4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/acct.h>
18 #include <linux/capability.h>
19 #include <linux/cpumask.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/security.h>
26 #include <linux/mount.h>
27 #include <linux/ramfs.h>
28 #include <linux/log2.h>
29 #include <linux/idr.h>
30 #include <linux/fs_struct.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
36 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
37 #define HASH_SIZE (1UL << HASH_SHIFT)
39 /* spinlock for vfsmount related operations, inplace of dcache_lock */
40 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(vfsmount_lock
);
43 static DEFINE_IDA(mnt_id_ida
);
44 static DEFINE_IDA(mnt_group_ida
);
46 static struct list_head
*mount_hashtable __read_mostly
;
47 static struct kmem_cache
*mnt_cache __read_mostly
;
48 static struct rw_semaphore namespace_sem
;
51 struct kobject
*fs_kobj
;
52 EXPORT_SYMBOL_GPL(fs_kobj
);
54 static inline unsigned long hash(struct vfsmount
*mnt
, struct dentry
*dentry
)
56 unsigned long tmp
= ((unsigned long)mnt
/ L1_CACHE_BYTES
);
57 tmp
+= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
58 tmp
= tmp
+ (tmp
>> HASH_SHIFT
);
59 return tmp
& (HASH_SIZE
- 1);
62 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
64 /* allocation is serialized by namespace_sem */
65 static int mnt_alloc_id(struct vfsmount
*mnt
)
70 ida_pre_get(&mnt_id_ida
, GFP_KERNEL
);
71 spin_lock(&vfsmount_lock
);
72 res
= ida_get_new(&mnt_id_ida
, &mnt
->mnt_id
);
73 spin_unlock(&vfsmount_lock
);
80 static void mnt_free_id(struct vfsmount
*mnt
)
82 spin_lock(&vfsmount_lock
);
83 ida_remove(&mnt_id_ida
, mnt
->mnt_id
);
84 spin_unlock(&vfsmount_lock
);
88 * Allocate a new peer group ID
90 * mnt_group_ida is protected by namespace_sem
92 static int mnt_alloc_group_id(struct vfsmount
*mnt
)
94 if (!ida_pre_get(&mnt_group_ida
, GFP_KERNEL
))
97 return ida_get_new_above(&mnt_group_ida
, 1, &mnt
->mnt_group_id
);
101 * Release a peer group ID
103 void mnt_release_group_id(struct vfsmount
*mnt
)
105 ida_remove(&mnt_group_ida
, mnt
->mnt_group_id
);
106 mnt
->mnt_group_id
= 0;
109 struct vfsmount
*alloc_vfsmnt(const char *name
)
111 struct vfsmount
*mnt
= kmem_cache_zalloc(mnt_cache
, GFP_KERNEL
);
115 err
= mnt_alloc_id(mnt
);
120 mnt
->mnt_devname
= kstrdup(name
, GFP_KERNEL
);
121 if (!mnt
->mnt_devname
)
125 atomic_set(&mnt
->mnt_count
, 1);
126 INIT_LIST_HEAD(&mnt
->mnt_hash
);
127 INIT_LIST_HEAD(&mnt
->mnt_child
);
128 INIT_LIST_HEAD(&mnt
->mnt_mounts
);
129 INIT_LIST_HEAD(&mnt
->mnt_list
);
130 INIT_LIST_HEAD(&mnt
->mnt_expire
);
131 INIT_LIST_HEAD(&mnt
->mnt_share
);
132 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
133 INIT_LIST_HEAD(&mnt
->mnt_slave
);
134 atomic_set(&mnt
->__mnt_writers
, 0);
141 kmem_cache_free(mnt_cache
, mnt
);
146 * Most r/o checks on a fs are for operations that take
147 * discrete amounts of time, like a write() or unlink().
148 * We must keep track of when those operations start
149 * (for permission checks) and when they end, so that
150 * we can determine when writes are able to occur to
154 * __mnt_is_readonly: check whether a mount is read-only
155 * @mnt: the mount to check for its write status
157 * This shouldn't be used directly ouside of the VFS.
158 * It does not guarantee that the filesystem will stay
159 * r/w, just that it is right *now*. This can not and
160 * should not be used in place of IS_RDONLY(inode).
161 * mnt_want/drop_write() will _keep_ the filesystem
164 int __mnt_is_readonly(struct vfsmount
*mnt
)
166 if (mnt
->mnt_flags
& MNT_READONLY
)
168 if (mnt
->mnt_sb
->s_flags
& MS_RDONLY
)
172 EXPORT_SYMBOL_GPL(__mnt_is_readonly
);
176 * If holding multiple instances of this lock, they
177 * must be ordered by cpu number.
180 struct lock_class_key lock_class
; /* compiles out with !lockdep */
182 struct vfsmount
*mnt
;
183 } ____cacheline_aligned_in_smp
;
184 static DEFINE_PER_CPU(struct mnt_writer
, mnt_writers
);
186 static int __init
init_mnt_writers(void)
189 for_each_possible_cpu(cpu
) {
190 struct mnt_writer
*writer
= &per_cpu(mnt_writers
, cpu
);
191 spin_lock_init(&writer
->lock
);
192 lockdep_set_class(&writer
->lock
, &writer
->lock_class
);
197 fs_initcall(init_mnt_writers
);
199 static void unlock_mnt_writers(void)
202 struct mnt_writer
*cpu_writer
;
204 for_each_possible_cpu(cpu
) {
205 cpu_writer
= &per_cpu(mnt_writers
, cpu
);
206 spin_unlock(&cpu_writer
->lock
);
210 static inline void __clear_mnt_count(struct mnt_writer
*cpu_writer
)
212 if (!cpu_writer
->mnt
)
215 * This is in case anyone ever leaves an invalid,
216 * old ->mnt and a count of 0.
218 if (!cpu_writer
->count
)
220 atomic_add(cpu_writer
->count
, &cpu_writer
->mnt
->__mnt_writers
);
221 cpu_writer
->count
= 0;
224 * must hold cpu_writer->lock
226 static inline void use_cpu_writer_for_mount(struct mnt_writer
*cpu_writer
,
227 struct vfsmount
*mnt
)
229 if (cpu_writer
->mnt
== mnt
)
231 __clear_mnt_count(cpu_writer
);
232 cpu_writer
->mnt
= mnt
;
236 * Most r/o checks on a fs are for operations that take
237 * discrete amounts of time, like a write() or unlink().
238 * We must keep track of when those operations start
239 * (for permission checks) and when they end, so that
240 * we can determine when writes are able to occur to
244 * mnt_want_write - get write access to a mount
245 * @mnt: the mount on which to take a write
247 * This tells the low-level filesystem that a write is
248 * about to be performed to it, and makes sure that
249 * writes are allowed before returning success. When
250 * the write operation is finished, mnt_drop_write()
251 * must be called. This is effectively a refcount.
253 int mnt_want_write(struct vfsmount
*mnt
)
256 struct mnt_writer
*cpu_writer
;
258 cpu_writer
= &get_cpu_var(mnt_writers
);
259 spin_lock(&cpu_writer
->lock
);
260 if (__mnt_is_readonly(mnt
)) {
264 use_cpu_writer_for_mount(cpu_writer
, mnt
);
267 spin_unlock(&cpu_writer
->lock
);
268 put_cpu_var(mnt_writers
);
271 EXPORT_SYMBOL_GPL(mnt_want_write
);
273 static void lock_mnt_writers(void)
276 struct mnt_writer
*cpu_writer
;
278 for_each_possible_cpu(cpu
) {
279 cpu_writer
= &per_cpu(mnt_writers
, cpu
);
280 spin_lock(&cpu_writer
->lock
);
281 __clear_mnt_count(cpu_writer
);
282 cpu_writer
->mnt
= NULL
;
287 * These per-cpu write counts are not guaranteed to have
288 * matched increments and decrements on any given cpu.
289 * A file open()ed for write on one cpu and close()d on
290 * another cpu will imbalance this count. Make sure it
291 * does not get too far out of whack.
293 static void handle_write_count_underflow(struct vfsmount
*mnt
)
295 if (atomic_read(&mnt
->__mnt_writers
) >=
296 MNT_WRITER_UNDERFLOW_LIMIT
)
299 * It isn't necessary to hold all of the locks
300 * at the same time, but doing it this way makes
301 * us share a lot more code.
305 * vfsmount_lock is for mnt_flags.
307 spin_lock(&vfsmount_lock
);
309 * If coalescing the per-cpu writer counts did not
310 * get us back to a positive writer count, we have
313 if ((atomic_read(&mnt
->__mnt_writers
) < 0) &&
314 !(mnt
->mnt_flags
& MNT_IMBALANCED_WRITE_COUNT
)) {
315 WARN(1, KERN_DEBUG
"leak detected on mount(%p) writers "
317 mnt
, atomic_read(&mnt
->__mnt_writers
));
318 /* use the flag to keep the dmesg spam down */
319 mnt
->mnt_flags
|= MNT_IMBALANCED_WRITE_COUNT
;
321 spin_unlock(&vfsmount_lock
);
322 unlock_mnt_writers();
326 * mnt_drop_write - give up write access to a mount
327 * @mnt: the mount on which to give up write access
329 * Tells the low-level filesystem that we are done
330 * performing writes to it. Must be matched with
331 * mnt_want_write() call above.
333 void mnt_drop_write(struct vfsmount
*mnt
)
335 int must_check_underflow
= 0;
336 struct mnt_writer
*cpu_writer
;
338 cpu_writer
= &get_cpu_var(mnt_writers
);
339 spin_lock(&cpu_writer
->lock
);
341 use_cpu_writer_for_mount(cpu_writer
, mnt
);
342 if (cpu_writer
->count
> 0) {
345 must_check_underflow
= 1;
346 atomic_dec(&mnt
->__mnt_writers
);
349 spin_unlock(&cpu_writer
->lock
);
351 * Logically, we could call this each time,
352 * but the __mnt_writers cacheline tends to
353 * be cold, and makes this expensive.
355 if (must_check_underflow
)
356 handle_write_count_underflow(mnt
);
358 * This could be done right after the spinlock
359 * is taken because the spinlock keeps us on
360 * the cpu, and disables preemption. However,
361 * putting it here bounds the amount that
362 * __mnt_writers can underflow. Without it,
363 * we could theoretically wrap __mnt_writers.
365 put_cpu_var(mnt_writers
);
367 EXPORT_SYMBOL_GPL(mnt_drop_write
);
369 static int mnt_make_readonly(struct vfsmount
*mnt
)
375 * With all the locks held, this value is stable
377 if (atomic_read(&mnt
->__mnt_writers
) > 0) {
382 * nobody can do a successful mnt_want_write() with all
383 * of the counts in MNT_DENIED_WRITE and the locks held.
385 spin_lock(&vfsmount_lock
);
387 mnt
->mnt_flags
|= MNT_READONLY
;
388 spin_unlock(&vfsmount_lock
);
390 unlock_mnt_writers();
394 static void __mnt_unmake_readonly(struct vfsmount
*mnt
)
396 spin_lock(&vfsmount_lock
);
397 mnt
->mnt_flags
&= ~MNT_READONLY
;
398 spin_unlock(&vfsmount_lock
);
401 void simple_set_mnt(struct vfsmount
*mnt
, struct super_block
*sb
)
404 mnt
->mnt_root
= dget(sb
->s_root
);
407 EXPORT_SYMBOL(simple_set_mnt
);
409 void free_vfsmnt(struct vfsmount
*mnt
)
411 kfree(mnt
->mnt_devname
);
413 kmem_cache_free(mnt_cache
, mnt
);
417 * find the first or last mount at @dentry on vfsmount @mnt depending on
418 * @dir. If @dir is set return the first mount else return the last mount.
420 struct vfsmount
*__lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
,
423 struct list_head
*head
= mount_hashtable
+ hash(mnt
, dentry
);
424 struct list_head
*tmp
= head
;
425 struct vfsmount
*p
, *found
= NULL
;
428 tmp
= dir
? tmp
->next
: tmp
->prev
;
432 p
= list_entry(tmp
, struct vfsmount
, mnt_hash
);
433 if (p
->mnt_parent
== mnt
&& p
->mnt_mountpoint
== dentry
) {
442 * lookup_mnt increments the ref count before returning
443 * the vfsmount struct.
445 struct vfsmount
*lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
)
447 struct vfsmount
*child_mnt
;
448 spin_lock(&vfsmount_lock
);
449 if ((child_mnt
= __lookup_mnt(mnt
, dentry
, 1)))
451 spin_unlock(&vfsmount_lock
);
455 static inline int check_mnt(struct vfsmount
*mnt
)
457 return mnt
->mnt_ns
== current
->nsproxy
->mnt_ns
;
460 static void touch_mnt_namespace(struct mnt_namespace
*ns
)
464 wake_up_interruptible(&ns
->poll
);
468 static void __touch_mnt_namespace(struct mnt_namespace
*ns
)
470 if (ns
&& ns
->event
!= event
) {
472 wake_up_interruptible(&ns
->poll
);
476 static void detach_mnt(struct vfsmount
*mnt
, struct path
*old_path
)
478 old_path
->dentry
= mnt
->mnt_mountpoint
;
479 old_path
->mnt
= mnt
->mnt_parent
;
480 mnt
->mnt_parent
= mnt
;
481 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
482 list_del_init(&mnt
->mnt_child
);
483 list_del_init(&mnt
->mnt_hash
);
484 old_path
->dentry
->d_mounted
--;
487 void mnt_set_mountpoint(struct vfsmount
*mnt
, struct dentry
*dentry
,
488 struct vfsmount
*child_mnt
)
490 child_mnt
->mnt_parent
= mntget(mnt
);
491 child_mnt
->mnt_mountpoint
= dget(dentry
);
495 static void attach_mnt(struct vfsmount
*mnt
, struct path
*path
)
497 mnt_set_mountpoint(path
->mnt
, path
->dentry
, mnt
);
498 list_add_tail(&mnt
->mnt_hash
, mount_hashtable
+
499 hash(path
->mnt
, path
->dentry
));
500 list_add_tail(&mnt
->mnt_child
, &path
->mnt
->mnt_mounts
);
504 * the caller must hold vfsmount_lock
506 static void commit_tree(struct vfsmount
*mnt
)
508 struct vfsmount
*parent
= mnt
->mnt_parent
;
511 struct mnt_namespace
*n
= parent
->mnt_ns
;
513 BUG_ON(parent
== mnt
);
515 list_add_tail(&head
, &mnt
->mnt_list
);
516 list_for_each_entry(m
, &head
, mnt_list
)
518 list_splice(&head
, n
->list
.prev
);
520 list_add_tail(&mnt
->mnt_hash
, mount_hashtable
+
521 hash(parent
, mnt
->mnt_mountpoint
));
522 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
523 touch_mnt_namespace(n
);
526 static struct vfsmount
*next_mnt(struct vfsmount
*p
, struct vfsmount
*root
)
528 struct list_head
*next
= p
->mnt_mounts
.next
;
529 if (next
== &p
->mnt_mounts
) {
533 next
= p
->mnt_child
.next
;
534 if (next
!= &p
->mnt_parent
->mnt_mounts
)
539 return list_entry(next
, struct vfsmount
, mnt_child
);
542 static struct vfsmount
*skip_mnt_tree(struct vfsmount
*p
)
544 struct list_head
*prev
= p
->mnt_mounts
.prev
;
545 while (prev
!= &p
->mnt_mounts
) {
546 p
= list_entry(prev
, struct vfsmount
, mnt_child
);
547 prev
= p
->mnt_mounts
.prev
;
552 static struct vfsmount
*clone_mnt(struct vfsmount
*old
, struct dentry
*root
,
555 struct super_block
*sb
= old
->mnt_sb
;
556 struct vfsmount
*mnt
= alloc_vfsmnt(old
->mnt_devname
);
559 if (flag
& (CL_SLAVE
| CL_PRIVATE
))
560 mnt
->mnt_group_id
= 0; /* not a peer of original */
562 mnt
->mnt_group_id
= old
->mnt_group_id
;
564 if ((flag
& CL_MAKE_SHARED
) && !mnt
->mnt_group_id
) {
565 int err
= mnt_alloc_group_id(mnt
);
570 mnt
->mnt_flags
= old
->mnt_flags
;
571 atomic_inc(&sb
->s_active
);
573 mnt
->mnt_root
= dget(root
);
574 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
575 mnt
->mnt_parent
= mnt
;
577 if (flag
& CL_SLAVE
) {
578 list_add(&mnt
->mnt_slave
, &old
->mnt_slave_list
);
579 mnt
->mnt_master
= old
;
580 CLEAR_MNT_SHARED(mnt
);
581 } else if (!(flag
& CL_PRIVATE
)) {
582 if ((flag
& CL_PROPAGATION
) || IS_MNT_SHARED(old
))
583 list_add(&mnt
->mnt_share
, &old
->mnt_share
);
584 if (IS_MNT_SLAVE(old
))
585 list_add(&mnt
->mnt_slave
, &old
->mnt_slave
);
586 mnt
->mnt_master
= old
->mnt_master
;
588 if (flag
& CL_MAKE_SHARED
)
591 /* stick the duplicate mount on the same expiry list
592 * as the original if that was on one */
593 if (flag
& CL_EXPIRE
) {
594 if (!list_empty(&old
->mnt_expire
))
595 list_add(&mnt
->mnt_expire
, &old
->mnt_expire
);
605 static inline void __mntput(struct vfsmount
*mnt
)
608 struct super_block
*sb
= mnt
->mnt_sb
;
610 * We don't have to hold all of the locks at the
611 * same time here because we know that we're the
612 * last reference to mnt and that no new writers
615 for_each_possible_cpu(cpu
) {
616 struct mnt_writer
*cpu_writer
= &per_cpu(mnt_writers
, cpu
);
617 spin_lock(&cpu_writer
->lock
);
618 if (cpu_writer
->mnt
!= mnt
) {
619 spin_unlock(&cpu_writer
->lock
);
622 atomic_add(cpu_writer
->count
, &mnt
->__mnt_writers
);
623 cpu_writer
->count
= 0;
625 * Might as well do this so that no one
626 * ever sees the pointer and expects
629 cpu_writer
->mnt
= NULL
;
630 spin_unlock(&cpu_writer
->lock
);
633 * This probably indicates that somebody messed
634 * up a mnt_want/drop_write() pair. If this
635 * happens, the filesystem was probably unable
636 * to make r/w->r/o transitions.
638 WARN_ON(atomic_read(&mnt
->__mnt_writers
));
641 deactivate_super(sb
);
644 void mntput_no_expire(struct vfsmount
*mnt
)
647 if (atomic_dec_and_lock(&mnt
->mnt_count
, &vfsmount_lock
)) {
648 if (likely(!mnt
->mnt_pinned
)) {
649 spin_unlock(&vfsmount_lock
);
653 atomic_add(mnt
->mnt_pinned
+ 1, &mnt
->mnt_count
);
655 spin_unlock(&vfsmount_lock
);
656 acct_auto_close_mnt(mnt
);
657 security_sb_umount_close(mnt
);
662 EXPORT_SYMBOL(mntput_no_expire
);
664 void mnt_pin(struct vfsmount
*mnt
)
666 spin_lock(&vfsmount_lock
);
668 spin_unlock(&vfsmount_lock
);
671 EXPORT_SYMBOL(mnt_pin
);
673 void mnt_unpin(struct vfsmount
*mnt
)
675 spin_lock(&vfsmount_lock
);
676 if (mnt
->mnt_pinned
) {
677 atomic_inc(&mnt
->mnt_count
);
680 spin_unlock(&vfsmount_lock
);
683 EXPORT_SYMBOL(mnt_unpin
);
685 static inline void mangle(struct seq_file
*m
, const char *s
)
687 seq_escape(m
, s
, " \t\n\\");
691 * Simple .show_options callback for filesystems which don't want to
692 * implement more complex mount option showing.
694 * See also save_mount_options().
696 int generic_show_options(struct seq_file
*m
, struct vfsmount
*mnt
)
701 options
= rcu_dereference(mnt
->mnt_sb
->s_options
);
703 if (options
!= NULL
&& options
[0]) {
711 EXPORT_SYMBOL(generic_show_options
);
714 * If filesystem uses generic_show_options(), this function should be
715 * called from the fill_super() callback.
717 * The .remount_fs callback usually needs to be handled in a special
718 * way, to make sure, that previous options are not overwritten if the
721 * Also note, that if the filesystem's .remount_fs function doesn't
722 * reset all options to their default value, but changes only newly
723 * given options, then the displayed options will not reflect reality
726 void save_mount_options(struct super_block
*sb
, char *options
)
728 BUG_ON(sb
->s_options
);
729 rcu_assign_pointer(sb
->s_options
, kstrdup(options
, GFP_KERNEL
));
731 EXPORT_SYMBOL(save_mount_options
);
733 void replace_mount_options(struct super_block
*sb
, char *options
)
735 char *old
= sb
->s_options
;
736 rcu_assign_pointer(sb
->s_options
, options
);
742 EXPORT_SYMBOL(replace_mount_options
);
744 #ifdef CONFIG_PROC_FS
746 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
748 struct proc_mounts
*p
= m
->private;
750 down_read(&namespace_sem
);
751 return seq_list_start(&p
->ns
->list
, *pos
);
754 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
756 struct proc_mounts
*p
= m
->private;
758 return seq_list_next(v
, &p
->ns
->list
, pos
);
761 static void m_stop(struct seq_file
*m
, void *v
)
763 up_read(&namespace_sem
);
766 struct proc_fs_info
{
771 static int show_sb_opts(struct seq_file
*m
, struct super_block
*sb
)
773 static const struct proc_fs_info fs_info
[] = {
774 { MS_SYNCHRONOUS
, ",sync" },
775 { MS_DIRSYNC
, ",dirsync" },
776 { MS_MANDLOCK
, ",mand" },
779 const struct proc_fs_info
*fs_infop
;
781 for (fs_infop
= fs_info
; fs_infop
->flag
; fs_infop
++) {
782 if (sb
->s_flags
& fs_infop
->flag
)
783 seq_puts(m
, fs_infop
->str
);
786 return security_sb_show_options(m
, sb
);
789 static void show_mnt_opts(struct seq_file
*m
, struct vfsmount
*mnt
)
791 static const struct proc_fs_info mnt_info
[] = {
792 { MNT_NOSUID
, ",nosuid" },
793 { MNT_NODEV
, ",nodev" },
794 { MNT_NOEXEC
, ",noexec" },
795 { MNT_NOATIME
, ",noatime" },
796 { MNT_NODIRATIME
, ",nodiratime" },
797 { MNT_RELATIME
, ",relatime" },
798 { MNT_STRICTATIME
, ",strictatime" },
801 const struct proc_fs_info
*fs_infop
;
803 for (fs_infop
= mnt_info
; fs_infop
->flag
; fs_infop
++) {
804 if (mnt
->mnt_flags
& fs_infop
->flag
)
805 seq_puts(m
, fs_infop
->str
);
809 static void show_type(struct seq_file
*m
, struct super_block
*sb
)
811 mangle(m
, sb
->s_type
->name
);
812 if (sb
->s_subtype
&& sb
->s_subtype
[0]) {
814 mangle(m
, sb
->s_subtype
);
818 static int show_vfsmnt(struct seq_file
*m
, void *v
)
820 struct vfsmount
*mnt
= list_entry(v
, struct vfsmount
, mnt_list
);
822 struct path mnt_path
= { .dentry
= mnt
->mnt_root
, .mnt
= mnt
};
824 mangle(m
, mnt
->mnt_devname
? mnt
->mnt_devname
: "none");
826 seq_path(m
, &mnt_path
, " \t\n\\");
828 show_type(m
, mnt
->mnt_sb
);
829 seq_puts(m
, __mnt_is_readonly(mnt
) ? " ro" : " rw");
830 err
= show_sb_opts(m
, mnt
->mnt_sb
);
833 show_mnt_opts(m
, mnt
);
834 if (mnt
->mnt_sb
->s_op
->show_options
)
835 err
= mnt
->mnt_sb
->s_op
->show_options(m
, mnt
);
836 seq_puts(m
, " 0 0\n");
841 const struct seq_operations mounts_op
= {
848 static int show_mountinfo(struct seq_file
*m
, void *v
)
850 struct proc_mounts
*p
= m
->private;
851 struct vfsmount
*mnt
= list_entry(v
, struct vfsmount
, mnt_list
);
852 struct super_block
*sb
= mnt
->mnt_sb
;
853 struct path mnt_path
= { .dentry
= mnt
->mnt_root
, .mnt
= mnt
};
854 struct path root
= p
->root
;
857 seq_printf(m
, "%i %i %u:%u ", mnt
->mnt_id
, mnt
->mnt_parent
->mnt_id
,
858 MAJOR(sb
->s_dev
), MINOR(sb
->s_dev
));
859 seq_dentry(m
, mnt
->mnt_root
, " \t\n\\");
861 seq_path_root(m
, &mnt_path
, &root
, " \t\n\\");
862 if (root
.mnt
!= p
->root
.mnt
|| root
.dentry
!= p
->root
.dentry
) {
864 * Mountpoint is outside root, discard that one. Ugly,
865 * but less so than trying to do that in iterator in a
866 * race-free way (due to renames).
870 seq_puts(m
, mnt
->mnt_flags
& MNT_READONLY
? " ro" : " rw");
871 show_mnt_opts(m
, mnt
);
873 /* Tagged fields ("foo:X" or "bar") */
874 if (IS_MNT_SHARED(mnt
))
875 seq_printf(m
, " shared:%i", mnt
->mnt_group_id
);
876 if (IS_MNT_SLAVE(mnt
)) {
877 int master
= mnt
->mnt_master
->mnt_group_id
;
878 int dom
= get_dominating_id(mnt
, &p
->root
);
879 seq_printf(m
, " master:%i", master
);
880 if (dom
&& dom
!= master
)
881 seq_printf(m
, " propagate_from:%i", dom
);
883 if (IS_MNT_UNBINDABLE(mnt
))
884 seq_puts(m
, " unbindable");
886 /* Filesystem specific data */
890 mangle(m
, mnt
->mnt_devname
? mnt
->mnt_devname
: "none");
891 seq_puts(m
, sb
->s_flags
& MS_RDONLY
? " ro" : " rw");
892 err
= show_sb_opts(m
, sb
);
895 if (sb
->s_op
->show_options
)
896 err
= sb
->s_op
->show_options(m
, mnt
);
902 const struct seq_operations mountinfo_op
= {
906 .show
= show_mountinfo
,
909 static int show_vfsstat(struct seq_file
*m
, void *v
)
911 struct vfsmount
*mnt
= list_entry(v
, struct vfsmount
, mnt_list
);
912 struct path mnt_path
= { .dentry
= mnt
->mnt_root
, .mnt
= mnt
};
916 if (mnt
->mnt_devname
) {
917 seq_puts(m
, "device ");
918 mangle(m
, mnt
->mnt_devname
);
920 seq_puts(m
, "no device");
923 seq_puts(m
, " mounted on ");
924 seq_path(m
, &mnt_path
, " \t\n\\");
927 /* file system type */
928 seq_puts(m
, "with fstype ");
929 show_type(m
, mnt
->mnt_sb
);
931 /* optional statistics */
932 if (mnt
->mnt_sb
->s_op
->show_stats
) {
934 err
= mnt
->mnt_sb
->s_op
->show_stats(m
, mnt
);
941 const struct seq_operations mountstats_op
= {
945 .show
= show_vfsstat
,
947 #endif /* CONFIG_PROC_FS */
950 * may_umount_tree - check if a mount tree is busy
951 * @mnt: root of mount tree
953 * This is called to check if a tree of mounts has any
954 * open files, pwds, chroots or sub mounts that are
957 int may_umount_tree(struct vfsmount
*mnt
)
960 int minimum_refs
= 0;
963 spin_lock(&vfsmount_lock
);
964 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
965 actual_refs
+= atomic_read(&p
->mnt_count
);
968 spin_unlock(&vfsmount_lock
);
970 if (actual_refs
> minimum_refs
)
976 EXPORT_SYMBOL(may_umount_tree
);
979 * may_umount - check if a mount point is busy
980 * @mnt: root of mount
982 * This is called to check if a mount point has any
983 * open files, pwds, chroots or sub mounts. If the
984 * mount has sub mounts this will return busy
985 * regardless of whether the sub mounts are busy.
987 * Doesn't take quota and stuff into account. IOW, in some cases it will
988 * give false negatives. The main reason why it's here is that we need
989 * a non-destructive way to look for easily umountable filesystems.
991 int may_umount(struct vfsmount
*mnt
)
994 spin_lock(&vfsmount_lock
);
995 if (propagate_mount_busy(mnt
, 2))
997 spin_unlock(&vfsmount_lock
);
1001 EXPORT_SYMBOL(may_umount
);
1003 void release_mounts(struct list_head
*head
)
1005 struct vfsmount
*mnt
;
1006 while (!list_empty(head
)) {
1007 mnt
= list_first_entry(head
, struct vfsmount
, mnt_hash
);
1008 list_del_init(&mnt
->mnt_hash
);
1009 if (mnt
->mnt_parent
!= mnt
) {
1010 struct dentry
*dentry
;
1012 spin_lock(&vfsmount_lock
);
1013 dentry
= mnt
->mnt_mountpoint
;
1014 m
= mnt
->mnt_parent
;
1015 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
1016 mnt
->mnt_parent
= mnt
;
1018 spin_unlock(&vfsmount_lock
);
1026 void umount_tree(struct vfsmount
*mnt
, int propagate
, struct list_head
*kill
)
1030 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
))
1031 list_move(&p
->mnt_hash
, kill
);
1034 propagate_umount(kill
);
1036 list_for_each_entry(p
, kill
, mnt_hash
) {
1037 list_del_init(&p
->mnt_expire
);
1038 list_del_init(&p
->mnt_list
);
1039 __touch_mnt_namespace(p
->mnt_ns
);
1041 list_del_init(&p
->mnt_child
);
1042 if (p
->mnt_parent
!= p
) {
1043 p
->mnt_parent
->mnt_ghosts
++;
1044 p
->mnt_mountpoint
->d_mounted
--;
1046 change_mnt_propagation(p
, MS_PRIVATE
);
1050 static void shrink_submounts(struct vfsmount
*mnt
, struct list_head
*umounts
);
1052 static int do_umount(struct vfsmount
*mnt
, int flags
)
1054 struct super_block
*sb
= mnt
->mnt_sb
;
1056 LIST_HEAD(umount_list
);
1058 retval
= security_sb_umount(mnt
, flags
);
1063 * Allow userspace to request a mountpoint be expired rather than
1064 * unmounting unconditionally. Unmount only happens if:
1065 * (1) the mark is already set (the mark is cleared by mntput())
1066 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1068 if (flags
& MNT_EXPIRE
) {
1069 if (mnt
== current
->fs
->root
.mnt
||
1070 flags
& (MNT_FORCE
| MNT_DETACH
))
1073 if (atomic_read(&mnt
->mnt_count
) != 2)
1076 if (!xchg(&mnt
->mnt_expiry_mark
, 1))
1081 * If we may have to abort operations to get out of this
1082 * mount, and they will themselves hold resources we must
1083 * allow the fs to do things. In the Unix tradition of
1084 * 'Gee thats tricky lets do it in userspace' the umount_begin
1085 * might fail to complete on the first run through as other tasks
1086 * must return, and the like. Thats for the mount program to worry
1087 * about for the moment.
1090 if (flags
& MNT_FORCE
&& sb
->s_op
->umount_begin
) {
1091 sb
->s_op
->umount_begin(sb
);
1095 * No sense to grab the lock for this test, but test itself looks
1096 * somewhat bogus. Suggestions for better replacement?
1097 * Ho-hum... In principle, we might treat that as umount + switch
1098 * to rootfs. GC would eventually take care of the old vfsmount.
1099 * Actually it makes sense, especially if rootfs would contain a
1100 * /reboot - static binary that would close all descriptors and
1101 * call reboot(9). Then init(8) could umount root and exec /reboot.
1103 if (mnt
== current
->fs
->root
.mnt
&& !(flags
& MNT_DETACH
)) {
1105 * Special case for "unmounting" root ...
1106 * we just try to remount it readonly.
1108 down_write(&sb
->s_umount
);
1109 if (!(sb
->s_flags
& MS_RDONLY
)) {
1111 retval
= do_remount_sb(sb
, MS_RDONLY
, NULL
, 0);
1114 up_write(&sb
->s_umount
);
1118 down_write(&namespace_sem
);
1119 spin_lock(&vfsmount_lock
);
1122 if (!(flags
& MNT_DETACH
))
1123 shrink_submounts(mnt
, &umount_list
);
1126 if (flags
& MNT_DETACH
|| !propagate_mount_busy(mnt
, 2)) {
1127 if (!list_empty(&mnt
->mnt_list
))
1128 umount_tree(mnt
, 1, &umount_list
);
1131 spin_unlock(&vfsmount_lock
);
1133 security_sb_umount_busy(mnt
);
1134 up_write(&namespace_sem
);
1135 release_mounts(&umount_list
);
1140 * Now umount can handle mount points as well as block devices.
1141 * This is important for filesystems which use unnamed block devices.
1143 * We now support a flag for forced unmount like the other 'big iron'
1144 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1147 SYSCALL_DEFINE2(umount
, char __user
*, name
, int, flags
)
1152 retval
= user_path(name
, &path
);
1156 if (path
.dentry
!= path
.mnt
->mnt_root
)
1158 if (!check_mnt(path
.mnt
))
1162 if (!capable(CAP_SYS_ADMIN
))
1165 retval
= do_umount(path
.mnt
, flags
);
1167 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1169 mntput_no_expire(path
.mnt
);
1174 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1177 * The 2.0 compatible umount. No flags.
1179 SYSCALL_DEFINE1(oldumount
, char __user
*, name
)
1181 return sys_umount(name
, 0);
1186 static int mount_is_safe(struct path
*path
)
1188 if (capable(CAP_SYS_ADMIN
))
1192 if (S_ISLNK(path
->dentry
->d_inode
->i_mode
))
1194 if (path
->dentry
->d_inode
->i_mode
& S_ISVTX
) {
1195 if (current_uid() != path
->dentry
->d_inode
->i_uid
)
1198 if (inode_permission(path
->dentry
->d_inode
, MAY_WRITE
))
1204 struct vfsmount
*copy_tree(struct vfsmount
*mnt
, struct dentry
*dentry
,
1207 struct vfsmount
*res
, *p
, *q
, *r
, *s
;
1210 if (!(flag
& CL_COPY_ALL
) && IS_MNT_UNBINDABLE(mnt
))
1213 res
= q
= clone_mnt(mnt
, dentry
, flag
);
1216 q
->mnt_mountpoint
= mnt
->mnt_mountpoint
;
1219 list_for_each_entry(r
, &mnt
->mnt_mounts
, mnt_child
) {
1220 if (!is_subdir(r
->mnt_mountpoint
, dentry
))
1223 for (s
= r
; s
; s
= next_mnt(s
, r
)) {
1224 if (!(flag
& CL_COPY_ALL
) && IS_MNT_UNBINDABLE(s
)) {
1225 s
= skip_mnt_tree(s
);
1228 while (p
!= s
->mnt_parent
) {
1234 path
.dentry
= p
->mnt_mountpoint
;
1235 q
= clone_mnt(p
, p
->mnt_root
, flag
);
1238 spin_lock(&vfsmount_lock
);
1239 list_add_tail(&q
->mnt_list
, &res
->mnt_list
);
1240 attach_mnt(q
, &path
);
1241 spin_unlock(&vfsmount_lock
);
1247 LIST_HEAD(umount_list
);
1248 spin_lock(&vfsmount_lock
);
1249 umount_tree(res
, 0, &umount_list
);
1250 spin_unlock(&vfsmount_lock
);
1251 release_mounts(&umount_list
);
1256 struct vfsmount
*collect_mounts(struct vfsmount
*mnt
, struct dentry
*dentry
)
1258 struct vfsmount
*tree
;
1259 down_write(&namespace_sem
);
1260 tree
= copy_tree(mnt
, dentry
, CL_COPY_ALL
| CL_PRIVATE
);
1261 up_write(&namespace_sem
);
1265 void drop_collected_mounts(struct vfsmount
*mnt
)
1267 LIST_HEAD(umount_list
);
1268 down_write(&namespace_sem
);
1269 spin_lock(&vfsmount_lock
);
1270 umount_tree(mnt
, 0, &umount_list
);
1271 spin_unlock(&vfsmount_lock
);
1272 up_write(&namespace_sem
);
1273 release_mounts(&umount_list
);
1276 static void cleanup_group_ids(struct vfsmount
*mnt
, struct vfsmount
*end
)
1280 for (p
= mnt
; p
!= end
; p
= next_mnt(p
, mnt
)) {
1281 if (p
->mnt_group_id
&& !IS_MNT_SHARED(p
))
1282 mnt_release_group_id(p
);
1286 static int invent_group_ids(struct vfsmount
*mnt
, bool recurse
)
1290 for (p
= mnt
; p
; p
= recurse
? next_mnt(p
, mnt
) : NULL
) {
1291 if (!p
->mnt_group_id
&& !IS_MNT_SHARED(p
)) {
1292 int err
= mnt_alloc_group_id(p
);
1294 cleanup_group_ids(mnt
, p
);
1304 * @source_mnt : mount tree to be attached
1305 * @nd : place the mount tree @source_mnt is attached
1306 * @parent_nd : if non-null, detach the source_mnt from its parent and
1307 * store the parent mount and mountpoint dentry.
1308 * (done when source_mnt is moved)
1310 * NOTE: in the table below explains the semantics when a source mount
1311 * of a given type is attached to a destination mount of a given type.
1312 * ---------------------------------------------------------------------------
1313 * | BIND MOUNT OPERATION |
1314 * |**************************************************************************
1315 * | source-->| shared | private | slave | unbindable |
1319 * |**************************************************************************
1320 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1322 * |non-shared| shared (+) | private | slave (*) | invalid |
1323 * ***************************************************************************
1324 * A bind operation clones the source mount and mounts the clone on the
1325 * destination mount.
1327 * (++) the cloned mount is propagated to all the mounts in the propagation
1328 * tree of the destination mount and the cloned mount is added to
1329 * the peer group of the source mount.
1330 * (+) the cloned mount is created under the destination mount and is marked
1331 * as shared. The cloned mount is added to the peer group of the source
1333 * (+++) the mount is propagated to all the mounts in the propagation tree
1334 * of the destination mount and the cloned mount is made slave
1335 * of the same master as that of the source mount. The cloned mount
1336 * is marked as 'shared and slave'.
1337 * (*) the cloned mount is made a slave of the same master as that of the
1340 * ---------------------------------------------------------------------------
1341 * | MOVE MOUNT OPERATION |
1342 * |**************************************************************************
1343 * | source-->| shared | private | slave | unbindable |
1347 * |**************************************************************************
1348 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1350 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1351 * ***************************************************************************
1353 * (+) the mount is moved to the destination. And is then propagated to
1354 * all the mounts in the propagation tree of the destination mount.
1355 * (+*) the mount is moved to the destination.
1356 * (+++) the mount is moved to the destination and is then propagated to
1357 * all the mounts belonging to the destination mount's propagation tree.
1358 * the mount is marked as 'shared and slave'.
1359 * (*) the mount continues to be a slave at the new location.
1361 * if the source mount is a tree, the operations explained above is
1362 * applied to each mount in the tree.
1363 * Must be called without spinlocks held, since this function can sleep
1366 static int attach_recursive_mnt(struct vfsmount
*source_mnt
,
1367 struct path
*path
, struct path
*parent_path
)
1369 LIST_HEAD(tree_list
);
1370 struct vfsmount
*dest_mnt
= path
->mnt
;
1371 struct dentry
*dest_dentry
= path
->dentry
;
1372 struct vfsmount
*child
, *p
;
1375 if (IS_MNT_SHARED(dest_mnt
)) {
1376 err
= invent_group_ids(source_mnt
, true);
1380 err
= propagate_mnt(dest_mnt
, dest_dentry
, source_mnt
, &tree_list
);
1382 goto out_cleanup_ids
;
1384 if (IS_MNT_SHARED(dest_mnt
)) {
1385 for (p
= source_mnt
; p
; p
= next_mnt(p
, source_mnt
))
1389 spin_lock(&vfsmount_lock
);
1391 detach_mnt(source_mnt
, parent_path
);
1392 attach_mnt(source_mnt
, path
);
1393 touch_mnt_namespace(parent_path
->mnt
->mnt_ns
);
1395 mnt_set_mountpoint(dest_mnt
, dest_dentry
, source_mnt
);
1396 commit_tree(source_mnt
);
1399 list_for_each_entry_safe(child
, p
, &tree_list
, mnt_hash
) {
1400 list_del_init(&child
->mnt_hash
);
1403 spin_unlock(&vfsmount_lock
);
1407 if (IS_MNT_SHARED(dest_mnt
))
1408 cleanup_group_ids(source_mnt
, NULL
);
1413 static int graft_tree(struct vfsmount
*mnt
, struct path
*path
)
1416 if (mnt
->mnt_sb
->s_flags
& MS_NOUSER
)
1419 if (S_ISDIR(path
->dentry
->d_inode
->i_mode
) !=
1420 S_ISDIR(mnt
->mnt_root
->d_inode
->i_mode
))
1424 mutex_lock(&path
->dentry
->d_inode
->i_mutex
);
1425 if (IS_DEADDIR(path
->dentry
->d_inode
))
1428 err
= security_sb_check_sb(mnt
, path
);
1433 if (IS_ROOT(path
->dentry
) || !d_unhashed(path
->dentry
))
1434 err
= attach_recursive_mnt(mnt
, path
, NULL
);
1436 mutex_unlock(&path
->dentry
->d_inode
->i_mutex
);
1438 security_sb_post_addmount(mnt
, path
);
1443 * recursively change the type of the mountpoint.
1445 static int do_change_type(struct path
*path
, int flag
)
1447 struct vfsmount
*m
, *mnt
= path
->mnt
;
1448 int recurse
= flag
& MS_REC
;
1449 int type
= flag
& ~MS_REC
;
1452 if (!capable(CAP_SYS_ADMIN
))
1455 if (path
->dentry
!= path
->mnt
->mnt_root
)
1458 down_write(&namespace_sem
);
1459 if (type
== MS_SHARED
) {
1460 err
= invent_group_ids(mnt
, recurse
);
1465 spin_lock(&vfsmount_lock
);
1466 for (m
= mnt
; m
; m
= (recurse
? next_mnt(m
, mnt
) : NULL
))
1467 change_mnt_propagation(m
, type
);
1468 spin_unlock(&vfsmount_lock
);
1471 up_write(&namespace_sem
);
1476 * do loopback mount.
1478 static int do_loopback(struct path
*path
, char *old_name
,
1481 struct path old_path
;
1482 struct vfsmount
*mnt
= NULL
;
1483 int err
= mount_is_safe(path
);
1486 if (!old_name
|| !*old_name
)
1488 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
1492 down_write(&namespace_sem
);
1494 if (IS_MNT_UNBINDABLE(old_path
.mnt
))
1497 if (!check_mnt(path
->mnt
) || !check_mnt(old_path
.mnt
))
1502 mnt
= copy_tree(old_path
.mnt
, old_path
.dentry
, 0);
1504 mnt
= clone_mnt(old_path
.mnt
, old_path
.dentry
, 0);
1509 err
= graft_tree(mnt
, path
);
1511 LIST_HEAD(umount_list
);
1512 spin_lock(&vfsmount_lock
);
1513 umount_tree(mnt
, 0, &umount_list
);
1514 spin_unlock(&vfsmount_lock
);
1515 release_mounts(&umount_list
);
1519 up_write(&namespace_sem
);
1520 path_put(&old_path
);
1524 static int change_mount_flags(struct vfsmount
*mnt
, int ms_flags
)
1527 int readonly_request
= 0;
1529 if (ms_flags
& MS_RDONLY
)
1530 readonly_request
= 1;
1531 if (readonly_request
== __mnt_is_readonly(mnt
))
1534 if (readonly_request
)
1535 error
= mnt_make_readonly(mnt
);
1537 __mnt_unmake_readonly(mnt
);
1542 * change filesystem flags. dir should be a physical root of filesystem.
1543 * If you've mounted a non-root directory somewhere and want to do remount
1544 * on it - tough luck.
1546 static int do_remount(struct path
*path
, int flags
, int mnt_flags
,
1550 struct super_block
*sb
= path
->mnt
->mnt_sb
;
1552 if (!capable(CAP_SYS_ADMIN
))
1555 if (!check_mnt(path
->mnt
))
1558 if (path
->dentry
!= path
->mnt
->mnt_root
)
1561 down_write(&sb
->s_umount
);
1562 if (flags
& MS_BIND
)
1563 err
= change_mount_flags(path
->mnt
, flags
);
1565 err
= do_remount_sb(sb
, flags
, data
, 0);
1567 path
->mnt
->mnt_flags
= mnt_flags
;
1568 up_write(&sb
->s_umount
);
1570 security_sb_post_remount(path
->mnt
, flags
, data
);
1572 spin_lock(&vfsmount_lock
);
1573 touch_mnt_namespace(path
->mnt
->mnt_ns
);
1574 spin_unlock(&vfsmount_lock
);
1579 static inline int tree_contains_unbindable(struct vfsmount
*mnt
)
1582 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1583 if (IS_MNT_UNBINDABLE(p
))
1589 static int do_move_mount(struct path
*path
, char *old_name
)
1591 struct path old_path
, parent_path
;
1594 if (!capable(CAP_SYS_ADMIN
))
1596 if (!old_name
|| !*old_name
)
1598 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
1602 down_write(&namespace_sem
);
1603 while (d_mountpoint(path
->dentry
) &&
1604 follow_down(&path
->mnt
, &path
->dentry
))
1607 if (!check_mnt(path
->mnt
) || !check_mnt(old_path
.mnt
))
1611 mutex_lock(&path
->dentry
->d_inode
->i_mutex
);
1612 if (IS_DEADDIR(path
->dentry
->d_inode
))
1615 if (!IS_ROOT(path
->dentry
) && d_unhashed(path
->dentry
))
1619 if (old_path
.dentry
!= old_path
.mnt
->mnt_root
)
1622 if (old_path
.mnt
== old_path
.mnt
->mnt_parent
)
1625 if (S_ISDIR(path
->dentry
->d_inode
->i_mode
) !=
1626 S_ISDIR(old_path
.dentry
->d_inode
->i_mode
))
1629 * Don't move a mount residing in a shared parent.
1631 if (old_path
.mnt
->mnt_parent
&&
1632 IS_MNT_SHARED(old_path
.mnt
->mnt_parent
))
1635 * Don't move a mount tree containing unbindable mounts to a destination
1636 * mount which is shared.
1638 if (IS_MNT_SHARED(path
->mnt
) &&
1639 tree_contains_unbindable(old_path
.mnt
))
1642 for (p
= path
->mnt
; p
->mnt_parent
!= p
; p
= p
->mnt_parent
)
1643 if (p
== old_path
.mnt
)
1646 err
= attach_recursive_mnt(old_path
.mnt
, path
, &parent_path
);
1650 /* if the mount is moved, it should no longer be expire
1652 list_del_init(&old_path
.mnt
->mnt_expire
);
1654 mutex_unlock(&path
->dentry
->d_inode
->i_mutex
);
1656 up_write(&namespace_sem
);
1658 path_put(&parent_path
);
1659 path_put(&old_path
);
1664 * create a new mount for userspace and request it to be added into the
1667 static int do_new_mount(struct path
*path
, char *type
, int flags
,
1668 int mnt_flags
, char *name
, void *data
)
1670 struct vfsmount
*mnt
;
1672 if (!type
|| !memchr(type
, 0, PAGE_SIZE
))
1675 /* we need capabilities... */
1676 if (!capable(CAP_SYS_ADMIN
))
1679 mnt
= do_kern_mount(type
, flags
, name
, data
);
1681 return PTR_ERR(mnt
);
1683 return do_add_mount(mnt
, path
, mnt_flags
, NULL
);
1687 * add a mount into a namespace's mount tree
1688 * - provide the option of adding the new mount to an expiration list
1690 int do_add_mount(struct vfsmount
*newmnt
, struct path
*path
,
1691 int mnt_flags
, struct list_head
*fslist
)
1695 down_write(&namespace_sem
);
1696 /* Something was mounted here while we slept */
1697 while (d_mountpoint(path
->dentry
) &&
1698 follow_down(&path
->mnt
, &path
->dentry
))
1701 if (!check_mnt(path
->mnt
))
1704 /* Refuse the same filesystem on the same mount point */
1706 if (path
->mnt
->mnt_sb
== newmnt
->mnt_sb
&&
1707 path
->mnt
->mnt_root
== path
->dentry
)
1711 if (S_ISLNK(newmnt
->mnt_root
->d_inode
->i_mode
))
1714 newmnt
->mnt_flags
= mnt_flags
;
1715 if ((err
= graft_tree(newmnt
, path
)))
1718 if (fslist
) /* add to the specified expiration list */
1719 list_add_tail(&newmnt
->mnt_expire
, fslist
);
1721 up_write(&namespace_sem
);
1725 up_write(&namespace_sem
);
1730 EXPORT_SYMBOL_GPL(do_add_mount
);
1733 * process a list of expirable mountpoints with the intent of discarding any
1734 * mountpoints that aren't in use and haven't been touched since last we came
1737 void mark_mounts_for_expiry(struct list_head
*mounts
)
1739 struct vfsmount
*mnt
, *next
;
1740 LIST_HEAD(graveyard
);
1743 if (list_empty(mounts
))
1746 down_write(&namespace_sem
);
1747 spin_lock(&vfsmount_lock
);
1749 /* extract from the expiration list every vfsmount that matches the
1750 * following criteria:
1751 * - only referenced by its parent vfsmount
1752 * - still marked for expiry (marked on the last call here; marks are
1753 * cleared by mntput())
1755 list_for_each_entry_safe(mnt
, next
, mounts
, mnt_expire
) {
1756 if (!xchg(&mnt
->mnt_expiry_mark
, 1) ||
1757 propagate_mount_busy(mnt
, 1))
1759 list_move(&mnt
->mnt_expire
, &graveyard
);
1761 while (!list_empty(&graveyard
)) {
1762 mnt
= list_first_entry(&graveyard
, struct vfsmount
, mnt_expire
);
1763 touch_mnt_namespace(mnt
->mnt_ns
);
1764 umount_tree(mnt
, 1, &umounts
);
1766 spin_unlock(&vfsmount_lock
);
1767 up_write(&namespace_sem
);
1769 release_mounts(&umounts
);
1772 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry
);
1775 * Ripoff of 'select_parent()'
1777 * search the list of submounts for a given mountpoint, and move any
1778 * shrinkable submounts to the 'graveyard' list.
1780 static int select_submounts(struct vfsmount
*parent
, struct list_head
*graveyard
)
1782 struct vfsmount
*this_parent
= parent
;
1783 struct list_head
*next
;
1787 next
= this_parent
->mnt_mounts
.next
;
1789 while (next
!= &this_parent
->mnt_mounts
) {
1790 struct list_head
*tmp
= next
;
1791 struct vfsmount
*mnt
= list_entry(tmp
, struct vfsmount
, mnt_child
);
1794 if (!(mnt
->mnt_flags
& MNT_SHRINKABLE
))
1797 * Descend a level if the d_mounts list is non-empty.
1799 if (!list_empty(&mnt
->mnt_mounts
)) {
1804 if (!propagate_mount_busy(mnt
, 1)) {
1805 list_move_tail(&mnt
->mnt_expire
, graveyard
);
1810 * All done at this level ... ascend and resume the search
1812 if (this_parent
!= parent
) {
1813 next
= this_parent
->mnt_child
.next
;
1814 this_parent
= this_parent
->mnt_parent
;
1821 * process a list of expirable mountpoints with the intent of discarding any
1822 * submounts of a specific parent mountpoint
1824 static void shrink_submounts(struct vfsmount
*mnt
, struct list_head
*umounts
)
1826 LIST_HEAD(graveyard
);
1829 /* extract submounts of 'mountpoint' from the expiration list */
1830 while (select_submounts(mnt
, &graveyard
)) {
1831 while (!list_empty(&graveyard
)) {
1832 m
= list_first_entry(&graveyard
, struct vfsmount
,
1834 touch_mnt_namespace(m
->mnt_ns
);
1835 umount_tree(m
, 1, umounts
);
1841 * Some copy_from_user() implementations do not return the exact number of
1842 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1843 * Note that this function differs from copy_from_user() in that it will oops
1844 * on bad values of `to', rather than returning a short copy.
1846 static long exact_copy_from_user(void *to
, const void __user
* from
,
1850 const char __user
*f
= from
;
1853 if (!access_ok(VERIFY_READ
, from
, n
))
1857 if (__get_user(c
, f
)) {
1868 int copy_mount_options(const void __user
* data
, unsigned long *where
)
1878 if (!(page
= __get_free_page(GFP_KERNEL
)))
1881 /* We only care that *some* data at the address the user
1882 * gave us is valid. Just in case, we'll zero
1883 * the remainder of the page.
1885 /* copy_from_user cannot cross TASK_SIZE ! */
1886 size
= TASK_SIZE
- (unsigned long)data
;
1887 if (size
> PAGE_SIZE
)
1890 i
= size
- exact_copy_from_user((void *)page
, data
, size
);
1896 memset((char *)page
+ i
, 0, PAGE_SIZE
- i
);
1902 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1903 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1905 * data is a (void *) that can point to any structure up to
1906 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1907 * information (or be NULL).
1909 * Pre-0.97 versions of mount() didn't have a flags word.
1910 * When the flags word was introduced its top half was required
1911 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1912 * Therefore, if this magic number is present, it carries no information
1913 * and must be discarded.
1915 long do_mount(char *dev_name
, char *dir_name
, char *type_page
,
1916 unsigned long flags
, void *data_page
)
1923 if ((flags
& MS_MGC_MSK
) == MS_MGC_VAL
)
1924 flags
&= ~MS_MGC_MSK
;
1926 /* Basic sanity checks */
1928 if (!dir_name
|| !*dir_name
|| !memchr(dir_name
, 0, PAGE_SIZE
))
1930 if (dev_name
&& !memchr(dev_name
, 0, PAGE_SIZE
))
1934 ((char *)data_page
)[PAGE_SIZE
- 1] = 0;
1936 /* Default to relatime unless overriden */
1937 if (!(flags
& MS_NOATIME
))
1938 mnt_flags
|= MNT_RELATIME
;
1940 /* Separate the per-mountpoint flags */
1941 if (flags
& MS_NOSUID
)
1942 mnt_flags
|= MNT_NOSUID
;
1943 if (flags
& MS_NODEV
)
1944 mnt_flags
|= MNT_NODEV
;
1945 if (flags
& MS_NOEXEC
)
1946 mnt_flags
|= MNT_NOEXEC
;
1947 if (flags
& MS_NOATIME
)
1948 mnt_flags
|= MNT_NOATIME
;
1949 if (flags
& MS_NODIRATIME
)
1950 mnt_flags
|= MNT_NODIRATIME
;
1951 if (flags
& MS_STRICTATIME
)
1952 mnt_flags
&= ~(MNT_RELATIME
| MNT_NOATIME
);
1953 if (flags
& MS_RDONLY
)
1954 mnt_flags
|= MNT_READONLY
;
1956 flags
&= ~(MS_NOSUID
| MS_NOEXEC
| MS_NODEV
| MS_ACTIVE
|
1957 MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
| MS_KERNMOUNT
|
1960 /* ... and get the mountpoint */
1961 retval
= kern_path(dir_name
, LOOKUP_FOLLOW
, &path
);
1965 retval
= security_sb_mount(dev_name
, &path
,
1966 type_page
, flags
, data_page
);
1970 if (flags
& MS_REMOUNT
)
1971 retval
= do_remount(&path
, flags
& ~MS_REMOUNT
, mnt_flags
,
1973 else if (flags
& MS_BIND
)
1974 retval
= do_loopback(&path
, dev_name
, flags
& MS_REC
);
1975 else if (flags
& (MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
1976 retval
= do_change_type(&path
, flags
);
1977 else if (flags
& MS_MOVE
)
1978 retval
= do_move_mount(&path
, dev_name
);
1980 retval
= do_new_mount(&path
, type_page
, flags
, mnt_flags
,
1981 dev_name
, data_page
);
1988 * Allocate a new namespace structure and populate it with contents
1989 * copied from the namespace of the passed in task structure.
1991 static struct mnt_namespace
*dup_mnt_ns(struct mnt_namespace
*mnt_ns
,
1992 struct fs_struct
*fs
)
1994 struct mnt_namespace
*new_ns
;
1995 struct vfsmount
*rootmnt
= NULL
, *pwdmnt
= NULL
;
1996 struct vfsmount
*p
, *q
;
1998 new_ns
= kmalloc(sizeof(struct mnt_namespace
), GFP_KERNEL
);
2000 return ERR_PTR(-ENOMEM
);
2002 atomic_set(&new_ns
->count
, 1);
2003 INIT_LIST_HEAD(&new_ns
->list
);
2004 init_waitqueue_head(&new_ns
->poll
);
2007 down_write(&namespace_sem
);
2008 /* First pass: copy the tree topology */
2009 new_ns
->root
= copy_tree(mnt_ns
->root
, mnt_ns
->root
->mnt_root
,
2010 CL_COPY_ALL
| CL_EXPIRE
);
2011 if (!new_ns
->root
) {
2012 up_write(&namespace_sem
);
2014 return ERR_PTR(-ENOMEM
);
2016 spin_lock(&vfsmount_lock
);
2017 list_add_tail(&new_ns
->list
, &new_ns
->root
->mnt_list
);
2018 spin_unlock(&vfsmount_lock
);
2021 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2022 * as belonging to new namespace. We have already acquired a private
2023 * fs_struct, so tsk->fs->lock is not needed.
2030 if (p
== fs
->root
.mnt
) {
2032 fs
->root
.mnt
= mntget(q
);
2034 if (p
== fs
->pwd
.mnt
) {
2036 fs
->pwd
.mnt
= mntget(q
);
2039 p
= next_mnt(p
, mnt_ns
->root
);
2040 q
= next_mnt(q
, new_ns
->root
);
2042 up_write(&namespace_sem
);
2052 struct mnt_namespace
*copy_mnt_ns(unsigned long flags
, struct mnt_namespace
*ns
,
2053 struct fs_struct
*new_fs
)
2055 struct mnt_namespace
*new_ns
;
2060 if (!(flags
& CLONE_NEWNS
))
2063 new_ns
= dup_mnt_ns(ns
, new_fs
);
2069 SYSCALL_DEFINE5(mount
, char __user
*, dev_name
, char __user
*, dir_name
,
2070 char __user
*, type
, unsigned long, flags
, void __user
*, data
)
2073 unsigned long data_page
;
2074 unsigned long type_page
;
2075 unsigned long dev_page
;
2078 retval
= copy_mount_options(type
, &type_page
);
2082 dir_page
= getname(dir_name
);
2083 retval
= PTR_ERR(dir_page
);
2084 if (IS_ERR(dir_page
))
2087 retval
= copy_mount_options(dev_name
, &dev_page
);
2091 retval
= copy_mount_options(data
, &data_page
);
2096 retval
= do_mount((char *)dev_page
, dir_page
, (char *)type_page
,
2097 flags
, (void *)data_page
);
2099 free_page(data_page
);
2102 free_page(dev_page
);
2106 free_page(type_page
);
2111 * pivot_root Semantics:
2112 * Moves the root file system of the current process to the directory put_old,
2113 * makes new_root as the new root file system of the current process, and sets
2114 * root/cwd of all processes which had them on the current root to new_root.
2117 * The new_root and put_old must be directories, and must not be on the
2118 * same file system as the current process root. The put_old must be
2119 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2120 * pointed to by put_old must yield the same directory as new_root. No other
2121 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2123 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2124 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2125 * in this situation.
2128 * - we don't move root/cwd if they are not at the root (reason: if something
2129 * cared enough to change them, it's probably wrong to force them elsewhere)
2130 * - it's okay to pick a root that isn't the root of a file system, e.g.
2131 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2132 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2135 SYSCALL_DEFINE2(pivot_root
, const char __user
*, new_root
,
2136 const char __user
*, put_old
)
2138 struct vfsmount
*tmp
;
2139 struct path
new, old
, parent_path
, root_parent
, root
;
2142 if (!capable(CAP_SYS_ADMIN
))
2145 error
= user_path_dir(new_root
, &new);
2149 if (!check_mnt(new.mnt
))
2152 error
= user_path_dir(put_old
, &old
);
2156 error
= security_sb_pivotroot(&old
, &new);
2162 read_lock(¤t
->fs
->lock
);
2163 root
= current
->fs
->root
;
2164 path_get(¤t
->fs
->root
);
2165 read_unlock(¤t
->fs
->lock
);
2166 down_write(&namespace_sem
);
2167 mutex_lock(&old
.dentry
->d_inode
->i_mutex
);
2169 if (IS_MNT_SHARED(old
.mnt
) ||
2170 IS_MNT_SHARED(new.mnt
->mnt_parent
) ||
2171 IS_MNT_SHARED(root
.mnt
->mnt_parent
))
2173 if (!check_mnt(root
.mnt
))
2176 if (IS_DEADDIR(new.dentry
->d_inode
))
2178 if (d_unhashed(new.dentry
) && !IS_ROOT(new.dentry
))
2180 if (d_unhashed(old
.dentry
) && !IS_ROOT(old
.dentry
))
2183 if (new.mnt
== root
.mnt
||
2184 old
.mnt
== root
.mnt
)
2185 goto out2
; /* loop, on the same file system */
2187 if (root
.mnt
->mnt_root
!= root
.dentry
)
2188 goto out2
; /* not a mountpoint */
2189 if (root
.mnt
->mnt_parent
== root
.mnt
)
2190 goto out2
; /* not attached */
2191 if (new.mnt
->mnt_root
!= new.dentry
)
2192 goto out2
; /* not a mountpoint */
2193 if (new.mnt
->mnt_parent
== new.mnt
)
2194 goto out2
; /* not attached */
2195 /* make sure we can reach put_old from new_root */
2197 spin_lock(&vfsmount_lock
);
2198 if (tmp
!= new.mnt
) {
2200 if (tmp
->mnt_parent
== tmp
)
2201 goto out3
; /* already mounted on put_old */
2202 if (tmp
->mnt_parent
== new.mnt
)
2204 tmp
= tmp
->mnt_parent
;
2206 if (!is_subdir(tmp
->mnt_mountpoint
, new.dentry
))
2208 } else if (!is_subdir(old
.dentry
, new.dentry
))
2210 detach_mnt(new.mnt
, &parent_path
);
2211 detach_mnt(root
.mnt
, &root_parent
);
2212 /* mount old root on put_old */
2213 attach_mnt(root
.mnt
, &old
);
2214 /* mount new_root on / */
2215 attach_mnt(new.mnt
, &root_parent
);
2216 touch_mnt_namespace(current
->nsproxy
->mnt_ns
);
2217 spin_unlock(&vfsmount_lock
);
2218 chroot_fs_refs(&root
, &new);
2219 security_sb_post_pivotroot(&root
, &new);
2221 path_put(&root_parent
);
2222 path_put(&parent_path
);
2224 mutex_unlock(&old
.dentry
->d_inode
->i_mutex
);
2225 up_write(&namespace_sem
);
2233 spin_unlock(&vfsmount_lock
);
2237 static void __init
init_mount_tree(void)
2239 struct vfsmount
*mnt
;
2240 struct mnt_namespace
*ns
;
2243 mnt
= do_kern_mount("rootfs", 0, "rootfs", NULL
);
2245 panic("Can't create rootfs");
2246 ns
= kmalloc(sizeof(*ns
), GFP_KERNEL
);
2248 panic("Can't allocate initial namespace");
2249 atomic_set(&ns
->count
, 1);
2250 INIT_LIST_HEAD(&ns
->list
);
2251 init_waitqueue_head(&ns
->poll
);
2253 list_add(&mnt
->mnt_list
, &ns
->list
);
2257 init_task
.nsproxy
->mnt_ns
= ns
;
2260 root
.mnt
= ns
->root
;
2261 root
.dentry
= ns
->root
->mnt_root
;
2263 set_fs_pwd(current
->fs
, &root
);
2264 set_fs_root(current
->fs
, &root
);
2267 void __init
mnt_init(void)
2272 init_rwsem(&namespace_sem
);
2274 mnt_cache
= kmem_cache_create("mnt_cache", sizeof(struct vfsmount
),
2275 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
2277 mount_hashtable
= (struct list_head
*)__get_free_page(GFP_ATOMIC
);
2279 if (!mount_hashtable
)
2280 panic("Failed to allocate mount hash table\n");
2282 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE
);
2284 for (u
= 0; u
< HASH_SIZE
; u
++)
2285 INIT_LIST_HEAD(&mount_hashtable
[u
]);
2289 printk(KERN_WARNING
"%s: sysfs_init error: %d\n",
2291 fs_kobj
= kobject_create_and_add("fs", NULL
);
2293 printk(KERN_WARNING
"%s: kobj create error\n", __func__
);
2298 void __put_mnt_ns(struct mnt_namespace
*ns
)
2300 struct vfsmount
*root
= ns
->root
;
2301 LIST_HEAD(umount_list
);
2303 spin_unlock(&vfsmount_lock
);
2304 down_write(&namespace_sem
);
2305 spin_lock(&vfsmount_lock
);
2306 umount_tree(root
, 0, &umount_list
);
2307 spin_unlock(&vfsmount_lock
);
2308 up_write(&namespace_sem
);
2309 release_mounts(&umount_list
);