[PATCH] reiserfs: handle trans_id overflow
[linux-2.6/mini2440.git] / kernel / posix-timers.c
blob9944379360b50b5f9c16b1f289cf1d27da2674ad
1 /*
2 * linux/kernel/posix_timers.c
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
8 * Copyright (C) 2002 2003 by MontaVista Software.
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
33 #include <linux/mm.h>
34 #include <linux/smp_lock.h>
35 #include <linux/interrupt.h>
36 #include <linux/slab.h>
37 #include <linux/time.h>
38 #include <linux/mutex.h>
40 #include <asm/uaccess.h>
41 #include <asm/semaphore.h>
42 #include <linux/list.h>
43 #include <linux/init.h>
44 #include <linux/compiler.h>
45 #include <linux/idr.h>
46 #include <linux/posix-timers.h>
47 #include <linux/syscalls.h>
48 #include <linux/wait.h>
49 #include <linux/workqueue.h>
50 #include <linux/module.h>
53 * Management arrays for POSIX timers. Timers are kept in slab memory
54 * Timer ids are allocated by an external routine that keeps track of the
55 * id and the timer. The external interface is:
57 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
58 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
59 * related it to <ptr>
60 * void idr_remove(struct idr *idp, int id); to release <id>
61 * void idr_init(struct idr *idp); to initialize <idp>
62 * which we supply.
63 * The idr_get_new *may* call slab for more memory so it must not be
64 * called under a spin lock. Likewise idr_remore may release memory
65 * (but it may be ok to do this under a lock...).
66 * idr_find is just a memory look up and is quite fast. A -1 return
67 * indicates that the requested id does not exist.
71 * Lets keep our timers in a slab cache :-)
73 static kmem_cache_t *posix_timers_cache;
74 static struct idr posix_timers_id;
75 static DEFINE_SPINLOCK(idr_lock);
78 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
79 * SIGEV values. Here we put out an error if this assumption fails.
81 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
82 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
83 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
84 #endif
88 * The timer ID is turned into a timer address by idr_find().
89 * Verifying a valid ID consists of:
91 * a) checking that idr_find() returns other than -1.
92 * b) checking that the timer id matches the one in the timer itself.
93 * c) that the timer owner is in the callers thread group.
97 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
98 * to implement others. This structure defines the various
99 * clocks and allows the possibility of adding others. We
100 * provide an interface to add clocks to the table and expect
101 * the "arch" code to add at least one clock that is high
102 * resolution. Here we define the standard CLOCK_REALTIME as a
103 * 1/HZ resolution clock.
105 * RESOLUTION: Clock resolution is used to round up timer and interval
106 * times, NOT to report clock times, which are reported with as
107 * much resolution as the system can muster. In some cases this
108 * resolution may depend on the underlying clock hardware and
109 * may not be quantifiable until run time, and only then is the
110 * necessary code is written. The standard says we should say
111 * something about this issue in the documentation...
113 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
114 * various clock functions. For clocks that use the standard
115 * system timer code these entries should be NULL. This will
116 * allow dispatch without the overhead of indirect function
117 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
118 * must supply functions here, even if the function just returns
119 * ENOSYS. The standard POSIX timer management code assumes the
120 * following: 1.) The k_itimer struct (sched.h) is used for the
121 * timer. 2.) The list, it_lock, it_clock, it_id and it_process
122 * fields are not modified by timer code.
124 * At this time all functions EXCEPT clock_nanosleep can be
125 * redirected by the CLOCKS structure. Clock_nanosleep is in
126 * there, but the code ignores it.
128 * Permissions: It is assumed that the clock_settime() function defined
129 * for each clock will take care of permission checks. Some
130 * clocks may be set able by any user (i.e. local process
131 * clocks) others not. Currently the only set able clock we
132 * have is CLOCK_REALTIME and its high res counter part, both of
133 * which we beg off on and pass to do_sys_settimeofday().
136 static struct k_clock posix_clocks[MAX_CLOCKS];
139 * These ones are defined below.
141 static int common_nsleep(const clockid_t, int flags, struct timespec *t,
142 struct timespec __user *rmtp);
143 static void common_timer_get(struct k_itimer *, struct itimerspec *);
144 static int common_timer_set(struct k_itimer *, int,
145 struct itimerspec *, struct itimerspec *);
146 static int common_timer_del(struct k_itimer *timer);
148 static int posix_timer_fn(void *data);
150 static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
152 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
154 spin_unlock_irqrestore(&timr->it_lock, flags);
158 * Call the k_clock hook function if non-null, or the default function.
160 #define CLOCK_DISPATCH(clock, call, arglist) \
161 ((clock) < 0 ? posix_cpu_##call arglist : \
162 (posix_clocks[clock].call != NULL \
163 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
166 * Default clock hook functions when the struct k_clock passed
167 * to register_posix_clock leaves a function pointer null.
169 * The function common_CALL is the default implementation for
170 * the function pointer CALL in struct k_clock.
173 static inline int common_clock_getres(const clockid_t which_clock,
174 struct timespec *tp)
176 tp->tv_sec = 0;
177 tp->tv_nsec = posix_clocks[which_clock].res;
178 return 0;
182 * Get real time for posix timers
184 static int common_clock_get(clockid_t which_clock, struct timespec *tp)
186 ktime_get_real_ts(tp);
187 return 0;
190 static inline int common_clock_set(const clockid_t which_clock,
191 struct timespec *tp)
193 return do_sys_settimeofday(tp, NULL);
196 static int common_timer_create(struct k_itimer *new_timer)
198 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
199 return 0;
203 * Return nonzero if we know a priori this clockid_t value is bogus.
205 static inline int invalid_clockid(const clockid_t which_clock)
207 if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
208 return 0;
209 if ((unsigned) which_clock >= MAX_CLOCKS)
210 return 1;
211 if (posix_clocks[which_clock].clock_getres != NULL)
212 return 0;
213 if (posix_clocks[which_clock].res != 0)
214 return 0;
215 return 1;
219 * Get monotonic time for posix timers
221 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
223 ktime_get_ts(tp);
224 return 0;
228 * Initialize everything, well, just everything in Posix clocks/timers ;)
230 static __init int init_posix_timers(void)
232 struct k_clock clock_realtime = {
233 .clock_getres = hrtimer_get_res,
235 struct k_clock clock_monotonic = {
236 .clock_getres = hrtimer_get_res,
237 .clock_get = posix_ktime_get_ts,
238 .clock_set = do_posix_clock_nosettime,
241 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
242 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
244 posix_timers_cache = kmem_cache_create("posix_timers_cache",
245 sizeof (struct k_itimer), 0, 0, NULL, NULL);
246 idr_init(&posix_timers_id);
247 return 0;
250 __initcall(init_posix_timers);
252 static void schedule_next_timer(struct k_itimer *timr)
254 if (timr->it.real.interval.tv64 == 0)
255 return;
257 timr->it_overrun += hrtimer_forward(&timr->it.real.timer,
258 timr->it.real.interval);
259 timr->it_overrun_last = timr->it_overrun;
260 timr->it_overrun = -1;
261 ++timr->it_requeue_pending;
262 hrtimer_restart(&timr->it.real.timer);
266 * This function is exported for use by the signal deliver code. It is
267 * called just prior to the info block being released and passes that
268 * block to us. It's function is to update the overrun entry AND to
269 * restart the timer. It should only be called if the timer is to be
270 * restarted (i.e. we have flagged this in the sys_private entry of the
271 * info block).
273 * To protect aginst the timer going away while the interrupt is queued,
274 * we require that the it_requeue_pending flag be set.
276 void do_schedule_next_timer(struct siginfo *info)
278 struct k_itimer *timr;
279 unsigned long flags;
281 timr = lock_timer(info->si_tid, &flags);
283 if (timr && timr->it_requeue_pending == info->si_sys_private) {
284 if (timr->it_clock < 0)
285 posix_cpu_timer_schedule(timr);
286 else
287 schedule_next_timer(timr);
289 info->si_overrun = timr->it_overrun_last;
292 if (timr)
293 unlock_timer(timr, flags);
296 int posix_timer_event(struct k_itimer *timr,int si_private)
298 memset(&timr->sigq->info, 0, sizeof(siginfo_t));
299 timr->sigq->info.si_sys_private = si_private;
300 /* Send signal to the process that owns this timer.*/
302 timr->sigq->info.si_signo = timr->it_sigev_signo;
303 timr->sigq->info.si_errno = 0;
304 timr->sigq->info.si_code = SI_TIMER;
305 timr->sigq->info.si_tid = timr->it_id;
306 timr->sigq->info.si_value = timr->it_sigev_value;
308 if (timr->it_sigev_notify & SIGEV_THREAD_ID) {
309 struct task_struct *leader;
310 int ret = send_sigqueue(timr->it_sigev_signo, timr->sigq,
311 timr->it_process);
313 if (likely(ret >= 0))
314 return ret;
316 timr->it_sigev_notify = SIGEV_SIGNAL;
317 leader = timr->it_process->group_leader;
318 put_task_struct(timr->it_process);
319 timr->it_process = leader;
322 return send_group_sigqueue(timr->it_sigev_signo, timr->sigq,
323 timr->it_process);
325 EXPORT_SYMBOL_GPL(posix_timer_event);
328 * This function gets called when a POSIX.1b interval timer expires. It
329 * is used as a callback from the kernel internal timer. The
330 * run_timer_list code ALWAYS calls with interrupts on.
332 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
334 static int posix_timer_fn(void *data)
336 struct k_itimer *timr = data;
337 unsigned long flags;
338 int si_private = 0;
339 int ret = HRTIMER_NORESTART;
341 spin_lock_irqsave(&timr->it_lock, flags);
343 if (timr->it.real.interval.tv64 != 0)
344 si_private = ++timr->it_requeue_pending;
346 if (posix_timer_event(timr, si_private)) {
348 * signal was not sent because of sig_ignor
349 * we will not get a call back to restart it AND
350 * it should be restarted.
352 if (timr->it.real.interval.tv64 != 0) {
353 timr->it_overrun +=
354 hrtimer_forward(&timr->it.real.timer,
355 timr->it.real.interval);
356 ret = HRTIMER_RESTART;
357 ++timr->it_requeue_pending;
361 unlock_timer(timr, flags);
362 return ret;
365 static struct task_struct * good_sigevent(sigevent_t * event)
367 struct task_struct *rtn = current->group_leader;
369 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
370 (!(rtn = find_task_by_pid(event->sigev_notify_thread_id)) ||
371 rtn->tgid != current->tgid ||
372 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
373 return NULL;
375 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
376 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
377 return NULL;
379 return rtn;
382 void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
384 if ((unsigned) clock_id >= MAX_CLOCKS) {
385 printk("POSIX clock register failed for clock_id %d\n",
386 clock_id);
387 return;
390 posix_clocks[clock_id] = *new_clock;
392 EXPORT_SYMBOL_GPL(register_posix_clock);
394 static struct k_itimer * alloc_posix_timer(void)
396 struct k_itimer *tmr;
397 tmr = kmem_cache_alloc(posix_timers_cache, GFP_KERNEL);
398 if (!tmr)
399 return tmr;
400 memset(tmr, 0, sizeof (struct k_itimer));
401 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
402 kmem_cache_free(posix_timers_cache, tmr);
403 tmr = NULL;
405 return tmr;
408 #define IT_ID_SET 1
409 #define IT_ID_NOT_SET 0
410 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
412 if (it_id_set) {
413 unsigned long flags;
414 spin_lock_irqsave(&idr_lock, flags);
415 idr_remove(&posix_timers_id, tmr->it_id);
416 spin_unlock_irqrestore(&idr_lock, flags);
418 sigqueue_free(tmr->sigq);
419 if (unlikely(tmr->it_process) &&
420 tmr->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
421 put_task_struct(tmr->it_process);
422 kmem_cache_free(posix_timers_cache, tmr);
425 /* Create a POSIX.1b interval timer. */
427 asmlinkage long
428 sys_timer_create(const clockid_t which_clock,
429 struct sigevent __user *timer_event_spec,
430 timer_t __user * created_timer_id)
432 int error = 0;
433 struct k_itimer *new_timer = NULL;
434 int new_timer_id;
435 struct task_struct *process = NULL;
436 unsigned long flags;
437 sigevent_t event;
438 int it_id_set = IT_ID_NOT_SET;
440 if (invalid_clockid(which_clock))
441 return -EINVAL;
443 new_timer = alloc_posix_timer();
444 if (unlikely(!new_timer))
445 return -EAGAIN;
447 spin_lock_init(&new_timer->it_lock);
448 retry:
449 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
450 error = -EAGAIN;
451 goto out;
453 spin_lock_irq(&idr_lock);
454 error = idr_get_new(&posix_timers_id, (void *) new_timer,
455 &new_timer_id);
456 spin_unlock_irq(&idr_lock);
457 if (error == -EAGAIN)
458 goto retry;
459 else if (error) {
461 * Wierd looking, but we return EAGAIN if the IDR is
462 * full (proper POSIX return value for this)
464 error = -EAGAIN;
465 goto out;
468 it_id_set = IT_ID_SET;
469 new_timer->it_id = (timer_t) new_timer_id;
470 new_timer->it_clock = which_clock;
471 new_timer->it_overrun = -1;
472 error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
473 if (error)
474 goto out;
477 * return the timer_id now. The next step is hard to
478 * back out if there is an error.
480 if (copy_to_user(created_timer_id,
481 &new_timer_id, sizeof (new_timer_id))) {
482 error = -EFAULT;
483 goto out;
485 if (timer_event_spec) {
486 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
487 error = -EFAULT;
488 goto out;
490 new_timer->it_sigev_notify = event.sigev_notify;
491 new_timer->it_sigev_signo = event.sigev_signo;
492 new_timer->it_sigev_value = event.sigev_value;
494 read_lock(&tasklist_lock);
495 if ((process = good_sigevent(&event))) {
497 * We may be setting up this process for another
498 * thread. It may be exiting. To catch this
499 * case the we check the PF_EXITING flag. If
500 * the flag is not set, the siglock will catch
501 * him before it is too late (in exit_itimers).
503 * The exec case is a bit more invloved but easy
504 * to code. If the process is in our thread
505 * group (and it must be or we would not allow
506 * it here) and is doing an exec, it will cause
507 * us to be killed. In this case it will wait
508 * for us to die which means we can finish this
509 * linkage with our last gasp. I.e. no code :)
511 spin_lock_irqsave(&process->sighand->siglock, flags);
512 if (!(process->flags & PF_EXITING)) {
513 new_timer->it_process = process;
514 list_add(&new_timer->list,
515 &process->signal->posix_timers);
516 spin_unlock_irqrestore(&process->sighand->siglock, flags);
517 if (new_timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
518 get_task_struct(process);
519 } else {
520 spin_unlock_irqrestore(&process->sighand->siglock, flags);
521 process = NULL;
524 read_unlock(&tasklist_lock);
525 if (!process) {
526 error = -EINVAL;
527 goto out;
529 } else {
530 new_timer->it_sigev_notify = SIGEV_SIGNAL;
531 new_timer->it_sigev_signo = SIGALRM;
532 new_timer->it_sigev_value.sival_int = new_timer->it_id;
533 process = current->group_leader;
534 spin_lock_irqsave(&process->sighand->siglock, flags);
535 new_timer->it_process = process;
536 list_add(&new_timer->list, &process->signal->posix_timers);
537 spin_unlock_irqrestore(&process->sighand->siglock, flags);
541 * In the case of the timer belonging to another task, after
542 * the task is unlocked, the timer is owned by the other task
543 * and may cease to exist at any time. Don't use or modify
544 * new_timer after the unlock call.
547 out:
548 if (error)
549 release_posix_timer(new_timer, it_id_set);
551 return error;
555 * Locking issues: We need to protect the result of the id look up until
556 * we get the timer locked down so it is not deleted under us. The
557 * removal is done under the idr spinlock so we use that here to bridge
558 * the find to the timer lock. To avoid a dead lock, the timer id MUST
559 * be release with out holding the timer lock.
561 static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags)
563 struct k_itimer *timr;
565 * Watch out here. We do a irqsave on the idr_lock and pass the
566 * flags part over to the timer lock. Must not let interrupts in
567 * while we are moving the lock.
570 spin_lock_irqsave(&idr_lock, *flags);
571 timr = (struct k_itimer *) idr_find(&posix_timers_id, (int) timer_id);
572 if (timr) {
573 spin_lock(&timr->it_lock);
574 spin_unlock(&idr_lock);
576 if ((timr->it_id != timer_id) || !(timr->it_process) ||
577 timr->it_process->tgid != current->tgid) {
578 unlock_timer(timr, *flags);
579 timr = NULL;
581 } else
582 spin_unlock_irqrestore(&idr_lock, *flags);
584 return timr;
588 * Get the time remaining on a POSIX.1b interval timer. This function
589 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
590 * mess with irq.
592 * We have a couple of messes to clean up here. First there is the case
593 * of a timer that has a requeue pending. These timers should appear to
594 * be in the timer list with an expiry as if we were to requeue them
595 * now.
597 * The second issue is the SIGEV_NONE timer which may be active but is
598 * not really ever put in the timer list (to save system resources).
599 * This timer may be expired, and if so, we will do it here. Otherwise
600 * it is the same as a requeue pending timer WRT to what we should
601 * report.
603 static void
604 common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
606 ktime_t remaining;
607 struct hrtimer *timer = &timr->it.real.timer;
609 memset(cur_setting, 0, sizeof(struct itimerspec));
610 remaining = hrtimer_get_remaining(timer);
612 /* Time left ? or timer pending */
613 if (remaining.tv64 > 0 || hrtimer_active(timer))
614 goto calci;
615 /* interval timer ? */
616 if (timr->it.real.interval.tv64 == 0)
617 return;
619 * When a requeue is pending or this is a SIGEV_NONE timer
620 * move the expiry time forward by intervals, so expiry is >
621 * now.
623 if (timr->it_requeue_pending & REQUEUE_PENDING ||
624 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
625 timr->it_overrun +=
626 hrtimer_forward(timer, timr->it.real.interval);
627 remaining = hrtimer_get_remaining(timer);
629 calci:
630 /* interval timer ? */
631 if (timr->it.real.interval.tv64 != 0)
632 cur_setting->it_interval =
633 ktime_to_timespec(timr->it.real.interval);
634 /* Return 0 only, when the timer is expired and not pending */
635 if (remaining.tv64 <= 0)
636 cur_setting->it_value.tv_nsec = 1;
637 else
638 cur_setting->it_value = ktime_to_timespec(remaining);
641 /* Get the time remaining on a POSIX.1b interval timer. */
642 asmlinkage long
643 sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
645 struct k_itimer *timr;
646 struct itimerspec cur_setting;
647 unsigned long flags;
649 timr = lock_timer(timer_id, &flags);
650 if (!timr)
651 return -EINVAL;
653 CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
655 unlock_timer(timr, flags);
657 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
658 return -EFAULT;
660 return 0;
664 * Get the number of overruns of a POSIX.1b interval timer. This is to
665 * be the overrun of the timer last delivered. At the same time we are
666 * accumulating overruns on the next timer. The overrun is frozen when
667 * the signal is delivered, either at the notify time (if the info block
668 * is not queued) or at the actual delivery time (as we are informed by
669 * the call back to do_schedule_next_timer(). So all we need to do is
670 * to pick up the frozen overrun.
672 asmlinkage long
673 sys_timer_getoverrun(timer_t timer_id)
675 struct k_itimer *timr;
676 int overrun;
677 long flags;
679 timr = lock_timer(timer_id, &flags);
680 if (!timr)
681 return -EINVAL;
683 overrun = timr->it_overrun_last;
684 unlock_timer(timr, flags);
686 return overrun;
689 /* Set a POSIX.1b interval timer. */
690 /* timr->it_lock is taken. */
691 static int
692 common_timer_set(struct k_itimer *timr, int flags,
693 struct itimerspec *new_setting, struct itimerspec *old_setting)
695 struct hrtimer *timer = &timr->it.real.timer;
696 enum hrtimer_mode mode;
698 if (old_setting)
699 common_timer_get(timr, old_setting);
701 /* disable the timer */
702 timr->it.real.interval.tv64 = 0;
704 * careful here. If smp we could be in the "fire" routine which will
705 * be spinning as we hold the lock. But this is ONLY an SMP issue.
707 if (hrtimer_try_to_cancel(timer) < 0)
708 return TIMER_RETRY;
710 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
711 ~REQUEUE_PENDING;
712 timr->it_overrun_last = 0;
714 /* switch off the timer when it_value is zero */
715 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
716 return 0;
718 mode = flags & TIMER_ABSTIME ? HRTIMER_ABS : HRTIMER_REL;
719 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
720 timr->it.real.timer.data = timr;
721 timr->it.real.timer.function = posix_timer_fn;
723 timer->expires = timespec_to_ktime(new_setting->it_value);
725 /* Convert interval */
726 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
728 /* SIGEV_NONE timers are not queued ! See common_timer_get */
729 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
730 /* Setup correct expiry time for relative timers */
731 if (mode == HRTIMER_REL)
732 timer->expires = ktime_add(timer->expires,
733 timer->base->get_time());
734 return 0;
737 hrtimer_start(timer, timer->expires, mode);
738 return 0;
741 /* Set a POSIX.1b interval timer */
742 asmlinkage long
743 sys_timer_settime(timer_t timer_id, int flags,
744 const struct itimerspec __user *new_setting,
745 struct itimerspec __user *old_setting)
747 struct k_itimer *timr;
748 struct itimerspec new_spec, old_spec;
749 int error = 0;
750 long flag;
751 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
753 if (!new_setting)
754 return -EINVAL;
756 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
757 return -EFAULT;
759 if (!timespec_valid(&new_spec.it_interval) ||
760 !timespec_valid(&new_spec.it_value))
761 return -EINVAL;
762 retry:
763 timr = lock_timer(timer_id, &flag);
764 if (!timr)
765 return -EINVAL;
767 error = CLOCK_DISPATCH(timr->it_clock, timer_set,
768 (timr, flags, &new_spec, rtn));
770 unlock_timer(timr, flag);
771 if (error == TIMER_RETRY) {
772 rtn = NULL; // We already got the old time...
773 goto retry;
776 if (old_setting && !error &&
777 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
778 error = -EFAULT;
780 return error;
783 static inline int common_timer_del(struct k_itimer *timer)
785 timer->it.real.interval.tv64 = 0;
787 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
788 return TIMER_RETRY;
789 return 0;
792 static inline int timer_delete_hook(struct k_itimer *timer)
794 return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
797 /* Delete a POSIX.1b interval timer. */
798 asmlinkage long
799 sys_timer_delete(timer_t timer_id)
801 struct k_itimer *timer;
802 long flags;
804 retry_delete:
805 timer = lock_timer(timer_id, &flags);
806 if (!timer)
807 return -EINVAL;
809 if (timer_delete_hook(timer) == TIMER_RETRY) {
810 unlock_timer(timer, flags);
811 goto retry_delete;
814 spin_lock(&current->sighand->siglock);
815 list_del(&timer->list);
816 spin_unlock(&current->sighand->siglock);
818 * This keeps any tasks waiting on the spin lock from thinking
819 * they got something (see the lock code above).
821 if (timer->it_process) {
822 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
823 put_task_struct(timer->it_process);
824 timer->it_process = NULL;
826 unlock_timer(timer, flags);
827 release_posix_timer(timer, IT_ID_SET);
828 return 0;
832 * return timer owned by the process, used by exit_itimers
834 static void itimer_delete(struct k_itimer *timer)
836 unsigned long flags;
838 retry_delete:
839 spin_lock_irqsave(&timer->it_lock, flags);
841 if (timer_delete_hook(timer) == TIMER_RETRY) {
842 unlock_timer(timer, flags);
843 goto retry_delete;
845 list_del(&timer->list);
847 * This keeps any tasks waiting on the spin lock from thinking
848 * they got something (see the lock code above).
850 if (timer->it_process) {
851 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
852 put_task_struct(timer->it_process);
853 timer->it_process = NULL;
855 unlock_timer(timer, flags);
856 release_posix_timer(timer, IT_ID_SET);
860 * This is called by do_exit or de_thread, only when there are no more
861 * references to the shared signal_struct.
863 void exit_itimers(struct signal_struct *sig)
865 struct k_itimer *tmr;
867 while (!list_empty(&sig->posix_timers)) {
868 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
869 itimer_delete(tmr);
873 /* Not available / possible... functions */
874 int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
876 return -EINVAL;
878 EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
880 int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
881 struct timespec *t, struct timespec __user *r)
883 #ifndef ENOTSUP
884 return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */
885 #else /* parisc does define it separately. */
886 return -ENOTSUP;
887 #endif
889 EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
891 asmlinkage long sys_clock_settime(const clockid_t which_clock,
892 const struct timespec __user *tp)
894 struct timespec new_tp;
896 if (invalid_clockid(which_clock))
897 return -EINVAL;
898 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
899 return -EFAULT;
901 return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
904 asmlinkage long
905 sys_clock_gettime(const clockid_t which_clock, struct timespec __user *tp)
907 struct timespec kernel_tp;
908 int error;
910 if (invalid_clockid(which_clock))
911 return -EINVAL;
912 error = CLOCK_DISPATCH(which_clock, clock_get,
913 (which_clock, &kernel_tp));
914 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
915 error = -EFAULT;
917 return error;
921 asmlinkage long
922 sys_clock_getres(const clockid_t which_clock, struct timespec __user *tp)
924 struct timespec rtn_tp;
925 int error;
927 if (invalid_clockid(which_clock))
928 return -EINVAL;
930 error = CLOCK_DISPATCH(which_clock, clock_getres,
931 (which_clock, &rtn_tp));
933 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
934 error = -EFAULT;
937 return error;
941 * nanosleep for monotonic and realtime clocks
943 static int common_nsleep(const clockid_t which_clock, int flags,
944 struct timespec *tsave, struct timespec __user *rmtp)
946 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
947 HRTIMER_ABS : HRTIMER_REL, which_clock);
950 asmlinkage long
951 sys_clock_nanosleep(const clockid_t which_clock, int flags,
952 const struct timespec __user *rqtp,
953 struct timespec __user *rmtp)
955 struct timespec t;
957 if (invalid_clockid(which_clock))
958 return -EINVAL;
960 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
961 return -EFAULT;
963 if (!timespec_valid(&t))
964 return -EINVAL;
966 return CLOCK_DISPATCH(which_clock, nsleep,
967 (which_clock, flags, &t, rmtp));