the VLAN filter table by
1072 * setting all the values to 0.
1074 void e1000e_clear_vfta(struct e1000_hw *hw)
1076 u32 offset;
1077 u32 vfta_value = 0;
1078 u32 vfta_offset = 0;
1079 u32 vfta_bit_in_reg = 0;
1081 switch (hw->mac.type) {
1082 case e1000_82573:
1083 case e1000_82574:
1084 case e1000_82583:
1085 if (hw->mng_cookie.vlan_id != 0) {
1087 * The VFTA is a 4096b bit-field, each identifying
1088 * a single VLAN ID. The following operations
1089 * determine which 32b entry (i.e. offset) into the
1090 * array we want to set the VLAN ID (i.e. bit) of
1091 * the manageability unit.
1093 vfta_offset = (hw->mng_cookie.vlan_id >>
1094 E1000_VFTA_ENTRY_SHIFT) &
1095 E1000_VFTA_ENTRY_MASK;
1096 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1097 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1099 break;
1100 default:
1101 break;
1103 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1105 * If the offset we want to clear is the same offset of the
1106 * manageability VLAN ID, then clear all bits except that of
1107 * the manageability unit.
1109 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1110 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1111 e1e_flush();
1116 * e1000_check_mng_mode_82574 - Check manageability is enabled
1117 * @hw: pointer to the HW structure
1119 * Reads the NVM Initialization Control Word 2 and returns true
1120 * (>0) if any manageability is enabled, else false (0).
1122 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1124 u16 data;
1126 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1127 return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1131 * e1000_led_on_82574 - Turn LED on
1132 * @hw: pointer to the HW structure
1134 * Turn LED on.
1136 static s32 e1000_led_on_82574(struct e1000_hw *hw)
1138 u32 ctrl;
1139 u32 i;
1141 ctrl = hw->mac.ledctl_mode2;
1142 if (!(E1000_STATUS_LU & er32(STATUS))) {
1144 * If no link, then turn LED on by setting the invert bit
1145 * for each LED that's "on" (0x0E) in ledctl_mode2.
1147 for (i = 0; i < 4; i++)
1148 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1149 E1000_LEDCTL_MODE_LED_ON)
1150 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1152 ew32(LEDCTL, ctrl);
1154 return 0;
1158 * e1000_update_mc_addr_list_82571 - Update Multicast addresses
1159 * @hw: pointer to the HW structure
1160 * @mc_addr_list: array of multicast addresses to program
1161 * @mc_addr_count: number of multicast addresses to program
1162 * @rar_used_count: the first RAR register free to program
1163 * @rar_count: total number of supported Receive Address Registers
1165 * Updates the Receive Address Registers and Multicast Table Array.
1166 * The caller must have a packed mc_addr_list of multicast addresses.
1167 * The parameter rar_count will usually be hw->mac.rar_entry_count
1168 * unless there are workarounds that change this.
1170 static void e1000_update_mc_addr_list_82571(struct e1000_hw *hw,
1171 u8 *mc_addr_list,
1172 u32 mc_addr_count,
1173 u32 rar_used_count,
1174 u32 rar_count)
1176 if (e1000e_get_laa_state_82571(hw))
1177 rar_count--;
1179 e1000e_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count,
1180 rar_used_count, rar_count);
1184 * e1000_setup_link_82571 - Setup flow control and link settings
1185 * @hw: pointer to the HW structure
1187 * Determines which flow control settings to use, then configures flow
1188 * control. Calls the appropriate media-specific link configuration
1189 * function. Assuming the adapter has a valid link partner, a valid link
1190 * should be established. Assumes the hardware has previously been reset
1191 * and the transmitter and receiver are not enabled.
1193 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1196 * 82573 does not have a word in the NVM to determine
1197 * the default flow control setting, so we explicitly
1198 * set it to full.
1200 switch (hw->mac.type) {
1201 case e1000_82573:
1202 case e1000_82574:
1203 case e1000_82583:
1204 if (hw->fc.requested_mode == e1000_fc_default)
1205 hw->fc.requested_mode = e1000_fc_full;
1206 break;
1207 default:
1208 break;
1211 return e1000e_setup_link(hw);
1215 * e1000_setup_copper_link_82571 - Configure copper link settings
1216 * @hw: pointer to the HW structure
1218 * Configures the link for auto-neg or forced speed and duplex. Then we check
1219 * for link, once link is established calls to configure collision distance
1220 * and flow control are called.
1222 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1224 u32 ctrl;
1225 u32 led_ctrl;
1226 s32 ret_val;
1228 ctrl = er32(CTRL);
1229 ctrl |= E1000_CTRL_SLU;
1230 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1231 ew32(CTRL, ctrl);
1233 switch (hw->phy.type) {
1234 case e1000_phy_m88:
1235 case e1000_phy_bm:
1236 ret_val = e1000e_copper_link_setup_m88(hw);
1237 break;
1238 case e1000_phy_igp_2:
1239 ret_val = e1000e_copper_link_setup_igp(hw);
1240 /* Setup activity LED */
1241 led_ctrl = er32(LEDCTL);
1242 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1243 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1244 ew32(LEDCTL, led_ctrl);
1245 break;
1246 default:
1247 return -E1000_ERR_PHY;
1248 break;
1251 if (ret_val)
1252 return ret_val;
1254 ret_val = e1000e_setup_copper_link(hw);
1256 return ret_val;
1260 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1261 * @hw: pointer to the HW structure
1263 * Configures collision distance and flow control for fiber and serdes links.
1264 * Upon successful setup, poll for link.
1266 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1268 switch (hw->mac.type) {
1269 case e1000_82571:
1270 case e1000_82572:
1272 * If SerDes loopback mode is entered, there is no form
1273 * of reset to take the adapter out of that mode. So we
1274 * have to explicitly take the adapter out of loopback
1275 * mode. This prevents drivers from twiddling their thumbs
1276 * if another tool failed to take it out of loopback mode.
1278 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1279 break;
1280 default:
1281 break;
1284 return e1000e_setup_fiber_serdes_link(hw);
1288 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1289 * @hw: pointer to the HW structure
1291 * Checks for link up on the hardware. If link is not up and we have
1292 * a signal, then we need to force link up.
1294 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1296 struct e1000_mac_info *mac = &hw->mac;
1297 u32 rxcw;
1298 u32 ctrl;
1299 u32 status;
1300 s32 ret_val = 0;
1302 ctrl = er32(CTRL);
1303 status = er32(STATUS);
1304 rxcw = er32(RXCW);
1306 if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1308 /* Receiver is synchronized with no invalid bits. */
1309 switch (mac->serdes_link_state) {
1310 case e1000_serdes_link_autoneg_complete:
1311 if (!(status & E1000_STATUS_LU)) {
1313 * We have lost link, retry autoneg before
1314 * reporting link failure
1316 mac->serdes_link_state =
1317 e1000_serdes_link_autoneg_progress;
1318 hw_dbg(hw, "AN_UP -> AN_PROG\n");
1320 break;
1322 case e1000_serdes_link_forced_up:
1324 * If we are receiving /C/ ordered sets, re-enable
1325 * auto-negotiation in the TXCW register and disable
1326 * forced link in the Device Control register in an
1327 * attempt to auto-negotiate with our link partner.
1329 if (rxcw & E1000_RXCW_C) {
1330 /* Enable autoneg, and unforce link up */
1331 ew32(TXCW, mac->txcw);
1332 ew32(CTRL,
1333 (ctrl & ~E1000_CTRL_SLU));
1334 mac->serdes_link_state =
1335 e1000_serdes_link_autoneg_progress;
1336 hw_dbg(hw, "FORCED_UP -> AN_PROG\n");
1338 break;
1340 case e1000_serdes_link_autoneg_progress:
1342 * If the LU bit is set in the STATUS register,
1343 * autoneg has completed sucessfully. If not,
1344 * try foring the link because the far end may be
1345 * available but not capable of autonegotiation.
1347 if (status & E1000_STATUS_LU) {
1348 mac->serdes_link_state =
1349 e1000_serdes_link_autoneg_complete;
1350 hw_dbg(hw, "AN_PROG -> AN_UP\n");
1351 } else {
1353 * Disable autoneg, force link up and
1354 * full duplex, and change state to forced
1356 ew32(TXCW,
1357 (mac->txcw & ~E1000_TXCW_ANE));
1358 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1359 ew32(CTRL, ctrl);
1361 /* Configure Flow Control after link up. */
1362 ret_val =
1363 e1000e_config_fc_after_link_up(hw);
1364 if (ret_val) {
1365 hw_dbg(hw, "Error config flow control\n");
1366 break;
1368 mac->serdes_link_state =
1369 e1000_serdes_link_forced_up;
1370 hw_dbg(hw, "AN_PROG -> FORCED_UP\n");
1372 mac->serdes_has_link = true;
1373 break;
1375 case e1000_serdes_link_down:
1376 default:
1377 /* The link was down but the receiver has now gained
1378 * valid sync, so lets see if we can bring the link
1379 * up. */
1380 ew32(TXCW, mac->txcw);
1381 ew32(CTRL,
1382 (ctrl & ~E1000_CTRL_SLU));
1383 mac->serdes_link_state =
1384 e1000_serdes_link_autoneg_progress;
1385 hw_dbg(hw, "DOWN -> AN_PROG\n");
1386 break;
1388 } else {
1389 if (!(rxcw & E1000_RXCW_SYNCH)) {
1390 mac->serdes_has_link = false;
1391 mac->serdes_link_state = e1000_serdes_link_down;
1392 hw_dbg(hw, "ANYSTATE -> DOWN\n");
1393 } else {
1395 * We have sync, and can tolerate one
1396 * invalid (IV) codeword before declaring
1397 * link down, so reread to look again
1399 udelay(10);
1400 rxcw = er32(RXCW);
1401 if (rxcw & E1000_RXCW_IV) {
1402 mac->serdes_link_state = e1000_serdes_link_down;
1403 mac->serdes_has_link = false;
1404 hw_dbg(hw, "ANYSTATE -> DOWN\n");
1409 return ret_val;
1413 * e1000_valid_led_default_82571 - Verify a valid default LED config
1414 * @hw: pointer to the HW structure
1415 * @data: pointer to the NVM (EEPROM)
1417 * Read the EEPROM for the current default LED configuration. If the
1418 * LED configuration is not valid, set to a valid LED configuration.
1420 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1422 s32 ret_val;
1424 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1425 if (ret_val) {
1426 hw_dbg(hw, "NVM Read Error\n");
1427 return ret_val;
1430 switch (hw->mac.type) {
1431 case e1000_82573:
1432 case e1000_82574:
1433 case e1000_82583:
1434 if (*data == ID_LED_RESERVED_F746)
1435 *data = ID_LED_DEFAULT_82573;
1436 break;
1437 default:
1438 if (*data == ID_LED_RESERVED_0000 ||
1439 *data == ID_LED_RESERVED_FFFF)
1440 *data = ID_LED_DEFAULT;
1441 break;
1444 return 0;
1448 * e1000e_get_laa_state_82571 - Get locally administered address state
1449 * @hw: pointer to the HW structure
1451 * Retrieve and return the current locally administered address state.
1453 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1455 if (hw->mac.type != e1000_82571)
1456 return 0;
1458 return hw->dev_spec.e82571.laa_is_present;
1462 * e1000e_set_laa_state_82571 - Set locally administered address state
1463 * @hw: pointer to the HW structure
1464 * @state: enable/disable locally administered address
1466 * Enable/Disable the current locally administers address state.
1468 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1470 if (hw->mac.type != e1000_82571)
1471 return;
1473 hw->dev_spec.e82571.laa_is_present = state;
1475 /* If workaround is activated... */
1476 if (state)
1478 * Hold a copy of the LAA in RAR[14] This is done so that
1479 * between the time RAR[0] gets clobbered and the time it
1480 * gets fixed, the actual LAA is in one of the RARs and no
1481 * incoming packets directed to this port are dropped.
1482 * Eventually the LAA will be in RAR[0] and RAR[14].
1484 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1488 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1489 * @hw: pointer to the HW structure
1491 * Verifies that the EEPROM has completed the update. After updating the
1492 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1493 * the checksum fix is not implemented, we need to set the bit and update
1494 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1495 * we need to return bad checksum.
1497 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1499 struct e1000_nvm_info *nvm = &hw->nvm;
1500 s32 ret_val;
1501 u16 data;
1503 if (nvm->type != e1000_nvm_flash_hw)
1504 return 0;
1507 * Check bit 4 of word 10h. If it is 0, firmware is done updating
1508 * 10h-12h. Checksum may need to be fixed.
1510 ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1511 if (ret_val)
1512 return ret_val;
1514 if (!(data & 0x10)) {
1516 * Read 0x23 and check bit 15. This bit is a 1
1517 * when the checksum has already been fixed. If
1518 * the checksum is still wrong and this bit is a
1519 * 1, we need to return bad checksum. Otherwise,
1520 * we need to set this bit to a 1 and update the
1521 * checksum.
1523 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1524 if (ret_val)
1525 return ret_val;
1527 if (!(data & 0x8000)) {
1528 data |= 0x8000;
1529 ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1530 if (ret_val)
1531 return ret_val;
1532 ret_val = e1000e_update_nvm_checksum(hw);
1536 return 0;
1540 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1541 * @hw: pointer to the HW structure
1543 * Clears the hardware counters by reading the counter registers.
1545 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1547 u32 temp;
1549 e1000e_clear_hw_cntrs_base(hw);
1551 temp = er32(PRC64);
1552 temp = er32(PRC127);
1553 temp = er32(PRC255);
1554 temp = er32(PRC511);
1555 temp = er32(PRC1023);
1556 temp = er32(PRC1522);
1557 temp = er32(PTC64);
1558 temp = er32(PTC127);
1559 temp = er32(PTC255);
1560 temp = er32(PTC511);
1561 temp = er32(PTC1023);
1562 temp = er32(PTC1522);
1564 temp = er32(ALGNERRC);
1565 temp = er32(RXERRC);
1566 temp = er32(TNCRS);
1567 temp = er32(CEXTERR);
1568 temp = er32(TSCTC);
1569 temp = er32(TSCTFC);
1571 temp = er32(MGTPRC);
1572 temp = er32(MGTPDC);
1573 temp = er32(MGTPTC);
1575 temp = er32(IAC);
1576 temp = er32(ICRXOC);
1578 temp = er32(ICRXPTC);
1579 temp = er32(ICRXATC);
1580 temp = er32(ICTXPTC);
1581 temp = er32(ICTXATC);
1582 temp = er32(ICTXQEC);
1583 temp = er32(ICTXQMTC);
1584 temp = er32(ICRXDMTC);
1587 static struct e1000_mac_operations e82571_mac_ops = {
1588 /* .check_mng_mode: mac type dependent */
1589 /* .check_for_link: media type dependent */
1590 .id_led_init = e1000e_id_led_init,
1591 .cleanup_led = e1000e_cleanup_led_generic,
1592 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
1593 .get_bus_info = e1000e_get_bus_info_pcie,
1594 /* .get_link_up_info: media type dependent */
1595 /* .led_on: mac type dependent */
1596 .led_off = e1000e_led_off_generic,
1597 .update_mc_addr_list = e1000_update_mc_addr_list_82571,
1598 .reset_hw = e1000_reset_hw_82571,
1599 .init_hw = e1000_init_hw_82571,
1600 .setup_link = e1000_setup_link_82571,
1601 /* .setup_physical_interface: media type dependent */
1602 .setup_led = e1000e_setup_led_generic,
1605 static struct e1000_phy_operations e82_phy_ops_igp = {
1606 .acquire_phy = e1000_get_hw_semaphore_82571,
1607 .check_reset_block = e1000e_check_reset_block_generic,
1608 .commit_phy = NULL,
1609 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
1610 .get_cfg_done = e1000_get_cfg_done_82571,
1611 .get_cable_length = e1000e_get_cable_length_igp_2,
1612 .get_phy_info = e1000e_get_phy_info_igp,
1613 .read_phy_reg = e1000e_read_phy_reg_igp,
1614 .release_phy = e1000_put_hw_semaphore_82571,
1615 .reset_phy = e1000e_phy_hw_reset_generic,
1616 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1617 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1618 .write_phy_reg = e1000e_write_phy_reg_igp,
1619 .cfg_on_link_up = NULL,
1622 static struct e1000_phy_operations e82_phy_ops_m88 = {
1623 .acquire_phy = e1000_get_hw_semaphore_82571,
1624 .check_reset_block = e1000e_check_reset_block_generic,
1625 .commit_phy = e1000e_phy_sw_reset,
1626 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1627 .get_cfg_done = e1000e_get_cfg_done,
1628 .get_cable_length = e1000e_get_cable_length_m88,
1629 .get_phy_info = e1000e_get_phy_info_m88,
1630 .read_phy_reg = e1000e_read_phy_reg_m88,
1631 .release_phy = e1000_put_hw_semaphore_82571,
1632 .reset_phy = e1000e_phy_hw_reset_generic,
1633 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1634 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1635 .write_phy_reg = e1000e_write_phy_reg_m88,
1636 .cfg_on_link_up = NULL,
1639 static struct e1000_phy_operations e82_phy_ops_bm = {
1640 .acquire_phy = e1000_get_hw_semaphore_82571,
1641 .check_reset_block = e1000e_check_reset_block_generic,
1642 .commit_phy = e1000e_phy_sw_reset,
1643 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1644 .get_cfg_done = e1000e_get_cfg_done,
1645 .get_cable_length = e1000e_get_cable_length_m88,
1646 .get_phy_info = e1000e_get_phy_info_m88,
1647 .read_phy_reg = e1000e_read_phy_reg_bm2,
1648 .release_phy = e1000_put_hw_semaphore_82571,
1649 .reset_phy = e1000e_phy_hw_reset_generic,
1650 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1651 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1652 .write_phy_reg = e1000e_write_phy_reg_bm2,
1653 .cfg_on_link_up = NULL,
1656 static struct e1000_nvm_operations e82571_nvm_ops = {
1657 .acquire_nvm = e1000_acquire_nvm_82571,
1658 .read_nvm = e1000e_read_nvm_eerd,
1659 .release_nvm = e1000_release_nvm_82571,
1660 .update_nvm = e1000_update_nvm_checksum_82571,
1661 .valid_led_default = e1000_valid_led_default_82571,
1662 .validate_nvm = e1000_validate_nvm_checksum_82571,
1663 .write_nvm = e1000_write_nvm_82571,
1666 struct e1000_info e1000_82571_info = {
1667 .mac = e1000_82571,
1668 .flags = FLAG_HAS_HW_VLAN_FILTER
1669 | FLAG_HAS_JUMBO_FRAMES
1670 | FLAG_HAS_WOL
1671 | FLAG_APME_IN_CTRL3
1672 | FLAG_RX_CSUM_ENABLED
1673 | FLAG_HAS_CTRLEXT_ON_LOAD
1674 | FLAG_HAS_SMART_POWER_DOWN
1675 | FLAG_RESET_OVERWRITES_LAA /* errata */
1676 | FLAG_TARC_SPEED_MODE_BIT /* errata */
1677 | FLAG_APME_CHECK_PORT_B,
1678 .pba = 38,
1679 .max_hw_frame_size = DEFAULT_JUMBO,
1680 .get_variants = e1000_get_variants_82571,
1681 .mac_ops = &e82571_mac_ops,
1682 .phy_ops = &e82_phy_ops_igp,
1683 .nvm_ops = &e82571_nvm_ops,
1686 struct e1000_info e1000_82572_info = {
1687 .mac = e1000_82572,
1688 .flags = FLAG_HAS_HW_VLAN_FILTER
1689 | FLAG_HAS_JUMBO_FRAMES
1690 | FLAG_HAS_WOL
1691 | FLAG_APME_IN_CTRL3
1692 | FLAG_RX_CSUM_ENABLED
1693 | FLAG_HAS_CTRLEXT_ON_LOAD
1694 | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1695 .pba = 38,
1696 .max_hw_frame_size = DEFAULT_JUMBO,
1697 .get_variants = e1000_get_variants_82571,
1698 .mac_ops = &e82571_mac_ops,
1699 .phy_ops = &e82_phy_ops_igp,
1700 .nvm_ops = &e82571_nvm_ops,
1703 struct e1000_info e1000_82573_info = {
1704 .mac = e1000_82573,
1705 .flags = FLAG_HAS_HW_VLAN_FILTER
1706 | FLAG_HAS_JUMBO_FRAMES
1707 | FLAG_HAS_WOL
1708 | FLAG_APME_IN_CTRL3
1709 | FLAG_RX_CSUM_ENABLED
1710 | FLAG_HAS_SMART_POWER_DOWN
1711 | FLAG_HAS_AMT
1712 | FLAG_HAS_ERT
1713 | FLAG_HAS_SWSM_ON_LOAD,
1714 .pba = 20,
1715 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
1716 .get_variants = e1000_get_variants_82571,
1717 .mac_ops = &e82571_mac_ops,
1718 .phy_ops = &e82_phy_ops_m88,
1719 .nvm_ops = &e82571_nvm_ops,
1722 struct e1000_info e1000_82574_info = {
1723 .mac = e1000_82574,
1724 .flags = FLAG_HAS_HW_VLAN_FILTER
1725 | FLAG_HAS_MSIX
1726 | FLAG_HAS_JUMBO_FRAMES
1727 | FLAG_HAS_WOL
1728 | FLAG_APME_IN_CTRL3
1729 | FLAG_RX_CSUM_ENABLED
1730 | FLAG_HAS_SMART_POWER_DOWN
1731 | FLAG_HAS_AMT
1732 | FLAG_HAS_CTRLEXT_ON_LOAD,
1733 .pba = 20,
1734 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
1735 .get_variants = e1000_get_variants_82571,
1736 .mac_ops = &e82571_mac_ops,
1737 .phy_ops = &e82_phy_ops_bm,
1738 .nvm_ops = &e82571_nvm_ops,
1741 struct e1000_info e1000_82583_info = {
1742 .mac = e1000_82583,
1743 .flags = FLAG_HAS_HW_VLAN_FILTER
1744 | FLAG_HAS_WOL
1745 | FLAG_APME_IN_CTRL3
1746 | FLAG_RX_CSUM_ENABLED
1747 | FLAG_HAS_SMART_POWER_DOWN
1748 | FLAG_HAS_AMT
1749 | FLAG_HAS_CTRLEXT_ON_LOAD,
1750 .pba = 20,
1751 .max_hw_frame_size = DEFAULT_JUMBO,
1752 .get_variants = e1000_get_variants_82571,
1753 .mac_ops = &e82571_mac_ops,
1754 .phy_ops = &e82_phy_ops_bm,
1755 .nvm_ops = &e82571_nvm_ops,