IA64: Slim down __clear_bit_unlock
[linux-2.6/mini2440.git] / kernel / sched_fair.c
blobc33f0ceb3de9a64dc43538f7d9427c89a4b98eeb
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length
29 * and have no persistent notion like in traditional, time-slice
30 * based scheduling concepts.
32 * (to see the precise effective timeslice length of your workload,
33 * run vmstat and monitor the context-switches (cs) field)
35 unsigned int sysctl_sched_latency = 20000000ULL;
38 * Minimal preemption granularity for CPU-bound tasks:
39 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
41 unsigned int sysctl_sched_min_granularity = 4000000ULL;
44 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
46 static unsigned int sched_nr_latency = 5;
49 * After fork, child runs first. (default) If set to 0 then
50 * parent will (try to) run first.
52 const_debug unsigned int sysctl_sched_child_runs_first = 1;
55 * sys_sched_yield() compat mode
57 * This option switches the agressive yield implementation of the
58 * old scheduler back on.
60 unsigned int __read_mostly sysctl_sched_compat_yield;
63 * SCHED_BATCH wake-up granularity.
64 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
66 * This option delays the preemption effects of decoupled workloads
67 * and reduces their over-scheduling. Synchronous workloads will still
68 * have immediate wakeup/sleep latencies.
70 unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
73 * SCHED_OTHER wake-up granularity.
74 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
80 unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
82 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
84 /**************************************************************
85 * CFS operations on generic schedulable entities:
88 #ifdef CONFIG_FAIR_GROUP_SCHED
90 /* cpu runqueue to which this cfs_rq is attached */
91 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
93 return cfs_rq->rq;
96 /* An entity is a task if it doesn't "own" a runqueue */
97 #define entity_is_task(se) (!se->my_q)
99 #else /* CONFIG_FAIR_GROUP_SCHED */
101 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
103 return container_of(cfs_rq, struct rq, cfs);
106 #define entity_is_task(se) 1
108 #endif /* CONFIG_FAIR_GROUP_SCHED */
110 static inline struct task_struct *task_of(struct sched_entity *se)
112 return container_of(se, struct task_struct, se);
116 /**************************************************************
117 * Scheduling class tree data structure manipulation methods:
120 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
122 s64 delta = (s64)(vruntime - min_vruntime);
123 if (delta > 0)
124 min_vruntime = vruntime;
126 return min_vruntime;
129 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
131 s64 delta = (s64)(vruntime - min_vruntime);
132 if (delta < 0)
133 min_vruntime = vruntime;
135 return min_vruntime;
138 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
140 return se->vruntime - cfs_rq->min_vruntime;
144 * Enqueue an entity into the rb-tree:
146 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
148 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
149 struct rb_node *parent = NULL;
150 struct sched_entity *entry;
151 s64 key = entity_key(cfs_rq, se);
152 int leftmost = 1;
155 * Find the right place in the rbtree:
157 while (*link) {
158 parent = *link;
159 entry = rb_entry(parent, struct sched_entity, run_node);
161 * We dont care about collisions. Nodes with
162 * the same key stay together.
164 if (key < entity_key(cfs_rq, entry)) {
165 link = &parent->rb_left;
166 } else {
167 link = &parent->rb_right;
168 leftmost = 0;
173 * Maintain a cache of leftmost tree entries (it is frequently
174 * used):
176 if (leftmost)
177 cfs_rq->rb_leftmost = &se->run_node;
179 rb_link_node(&se->run_node, parent, link);
180 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
183 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
185 if (cfs_rq->rb_leftmost == &se->run_node)
186 cfs_rq->rb_leftmost = rb_next(&se->run_node);
188 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
191 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
193 return cfs_rq->rb_leftmost;
196 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
198 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
201 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
203 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
204 struct sched_entity *se = NULL;
205 struct rb_node *parent;
207 while (*link) {
208 parent = *link;
209 se = rb_entry(parent, struct sched_entity, run_node);
210 link = &parent->rb_right;
213 return se;
216 /**************************************************************
217 * Scheduling class statistics methods:
220 #ifdef CONFIG_SCHED_DEBUG
221 int sched_nr_latency_handler(struct ctl_table *table, int write,
222 struct file *filp, void __user *buffer, size_t *lenp,
223 loff_t *ppos)
225 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
227 if (ret || !write)
228 return ret;
230 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
231 sysctl_sched_min_granularity);
233 return 0;
235 #endif
238 * The idea is to set a period in which each task runs once.
240 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
241 * this period because otherwise the slices get too small.
243 * p = (nr <= nl) ? l : l*nr/nl
245 static u64 __sched_period(unsigned long nr_running)
247 u64 period = sysctl_sched_latency;
248 unsigned long nr_latency = sched_nr_latency;
250 if (unlikely(nr_running > nr_latency)) {
251 period *= nr_running;
252 do_div(period, nr_latency);
255 return period;
259 * We calculate the wall-time slice from the period by taking a part
260 * proportional to the weight.
262 * s = p*w/rw
264 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
266 u64 slice = __sched_period(cfs_rq->nr_running);
268 slice *= se->load.weight;
269 do_div(slice, cfs_rq->load.weight);
271 return slice;
275 * We calculate the vruntime slice.
277 * vs = s/w = p/rw
279 static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
281 u64 vslice = __sched_period(nr_running);
283 vslice *= NICE_0_LOAD;
284 do_div(vslice, rq_weight);
286 return vslice;
289 static u64 sched_vslice(struct cfs_rq *cfs_rq)
291 return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
294 static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
296 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
297 cfs_rq->nr_running + 1);
301 * Update the current task's runtime statistics. Skip current tasks that
302 * are not in our scheduling class.
304 static inline void
305 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
306 unsigned long delta_exec)
308 unsigned long delta_exec_weighted;
309 u64 vruntime;
311 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
313 curr->sum_exec_runtime += delta_exec;
314 schedstat_add(cfs_rq, exec_clock, delta_exec);
315 delta_exec_weighted = delta_exec;
316 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
317 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
318 &curr->load);
320 curr->vruntime += delta_exec_weighted;
323 * maintain cfs_rq->min_vruntime to be a monotonic increasing
324 * value tracking the leftmost vruntime in the tree.
326 if (first_fair(cfs_rq)) {
327 vruntime = min_vruntime(curr->vruntime,
328 __pick_next_entity(cfs_rq)->vruntime);
329 } else
330 vruntime = curr->vruntime;
332 cfs_rq->min_vruntime =
333 max_vruntime(cfs_rq->min_vruntime, vruntime);
336 static void update_curr(struct cfs_rq *cfs_rq)
338 struct sched_entity *curr = cfs_rq->curr;
339 u64 now = rq_of(cfs_rq)->clock;
340 unsigned long delta_exec;
342 if (unlikely(!curr))
343 return;
346 * Get the amount of time the current task was running
347 * since the last time we changed load (this cannot
348 * overflow on 32 bits):
350 delta_exec = (unsigned long)(now - curr->exec_start);
352 __update_curr(cfs_rq, curr, delta_exec);
353 curr->exec_start = now;
355 if (entity_is_task(curr)) {
356 struct task_struct *curtask = task_of(curr);
358 cpuacct_charge(curtask, delta_exec);
362 static inline void
363 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
365 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
369 * Task is being enqueued - update stats:
371 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
374 * Are we enqueueing a waiting task? (for current tasks
375 * a dequeue/enqueue event is a NOP)
377 if (se != cfs_rq->curr)
378 update_stats_wait_start(cfs_rq, se);
381 static void
382 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
384 schedstat_set(se->wait_max, max(se->wait_max,
385 rq_of(cfs_rq)->clock - se->wait_start));
386 schedstat_set(se->wait_start, 0);
389 static inline void
390 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
393 * Mark the end of the wait period if dequeueing a
394 * waiting task:
396 if (se != cfs_rq->curr)
397 update_stats_wait_end(cfs_rq, se);
401 * We are picking a new current task - update its stats:
403 static inline void
404 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
407 * We are starting a new run period:
409 se->exec_start = rq_of(cfs_rq)->clock;
412 /**************************************************
413 * Scheduling class queueing methods:
416 static void
417 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
419 update_load_add(&cfs_rq->load, se->load.weight);
420 cfs_rq->nr_running++;
421 se->on_rq = 1;
424 static void
425 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
427 update_load_sub(&cfs_rq->load, se->load.weight);
428 cfs_rq->nr_running--;
429 se->on_rq = 0;
432 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
434 #ifdef CONFIG_SCHEDSTATS
435 if (se->sleep_start) {
436 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
438 if ((s64)delta < 0)
439 delta = 0;
441 if (unlikely(delta > se->sleep_max))
442 se->sleep_max = delta;
444 se->sleep_start = 0;
445 se->sum_sleep_runtime += delta;
447 if (se->block_start) {
448 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
450 if ((s64)delta < 0)
451 delta = 0;
453 if (unlikely(delta > se->block_max))
454 se->block_max = delta;
456 se->block_start = 0;
457 se->sum_sleep_runtime += delta;
460 * Blocking time is in units of nanosecs, so shift by 20 to
461 * get a milliseconds-range estimation of the amount of
462 * time that the task spent sleeping:
464 if (unlikely(prof_on == SLEEP_PROFILING)) {
465 struct task_struct *tsk = task_of(se);
467 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
468 delta >> 20);
471 #endif
474 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
476 #ifdef CONFIG_SCHED_DEBUG
477 s64 d = se->vruntime - cfs_rq->min_vruntime;
479 if (d < 0)
480 d = -d;
482 if (d > 3*sysctl_sched_latency)
483 schedstat_inc(cfs_rq, nr_spread_over);
484 #endif
487 static void
488 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
490 u64 vruntime;
492 vruntime = cfs_rq->min_vruntime;
494 if (sched_feat(TREE_AVG)) {
495 struct sched_entity *last = __pick_last_entity(cfs_rq);
496 if (last) {
497 vruntime += last->vruntime;
498 vruntime >>= 1;
500 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
501 vruntime += sched_vslice(cfs_rq)/2;
504 * The 'current' period is already promised to the current tasks,
505 * however the extra weight of the new task will slow them down a
506 * little, place the new task so that it fits in the slot that
507 * stays open at the end.
509 if (initial && sched_feat(START_DEBIT))
510 vruntime += sched_vslice_add(cfs_rq, se);
512 if (!initial) {
513 /* sleeps upto a single latency don't count. */
514 if (sched_feat(NEW_FAIR_SLEEPERS) && entity_is_task(se) &&
515 task_of(se)->policy != SCHED_BATCH)
516 vruntime -= sysctl_sched_latency;
518 /* ensure we never gain time by being placed backwards. */
519 vruntime = max_vruntime(se->vruntime, vruntime);
522 se->vruntime = vruntime;
525 static void
526 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
529 * Update run-time statistics of the 'current'.
531 update_curr(cfs_rq);
533 if (wakeup) {
534 place_entity(cfs_rq, se, 0);
535 enqueue_sleeper(cfs_rq, se);
538 update_stats_enqueue(cfs_rq, se);
539 check_spread(cfs_rq, se);
540 if (se != cfs_rq->curr)
541 __enqueue_entity(cfs_rq, se);
542 account_entity_enqueue(cfs_rq, se);
545 static void
546 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
549 * Update run-time statistics of the 'current'.
551 update_curr(cfs_rq);
553 update_stats_dequeue(cfs_rq, se);
554 if (sleep) {
555 #ifdef CONFIG_SCHEDSTATS
556 if (entity_is_task(se)) {
557 struct task_struct *tsk = task_of(se);
559 if (tsk->state & TASK_INTERRUPTIBLE)
560 se->sleep_start = rq_of(cfs_rq)->clock;
561 if (tsk->state & TASK_UNINTERRUPTIBLE)
562 se->block_start = rq_of(cfs_rq)->clock;
564 #endif
567 if (se != cfs_rq->curr)
568 __dequeue_entity(cfs_rq, se);
569 account_entity_dequeue(cfs_rq, se);
573 * Preempt the current task with a newly woken task if needed:
575 static void
576 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
578 unsigned long ideal_runtime, delta_exec;
580 ideal_runtime = sched_slice(cfs_rq, curr);
581 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
582 if (delta_exec > ideal_runtime)
583 resched_task(rq_of(cfs_rq)->curr);
586 static void
587 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
589 /* 'current' is not kept within the tree. */
590 if (se->on_rq) {
592 * Any task has to be enqueued before it get to execute on
593 * a CPU. So account for the time it spent waiting on the
594 * runqueue.
596 update_stats_wait_end(cfs_rq, se);
597 __dequeue_entity(cfs_rq, se);
600 update_stats_curr_start(cfs_rq, se);
601 cfs_rq->curr = se;
602 #ifdef CONFIG_SCHEDSTATS
604 * Track our maximum slice length, if the CPU's load is at
605 * least twice that of our own weight (i.e. dont track it
606 * when there are only lesser-weight tasks around):
608 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
609 se->slice_max = max(se->slice_max,
610 se->sum_exec_runtime - se->prev_sum_exec_runtime);
612 #endif
613 se->prev_sum_exec_runtime = se->sum_exec_runtime;
616 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
618 struct sched_entity *se = NULL;
620 if (first_fair(cfs_rq)) {
621 se = __pick_next_entity(cfs_rq);
622 set_next_entity(cfs_rq, se);
625 return se;
628 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
631 * If still on the runqueue then deactivate_task()
632 * was not called and update_curr() has to be done:
634 if (prev->on_rq)
635 update_curr(cfs_rq);
637 check_spread(cfs_rq, prev);
638 if (prev->on_rq) {
639 update_stats_wait_start(cfs_rq, prev);
640 /* Put 'current' back into the tree. */
641 __enqueue_entity(cfs_rq, prev);
643 cfs_rq->curr = NULL;
646 static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
649 * Update run-time statistics of the 'current'.
651 update_curr(cfs_rq);
653 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
654 check_preempt_tick(cfs_rq, curr);
657 /**************************************************
658 * CFS operations on tasks:
661 #ifdef CONFIG_FAIR_GROUP_SCHED
663 /* Walk up scheduling entities hierarchy */
664 #define for_each_sched_entity(se) \
665 for (; se; se = se->parent)
667 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
669 return p->se.cfs_rq;
672 /* runqueue on which this entity is (to be) queued */
673 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
675 return se->cfs_rq;
678 /* runqueue "owned" by this group */
679 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
681 return grp->my_q;
684 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
685 * another cpu ('this_cpu')
687 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
689 return cfs_rq->tg->cfs_rq[this_cpu];
692 /* Iterate thr' all leaf cfs_rq's on a runqueue */
693 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
694 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
696 /* Do the two (enqueued) entities belong to the same group ? */
697 static inline int
698 is_same_group(struct sched_entity *se, struct sched_entity *pse)
700 if (se->cfs_rq == pse->cfs_rq)
701 return 1;
703 return 0;
706 static inline struct sched_entity *parent_entity(struct sched_entity *se)
708 return se->parent;
711 #else /* CONFIG_FAIR_GROUP_SCHED */
713 #define for_each_sched_entity(se) \
714 for (; se; se = NULL)
716 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
718 return &task_rq(p)->cfs;
721 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
723 struct task_struct *p = task_of(se);
724 struct rq *rq = task_rq(p);
726 return &rq->cfs;
729 /* runqueue "owned" by this group */
730 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
732 return NULL;
735 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
737 return &cpu_rq(this_cpu)->cfs;
740 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
741 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
743 static inline int
744 is_same_group(struct sched_entity *se, struct sched_entity *pse)
746 return 1;
749 static inline struct sched_entity *parent_entity(struct sched_entity *se)
751 return NULL;
754 #endif /* CONFIG_FAIR_GROUP_SCHED */
757 * The enqueue_task method is called before nr_running is
758 * increased. Here we update the fair scheduling stats and
759 * then put the task into the rbtree:
761 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
763 struct cfs_rq *cfs_rq;
764 struct sched_entity *se = &p->se;
766 for_each_sched_entity(se) {
767 if (se->on_rq)
768 break;
769 cfs_rq = cfs_rq_of(se);
770 enqueue_entity(cfs_rq, se, wakeup);
771 wakeup = 1;
776 * The dequeue_task method is called before nr_running is
777 * decreased. We remove the task from the rbtree and
778 * update the fair scheduling stats:
780 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
782 struct cfs_rq *cfs_rq;
783 struct sched_entity *se = &p->se;
785 for_each_sched_entity(se) {
786 cfs_rq = cfs_rq_of(se);
787 dequeue_entity(cfs_rq, se, sleep);
788 /* Don't dequeue parent if it has other entities besides us */
789 if (cfs_rq->load.weight)
790 break;
791 sleep = 1;
796 * sched_yield() support is very simple - we dequeue and enqueue.
798 * If compat_yield is turned on then we requeue to the end of the tree.
800 static void yield_task_fair(struct rq *rq)
802 struct task_struct *curr = rq->curr;
803 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
804 struct sched_entity *rightmost, *se = &curr->se;
807 * Are we the only task in the tree?
809 if (unlikely(cfs_rq->nr_running == 1))
810 return;
812 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
813 __update_rq_clock(rq);
815 * Update run-time statistics of the 'current'.
817 update_curr(cfs_rq);
819 return;
822 * Find the rightmost entry in the rbtree:
824 rightmost = __pick_last_entity(cfs_rq);
826 * Already in the rightmost position?
828 if (unlikely(rightmost->vruntime < se->vruntime))
829 return;
832 * Minimally necessary key value to be last in the tree:
833 * Upon rescheduling, sched_class::put_prev_task() will place
834 * 'current' within the tree based on its new key value.
836 se->vruntime = rightmost->vruntime + 1;
840 * Preempt the current task with a newly woken task if needed:
842 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
844 struct task_struct *curr = rq->curr;
845 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
846 struct sched_entity *se = &curr->se, *pse = &p->se;
847 unsigned long gran;
849 if (unlikely(rt_prio(p->prio))) {
850 update_rq_clock(rq);
851 update_curr(cfs_rq);
852 resched_task(curr);
853 return;
856 * Batch tasks do not preempt (their preemption is driven by
857 * the tick):
859 if (unlikely(p->policy == SCHED_BATCH))
860 return;
862 if (!sched_feat(WAKEUP_PREEMPT))
863 return;
865 while (!is_same_group(se, pse)) {
866 se = parent_entity(se);
867 pse = parent_entity(pse);
870 gran = sysctl_sched_wakeup_granularity;
871 if (unlikely(se->load.weight != NICE_0_LOAD))
872 gran = calc_delta_fair(gran, &se->load);
874 if (pse->vruntime + gran < se->vruntime)
875 resched_task(curr);
878 static struct task_struct *pick_next_task_fair(struct rq *rq)
880 struct cfs_rq *cfs_rq = &rq->cfs;
881 struct sched_entity *se;
883 if (unlikely(!cfs_rq->nr_running))
884 return NULL;
886 do {
887 se = pick_next_entity(cfs_rq);
888 cfs_rq = group_cfs_rq(se);
889 } while (cfs_rq);
891 return task_of(se);
895 * Account for a descheduled task:
897 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
899 struct sched_entity *se = &prev->se;
900 struct cfs_rq *cfs_rq;
902 for_each_sched_entity(se) {
903 cfs_rq = cfs_rq_of(se);
904 put_prev_entity(cfs_rq, se);
908 #ifdef CONFIG_SMP
909 /**************************************************
910 * Fair scheduling class load-balancing methods:
914 * Load-balancing iterator. Note: while the runqueue stays locked
915 * during the whole iteration, the current task might be
916 * dequeued so the iterator has to be dequeue-safe. Here we
917 * achieve that by always pre-iterating before returning
918 * the current task:
920 static struct task_struct *
921 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
923 struct task_struct *p;
925 if (!curr)
926 return NULL;
928 p = rb_entry(curr, struct task_struct, se.run_node);
929 cfs_rq->rb_load_balance_curr = rb_next(curr);
931 return p;
934 static struct task_struct *load_balance_start_fair(void *arg)
936 struct cfs_rq *cfs_rq = arg;
938 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
941 static struct task_struct *load_balance_next_fair(void *arg)
943 struct cfs_rq *cfs_rq = arg;
945 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
948 #ifdef CONFIG_FAIR_GROUP_SCHED
949 static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
951 struct sched_entity *curr;
952 struct task_struct *p;
954 if (!cfs_rq->nr_running)
955 return MAX_PRIO;
957 curr = cfs_rq->curr;
958 if (!curr)
959 curr = __pick_next_entity(cfs_rq);
961 p = task_of(curr);
963 return p->prio;
965 #endif
967 static unsigned long
968 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
969 unsigned long max_load_move,
970 struct sched_domain *sd, enum cpu_idle_type idle,
971 int *all_pinned, int *this_best_prio)
973 struct cfs_rq *busy_cfs_rq;
974 long rem_load_move = max_load_move;
975 struct rq_iterator cfs_rq_iterator;
977 cfs_rq_iterator.start = load_balance_start_fair;
978 cfs_rq_iterator.next = load_balance_next_fair;
980 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
981 #ifdef CONFIG_FAIR_GROUP_SCHED
982 struct cfs_rq *this_cfs_rq;
983 long imbalance;
984 unsigned long maxload;
986 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
988 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
989 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
990 if (imbalance <= 0)
991 continue;
993 /* Don't pull more than imbalance/2 */
994 imbalance /= 2;
995 maxload = min(rem_load_move, imbalance);
997 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
998 #else
999 # define maxload rem_load_move
1000 #endif
1002 * pass busy_cfs_rq argument into
1003 * load_balance_[start|next]_fair iterators
1005 cfs_rq_iterator.arg = busy_cfs_rq;
1006 rem_load_move -= balance_tasks(this_rq, this_cpu, busiest,
1007 maxload, sd, idle, all_pinned,
1008 this_best_prio,
1009 &cfs_rq_iterator);
1011 if (rem_load_move <= 0)
1012 break;
1015 return max_load_move - rem_load_move;
1018 static int
1019 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1020 struct sched_domain *sd, enum cpu_idle_type idle)
1022 struct cfs_rq *busy_cfs_rq;
1023 struct rq_iterator cfs_rq_iterator;
1025 cfs_rq_iterator.start = load_balance_start_fair;
1026 cfs_rq_iterator.next = load_balance_next_fair;
1028 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1030 * pass busy_cfs_rq argument into
1031 * load_balance_[start|next]_fair iterators
1033 cfs_rq_iterator.arg = busy_cfs_rq;
1034 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1035 &cfs_rq_iterator))
1036 return 1;
1039 return 0;
1041 #endif
1044 * scheduler tick hitting a task of our scheduling class:
1046 static void task_tick_fair(struct rq *rq, struct task_struct *curr)
1048 struct cfs_rq *cfs_rq;
1049 struct sched_entity *se = &curr->se;
1051 for_each_sched_entity(se) {
1052 cfs_rq = cfs_rq_of(se);
1053 entity_tick(cfs_rq, se);
1057 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1060 * Share the fairness runtime between parent and child, thus the
1061 * total amount of pressure for CPU stays equal - new tasks
1062 * get a chance to run but frequent forkers are not allowed to
1063 * monopolize the CPU. Note: the parent runqueue is locked,
1064 * the child is not running yet.
1066 static void task_new_fair(struct rq *rq, struct task_struct *p)
1068 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1069 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1070 int this_cpu = smp_processor_id();
1072 sched_info_queued(p);
1074 update_curr(cfs_rq);
1075 place_entity(cfs_rq, se, 1);
1077 /* 'curr' will be NULL if the child belongs to a different group */
1078 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1079 curr && curr->vruntime < se->vruntime) {
1081 * Upon rescheduling, sched_class::put_prev_task() will place
1082 * 'current' within the tree based on its new key value.
1084 swap(curr->vruntime, se->vruntime);
1087 enqueue_task_fair(rq, p, 0);
1088 resched_task(rq->curr);
1091 /* Account for a task changing its policy or group.
1093 * This routine is mostly called to set cfs_rq->curr field when a task
1094 * migrates between groups/classes.
1096 static void set_curr_task_fair(struct rq *rq)
1098 struct sched_entity *se = &rq->curr->se;
1100 for_each_sched_entity(se)
1101 set_next_entity(cfs_rq_of(se), se);
1105 * All the scheduling class methods:
1107 static const struct sched_class fair_sched_class = {
1108 .next = &idle_sched_class,
1109 .enqueue_task = enqueue_task_fair,
1110 .dequeue_task = dequeue_task_fair,
1111 .yield_task = yield_task_fair,
1113 .check_preempt_curr = check_preempt_wakeup,
1115 .pick_next_task = pick_next_task_fair,
1116 .put_prev_task = put_prev_task_fair,
1118 #ifdef CONFIG_SMP
1119 .load_balance = load_balance_fair,
1120 .move_one_task = move_one_task_fair,
1121 #endif
1123 .set_curr_task = set_curr_task_fair,
1124 .task_tick = task_tick_fair,
1125 .task_new = task_new_fair,
1128 #ifdef CONFIG_SCHED_DEBUG
1129 static void print_cfs_stats(struct seq_file *m, int cpu)
1131 struct cfs_rq *cfs_rq;
1133 #ifdef CONFIG_FAIR_GROUP_SCHED
1134 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1135 #endif
1136 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1137 print_cfs_rq(m, cpu, cfs_rq);
1139 #endif