V4L/DVB (9116): USB: remove info() macro from usb media drivers
[linux-2.6/mini2440.git] / fs / ecryptfs / keystore.c
blobf5b76a331b9c743a3679ae69022f288c60b0f229
1 /**
2 * eCryptfs: Linux filesystem encryption layer
3 * In-kernel key management code. Includes functions to parse and
4 * write authentication token-related packets with the underlying
5 * file.
7 * Copyright (C) 2004-2006 International Business Machines Corp.
8 * Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
9 * Michael C. Thompson <mcthomps@us.ibm.com>
10 * Trevor S. Highland <trevor.highland@gmail.com>
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
25 * 02111-1307, USA.
28 #include <linux/string.h>
29 #include <linux/syscalls.h>
30 #include <linux/pagemap.h>
31 #include <linux/key.h>
32 #include <linux/random.h>
33 #include <linux/crypto.h>
34 #include <linux/scatterlist.h>
35 #include "ecryptfs_kernel.h"
37 /**
38 * request_key returned an error instead of a valid key address;
39 * determine the type of error, make appropriate log entries, and
40 * return an error code.
42 static int process_request_key_err(long err_code)
44 int rc = 0;
46 switch (err_code) {
47 case -ENOKEY:
48 ecryptfs_printk(KERN_WARNING, "No key\n");
49 rc = -ENOENT;
50 break;
51 case -EKEYEXPIRED:
52 ecryptfs_printk(KERN_WARNING, "Key expired\n");
53 rc = -ETIME;
54 break;
55 case -EKEYREVOKED:
56 ecryptfs_printk(KERN_WARNING, "Key revoked\n");
57 rc = -EINVAL;
58 break;
59 default:
60 ecryptfs_printk(KERN_WARNING, "Unknown error code: "
61 "[0x%.16x]\n", err_code);
62 rc = -EINVAL;
64 return rc;
67 /**
68 * ecryptfs_parse_packet_length
69 * @data: Pointer to memory containing length at offset
70 * @size: This function writes the decoded size to this memory
71 * address; zero on error
72 * @length_size: The number of bytes occupied by the encoded length
74 * Returns zero on success; non-zero on error
76 int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
77 size_t *length_size)
79 int rc = 0;
81 (*length_size) = 0;
82 (*size) = 0;
83 if (data[0] < 192) {
84 /* One-byte length */
85 (*size) = (unsigned char)data[0];
86 (*length_size) = 1;
87 } else if (data[0] < 224) {
88 /* Two-byte length */
89 (*size) = (((unsigned char)(data[0]) - 192) * 256);
90 (*size) += ((unsigned char)(data[1]) + 192);
91 (*length_size) = 2;
92 } else if (data[0] == 255) {
93 /* Five-byte length; we're not supposed to see this */
94 ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
95 "supported\n");
96 rc = -EINVAL;
97 goto out;
98 } else {
99 ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
100 rc = -EINVAL;
101 goto out;
103 out:
104 return rc;
108 * ecryptfs_write_packet_length
109 * @dest: The byte array target into which to write the length. Must
110 * have at least 5 bytes allocated.
111 * @size: The length to write.
112 * @packet_size_length: The number of bytes used to encode the packet
113 * length is written to this address.
115 * Returns zero on success; non-zero on error.
117 int ecryptfs_write_packet_length(char *dest, size_t size,
118 size_t *packet_size_length)
120 int rc = 0;
122 if (size < 192) {
123 dest[0] = size;
124 (*packet_size_length) = 1;
125 } else if (size < 65536) {
126 dest[0] = (((size - 192) / 256) + 192);
127 dest[1] = ((size - 192) % 256);
128 (*packet_size_length) = 2;
129 } else {
130 rc = -EINVAL;
131 ecryptfs_printk(KERN_WARNING,
132 "Unsupported packet size: [%d]\n", size);
134 return rc;
137 static int
138 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
139 char **packet, size_t *packet_len)
141 size_t i = 0;
142 size_t data_len;
143 size_t packet_size_len;
144 char *message;
145 int rc;
148 * ***** TAG 64 Packet Format *****
149 * | Content Type | 1 byte |
150 * | Key Identifier Size | 1 or 2 bytes |
151 * | Key Identifier | arbitrary |
152 * | Encrypted File Encryption Key Size | 1 or 2 bytes |
153 * | Encrypted File Encryption Key | arbitrary |
155 data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
156 + session_key->encrypted_key_size);
157 *packet = kmalloc(data_len, GFP_KERNEL);
158 message = *packet;
159 if (!message) {
160 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
161 rc = -ENOMEM;
162 goto out;
164 message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
165 rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
166 &packet_size_len);
167 if (rc) {
168 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
169 "header; cannot generate packet length\n");
170 goto out;
172 i += packet_size_len;
173 memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
174 i += ECRYPTFS_SIG_SIZE_HEX;
175 rc = ecryptfs_write_packet_length(&message[i],
176 session_key->encrypted_key_size,
177 &packet_size_len);
178 if (rc) {
179 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
180 "header; cannot generate packet length\n");
181 goto out;
183 i += packet_size_len;
184 memcpy(&message[i], session_key->encrypted_key,
185 session_key->encrypted_key_size);
186 i += session_key->encrypted_key_size;
187 *packet_len = i;
188 out:
189 return rc;
192 static int
193 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
194 struct ecryptfs_message *msg)
196 size_t i = 0;
197 char *data;
198 size_t data_len;
199 size_t m_size;
200 size_t message_len;
201 u16 checksum = 0;
202 u16 expected_checksum = 0;
203 int rc;
206 * ***** TAG 65 Packet Format *****
207 * | Content Type | 1 byte |
208 * | Status Indicator | 1 byte |
209 * | File Encryption Key Size | 1 or 2 bytes |
210 * | File Encryption Key | arbitrary |
212 message_len = msg->data_len;
213 data = msg->data;
214 if (message_len < 4) {
215 rc = -EIO;
216 goto out;
218 if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
219 ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
220 rc = -EIO;
221 goto out;
223 if (data[i++]) {
224 ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
225 "[%d]\n", data[i-1]);
226 rc = -EIO;
227 goto out;
229 rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
230 if (rc) {
231 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
232 "rc = [%d]\n", rc);
233 goto out;
235 i += data_len;
236 if (message_len < (i + m_size)) {
237 ecryptfs_printk(KERN_ERR, "The received netlink message is "
238 "shorter than expected\n");
239 rc = -EIO;
240 goto out;
242 if (m_size < 3) {
243 ecryptfs_printk(KERN_ERR,
244 "The decrypted key is not long enough to "
245 "include a cipher code and checksum\n");
246 rc = -EIO;
247 goto out;
249 *cipher_code = data[i++];
250 /* The decrypted key includes 1 byte cipher code and 2 byte checksum */
251 session_key->decrypted_key_size = m_size - 3;
252 if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
253 ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
254 "the maximum key size [%d]\n",
255 session_key->decrypted_key_size,
256 ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
257 rc = -EIO;
258 goto out;
260 memcpy(session_key->decrypted_key, &data[i],
261 session_key->decrypted_key_size);
262 i += session_key->decrypted_key_size;
263 expected_checksum += (unsigned char)(data[i++]) << 8;
264 expected_checksum += (unsigned char)(data[i++]);
265 for (i = 0; i < session_key->decrypted_key_size; i++)
266 checksum += session_key->decrypted_key[i];
267 if (expected_checksum != checksum) {
268 ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
269 "encryption key; expected [%x]; calculated "
270 "[%x]\n", expected_checksum, checksum);
271 rc = -EIO;
273 out:
274 return rc;
278 static int
279 write_tag_66_packet(char *signature, u8 cipher_code,
280 struct ecryptfs_crypt_stat *crypt_stat, char **packet,
281 size_t *packet_len)
283 size_t i = 0;
284 size_t j;
285 size_t data_len;
286 size_t checksum = 0;
287 size_t packet_size_len;
288 char *message;
289 int rc;
292 * ***** TAG 66 Packet Format *****
293 * | Content Type | 1 byte |
294 * | Key Identifier Size | 1 or 2 bytes |
295 * | Key Identifier | arbitrary |
296 * | File Encryption Key Size | 1 or 2 bytes |
297 * | File Encryption Key | arbitrary |
299 data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
300 *packet = kmalloc(data_len, GFP_KERNEL);
301 message = *packet;
302 if (!message) {
303 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
304 rc = -ENOMEM;
305 goto out;
307 message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
308 rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
309 &packet_size_len);
310 if (rc) {
311 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
312 "header; cannot generate packet length\n");
313 goto out;
315 i += packet_size_len;
316 memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
317 i += ECRYPTFS_SIG_SIZE_HEX;
318 /* The encrypted key includes 1 byte cipher code and 2 byte checksum */
319 rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
320 &packet_size_len);
321 if (rc) {
322 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
323 "header; cannot generate packet length\n");
324 goto out;
326 i += packet_size_len;
327 message[i++] = cipher_code;
328 memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
329 i += crypt_stat->key_size;
330 for (j = 0; j < crypt_stat->key_size; j++)
331 checksum += crypt_stat->key[j];
332 message[i++] = (checksum / 256) % 256;
333 message[i++] = (checksum % 256);
334 *packet_len = i;
335 out:
336 return rc;
339 static int
340 parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
341 struct ecryptfs_message *msg)
343 size_t i = 0;
344 char *data;
345 size_t data_len;
346 size_t message_len;
347 int rc;
350 * ***** TAG 65 Packet Format *****
351 * | Content Type | 1 byte |
352 * | Status Indicator | 1 byte |
353 * | Encrypted File Encryption Key Size | 1 or 2 bytes |
354 * | Encrypted File Encryption Key | arbitrary |
356 message_len = msg->data_len;
357 data = msg->data;
358 /* verify that everything through the encrypted FEK size is present */
359 if (message_len < 4) {
360 rc = -EIO;
361 printk(KERN_ERR "%s: message_len is [%Zd]; minimum acceptable "
362 "message length is [%d]\n", __func__, message_len, 4);
363 goto out;
365 if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
366 rc = -EIO;
367 printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
368 __func__);
369 goto out;
371 if (data[i++]) {
372 rc = -EIO;
373 printk(KERN_ERR "%s: Status indicator has non zero "
374 "value [%d]\n", __func__, data[i-1]);
376 goto out;
378 rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
379 &data_len);
380 if (rc) {
381 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
382 "rc = [%d]\n", rc);
383 goto out;
385 i += data_len;
386 if (message_len < (i + key_rec->enc_key_size)) {
387 rc = -EIO;
388 printk(KERN_ERR "%s: message_len [%Zd]; max len is [%Zd]\n",
389 __func__, message_len, (i + key_rec->enc_key_size));
390 goto out;
392 if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
393 rc = -EIO;
394 printk(KERN_ERR "%s: Encrypted key_size [%Zd] larger than "
395 "the maximum key size [%d]\n", __func__,
396 key_rec->enc_key_size,
397 ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
398 goto out;
400 memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
401 out:
402 return rc;
405 static int
406 ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
408 int rc = 0;
410 (*sig) = NULL;
411 switch (auth_tok->token_type) {
412 case ECRYPTFS_PASSWORD:
413 (*sig) = auth_tok->token.password.signature;
414 break;
415 case ECRYPTFS_PRIVATE_KEY:
416 (*sig) = auth_tok->token.private_key.signature;
417 break;
418 default:
419 printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
420 auth_tok->token_type);
421 rc = -EINVAL;
423 return rc;
427 * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
428 * @auth_tok: The key authentication token used to decrypt the session key
429 * @crypt_stat: The cryptographic context
431 * Returns zero on success; non-zero error otherwise.
433 static int
434 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
435 struct ecryptfs_crypt_stat *crypt_stat)
437 u8 cipher_code = 0;
438 struct ecryptfs_msg_ctx *msg_ctx;
439 struct ecryptfs_message *msg = NULL;
440 char *auth_tok_sig;
441 char *netlink_message;
442 size_t netlink_message_length;
443 int rc;
445 rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
446 if (rc) {
447 printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
448 auth_tok->token_type);
449 goto out;
451 rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
452 &netlink_message, &netlink_message_length);
453 if (rc) {
454 ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
455 goto out;
457 rc = ecryptfs_send_message(ecryptfs_transport, netlink_message,
458 netlink_message_length, &msg_ctx);
459 if (rc) {
460 ecryptfs_printk(KERN_ERR, "Error sending netlink message\n");
461 goto out;
463 rc = ecryptfs_wait_for_response(msg_ctx, &msg);
464 if (rc) {
465 ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
466 "from the user space daemon\n");
467 rc = -EIO;
468 goto out;
470 rc = parse_tag_65_packet(&(auth_tok->session_key),
471 &cipher_code, msg);
472 if (rc) {
473 printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
474 rc);
475 goto out;
477 auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
478 memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
479 auth_tok->session_key.decrypted_key_size);
480 crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
481 rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
482 if (rc) {
483 ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
484 cipher_code)
485 goto out;
487 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
488 if (ecryptfs_verbosity > 0) {
489 ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
490 ecryptfs_dump_hex(crypt_stat->key,
491 crypt_stat->key_size);
493 out:
494 if (msg)
495 kfree(msg);
496 return rc;
499 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
501 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
502 struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
504 list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
505 auth_tok_list_head, list) {
506 list_del(&auth_tok_list_item->list);
507 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
508 auth_tok_list_item);
512 struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
515 * parse_tag_1_packet
516 * @crypt_stat: The cryptographic context to modify based on packet contents
517 * @data: The raw bytes of the packet.
518 * @auth_tok_list: eCryptfs parses packets into authentication tokens;
519 * a new authentication token will be placed at the
520 * end of this list for this packet.
521 * @new_auth_tok: Pointer to a pointer to memory that this function
522 * allocates; sets the memory address of the pointer to
523 * NULL on error. This object is added to the
524 * auth_tok_list.
525 * @packet_size: This function writes the size of the parsed packet
526 * into this memory location; zero on error.
527 * @max_packet_size: The maximum allowable packet size
529 * Returns zero on success; non-zero on error.
531 static int
532 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
533 unsigned char *data, struct list_head *auth_tok_list,
534 struct ecryptfs_auth_tok **new_auth_tok,
535 size_t *packet_size, size_t max_packet_size)
537 size_t body_size;
538 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
539 size_t length_size;
540 int rc = 0;
542 (*packet_size) = 0;
543 (*new_auth_tok) = NULL;
545 * This format is inspired by OpenPGP; see RFC 2440
546 * packet tag 1
548 * Tag 1 identifier (1 byte)
549 * Max Tag 1 packet size (max 3 bytes)
550 * Version (1 byte)
551 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
552 * Cipher identifier (1 byte)
553 * Encrypted key size (arbitrary)
555 * 12 bytes minimum packet size
557 if (unlikely(max_packet_size < 12)) {
558 printk(KERN_ERR "Invalid max packet size; must be >=12\n");
559 rc = -EINVAL;
560 goto out;
562 if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
563 printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
564 ECRYPTFS_TAG_1_PACKET_TYPE);
565 rc = -EINVAL;
566 goto out;
568 /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
569 * at end of function upon failure */
570 auth_tok_list_item =
571 kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
572 GFP_KERNEL);
573 if (!auth_tok_list_item) {
574 printk(KERN_ERR "Unable to allocate memory\n");
575 rc = -ENOMEM;
576 goto out;
578 (*new_auth_tok) = &auth_tok_list_item->auth_tok;
579 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
580 &length_size);
581 if (rc) {
582 printk(KERN_WARNING "Error parsing packet length; "
583 "rc = [%d]\n", rc);
584 goto out_free;
586 if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
587 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
588 rc = -EINVAL;
589 goto out_free;
591 (*packet_size) += length_size;
592 if (unlikely((*packet_size) + body_size > max_packet_size)) {
593 printk(KERN_WARNING "Packet size exceeds max\n");
594 rc = -EINVAL;
595 goto out_free;
597 if (unlikely(data[(*packet_size)++] != 0x03)) {
598 printk(KERN_WARNING "Unknown version number [%d]\n",
599 data[(*packet_size) - 1]);
600 rc = -EINVAL;
601 goto out_free;
603 ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
604 &data[(*packet_size)], ECRYPTFS_SIG_SIZE);
605 *packet_size += ECRYPTFS_SIG_SIZE;
606 /* This byte is skipped because the kernel does not need to
607 * know which public key encryption algorithm was used */
608 (*packet_size)++;
609 (*new_auth_tok)->session_key.encrypted_key_size =
610 body_size - (ECRYPTFS_SIG_SIZE + 2);
611 if ((*new_auth_tok)->session_key.encrypted_key_size
612 > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
613 printk(KERN_WARNING "Tag 1 packet contains key larger "
614 "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES");
615 rc = -EINVAL;
616 goto out;
618 memcpy((*new_auth_tok)->session_key.encrypted_key,
619 &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
620 (*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
621 (*new_auth_tok)->session_key.flags &=
622 ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
623 (*new_auth_tok)->session_key.flags |=
624 ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
625 (*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
626 (*new_auth_tok)->flags = 0;
627 (*new_auth_tok)->session_key.flags &=
628 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
629 (*new_auth_tok)->session_key.flags &=
630 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
631 list_add(&auth_tok_list_item->list, auth_tok_list);
632 goto out;
633 out_free:
634 (*new_auth_tok) = NULL;
635 memset(auth_tok_list_item, 0,
636 sizeof(struct ecryptfs_auth_tok_list_item));
637 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
638 auth_tok_list_item);
639 out:
640 if (rc)
641 (*packet_size) = 0;
642 return rc;
646 * parse_tag_3_packet
647 * @crypt_stat: The cryptographic context to modify based on packet
648 * contents.
649 * @data: The raw bytes of the packet.
650 * @auth_tok_list: eCryptfs parses packets into authentication tokens;
651 * a new authentication token will be placed at the end
652 * of this list for this packet.
653 * @new_auth_tok: Pointer to a pointer to memory that this function
654 * allocates; sets the memory address of the pointer to
655 * NULL on error. This object is added to the
656 * auth_tok_list.
657 * @packet_size: This function writes the size of the parsed packet
658 * into this memory location; zero on error.
659 * @max_packet_size: maximum number of bytes to parse
661 * Returns zero on success; non-zero on error.
663 static int
664 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
665 unsigned char *data, struct list_head *auth_tok_list,
666 struct ecryptfs_auth_tok **new_auth_tok,
667 size_t *packet_size, size_t max_packet_size)
669 size_t body_size;
670 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
671 size_t length_size;
672 int rc = 0;
674 (*packet_size) = 0;
675 (*new_auth_tok) = NULL;
677 *This format is inspired by OpenPGP; see RFC 2440
678 * packet tag 3
680 * Tag 3 identifier (1 byte)
681 * Max Tag 3 packet size (max 3 bytes)
682 * Version (1 byte)
683 * Cipher code (1 byte)
684 * S2K specifier (1 byte)
685 * Hash identifier (1 byte)
686 * Salt (ECRYPTFS_SALT_SIZE)
687 * Hash iterations (1 byte)
688 * Encrypted key (arbitrary)
690 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
692 if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
693 printk(KERN_ERR "Max packet size too large\n");
694 rc = -EINVAL;
695 goto out;
697 if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
698 printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
699 ECRYPTFS_TAG_3_PACKET_TYPE);
700 rc = -EINVAL;
701 goto out;
703 /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
704 * at end of function upon failure */
705 auth_tok_list_item =
706 kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
707 if (!auth_tok_list_item) {
708 printk(KERN_ERR "Unable to allocate memory\n");
709 rc = -ENOMEM;
710 goto out;
712 (*new_auth_tok) = &auth_tok_list_item->auth_tok;
713 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
714 &length_size);
715 if (rc) {
716 printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
717 rc);
718 goto out_free;
720 if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
721 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
722 rc = -EINVAL;
723 goto out_free;
725 (*packet_size) += length_size;
726 if (unlikely((*packet_size) + body_size > max_packet_size)) {
727 printk(KERN_ERR "Packet size exceeds max\n");
728 rc = -EINVAL;
729 goto out_free;
731 (*new_auth_tok)->session_key.encrypted_key_size =
732 (body_size - (ECRYPTFS_SALT_SIZE + 5));
733 if (unlikely(data[(*packet_size)++] != 0x04)) {
734 printk(KERN_WARNING "Unknown version number [%d]\n",
735 data[(*packet_size) - 1]);
736 rc = -EINVAL;
737 goto out_free;
739 ecryptfs_cipher_code_to_string(crypt_stat->cipher,
740 (u16)data[(*packet_size)]);
741 /* A little extra work to differentiate among the AES key
742 * sizes; see RFC2440 */
743 switch(data[(*packet_size)++]) {
744 case RFC2440_CIPHER_AES_192:
745 crypt_stat->key_size = 24;
746 break;
747 default:
748 crypt_stat->key_size =
749 (*new_auth_tok)->session_key.encrypted_key_size;
751 ecryptfs_init_crypt_ctx(crypt_stat);
752 if (unlikely(data[(*packet_size)++] != 0x03)) {
753 printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
754 rc = -ENOSYS;
755 goto out_free;
757 /* TODO: finish the hash mapping */
758 switch (data[(*packet_size)++]) {
759 case 0x01: /* See RFC2440 for these numbers and their mappings */
760 /* Choose MD5 */
761 memcpy((*new_auth_tok)->token.password.salt,
762 &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
763 (*packet_size) += ECRYPTFS_SALT_SIZE;
764 /* This conversion was taken straight from RFC2440 */
765 (*new_auth_tok)->token.password.hash_iterations =
766 ((u32) 16 + (data[(*packet_size)] & 15))
767 << ((data[(*packet_size)] >> 4) + 6);
768 (*packet_size)++;
769 /* Friendly reminder:
770 * (*new_auth_tok)->session_key.encrypted_key_size =
771 * (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
772 memcpy((*new_auth_tok)->session_key.encrypted_key,
773 &data[(*packet_size)],
774 (*new_auth_tok)->session_key.encrypted_key_size);
775 (*packet_size) +=
776 (*new_auth_tok)->session_key.encrypted_key_size;
777 (*new_auth_tok)->session_key.flags &=
778 ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
779 (*new_auth_tok)->session_key.flags |=
780 ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
781 (*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
782 break;
783 default:
784 ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
785 "[%d]\n", data[(*packet_size) - 1]);
786 rc = -ENOSYS;
787 goto out_free;
789 (*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
790 /* TODO: Parametarize; we might actually want userspace to
791 * decrypt the session key. */
792 (*new_auth_tok)->session_key.flags &=
793 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
794 (*new_auth_tok)->session_key.flags &=
795 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
796 list_add(&auth_tok_list_item->list, auth_tok_list);
797 goto out;
798 out_free:
799 (*new_auth_tok) = NULL;
800 memset(auth_tok_list_item, 0,
801 sizeof(struct ecryptfs_auth_tok_list_item));
802 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
803 auth_tok_list_item);
804 out:
805 if (rc)
806 (*packet_size) = 0;
807 return rc;
811 * parse_tag_11_packet
812 * @data: The raw bytes of the packet
813 * @contents: This function writes the data contents of the literal
814 * packet into this memory location
815 * @max_contents_bytes: The maximum number of bytes that this function
816 * is allowed to write into contents
817 * @tag_11_contents_size: This function writes the size of the parsed
818 * contents into this memory location; zero on
819 * error
820 * @packet_size: This function writes the size of the parsed packet
821 * into this memory location; zero on error
822 * @max_packet_size: maximum number of bytes to parse
824 * Returns zero on success; non-zero on error.
826 static int
827 parse_tag_11_packet(unsigned char *data, unsigned char *contents,
828 size_t max_contents_bytes, size_t *tag_11_contents_size,
829 size_t *packet_size, size_t max_packet_size)
831 size_t body_size;
832 size_t length_size;
833 int rc = 0;
835 (*packet_size) = 0;
836 (*tag_11_contents_size) = 0;
837 /* This format is inspired by OpenPGP; see RFC 2440
838 * packet tag 11
840 * Tag 11 identifier (1 byte)
841 * Max Tag 11 packet size (max 3 bytes)
842 * Binary format specifier (1 byte)
843 * Filename length (1 byte)
844 * Filename ("_CONSOLE") (8 bytes)
845 * Modification date (4 bytes)
846 * Literal data (arbitrary)
848 * We need at least 16 bytes of data for the packet to even be
849 * valid.
851 if (max_packet_size < 16) {
852 printk(KERN_ERR "Maximum packet size too small\n");
853 rc = -EINVAL;
854 goto out;
856 if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
857 printk(KERN_WARNING "Invalid tag 11 packet format\n");
858 rc = -EINVAL;
859 goto out;
861 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
862 &length_size);
863 if (rc) {
864 printk(KERN_WARNING "Invalid tag 11 packet format\n");
865 goto out;
867 if (body_size < 14) {
868 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
869 rc = -EINVAL;
870 goto out;
872 (*packet_size) += length_size;
873 (*tag_11_contents_size) = (body_size - 14);
874 if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
875 printk(KERN_ERR "Packet size exceeds max\n");
876 rc = -EINVAL;
877 goto out;
879 if (data[(*packet_size)++] != 0x62) {
880 printk(KERN_WARNING "Unrecognizable packet\n");
881 rc = -EINVAL;
882 goto out;
884 if (data[(*packet_size)++] != 0x08) {
885 printk(KERN_WARNING "Unrecognizable packet\n");
886 rc = -EINVAL;
887 goto out;
889 (*packet_size) += 12; /* Ignore filename and modification date */
890 memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
891 (*packet_size) += (*tag_11_contents_size);
892 out:
893 if (rc) {
894 (*packet_size) = 0;
895 (*tag_11_contents_size) = 0;
897 return rc;
900 static int
901 ecryptfs_find_global_auth_tok_for_sig(
902 struct ecryptfs_global_auth_tok **global_auth_tok,
903 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
905 struct ecryptfs_global_auth_tok *walker;
906 int rc = 0;
908 (*global_auth_tok) = NULL;
909 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
910 list_for_each_entry(walker,
911 &mount_crypt_stat->global_auth_tok_list,
912 mount_crypt_stat_list) {
913 if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX) == 0) {
914 (*global_auth_tok) = walker;
915 goto out;
918 rc = -EINVAL;
919 out:
920 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
921 return rc;
925 * ecryptfs_verify_version
926 * @version: The version number to confirm
928 * Returns zero on good version; non-zero otherwise
930 static int ecryptfs_verify_version(u16 version)
932 int rc = 0;
933 unsigned char major;
934 unsigned char minor;
936 major = ((version >> 8) & 0xFF);
937 minor = (version & 0xFF);
938 if (major != ECRYPTFS_VERSION_MAJOR) {
939 ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
940 "Expected [%d]; got [%d]\n",
941 ECRYPTFS_VERSION_MAJOR, major);
942 rc = -EINVAL;
943 goto out;
945 if (minor != ECRYPTFS_VERSION_MINOR) {
946 ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
947 "Expected [%d]; got [%d]\n",
948 ECRYPTFS_VERSION_MINOR, minor);
949 rc = -EINVAL;
950 goto out;
952 out:
953 return rc;
956 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
957 struct ecryptfs_auth_tok **auth_tok,
958 char *sig)
960 int rc = 0;
962 (*auth_tok_key) = request_key(&key_type_user, sig, NULL);
963 if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
964 printk(KERN_ERR "Could not find key with description: [%s]\n",
965 sig);
966 rc = process_request_key_err(PTR_ERR(*auth_tok_key));
967 goto out;
969 (*auth_tok) = ecryptfs_get_key_payload_data(*auth_tok_key);
970 if (ecryptfs_verify_version((*auth_tok)->version)) {
971 printk(KERN_ERR
972 "Data structure version mismatch. "
973 "Userspace tools must match eCryptfs "
974 "kernel module with major version [%d] "
975 "and minor version [%d]\n",
976 ECRYPTFS_VERSION_MAJOR,
977 ECRYPTFS_VERSION_MINOR);
978 rc = -EINVAL;
979 goto out;
981 if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
982 && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
983 printk(KERN_ERR "Invalid auth_tok structure "
984 "returned from key query\n");
985 rc = -EINVAL;
986 goto out;
988 out:
989 return rc;
993 * ecryptfs_find_auth_tok_for_sig
994 * @auth_tok: Set to the matching auth_tok; NULL if not found
995 * @crypt_stat: inode crypt_stat crypto context
996 * @sig: Sig of auth_tok to find
998 * For now, this function simply looks at the registered auth_tok's
999 * linked off the mount_crypt_stat, so all the auth_toks that can be
1000 * used must be registered at mount time. This function could
1001 * potentially try a lot harder to find auth_tok's (e.g., by calling
1002 * out to ecryptfsd to dynamically retrieve an auth_tok object) so
1003 * that static registration of auth_tok's will no longer be necessary.
1005 * Returns zero on no error; non-zero on error
1007 static int
1008 ecryptfs_find_auth_tok_for_sig(
1009 struct ecryptfs_auth_tok **auth_tok,
1010 struct ecryptfs_crypt_stat *crypt_stat, char *sig)
1012 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1013 crypt_stat->mount_crypt_stat;
1014 struct ecryptfs_global_auth_tok *global_auth_tok;
1015 int rc = 0;
1017 (*auth_tok) = NULL;
1018 if (ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
1019 mount_crypt_stat, sig)) {
1020 struct key *auth_tok_key;
1022 rc = ecryptfs_keyring_auth_tok_for_sig(&auth_tok_key, auth_tok,
1023 sig);
1024 } else
1025 (*auth_tok) = global_auth_tok->global_auth_tok;
1026 return rc;
1030 * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1031 * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1032 * @crypt_stat: The cryptographic context
1034 * Returns zero on success; non-zero error otherwise
1036 static int
1037 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1038 struct ecryptfs_crypt_stat *crypt_stat)
1040 struct scatterlist dst_sg;
1041 struct scatterlist src_sg;
1042 struct mutex *tfm_mutex;
1043 struct blkcipher_desc desc = {
1044 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
1046 int rc = 0;
1048 sg_init_table(&dst_sg, 1);
1049 sg_init_table(&src_sg, 1);
1051 if (unlikely(ecryptfs_verbosity > 0)) {
1052 ecryptfs_printk(
1053 KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1054 auth_tok->token.password.session_key_encryption_key_bytes);
1055 ecryptfs_dump_hex(
1056 auth_tok->token.password.session_key_encryption_key,
1057 auth_tok->token.password.session_key_encryption_key_bytes);
1059 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
1060 crypt_stat->cipher);
1061 if (unlikely(rc)) {
1062 printk(KERN_ERR "Internal error whilst attempting to get "
1063 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1064 crypt_stat->cipher, rc);
1065 goto out;
1067 rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1068 auth_tok->session_key.encrypted_key_size,
1069 &src_sg, 1);
1070 if (rc != 1) {
1071 printk(KERN_ERR "Internal error whilst attempting to convert "
1072 "auth_tok->session_key.encrypted_key to scatterlist; "
1073 "expected rc = 1; got rc = [%d]. "
1074 "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1075 auth_tok->session_key.encrypted_key_size);
1076 goto out;
1078 auth_tok->session_key.decrypted_key_size =
1079 auth_tok->session_key.encrypted_key_size;
1080 rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1081 auth_tok->session_key.decrypted_key_size,
1082 &dst_sg, 1);
1083 if (rc != 1) {
1084 printk(KERN_ERR "Internal error whilst attempting to convert "
1085 "auth_tok->session_key.decrypted_key to scatterlist; "
1086 "expected rc = 1; got rc = [%d]\n", rc);
1087 goto out;
1089 mutex_lock(tfm_mutex);
1090 rc = crypto_blkcipher_setkey(
1091 desc.tfm, auth_tok->token.password.session_key_encryption_key,
1092 crypt_stat->key_size);
1093 if (unlikely(rc < 0)) {
1094 mutex_unlock(tfm_mutex);
1095 printk(KERN_ERR "Error setting key for crypto context\n");
1096 rc = -EINVAL;
1097 goto out;
1099 rc = crypto_blkcipher_decrypt(&desc, &dst_sg, &src_sg,
1100 auth_tok->session_key.encrypted_key_size);
1101 mutex_unlock(tfm_mutex);
1102 if (unlikely(rc)) {
1103 printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1104 goto out;
1106 auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1107 memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1108 auth_tok->session_key.decrypted_key_size);
1109 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1110 if (unlikely(ecryptfs_verbosity > 0)) {
1111 ecryptfs_printk(KERN_DEBUG, "FEK of size [%d]:\n",
1112 crypt_stat->key_size);
1113 ecryptfs_dump_hex(crypt_stat->key,
1114 crypt_stat->key_size);
1116 out:
1117 return rc;
1121 * ecryptfs_parse_packet_set
1122 * @crypt_stat: The cryptographic context
1123 * @src: Virtual address of region of memory containing the packets
1124 * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1126 * Get crypt_stat to have the file's session key if the requisite key
1127 * is available to decrypt the session key.
1129 * Returns Zero if a valid authentication token was retrieved and
1130 * processed; negative value for file not encrypted or for error
1131 * conditions.
1133 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1134 unsigned char *src,
1135 struct dentry *ecryptfs_dentry)
1137 size_t i = 0;
1138 size_t found_auth_tok;
1139 size_t next_packet_is_auth_tok_packet;
1140 struct list_head auth_tok_list;
1141 struct ecryptfs_auth_tok *matching_auth_tok;
1142 struct ecryptfs_auth_tok *candidate_auth_tok;
1143 char *candidate_auth_tok_sig;
1144 size_t packet_size;
1145 struct ecryptfs_auth_tok *new_auth_tok;
1146 unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1147 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1148 size_t tag_11_contents_size;
1149 size_t tag_11_packet_size;
1150 int rc = 0;
1152 INIT_LIST_HEAD(&auth_tok_list);
1153 /* Parse the header to find as many packets as we can; these will be
1154 * added the our &auth_tok_list */
1155 next_packet_is_auth_tok_packet = 1;
1156 while (next_packet_is_auth_tok_packet) {
1157 size_t max_packet_size = ((PAGE_CACHE_SIZE - 8) - i);
1159 switch (src[i]) {
1160 case ECRYPTFS_TAG_3_PACKET_TYPE:
1161 rc = parse_tag_3_packet(crypt_stat,
1162 (unsigned char *)&src[i],
1163 &auth_tok_list, &new_auth_tok,
1164 &packet_size, max_packet_size);
1165 if (rc) {
1166 ecryptfs_printk(KERN_ERR, "Error parsing "
1167 "tag 3 packet\n");
1168 rc = -EIO;
1169 goto out_wipe_list;
1171 i += packet_size;
1172 rc = parse_tag_11_packet((unsigned char *)&src[i],
1173 sig_tmp_space,
1174 ECRYPTFS_SIG_SIZE,
1175 &tag_11_contents_size,
1176 &tag_11_packet_size,
1177 max_packet_size);
1178 if (rc) {
1179 ecryptfs_printk(KERN_ERR, "No valid "
1180 "(ecryptfs-specific) literal "
1181 "packet containing "
1182 "authentication token "
1183 "signature found after "
1184 "tag 3 packet\n");
1185 rc = -EIO;
1186 goto out_wipe_list;
1188 i += tag_11_packet_size;
1189 if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1190 ecryptfs_printk(KERN_ERR, "Expected "
1191 "signature of size [%d]; "
1192 "read size [%d]\n",
1193 ECRYPTFS_SIG_SIZE,
1194 tag_11_contents_size);
1195 rc = -EIO;
1196 goto out_wipe_list;
1198 ecryptfs_to_hex(new_auth_tok->token.password.signature,
1199 sig_tmp_space, tag_11_contents_size);
1200 new_auth_tok->token.password.signature[
1201 ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1202 crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1203 break;
1204 case ECRYPTFS_TAG_1_PACKET_TYPE:
1205 rc = parse_tag_1_packet(crypt_stat,
1206 (unsigned char *)&src[i],
1207 &auth_tok_list, &new_auth_tok,
1208 &packet_size, max_packet_size);
1209 if (rc) {
1210 ecryptfs_printk(KERN_ERR, "Error parsing "
1211 "tag 1 packet\n");
1212 rc = -EIO;
1213 goto out_wipe_list;
1215 i += packet_size;
1216 crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1217 break;
1218 case ECRYPTFS_TAG_11_PACKET_TYPE:
1219 ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1220 "(Tag 11 not allowed by itself)\n");
1221 rc = -EIO;
1222 goto out_wipe_list;
1223 break;
1224 default:
1225 ecryptfs_printk(KERN_DEBUG, "No packet at offset "
1226 "[%d] of the file header; hex value of "
1227 "character is [0x%.2x]\n", i, src[i]);
1228 next_packet_is_auth_tok_packet = 0;
1231 if (list_empty(&auth_tok_list)) {
1232 printk(KERN_ERR "The lower file appears to be a non-encrypted "
1233 "eCryptfs file; this is not supported in this version "
1234 "of the eCryptfs kernel module\n");
1235 rc = -EINVAL;
1236 goto out;
1238 /* auth_tok_list contains the set of authentication tokens
1239 * parsed from the metadata. We need to find a matching
1240 * authentication token that has the secret component(s)
1241 * necessary to decrypt the EFEK in the auth_tok parsed from
1242 * the metadata. There may be several potential matches, but
1243 * just one will be sufficient to decrypt to get the FEK. */
1244 find_next_matching_auth_tok:
1245 found_auth_tok = 0;
1246 list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1247 candidate_auth_tok = &auth_tok_list_item->auth_tok;
1248 if (unlikely(ecryptfs_verbosity > 0)) {
1249 ecryptfs_printk(KERN_DEBUG,
1250 "Considering cadidate auth tok:\n");
1251 ecryptfs_dump_auth_tok(candidate_auth_tok);
1253 rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1254 candidate_auth_tok);
1255 if (rc) {
1256 printk(KERN_ERR
1257 "Unrecognized candidate auth tok type: [%d]\n",
1258 candidate_auth_tok->token_type);
1259 rc = -EINVAL;
1260 goto out_wipe_list;
1262 ecryptfs_find_auth_tok_for_sig(&matching_auth_tok, crypt_stat,
1263 candidate_auth_tok_sig);
1264 if (matching_auth_tok) {
1265 found_auth_tok = 1;
1266 goto found_matching_auth_tok;
1269 if (!found_auth_tok) {
1270 ecryptfs_printk(KERN_ERR, "Could not find a usable "
1271 "authentication token\n");
1272 rc = -EIO;
1273 goto out_wipe_list;
1275 found_matching_auth_tok:
1276 if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1277 memcpy(&(candidate_auth_tok->token.private_key),
1278 &(matching_auth_tok->token.private_key),
1279 sizeof(struct ecryptfs_private_key));
1280 rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1281 crypt_stat);
1282 } else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1283 memcpy(&(candidate_auth_tok->token.password),
1284 &(matching_auth_tok->token.password),
1285 sizeof(struct ecryptfs_password));
1286 rc = decrypt_passphrase_encrypted_session_key(
1287 candidate_auth_tok, crypt_stat);
1289 if (rc) {
1290 struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1292 ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1293 "session key for authentication token with sig "
1294 "[%.*s]; rc = [%d]. Removing auth tok "
1295 "candidate from the list and searching for "
1296 "the next match.\n", candidate_auth_tok_sig,
1297 ECRYPTFS_SIG_SIZE_HEX, rc);
1298 list_for_each_entry_safe(auth_tok_list_item,
1299 auth_tok_list_item_tmp,
1300 &auth_tok_list, list) {
1301 if (candidate_auth_tok
1302 == &auth_tok_list_item->auth_tok) {
1303 list_del(&auth_tok_list_item->list);
1304 kmem_cache_free(
1305 ecryptfs_auth_tok_list_item_cache,
1306 auth_tok_list_item);
1307 goto find_next_matching_auth_tok;
1310 BUG();
1312 rc = ecryptfs_compute_root_iv(crypt_stat);
1313 if (rc) {
1314 ecryptfs_printk(KERN_ERR, "Error computing "
1315 "the root IV\n");
1316 goto out_wipe_list;
1318 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1319 if (rc) {
1320 ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1321 "context for cipher [%s]; rc = [%d]\n",
1322 crypt_stat->cipher, rc);
1324 out_wipe_list:
1325 wipe_auth_tok_list(&auth_tok_list);
1326 out:
1327 return rc;
1330 static int
1331 pki_encrypt_session_key(struct ecryptfs_auth_tok *auth_tok,
1332 struct ecryptfs_crypt_stat *crypt_stat,
1333 struct ecryptfs_key_record *key_rec)
1335 struct ecryptfs_msg_ctx *msg_ctx = NULL;
1336 char *netlink_payload;
1337 size_t netlink_payload_length;
1338 struct ecryptfs_message *msg;
1339 int rc;
1341 rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1342 ecryptfs_code_for_cipher_string(crypt_stat),
1343 crypt_stat, &netlink_payload,
1344 &netlink_payload_length);
1345 if (rc) {
1346 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1347 goto out;
1349 rc = ecryptfs_send_message(ecryptfs_transport, netlink_payload,
1350 netlink_payload_length, &msg_ctx);
1351 if (rc) {
1352 ecryptfs_printk(KERN_ERR, "Error sending netlink message\n");
1353 goto out;
1355 rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1356 if (rc) {
1357 ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
1358 "from the user space daemon\n");
1359 rc = -EIO;
1360 goto out;
1362 rc = parse_tag_67_packet(key_rec, msg);
1363 if (rc)
1364 ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
1365 kfree(msg);
1366 out:
1367 if (netlink_payload)
1368 kfree(netlink_payload);
1369 return rc;
1372 * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
1373 * @dest: Buffer into which to write the packet
1374 * @remaining_bytes: Maximum number of bytes that can be writtn
1375 * @auth_tok: The authentication token used for generating the tag 1 packet
1376 * @crypt_stat: The cryptographic context
1377 * @key_rec: The key record struct for the tag 1 packet
1378 * @packet_size: This function will write the number of bytes that end
1379 * up constituting the packet; set to zero on error
1381 * Returns zero on success; non-zero on error.
1383 static int
1384 write_tag_1_packet(char *dest, size_t *remaining_bytes,
1385 struct ecryptfs_auth_tok *auth_tok,
1386 struct ecryptfs_crypt_stat *crypt_stat,
1387 struct ecryptfs_key_record *key_rec, size_t *packet_size)
1389 size_t i;
1390 size_t encrypted_session_key_valid = 0;
1391 size_t packet_size_length;
1392 size_t max_packet_size;
1393 int rc = 0;
1395 (*packet_size) = 0;
1396 ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
1397 ECRYPTFS_SIG_SIZE);
1398 encrypted_session_key_valid = 0;
1399 for (i = 0; i < crypt_stat->key_size; i++)
1400 encrypted_session_key_valid |=
1401 auth_tok->session_key.encrypted_key[i];
1402 if (encrypted_session_key_valid) {
1403 memcpy(key_rec->enc_key,
1404 auth_tok->session_key.encrypted_key,
1405 auth_tok->session_key.encrypted_key_size);
1406 goto encrypted_session_key_set;
1408 if (auth_tok->session_key.encrypted_key_size == 0)
1409 auth_tok->session_key.encrypted_key_size =
1410 auth_tok->token.private_key.key_size;
1411 rc = pki_encrypt_session_key(auth_tok, crypt_stat, key_rec);
1412 if (rc) {
1413 printk(KERN_ERR "Failed to encrypt session key via a key "
1414 "module; rc = [%d]\n", rc);
1415 goto out;
1417 if (ecryptfs_verbosity > 0) {
1418 ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
1419 ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
1421 encrypted_session_key_set:
1422 /* This format is inspired by OpenPGP; see RFC 2440
1423 * packet tag 1 */
1424 max_packet_size = (1 /* Tag 1 identifier */
1425 + 3 /* Max Tag 1 packet size */
1426 + 1 /* Version */
1427 + ECRYPTFS_SIG_SIZE /* Key identifier */
1428 + 1 /* Cipher identifier */
1429 + key_rec->enc_key_size); /* Encrypted key size */
1430 if (max_packet_size > (*remaining_bytes)) {
1431 printk(KERN_ERR "Packet length larger than maximum allowable; "
1432 "need up to [%td] bytes, but there are only [%td] "
1433 "available\n", max_packet_size, (*remaining_bytes));
1434 rc = -EINVAL;
1435 goto out;
1437 dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
1438 rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
1439 (max_packet_size - 4),
1440 &packet_size_length);
1441 if (rc) {
1442 ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
1443 "header; cannot generate packet length\n");
1444 goto out;
1446 (*packet_size) += packet_size_length;
1447 dest[(*packet_size)++] = 0x03; /* version 3 */
1448 memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
1449 (*packet_size) += ECRYPTFS_SIG_SIZE;
1450 dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
1451 memcpy(&dest[(*packet_size)], key_rec->enc_key,
1452 key_rec->enc_key_size);
1453 (*packet_size) += key_rec->enc_key_size;
1454 out:
1455 if (rc)
1456 (*packet_size) = 0;
1457 else
1458 (*remaining_bytes) -= (*packet_size);
1459 return rc;
1463 * write_tag_11_packet
1464 * @dest: Target into which Tag 11 packet is to be written
1465 * @remaining_bytes: Maximum packet length
1466 * @contents: Byte array of contents to copy in
1467 * @contents_length: Number of bytes in contents
1468 * @packet_length: Length of the Tag 11 packet written; zero on error
1470 * Returns zero on success; non-zero on error.
1472 static int
1473 write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
1474 size_t contents_length, size_t *packet_length)
1476 size_t packet_size_length;
1477 size_t max_packet_size;
1478 int rc = 0;
1480 (*packet_length) = 0;
1481 /* This format is inspired by OpenPGP; see RFC 2440
1482 * packet tag 11 */
1483 max_packet_size = (1 /* Tag 11 identifier */
1484 + 3 /* Max Tag 11 packet size */
1485 + 1 /* Binary format specifier */
1486 + 1 /* Filename length */
1487 + 8 /* Filename ("_CONSOLE") */
1488 + 4 /* Modification date */
1489 + contents_length); /* Literal data */
1490 if (max_packet_size > (*remaining_bytes)) {
1491 printk(KERN_ERR "Packet length larger than maximum allowable; "
1492 "need up to [%td] bytes, but there are only [%td] "
1493 "available\n", max_packet_size, (*remaining_bytes));
1494 rc = -EINVAL;
1495 goto out;
1497 dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
1498 rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
1499 (max_packet_size - 4),
1500 &packet_size_length);
1501 if (rc) {
1502 printk(KERN_ERR "Error generating tag 11 packet header; cannot "
1503 "generate packet length. rc = [%d]\n", rc);
1504 goto out;
1506 (*packet_length) += packet_size_length;
1507 dest[(*packet_length)++] = 0x62; /* binary data format specifier */
1508 dest[(*packet_length)++] = 8;
1509 memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
1510 (*packet_length) += 8;
1511 memset(&dest[(*packet_length)], 0x00, 4);
1512 (*packet_length) += 4;
1513 memcpy(&dest[(*packet_length)], contents, contents_length);
1514 (*packet_length) += contents_length;
1515 out:
1516 if (rc)
1517 (*packet_length) = 0;
1518 else
1519 (*remaining_bytes) -= (*packet_length);
1520 return rc;
1524 * write_tag_3_packet
1525 * @dest: Buffer into which to write the packet
1526 * @remaining_bytes: Maximum number of bytes that can be written
1527 * @auth_tok: Authentication token
1528 * @crypt_stat: The cryptographic context
1529 * @key_rec: encrypted key
1530 * @packet_size: This function will write the number of bytes that end
1531 * up constituting the packet; set to zero on error
1533 * Returns zero on success; non-zero on error.
1535 static int
1536 write_tag_3_packet(char *dest, size_t *remaining_bytes,
1537 struct ecryptfs_auth_tok *auth_tok,
1538 struct ecryptfs_crypt_stat *crypt_stat,
1539 struct ecryptfs_key_record *key_rec, size_t *packet_size)
1541 size_t i;
1542 size_t encrypted_session_key_valid = 0;
1543 char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
1544 struct scatterlist dst_sg;
1545 struct scatterlist src_sg;
1546 struct mutex *tfm_mutex = NULL;
1547 u8 cipher_code;
1548 size_t packet_size_length;
1549 size_t max_packet_size;
1550 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1551 crypt_stat->mount_crypt_stat;
1552 struct blkcipher_desc desc = {
1553 .tfm = NULL,
1554 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
1556 int rc = 0;
1558 (*packet_size) = 0;
1559 ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
1560 ECRYPTFS_SIG_SIZE);
1561 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
1562 crypt_stat->cipher);
1563 if (unlikely(rc)) {
1564 printk(KERN_ERR "Internal error whilst attempting to get "
1565 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1566 crypt_stat->cipher, rc);
1567 goto out;
1569 if (mount_crypt_stat->global_default_cipher_key_size == 0) {
1570 struct blkcipher_alg *alg = crypto_blkcipher_alg(desc.tfm);
1572 printk(KERN_WARNING "No key size specified at mount; "
1573 "defaulting to [%d]\n", alg->max_keysize);
1574 mount_crypt_stat->global_default_cipher_key_size =
1575 alg->max_keysize;
1577 if (crypt_stat->key_size == 0)
1578 crypt_stat->key_size =
1579 mount_crypt_stat->global_default_cipher_key_size;
1580 if (auth_tok->session_key.encrypted_key_size == 0)
1581 auth_tok->session_key.encrypted_key_size =
1582 crypt_stat->key_size;
1583 if (crypt_stat->key_size == 24
1584 && strcmp("aes", crypt_stat->cipher) == 0) {
1585 memset((crypt_stat->key + 24), 0, 8);
1586 auth_tok->session_key.encrypted_key_size = 32;
1587 } else
1588 auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
1589 key_rec->enc_key_size =
1590 auth_tok->session_key.encrypted_key_size;
1591 encrypted_session_key_valid = 0;
1592 for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
1593 encrypted_session_key_valid |=
1594 auth_tok->session_key.encrypted_key[i];
1595 if (encrypted_session_key_valid) {
1596 ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
1597 "using auth_tok->session_key.encrypted_key, "
1598 "where key_rec->enc_key_size = [%d]\n",
1599 key_rec->enc_key_size);
1600 memcpy(key_rec->enc_key,
1601 auth_tok->session_key.encrypted_key,
1602 key_rec->enc_key_size);
1603 goto encrypted_session_key_set;
1605 if (auth_tok->token.password.flags &
1606 ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
1607 ecryptfs_printk(KERN_DEBUG, "Using previously generated "
1608 "session key encryption key of size [%d]\n",
1609 auth_tok->token.password.
1610 session_key_encryption_key_bytes);
1611 memcpy(session_key_encryption_key,
1612 auth_tok->token.password.session_key_encryption_key,
1613 crypt_stat->key_size);
1614 ecryptfs_printk(KERN_DEBUG,
1615 "Cached session key " "encryption key: \n");
1616 if (ecryptfs_verbosity > 0)
1617 ecryptfs_dump_hex(session_key_encryption_key, 16);
1619 if (unlikely(ecryptfs_verbosity > 0)) {
1620 ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
1621 ecryptfs_dump_hex(session_key_encryption_key, 16);
1623 rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
1624 &src_sg, 1);
1625 if (rc != 1) {
1626 ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
1627 "for crypt_stat session key; expected rc = 1; "
1628 "got rc = [%d]. key_rec->enc_key_size = [%d]\n",
1629 rc, key_rec->enc_key_size);
1630 rc = -ENOMEM;
1631 goto out;
1633 rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
1634 &dst_sg, 1);
1635 if (rc != 1) {
1636 ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
1637 "for crypt_stat encrypted session key; "
1638 "expected rc = 1; got rc = [%d]. "
1639 "key_rec->enc_key_size = [%d]\n", rc,
1640 key_rec->enc_key_size);
1641 rc = -ENOMEM;
1642 goto out;
1644 mutex_lock(tfm_mutex);
1645 rc = crypto_blkcipher_setkey(desc.tfm, session_key_encryption_key,
1646 crypt_stat->key_size);
1647 if (rc < 0) {
1648 mutex_unlock(tfm_mutex);
1649 ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
1650 "context; rc = [%d]\n", rc);
1651 goto out;
1653 rc = 0;
1654 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes of the key\n",
1655 crypt_stat->key_size);
1656 rc = crypto_blkcipher_encrypt(&desc, &dst_sg, &src_sg,
1657 (*key_rec).enc_key_size);
1658 mutex_unlock(tfm_mutex);
1659 if (rc) {
1660 printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
1661 goto out;
1663 ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
1664 if (ecryptfs_verbosity > 0) {
1665 ecryptfs_printk(KERN_DEBUG, "EFEK of size [%d]:\n",
1666 key_rec->enc_key_size);
1667 ecryptfs_dump_hex(key_rec->enc_key,
1668 key_rec->enc_key_size);
1670 encrypted_session_key_set:
1671 /* This format is inspired by OpenPGP; see RFC 2440
1672 * packet tag 3 */
1673 max_packet_size = (1 /* Tag 3 identifier */
1674 + 3 /* Max Tag 3 packet size */
1675 + 1 /* Version */
1676 + 1 /* Cipher code */
1677 + 1 /* S2K specifier */
1678 + 1 /* Hash identifier */
1679 + ECRYPTFS_SALT_SIZE /* Salt */
1680 + 1 /* Hash iterations */
1681 + key_rec->enc_key_size); /* Encrypted key size */
1682 if (max_packet_size > (*remaining_bytes)) {
1683 printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
1684 "there are only [%td] available\n", max_packet_size,
1685 (*remaining_bytes));
1686 rc = -EINVAL;
1687 goto out;
1689 dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
1690 /* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
1691 * to get the number of octets in the actual Tag 3 packet */
1692 rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
1693 (max_packet_size - 4),
1694 &packet_size_length);
1695 if (rc) {
1696 printk(KERN_ERR "Error generating tag 3 packet header; cannot "
1697 "generate packet length. rc = [%d]\n", rc);
1698 goto out;
1700 (*packet_size) += packet_size_length;
1701 dest[(*packet_size)++] = 0x04; /* version 4 */
1702 /* TODO: Break from RFC2440 so that arbitrary ciphers can be
1703 * specified with strings */
1704 cipher_code = ecryptfs_code_for_cipher_string(crypt_stat);
1705 if (cipher_code == 0) {
1706 ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
1707 "cipher [%s]\n", crypt_stat->cipher);
1708 rc = -EINVAL;
1709 goto out;
1711 dest[(*packet_size)++] = cipher_code;
1712 dest[(*packet_size)++] = 0x03; /* S2K */
1713 dest[(*packet_size)++] = 0x01; /* MD5 (TODO: parameterize) */
1714 memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
1715 ECRYPTFS_SALT_SIZE);
1716 (*packet_size) += ECRYPTFS_SALT_SIZE; /* salt */
1717 dest[(*packet_size)++] = 0x60; /* hash iterations (65536) */
1718 memcpy(&dest[(*packet_size)], key_rec->enc_key,
1719 key_rec->enc_key_size);
1720 (*packet_size) += key_rec->enc_key_size;
1721 out:
1722 if (rc)
1723 (*packet_size) = 0;
1724 else
1725 (*remaining_bytes) -= (*packet_size);
1726 return rc;
1729 struct kmem_cache *ecryptfs_key_record_cache;
1732 * ecryptfs_generate_key_packet_set
1733 * @dest_base: Virtual address from which to write the key record set
1734 * @crypt_stat: The cryptographic context from which the
1735 * authentication tokens will be retrieved
1736 * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
1737 * for the global parameters
1738 * @len: The amount written
1739 * @max: The maximum amount of data allowed to be written
1741 * Generates a key packet set and writes it to the virtual address
1742 * passed in.
1744 * Returns zero on success; non-zero on error.
1747 ecryptfs_generate_key_packet_set(char *dest_base,
1748 struct ecryptfs_crypt_stat *crypt_stat,
1749 struct dentry *ecryptfs_dentry, size_t *len,
1750 size_t max)
1752 struct ecryptfs_auth_tok *auth_tok;
1753 struct ecryptfs_global_auth_tok *global_auth_tok;
1754 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1755 &ecryptfs_superblock_to_private(
1756 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1757 size_t written;
1758 struct ecryptfs_key_record *key_rec;
1759 struct ecryptfs_key_sig *key_sig;
1760 int rc = 0;
1762 (*len) = 0;
1763 mutex_lock(&crypt_stat->keysig_list_mutex);
1764 key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
1765 if (!key_rec) {
1766 rc = -ENOMEM;
1767 goto out;
1769 list_for_each_entry(key_sig, &crypt_stat->keysig_list,
1770 crypt_stat_list) {
1771 memset(key_rec, 0, sizeof(*key_rec));
1772 rc = ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
1773 mount_crypt_stat,
1774 key_sig->keysig);
1775 if (rc) {
1776 printk(KERN_ERR "Error attempting to get the global "
1777 "auth_tok; rc = [%d]\n", rc);
1778 goto out_free;
1780 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID) {
1781 printk(KERN_WARNING
1782 "Skipping invalid auth tok with sig = [%s]\n",
1783 global_auth_tok->sig);
1784 continue;
1786 auth_tok = global_auth_tok->global_auth_tok;
1787 if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
1788 rc = write_tag_3_packet((dest_base + (*len)),
1789 &max, auth_tok,
1790 crypt_stat, key_rec,
1791 &written);
1792 if (rc) {
1793 ecryptfs_printk(KERN_WARNING, "Error "
1794 "writing tag 3 packet\n");
1795 goto out_free;
1797 (*len) += written;
1798 /* Write auth tok signature packet */
1799 rc = write_tag_11_packet((dest_base + (*len)), &max,
1800 key_rec->sig,
1801 ECRYPTFS_SIG_SIZE, &written);
1802 if (rc) {
1803 ecryptfs_printk(KERN_ERR, "Error writing "
1804 "auth tok signature packet\n");
1805 goto out_free;
1807 (*len) += written;
1808 } else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1809 rc = write_tag_1_packet(dest_base + (*len),
1810 &max, auth_tok,
1811 crypt_stat, key_rec, &written);
1812 if (rc) {
1813 ecryptfs_printk(KERN_WARNING, "Error "
1814 "writing tag 1 packet\n");
1815 goto out_free;
1817 (*len) += written;
1818 } else {
1819 ecryptfs_printk(KERN_WARNING, "Unsupported "
1820 "authentication token type\n");
1821 rc = -EINVAL;
1822 goto out_free;
1825 if (likely(max > 0)) {
1826 dest_base[(*len)] = 0x00;
1827 } else {
1828 ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
1829 rc = -EIO;
1831 out_free:
1832 kmem_cache_free(ecryptfs_key_record_cache, key_rec);
1833 out:
1834 if (rc)
1835 (*len) = 0;
1836 mutex_unlock(&crypt_stat->keysig_list_mutex);
1837 return rc;
1840 struct kmem_cache *ecryptfs_key_sig_cache;
1842 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
1844 struct ecryptfs_key_sig *new_key_sig;
1845 int rc = 0;
1847 new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
1848 if (!new_key_sig) {
1849 rc = -ENOMEM;
1850 printk(KERN_ERR
1851 "Error allocating from ecryptfs_key_sig_cache\n");
1852 goto out;
1854 memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
1855 mutex_lock(&crypt_stat->keysig_list_mutex);
1856 list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
1857 mutex_unlock(&crypt_stat->keysig_list_mutex);
1858 out:
1859 return rc;
1862 struct kmem_cache *ecryptfs_global_auth_tok_cache;
1865 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1866 char *sig)
1868 struct ecryptfs_global_auth_tok *new_auth_tok;
1869 int rc = 0;
1871 new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
1872 GFP_KERNEL);
1873 if (!new_auth_tok) {
1874 rc = -ENOMEM;
1875 printk(KERN_ERR "Error allocating from "
1876 "ecryptfs_global_auth_tok_cache\n");
1877 goto out;
1879 memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
1880 new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
1881 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
1882 list_add(&new_auth_tok->mount_crypt_stat_list,
1883 &mount_crypt_stat->global_auth_tok_list);
1884 mount_crypt_stat->num_global_auth_toks++;
1885 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
1886 out:
1887 return rc;