2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <asm/atomic.h>
39 #include <linux/bitops.h>
40 #include <linux/module.h>
41 #include <linux/completion.h>
42 #include <linux/moduleparam.h>
43 #include <linux/percpu.h>
44 #include <linux/notifier.h>
45 #include <linux/cpu.h>
46 #include <linux/mutex.h>
47 #include <linux/time.h>
49 #ifdef CONFIG_DEBUG_LOCK_ALLOC
50 static struct lock_class_key rcu_lock_key
;
51 struct lockdep_map rcu_lock_map
=
52 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key
);
53 EXPORT_SYMBOL_GPL(rcu_lock_map
);
56 /* Data structures. */
58 #define RCU_STATE_INITIALIZER(name) { \
59 .level = { &name.node[0] }, \
61 NUM_RCU_LVL_0, /* root of hierarchy. */ \
64 NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \
66 .signaled = RCU_SIGNAL_INIT, \
69 .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
70 .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
72 .n_force_qs_ngp = 0, \
75 struct rcu_state rcu_state
= RCU_STATE_INITIALIZER(rcu_state
);
76 DEFINE_PER_CPU(struct rcu_data
, rcu_data
);
78 struct rcu_state rcu_bh_state
= RCU_STATE_INITIALIZER(rcu_bh_state
);
79 DEFINE_PER_CPU(struct rcu_data
, rcu_bh_data
);
82 DEFINE_PER_CPU(struct rcu_dynticks
, rcu_dynticks
);
83 #endif /* #ifdef CONFIG_NO_HZ */
85 static int blimit
= 10; /* Maximum callbacks per softirq. */
86 static int qhimark
= 10000; /* If this many pending, ignore blimit. */
87 static int qlowmark
= 100; /* Once only this many pending, use blimit. */
89 static void force_quiescent_state(struct rcu_state
*rsp
, int relaxed
);
92 * Return the number of RCU batches processed thus far for debug & stats.
94 long rcu_batches_completed(void)
96 return rcu_state
.completed
;
98 EXPORT_SYMBOL_GPL(rcu_batches_completed
);
101 * Return the number of RCU BH batches processed thus far for debug & stats.
103 long rcu_batches_completed_bh(void)
105 return rcu_bh_state
.completed
;
107 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh
);
110 * Does the CPU have callbacks ready to be invoked?
113 cpu_has_callbacks_ready_to_invoke(struct rcu_data
*rdp
)
115 return &rdp
->nxtlist
!= rdp
->nxttail
[RCU_DONE_TAIL
];
119 * Does the current CPU require a yet-as-unscheduled grace period?
122 cpu_needs_another_gp(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
124 /* ACCESS_ONCE() because we are accessing outside of lock. */
125 return *rdp
->nxttail
[RCU_DONE_TAIL
] &&
126 ACCESS_ONCE(rsp
->completed
) == ACCESS_ONCE(rsp
->gpnum
);
130 * Return the root node of the specified rcu_state structure.
132 static struct rcu_node
*rcu_get_root(struct rcu_state
*rsp
)
134 return &rsp
->node
[0];
140 * If the specified CPU is offline, tell the caller that it is in
141 * a quiescent state. Otherwise, whack it with a reschedule IPI.
142 * Grace periods can end up waiting on an offline CPU when that
143 * CPU is in the process of coming online -- it will be added to the
144 * rcu_node bitmasks before it actually makes it online. The same thing
145 * can happen while a CPU is in the process of coming online. Because this
146 * race is quite rare, we check for it after detecting that the grace
147 * period has been delayed rather than checking each and every CPU
148 * each and every time we start a new grace period.
150 static int rcu_implicit_offline_qs(struct rcu_data
*rdp
)
153 * If the CPU is offline, it is in a quiescent state. We can
154 * trust its state not to change because interrupts are disabled.
156 if (cpu_is_offline(rdp
->cpu
)) {
161 /* The CPU is online, so send it a reschedule IPI. */
162 if (rdp
->cpu
!= smp_processor_id())
163 smp_send_reschedule(rdp
->cpu
);
170 #endif /* #ifdef CONFIG_SMP */
173 static DEFINE_RATELIMIT_STATE(rcu_rs
, 10 * HZ
, 5);
176 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
178 * Enter nohz mode, in other words, -leave- the mode in which RCU
179 * read-side critical sections can occur. (Though RCU read-side
180 * critical sections can occur in irq handlers in nohz mode, a possibility
181 * handled by rcu_irq_enter() and rcu_irq_exit()).
183 void rcu_enter_nohz(void)
186 struct rcu_dynticks
*rdtp
;
188 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
189 local_irq_save(flags
);
190 rdtp
= &__get_cpu_var(rcu_dynticks
);
192 rdtp
->dynticks_nesting
--;
193 WARN_ON_RATELIMIT(rdtp
->dynticks
& 0x1, &rcu_rs
);
194 local_irq_restore(flags
);
198 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
200 * Exit nohz mode, in other words, -enter- the mode in which RCU
201 * read-side critical sections normally occur.
203 void rcu_exit_nohz(void)
206 struct rcu_dynticks
*rdtp
;
208 local_irq_save(flags
);
209 rdtp
= &__get_cpu_var(rcu_dynticks
);
211 rdtp
->dynticks_nesting
++;
212 WARN_ON_RATELIMIT(!(rdtp
->dynticks
& 0x1), &rcu_rs
);
213 local_irq_restore(flags
);
214 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
218 * rcu_nmi_enter - inform RCU of entry to NMI context
220 * If the CPU was idle with dynamic ticks active, and there is no
221 * irq handler running, this updates rdtp->dynticks_nmi to let the
222 * RCU grace-period handling know that the CPU is active.
224 void rcu_nmi_enter(void)
226 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
228 if (rdtp
->dynticks
& 0x1)
230 rdtp
->dynticks_nmi
++;
231 WARN_ON_RATELIMIT(!(rdtp
->dynticks_nmi
& 0x1), &rcu_rs
);
232 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
236 * rcu_nmi_exit - inform RCU of exit from NMI context
238 * If the CPU was idle with dynamic ticks active, and there is no
239 * irq handler running, this updates rdtp->dynticks_nmi to let the
240 * RCU grace-period handling know that the CPU is no longer active.
242 void rcu_nmi_exit(void)
244 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
246 if (rdtp
->dynticks
& 0x1)
248 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
249 rdtp
->dynticks_nmi
++;
250 WARN_ON_RATELIMIT(rdtp
->dynticks_nmi
& 0x1, &rcu_rs
);
254 * rcu_irq_enter - inform RCU of entry to hard irq context
256 * If the CPU was idle with dynamic ticks active, this updates the
257 * rdtp->dynticks to let the RCU handling know that the CPU is active.
259 void rcu_irq_enter(void)
261 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
263 if (rdtp
->dynticks_nesting
++)
266 WARN_ON_RATELIMIT(!(rdtp
->dynticks
& 0x1), &rcu_rs
);
267 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
271 * rcu_irq_exit - inform RCU of exit from hard irq context
273 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
274 * to put let the RCU handling be aware that the CPU is going back to idle
277 void rcu_irq_exit(void)
279 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
281 if (--rdtp
->dynticks_nesting
)
283 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
285 WARN_ON_RATELIMIT(rdtp
->dynticks
& 0x1, &rcu_rs
);
287 /* If the interrupt queued a callback, get out of dyntick mode. */
288 if (__get_cpu_var(rcu_data
).nxtlist
||
289 __get_cpu_var(rcu_bh_data
).nxtlist
)
294 * Record the specified "completed" value, which is later used to validate
295 * dynticks counter manipulations. Specify "rsp->completed - 1" to
296 * unconditionally invalidate any future dynticks manipulations (which is
297 * useful at the beginning of a grace period).
299 static void dyntick_record_completed(struct rcu_state
*rsp
, long comp
)
301 rsp
->dynticks_completed
= comp
;
307 * Recall the previously recorded value of the completion for dynticks.
309 static long dyntick_recall_completed(struct rcu_state
*rsp
)
311 return rsp
->dynticks_completed
;
315 * Snapshot the specified CPU's dynticks counter so that we can later
316 * credit them with an implicit quiescent state. Return 1 if this CPU
317 * is already in a quiescent state courtesy of dynticks idle mode.
319 static int dyntick_save_progress_counter(struct rcu_data
*rdp
)
325 snap
= rdp
->dynticks
->dynticks
;
326 snap_nmi
= rdp
->dynticks
->dynticks_nmi
;
327 smp_mb(); /* Order sampling of snap with end of grace period. */
328 rdp
->dynticks_snap
= snap
;
329 rdp
->dynticks_nmi_snap
= snap_nmi
;
330 ret
= ((snap
& 0x1) == 0) && ((snap_nmi
& 0x1) == 0);
337 * Return true if the specified CPU has passed through a quiescent
338 * state by virtue of being in or having passed through an dynticks
339 * idle state since the last call to dyntick_save_progress_counter()
342 static int rcu_implicit_dynticks_qs(struct rcu_data
*rdp
)
349 curr
= rdp
->dynticks
->dynticks
;
350 snap
= rdp
->dynticks_snap
;
351 curr_nmi
= rdp
->dynticks
->dynticks_nmi
;
352 snap_nmi
= rdp
->dynticks_nmi_snap
;
353 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
356 * If the CPU passed through or entered a dynticks idle phase with
357 * no active irq/NMI handlers, then we can safely pretend that the CPU
358 * already acknowledged the request to pass through a quiescent
359 * state. Either way, that CPU cannot possibly be in an RCU
360 * read-side critical section that started before the beginning
361 * of the current RCU grace period.
363 if ((curr
!= snap
|| (curr
& 0x1) == 0) &&
364 (curr_nmi
!= snap_nmi
|| (curr_nmi
& 0x1) == 0)) {
369 /* Go check for the CPU being offline. */
370 return rcu_implicit_offline_qs(rdp
);
373 #endif /* #ifdef CONFIG_SMP */
375 #else /* #ifdef CONFIG_NO_HZ */
377 static void dyntick_record_completed(struct rcu_state
*rsp
, long comp
)
384 * If there are no dynticks, then the only way that a CPU can passively
385 * be in a quiescent state is to be offline. Unlike dynticks idle, which
386 * is a point in time during the prior (already finished) grace period,
387 * an offline CPU is always in a quiescent state, and thus can be
388 * unconditionally applied. So just return the current value of completed.
390 static long dyntick_recall_completed(struct rcu_state
*rsp
)
392 return rsp
->completed
;
395 static int dyntick_save_progress_counter(struct rcu_data
*rdp
)
400 static int rcu_implicit_dynticks_qs(struct rcu_data
*rdp
)
402 return rcu_implicit_offline_qs(rdp
);
405 #endif /* #ifdef CONFIG_SMP */
407 #endif /* #else #ifdef CONFIG_NO_HZ */
409 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
411 static void record_gp_stall_check_time(struct rcu_state
*rsp
)
413 rsp
->gp_start
= jiffies
;
414 rsp
->jiffies_stall
= jiffies
+ RCU_SECONDS_TILL_STALL_CHECK
;
417 static void print_other_cpu_stall(struct rcu_state
*rsp
)
422 struct rcu_node
*rnp
= rcu_get_root(rsp
);
423 struct rcu_node
*rnp_cur
= rsp
->level
[NUM_RCU_LVLS
- 1];
424 struct rcu_node
*rnp_end
= &rsp
->node
[NUM_RCU_NODES
];
426 /* Only let one CPU complain about others per time interval. */
428 spin_lock_irqsave(&rnp
->lock
, flags
);
429 delta
= jiffies
- rsp
->jiffies_stall
;
430 if (delta
< RCU_STALL_RAT_DELAY
|| rsp
->gpnum
== rsp
->completed
) {
431 spin_unlock_irqrestore(&rnp
->lock
, flags
);
434 rsp
->jiffies_stall
= jiffies
+ RCU_SECONDS_TILL_STALL_RECHECK
;
435 spin_unlock_irqrestore(&rnp
->lock
, flags
);
437 /* OK, time to rat on our buddy... */
439 printk(KERN_ERR
"INFO: RCU detected CPU stalls:");
440 for (; rnp_cur
< rnp_end
; rnp_cur
++) {
441 if (rnp_cur
->qsmask
== 0)
443 for (cpu
= 0; cpu
<= rnp_cur
->grphi
- rnp_cur
->grplo
; cpu
++)
444 if (rnp_cur
->qsmask
& (1UL << cpu
))
445 printk(" %d", rnp_cur
->grplo
+ cpu
);
447 printk(" (detected by %d, t=%ld jiffies)\n",
448 smp_processor_id(), (long)(jiffies
- rsp
->gp_start
));
449 force_quiescent_state(rsp
, 0); /* Kick them all. */
452 static void print_cpu_stall(struct rcu_state
*rsp
)
455 struct rcu_node
*rnp
= rcu_get_root(rsp
);
457 printk(KERN_ERR
"INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
458 smp_processor_id(), jiffies
- rsp
->gp_start
);
460 spin_lock_irqsave(&rnp
->lock
, flags
);
461 if ((long)(jiffies
- rsp
->jiffies_stall
) >= 0)
463 jiffies
+ RCU_SECONDS_TILL_STALL_RECHECK
;
464 spin_unlock_irqrestore(&rnp
->lock
, flags
);
465 set_need_resched(); /* kick ourselves to get things going. */
468 static void check_cpu_stall(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
471 struct rcu_node
*rnp
;
473 delta
= jiffies
- rsp
->jiffies_stall
;
475 if ((rnp
->qsmask
& rdp
->grpmask
) && delta
>= 0) {
477 /* We haven't checked in, so go dump stack. */
478 print_cpu_stall(rsp
);
480 } else if (rsp
->gpnum
!= rsp
->completed
&&
481 delta
>= RCU_STALL_RAT_DELAY
) {
483 /* They had two time units to dump stack, so complain. */
484 print_other_cpu_stall(rsp
);
488 #else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
490 static void record_gp_stall_check_time(struct rcu_state
*rsp
)
494 static void check_cpu_stall(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
498 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
501 * Update CPU-local rcu_data state to record the newly noticed grace period.
502 * This is used both when we started the grace period and when we notice
503 * that someone else started the grace period.
505 static void note_new_gpnum(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
508 rdp
->passed_quiesc
= 0;
509 rdp
->gpnum
= rsp
->gpnum
;
510 rdp
->n_rcu_pending_force_qs
= rdp
->n_rcu_pending
+
511 RCU_JIFFIES_TILL_FORCE_QS
;
515 * Did someone else start a new RCU grace period start since we last
516 * checked? Update local state appropriately if so. Must be called
517 * on the CPU corresponding to rdp.
520 check_for_new_grace_period(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
525 local_irq_save(flags
);
526 if (rdp
->gpnum
!= rsp
->gpnum
) {
527 note_new_gpnum(rsp
, rdp
);
530 local_irq_restore(flags
);
535 * Start a new RCU grace period if warranted, re-initializing the hierarchy
536 * in preparation for detecting the next grace period. The caller must hold
537 * the root node's ->lock, which is released before return. Hard irqs must
541 rcu_start_gp(struct rcu_state
*rsp
, unsigned long flags
)
542 __releases(rcu_get_root(rsp
)->lock
)
544 struct rcu_data
*rdp
= rsp
->rda
[smp_processor_id()];
545 struct rcu_node
*rnp
= rcu_get_root(rsp
);
546 struct rcu_node
*rnp_cur
;
547 struct rcu_node
*rnp_end
;
549 if (!cpu_needs_another_gp(rsp
, rdp
)) {
550 spin_unlock_irqrestore(&rnp
->lock
, flags
);
554 /* Advance to a new grace period and initialize state. */
556 rsp
->signaled
= RCU_GP_INIT
; /* Hold off force_quiescent_state. */
557 rsp
->jiffies_force_qs
= jiffies
+ RCU_JIFFIES_TILL_FORCE_QS
;
558 rdp
->n_rcu_pending_force_qs
= rdp
->n_rcu_pending
+
559 RCU_JIFFIES_TILL_FORCE_QS
;
560 record_gp_stall_check_time(rsp
);
561 dyntick_record_completed(rsp
, rsp
->completed
- 1);
562 note_new_gpnum(rsp
, rdp
);
565 * Because we are first, we know that all our callbacks will
566 * be covered by this upcoming grace period, even the ones
567 * that were registered arbitrarily recently.
569 rdp
->nxttail
[RCU_NEXT_READY_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
570 rdp
->nxttail
[RCU_WAIT_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
572 /* Special-case the common single-level case. */
573 if (NUM_RCU_NODES
== 1) {
574 rnp
->qsmask
= rnp
->qsmaskinit
;
575 spin_unlock_irqrestore(&rnp
->lock
, flags
);
579 spin_unlock(&rnp
->lock
); /* leave irqs disabled. */
582 /* Exclude any concurrent CPU-hotplug operations. */
583 spin_lock(&rsp
->onofflock
); /* irqs already disabled. */
586 * Set the quiescent-state-needed bits in all the non-leaf RCU
587 * nodes for all currently online CPUs. This operation relies
588 * on the layout of the hierarchy within the rsp->node[] array.
589 * Note that other CPUs will access only the leaves of the
590 * hierarchy, which still indicate that no grace period is in
591 * progress. In addition, we have excluded CPU-hotplug operations.
593 * We therefore do not need to hold any locks. Any required
594 * memory barriers will be supplied by the locks guarding the
595 * leaf rcu_nodes in the hierarchy.
598 rnp_end
= rsp
->level
[NUM_RCU_LVLS
- 1];
599 for (rnp_cur
= &rsp
->node
[0]; rnp_cur
< rnp_end
; rnp_cur
++)
600 rnp_cur
->qsmask
= rnp_cur
->qsmaskinit
;
603 * Now set up the leaf nodes. Here we must be careful. First,
604 * we need to hold the lock in order to exclude other CPUs, which
605 * might be contending for the leaf nodes' locks. Second, as
606 * soon as we initialize a given leaf node, its CPUs might run
607 * up the rest of the hierarchy. We must therefore acquire locks
608 * for each node that we touch during this stage. (But we still
609 * are excluding CPU-hotplug operations.)
611 * Note that the grace period cannot complete until we finish
612 * the initialization process, as there will be at least one
613 * qsmask bit set in the root node until that time, namely the
614 * one corresponding to this CPU.
616 rnp_end
= &rsp
->node
[NUM_RCU_NODES
];
617 rnp_cur
= rsp
->level
[NUM_RCU_LVLS
- 1];
618 for (; rnp_cur
< rnp_end
; rnp_cur
++) {
619 spin_lock(&rnp_cur
->lock
); /* irqs already disabled. */
620 rnp_cur
->qsmask
= rnp_cur
->qsmaskinit
;
621 spin_unlock(&rnp_cur
->lock
); /* irqs already disabled. */
624 rsp
->signaled
= RCU_SIGNAL_INIT
; /* force_quiescent_state now OK. */
625 spin_unlock_irqrestore(&rsp
->onofflock
, flags
);
629 * Advance this CPU's callbacks, but only if the current grace period
630 * has ended. This may be called only from the CPU to whom the rdp
634 rcu_process_gp_end(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
639 local_irq_save(flags
);
640 completed_snap
= ACCESS_ONCE(rsp
->completed
); /* outside of lock. */
642 /* Did another grace period end? */
643 if (rdp
->completed
!= completed_snap
) {
645 /* Advance callbacks. No harm if list empty. */
646 rdp
->nxttail
[RCU_DONE_TAIL
] = rdp
->nxttail
[RCU_WAIT_TAIL
];
647 rdp
->nxttail
[RCU_WAIT_TAIL
] = rdp
->nxttail
[RCU_NEXT_READY_TAIL
];
648 rdp
->nxttail
[RCU_NEXT_READY_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
650 /* Remember that we saw this grace-period completion. */
651 rdp
->completed
= completed_snap
;
653 local_irq_restore(flags
);
657 * Similar to cpu_quiet(), for which it is a helper function. Allows
658 * a group of CPUs to be quieted at one go, though all the CPUs in the
659 * group must be represented by the same leaf rcu_node structure.
660 * That structure's lock must be held upon entry, and it is released
664 cpu_quiet_msk(unsigned long mask
, struct rcu_state
*rsp
, struct rcu_node
*rnp
,
666 __releases(rnp
->lock
)
668 /* Walk up the rcu_node hierarchy. */
670 if (!(rnp
->qsmask
& mask
)) {
672 /* Our bit has already been cleared, so done. */
673 spin_unlock_irqrestore(&rnp
->lock
, flags
);
676 rnp
->qsmask
&= ~mask
;
677 if (rnp
->qsmask
!= 0) {
679 /* Other bits still set at this level, so done. */
680 spin_unlock_irqrestore(&rnp
->lock
, flags
);
684 if (rnp
->parent
== NULL
) {
686 /* No more levels. Exit loop holding root lock. */
690 spin_unlock_irqrestore(&rnp
->lock
, flags
);
692 spin_lock_irqsave(&rnp
->lock
, flags
);
696 * Get here if we are the last CPU to pass through a quiescent
697 * state for this grace period. Clean up and let rcu_start_gp()
698 * start up the next grace period if one is needed. Note that
699 * we still hold rnp->lock, as required by rcu_start_gp(), which
702 rsp
->completed
= rsp
->gpnum
;
703 rcu_process_gp_end(rsp
, rsp
->rda
[smp_processor_id()]);
704 rcu_start_gp(rsp
, flags
); /* releases rnp->lock. */
708 * Record a quiescent state for the specified CPU, which must either be
709 * the current CPU or an offline CPU. The lastcomp argument is used to
710 * make sure we are still in the grace period of interest. We don't want
711 * to end the current grace period based on quiescent states detected in
712 * an earlier grace period!
715 cpu_quiet(int cpu
, struct rcu_state
*rsp
, struct rcu_data
*rdp
, long lastcomp
)
719 struct rcu_node
*rnp
;
722 spin_lock_irqsave(&rnp
->lock
, flags
);
723 if (lastcomp
!= ACCESS_ONCE(rsp
->completed
)) {
726 * Someone beat us to it for this grace period, so leave.
727 * The race with GP start is resolved by the fact that we
728 * hold the leaf rcu_node lock, so that the per-CPU bits
729 * cannot yet be initialized -- so we would simply find our
730 * CPU's bit already cleared in cpu_quiet_msk() if this race
733 rdp
->passed_quiesc
= 0; /* try again later! */
734 spin_unlock_irqrestore(&rnp
->lock
, flags
);
738 if ((rnp
->qsmask
& mask
) == 0) {
739 spin_unlock_irqrestore(&rnp
->lock
, flags
);
744 * This GP can't end until cpu checks in, so all of our
745 * callbacks can be processed during the next GP.
747 rdp
= rsp
->rda
[smp_processor_id()];
748 rdp
->nxttail
[RCU_NEXT_READY_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
750 cpu_quiet_msk(mask
, rsp
, rnp
, flags
); /* releases rnp->lock */
755 * Check to see if there is a new grace period of which this CPU
756 * is not yet aware, and if so, set up local rcu_data state for it.
757 * Otherwise, see if this CPU has just passed through its first
758 * quiescent state for this grace period, and record that fact if so.
761 rcu_check_quiescent_state(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
763 /* If there is now a new grace period, record and return. */
764 if (check_for_new_grace_period(rsp
, rdp
))
768 * Does this CPU still need to do its part for current grace period?
769 * If no, return and let the other CPUs do their part as well.
771 if (!rdp
->qs_pending
)
775 * Was there a quiescent state since the beginning of the grace
776 * period? If no, then exit and wait for the next call.
778 if (!rdp
->passed_quiesc
)
781 /* Tell RCU we are done (but cpu_quiet() will be the judge of that). */
782 cpu_quiet(rdp
->cpu
, rsp
, rdp
, rdp
->passed_quiesc_completed
);
785 #ifdef CONFIG_HOTPLUG_CPU
788 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
789 * and move all callbacks from the outgoing CPU to the current one.
791 static void __rcu_offline_cpu(int cpu
, struct rcu_state
*rsp
)
797 struct rcu_data
*rdp
= rsp
->rda
[cpu
];
798 struct rcu_data
*rdp_me
;
799 struct rcu_node
*rnp
;
801 /* Exclude any attempts to start a new grace period. */
802 spin_lock_irqsave(&rsp
->onofflock
, flags
);
804 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
806 mask
= rdp
->grpmask
; /* rnp->grplo is constant. */
808 spin_lock(&rnp
->lock
); /* irqs already disabled. */
809 rnp
->qsmaskinit
&= ~mask
;
810 if (rnp
->qsmaskinit
!= 0) {
811 spin_unlock(&rnp
->lock
); /* irqs already disabled. */
815 spin_unlock(&rnp
->lock
); /* irqs already disabled. */
817 } while (rnp
!= NULL
);
818 lastcomp
= rsp
->completed
;
820 spin_unlock(&rsp
->onofflock
); /* irqs remain disabled. */
822 /* Being offline is a quiescent state, so go record it. */
823 cpu_quiet(cpu
, rsp
, rdp
, lastcomp
);
826 * Move callbacks from the outgoing CPU to the running CPU.
827 * Note that the outgoing CPU is now quiscent, so it is now
828 * (uncharacteristically) safe to access it rcu_data structure.
829 * Note also that we must carefully retain the order of the
830 * outgoing CPU's callbacks in order for rcu_barrier() to work
831 * correctly. Finally, note that we start all the callbacks
832 * afresh, even those that have passed through a grace period
833 * and are therefore ready to invoke. The theory is that hotplug
834 * events are rare, and that if they are frequent enough to
835 * indefinitely delay callbacks, you have far worse things to
838 rdp_me
= rsp
->rda
[smp_processor_id()];
839 if (rdp
->nxtlist
!= NULL
) {
840 *rdp_me
->nxttail
[RCU_NEXT_TAIL
] = rdp
->nxtlist
;
841 rdp_me
->nxttail
[RCU_NEXT_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
843 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
844 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
845 rdp_me
->qlen
+= rdp
->qlen
;
848 local_irq_restore(flags
);
852 * Remove the specified CPU from the RCU hierarchy and move any pending
853 * callbacks that it might have to the current CPU. This code assumes
854 * that at least one CPU in the system will remain running at all times.
855 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
857 static void rcu_offline_cpu(int cpu
)
859 __rcu_offline_cpu(cpu
, &rcu_state
);
860 __rcu_offline_cpu(cpu
, &rcu_bh_state
);
863 #else /* #ifdef CONFIG_HOTPLUG_CPU */
865 static void rcu_offline_cpu(int cpu
)
869 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
872 * Invoke any RCU callbacks that have made it to the end of their grace
873 * period. Thottle as specified by rdp->blimit.
875 static void rcu_do_batch(struct rcu_data
*rdp
)
878 struct rcu_head
*next
, *list
, **tail
;
881 /* If no callbacks are ready, just return.*/
882 if (!cpu_has_callbacks_ready_to_invoke(rdp
))
886 * Extract the list of ready callbacks, disabling to prevent
887 * races with call_rcu() from interrupt handlers.
889 local_irq_save(flags
);
891 rdp
->nxtlist
= *rdp
->nxttail
[RCU_DONE_TAIL
];
892 *rdp
->nxttail
[RCU_DONE_TAIL
] = NULL
;
893 tail
= rdp
->nxttail
[RCU_DONE_TAIL
];
894 for (count
= RCU_NEXT_SIZE
- 1; count
>= 0; count
--)
895 if (rdp
->nxttail
[count
] == rdp
->nxttail
[RCU_DONE_TAIL
])
896 rdp
->nxttail
[count
] = &rdp
->nxtlist
;
897 local_irq_restore(flags
);
899 /* Invoke callbacks. */
906 if (++count
>= rdp
->blimit
)
910 local_irq_save(flags
);
912 /* Update count, and requeue any remaining callbacks. */
915 *tail
= rdp
->nxtlist
;
917 for (count
= 0; count
< RCU_NEXT_SIZE
; count
++)
918 if (&rdp
->nxtlist
== rdp
->nxttail
[count
])
919 rdp
->nxttail
[count
] = tail
;
924 /* Reinstate batch limit if we have worked down the excess. */
925 if (rdp
->blimit
== LONG_MAX
&& rdp
->qlen
<= qlowmark
)
926 rdp
->blimit
= blimit
;
928 local_irq_restore(flags
);
930 /* Re-raise the RCU softirq if there are callbacks remaining. */
931 if (cpu_has_callbacks_ready_to_invoke(rdp
))
932 raise_softirq(RCU_SOFTIRQ
);
936 * Check to see if this CPU is in a non-context-switch quiescent state
937 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
938 * Also schedule the RCU softirq handler.
940 * This function must be called with hardirqs disabled. It is normally
941 * invoked from the scheduling-clock interrupt. If rcu_pending returns
942 * false, there is no point in invoking rcu_check_callbacks().
944 void rcu_check_callbacks(int cpu
, int user
)
947 (idle_cpu(cpu
) && !in_softirq() &&
948 hardirq_count() <= (1 << HARDIRQ_SHIFT
))) {
951 * Get here if this CPU took its interrupt from user
952 * mode or from the idle loop, and if this is not a
953 * nested interrupt. In this case, the CPU is in
954 * a quiescent state, so count it.
956 * No memory barrier is required here because both
957 * rcu_qsctr_inc() and rcu_bh_qsctr_inc() reference
958 * only CPU-local variables that other CPUs neither
959 * access nor modify, at least not while the corresponding
964 rcu_bh_qsctr_inc(cpu
);
966 } else if (!in_softirq()) {
969 * Get here if this CPU did not take its interrupt from
970 * softirq, in other words, if it is not interrupting
971 * a rcu_bh read-side critical section. This is an _bh
972 * critical section, so count it.
975 rcu_bh_qsctr_inc(cpu
);
977 raise_softirq(RCU_SOFTIRQ
);
983 * Scan the leaf rcu_node structures, processing dyntick state for any that
984 * have not yet encountered a quiescent state, using the function specified.
985 * Returns 1 if the current grace period ends while scanning (possibly
986 * because we made it end).
988 static int rcu_process_dyntick(struct rcu_state
*rsp
, long lastcomp
,
989 int (*f
)(struct rcu_data
*))
995 struct rcu_node
*rnp_cur
= rsp
->level
[NUM_RCU_LVLS
- 1];
996 struct rcu_node
*rnp_end
= &rsp
->node
[NUM_RCU_NODES
];
998 for (; rnp_cur
< rnp_end
; rnp_cur
++) {
1000 spin_lock_irqsave(&rnp_cur
->lock
, flags
);
1001 if (rsp
->completed
!= lastcomp
) {
1002 spin_unlock_irqrestore(&rnp_cur
->lock
, flags
);
1005 if (rnp_cur
->qsmask
== 0) {
1006 spin_unlock_irqrestore(&rnp_cur
->lock
, flags
);
1009 cpu
= rnp_cur
->grplo
;
1011 for (; cpu
<= rnp_cur
->grphi
; cpu
++, bit
<<= 1) {
1012 if ((rnp_cur
->qsmask
& bit
) != 0 && f(rsp
->rda
[cpu
]))
1015 if (mask
!= 0 && rsp
->completed
== lastcomp
) {
1017 /* cpu_quiet_msk() releases rnp_cur->lock. */
1018 cpu_quiet_msk(mask
, rsp
, rnp_cur
, flags
);
1021 spin_unlock_irqrestore(&rnp_cur
->lock
, flags
);
1027 * Force quiescent states on reluctant CPUs, and also detect which
1028 * CPUs are in dyntick-idle mode.
1030 static void force_quiescent_state(struct rcu_state
*rsp
, int relaxed
)
1032 unsigned long flags
;
1034 struct rcu_data
*rdp
= rsp
->rda
[smp_processor_id()];
1035 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1038 if (ACCESS_ONCE(rsp
->completed
) == ACCESS_ONCE(rsp
->gpnum
))
1039 return; /* No grace period in progress, nothing to force. */
1040 if (!spin_trylock_irqsave(&rsp
->fqslock
, flags
)) {
1041 rsp
->n_force_qs_lh
++; /* Inexact, can lose counts. Tough! */
1042 return; /* Someone else is already on the job. */
1045 (long)(rsp
->jiffies_force_qs
- jiffies
) >= 0 &&
1046 (rdp
->n_rcu_pending_force_qs
- rdp
->n_rcu_pending
) >= 0)
1047 goto unlock_ret
; /* no emergency and done recently. */
1049 spin_lock(&rnp
->lock
);
1050 lastcomp
= rsp
->completed
;
1051 signaled
= rsp
->signaled
;
1052 rsp
->jiffies_force_qs
= jiffies
+ RCU_JIFFIES_TILL_FORCE_QS
;
1053 rdp
->n_rcu_pending_force_qs
= rdp
->n_rcu_pending
+
1054 RCU_JIFFIES_TILL_FORCE_QS
;
1055 if (lastcomp
== rsp
->gpnum
) {
1056 rsp
->n_force_qs_ngp
++;
1057 spin_unlock(&rnp
->lock
);
1058 goto unlock_ret
; /* no GP in progress, time updated. */
1060 spin_unlock(&rnp
->lock
);
1064 break; /* grace period still initializing, ignore. */
1066 case RCU_SAVE_DYNTICK
:
1068 if (RCU_SIGNAL_INIT
!= RCU_SAVE_DYNTICK
)
1069 break; /* So gcc recognizes the dead code. */
1071 /* Record dyntick-idle state. */
1072 if (rcu_process_dyntick(rsp
, lastcomp
,
1073 dyntick_save_progress_counter
))
1076 /* Update state, record completion counter. */
1077 spin_lock(&rnp
->lock
);
1078 if (lastcomp
== rsp
->completed
) {
1079 rsp
->signaled
= RCU_FORCE_QS
;
1080 dyntick_record_completed(rsp
, lastcomp
);
1082 spin_unlock(&rnp
->lock
);
1087 /* Check dyntick-idle state, send IPI to laggarts. */
1088 if (rcu_process_dyntick(rsp
, dyntick_recall_completed(rsp
),
1089 rcu_implicit_dynticks_qs
))
1092 /* Leave state in case more forcing is required. */
1097 spin_unlock_irqrestore(&rsp
->fqslock
, flags
);
1100 #else /* #ifdef CONFIG_SMP */
1102 static void force_quiescent_state(struct rcu_state
*rsp
, int relaxed
)
1107 #endif /* #else #ifdef CONFIG_SMP */
1110 * This does the RCU processing work from softirq context for the
1111 * specified rcu_state and rcu_data structures. This may be called
1112 * only from the CPU to whom the rdp belongs.
1115 __rcu_process_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1117 unsigned long flags
;
1120 * If an RCU GP has gone long enough, go check for dyntick
1121 * idle CPUs and, if needed, send resched IPIs.
1123 if ((long)(ACCESS_ONCE(rsp
->jiffies_force_qs
) - jiffies
) < 0 ||
1124 (rdp
->n_rcu_pending_force_qs
- rdp
->n_rcu_pending
) < 0)
1125 force_quiescent_state(rsp
, 1);
1128 * Advance callbacks in response to end of earlier grace
1129 * period that some other CPU ended.
1131 rcu_process_gp_end(rsp
, rdp
);
1133 /* Update RCU state based on any recent quiescent states. */
1134 rcu_check_quiescent_state(rsp
, rdp
);
1136 /* Does this CPU require a not-yet-started grace period? */
1137 if (cpu_needs_another_gp(rsp
, rdp
)) {
1138 spin_lock_irqsave(&rcu_get_root(rsp
)->lock
, flags
);
1139 rcu_start_gp(rsp
, flags
); /* releases above lock */
1142 /* If there are callbacks ready, invoke them. */
1147 * Do softirq processing for the current CPU.
1149 static void rcu_process_callbacks(struct softirq_action
*unused
)
1152 * Memory references from any prior RCU read-side critical sections
1153 * executed by the interrupted code must be seen before any RCU
1154 * grace-period manipulations below.
1156 smp_mb(); /* See above block comment. */
1158 __rcu_process_callbacks(&rcu_state
, &__get_cpu_var(rcu_data
));
1159 __rcu_process_callbacks(&rcu_bh_state
, &__get_cpu_var(rcu_bh_data
));
1162 * Memory references from any later RCU read-side critical sections
1163 * executed by the interrupted code must be seen after any RCU
1164 * grace-period manipulations above.
1166 smp_mb(); /* See above block comment. */
1170 __call_rcu(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
),
1171 struct rcu_state
*rsp
)
1173 unsigned long flags
;
1174 struct rcu_data
*rdp
;
1179 smp_mb(); /* Ensure RCU update seen before callback registry. */
1182 * Opportunistically note grace-period endings and beginnings.
1183 * Note that we might see a beginning right after we see an
1184 * end, but never vice versa, since this CPU has to pass through
1185 * a quiescent state betweentimes.
1187 local_irq_save(flags
);
1188 rdp
= rsp
->rda
[smp_processor_id()];
1189 rcu_process_gp_end(rsp
, rdp
);
1190 check_for_new_grace_period(rsp
, rdp
);
1192 /* Add the callback to our list. */
1193 *rdp
->nxttail
[RCU_NEXT_TAIL
] = head
;
1194 rdp
->nxttail
[RCU_NEXT_TAIL
] = &head
->next
;
1196 /* Start a new grace period if one not already started. */
1197 if (ACCESS_ONCE(rsp
->completed
) == ACCESS_ONCE(rsp
->gpnum
)) {
1198 unsigned long nestflag
;
1199 struct rcu_node
*rnp_root
= rcu_get_root(rsp
);
1201 spin_lock_irqsave(&rnp_root
->lock
, nestflag
);
1202 rcu_start_gp(rsp
, nestflag
); /* releases rnp_root->lock. */
1205 /* Force the grace period if too many callbacks or too long waiting. */
1206 if (unlikely(++rdp
->qlen
> qhimark
)) {
1207 rdp
->blimit
= LONG_MAX
;
1208 force_quiescent_state(rsp
, 0);
1209 } else if ((long)(ACCESS_ONCE(rsp
->jiffies_force_qs
) - jiffies
) < 0 ||
1210 (rdp
->n_rcu_pending_force_qs
- rdp
->n_rcu_pending
) < 0)
1211 force_quiescent_state(rsp
, 1);
1212 local_irq_restore(flags
);
1216 * Queue an RCU callback for invocation after a grace period.
1218 void call_rcu(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
1220 __call_rcu(head
, func
, &rcu_state
);
1222 EXPORT_SYMBOL_GPL(call_rcu
);
1225 * Queue an RCU for invocation after a quicker grace period.
1227 void call_rcu_bh(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
1229 __call_rcu(head
, func
, &rcu_bh_state
);
1231 EXPORT_SYMBOL_GPL(call_rcu_bh
);
1234 * Check to see if there is any immediate RCU-related work to be done
1235 * by the current CPU, for the specified type of RCU, returning 1 if so.
1236 * The checks are in order of increasing expense: checks that can be
1237 * carried out against CPU-local state are performed first. However,
1238 * we must check for CPU stalls first, else we might not get a chance.
1240 static int __rcu_pending(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1242 rdp
->n_rcu_pending
++;
1244 /* Check for CPU stalls, if enabled. */
1245 check_cpu_stall(rsp
, rdp
);
1247 /* Is the RCU core waiting for a quiescent state from this CPU? */
1248 if (rdp
->qs_pending
)
1251 /* Does this CPU have callbacks ready to invoke? */
1252 if (cpu_has_callbacks_ready_to_invoke(rdp
))
1255 /* Has RCU gone idle with this CPU needing another grace period? */
1256 if (cpu_needs_another_gp(rsp
, rdp
))
1259 /* Has another RCU grace period completed? */
1260 if (ACCESS_ONCE(rsp
->completed
) != rdp
->completed
) /* outside of lock */
1263 /* Has a new RCU grace period started? */
1264 if (ACCESS_ONCE(rsp
->gpnum
) != rdp
->gpnum
) /* outside of lock */
1267 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1268 if (ACCESS_ONCE(rsp
->completed
) != ACCESS_ONCE(rsp
->gpnum
) &&
1269 ((long)(ACCESS_ONCE(rsp
->jiffies_force_qs
) - jiffies
) < 0 ||
1270 (rdp
->n_rcu_pending_force_qs
- rdp
->n_rcu_pending
) < 0))
1278 * Check to see if there is any immediate RCU-related work to be done
1279 * by the current CPU, returning 1 if so. This function is part of the
1280 * RCU implementation; it is -not- an exported member of the RCU API.
1282 int rcu_pending(int cpu
)
1284 return __rcu_pending(&rcu_state
, &per_cpu(rcu_data
, cpu
)) ||
1285 __rcu_pending(&rcu_bh_state
, &per_cpu(rcu_bh_data
, cpu
));
1289 * Check to see if any future RCU-related work will need to be done
1290 * by the current CPU, even if none need be done immediately, returning
1291 * 1 if so. This function is part of the RCU implementation; it is -not-
1292 * an exported member of the RCU API.
1294 int rcu_needs_cpu(int cpu
)
1296 /* RCU callbacks either ready or pending? */
1297 return per_cpu(rcu_data
, cpu
).nxtlist
||
1298 per_cpu(rcu_bh_data
, cpu
).nxtlist
;
1302 * Initialize a CPU's per-CPU RCU data. We take this "scorched earth"
1303 * approach so that we don't have to worry about how long the CPU has
1304 * been gone, or whether it ever was online previously. We do trust the
1305 * ->mynode field, as it is constant for a given struct rcu_data and
1306 * initialized during early boot.
1308 * Note that only one online or offline event can be happening at a given
1309 * time. Note also that we can accept some slop in the rsp->completed
1310 * access due to the fact that this CPU cannot possibly have any RCU
1311 * callbacks in flight yet.
1314 rcu_init_percpu_data(int cpu
, struct rcu_state
*rsp
)
1316 unsigned long flags
;
1320 struct rcu_data
*rdp
= rsp
->rda
[cpu
];
1321 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1323 /* Set up local state, ensuring consistent view of global state. */
1324 spin_lock_irqsave(&rnp
->lock
, flags
);
1325 lastcomp
= rsp
->completed
;
1326 rdp
->completed
= lastcomp
;
1327 rdp
->gpnum
= lastcomp
;
1328 rdp
->passed_quiesc
= 0; /* We could be racing with new GP, */
1329 rdp
->qs_pending
= 1; /* so set up to respond to current GP. */
1330 rdp
->beenonline
= 1; /* We have now been online. */
1331 rdp
->passed_quiesc_completed
= lastcomp
- 1;
1332 rdp
->grpmask
= 1UL << (cpu
- rdp
->mynode
->grplo
);
1333 rdp
->nxtlist
= NULL
;
1334 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
1335 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
1337 rdp
->blimit
= blimit
;
1339 rdp
->dynticks
= &per_cpu(rcu_dynticks
, cpu
);
1340 #endif /* #ifdef CONFIG_NO_HZ */
1342 spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1345 * A new grace period might start here. If so, we won't be part
1346 * of it, but that is OK, as we are currently in a quiescent state.
1349 /* Exclude any attempts to start a new GP on large systems. */
1350 spin_lock(&rsp
->onofflock
); /* irqs already disabled. */
1352 /* Add CPU to rcu_node bitmasks. */
1354 mask
= rdp
->grpmask
;
1356 /* Exclude any attempts to start a new GP on small systems. */
1357 spin_lock(&rnp
->lock
); /* irqs already disabled. */
1358 rnp
->qsmaskinit
|= mask
;
1359 mask
= rnp
->grpmask
;
1360 spin_unlock(&rnp
->lock
); /* irqs already disabled. */
1362 } while (rnp
!= NULL
&& !(rnp
->qsmaskinit
& mask
));
1364 spin_unlock(&rsp
->onofflock
); /* irqs remain disabled. */
1367 * A new grace period might start here. If so, we will be part of
1368 * it, and its gpnum will be greater than ours, so we will
1369 * participate. It is also possible for the gpnum to have been
1370 * incremented before this function was called, and the bitmasks
1371 * to not be filled out until now, in which case we will also
1372 * participate due to our gpnum being behind.
1375 /* Since it is coming online, the CPU is in a quiescent state. */
1376 cpu_quiet(cpu
, rsp
, rdp
, lastcomp
);
1377 local_irq_restore(flags
);
1380 static void __cpuinit
rcu_online_cpu(int cpu
)
1383 struct rcu_dynticks
*rdtp
= &per_cpu(rcu_dynticks
, cpu
);
1385 rdtp
->dynticks_nesting
= 1;
1386 rdtp
->dynticks
|= 1; /* need consecutive #s even for hotplug. */
1387 rdtp
->dynticks_nmi
= (rdtp
->dynticks_nmi
+ 1) & ~0x1;
1388 #endif /* #ifdef CONFIG_NO_HZ */
1389 rcu_init_percpu_data(cpu
, &rcu_state
);
1390 rcu_init_percpu_data(cpu
, &rcu_bh_state
);
1391 open_softirq(RCU_SOFTIRQ
, rcu_process_callbacks
);
1395 * Handle CPU online/offline notifcation events.
1397 static int __cpuinit
rcu_cpu_notify(struct notifier_block
*self
,
1398 unsigned long action
, void *hcpu
)
1400 long cpu
= (long)hcpu
;
1403 case CPU_UP_PREPARE
:
1404 case CPU_UP_PREPARE_FROZEN
:
1405 rcu_online_cpu(cpu
);
1408 case CPU_DEAD_FROZEN
:
1409 case CPU_UP_CANCELED
:
1410 case CPU_UP_CANCELED_FROZEN
:
1411 rcu_offline_cpu(cpu
);
1420 * Compute the per-level fanout, either using the exact fanout specified
1421 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1423 #ifdef CONFIG_RCU_FANOUT_EXACT
1424 static void __init
rcu_init_levelspread(struct rcu_state
*rsp
)
1428 for (i
= NUM_RCU_LVLS
- 1; i
>= 0; i
--)
1429 rsp
->levelspread
[i
] = CONFIG_RCU_FANOUT
;
1431 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1432 static void __init
rcu_init_levelspread(struct rcu_state
*rsp
)
1439 for (i
= NUM_RCU_LVLS
- 1; i
>= 0; i
--) {
1440 ccur
= rsp
->levelcnt
[i
];
1441 rsp
->levelspread
[i
] = (cprv
+ ccur
- 1) / ccur
;
1445 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1448 * Helper function for rcu_init() that initializes one rcu_state structure.
1450 static void __init
rcu_init_one(struct rcu_state
*rsp
)
1455 struct rcu_node
*rnp
;
1457 /* Initialize the level-tracking arrays. */
1459 for (i
= 1; i
< NUM_RCU_LVLS
; i
++)
1460 rsp
->level
[i
] = rsp
->level
[i
- 1] + rsp
->levelcnt
[i
- 1];
1461 rcu_init_levelspread(rsp
);
1463 /* Initialize the elements themselves, starting from the leaves. */
1465 for (i
= NUM_RCU_LVLS
- 1; i
>= 0; i
--) {
1466 cpustride
*= rsp
->levelspread
[i
];
1467 rnp
= rsp
->level
[i
];
1468 for (j
= 0; j
< rsp
->levelcnt
[i
]; j
++, rnp
++) {
1469 spin_lock_init(&rnp
->lock
);
1471 rnp
->qsmaskinit
= 0;
1472 rnp
->grplo
= j
* cpustride
;
1473 rnp
->grphi
= (j
+ 1) * cpustride
- 1;
1474 if (rnp
->grphi
>= NR_CPUS
)
1475 rnp
->grphi
= NR_CPUS
- 1;
1481 rnp
->grpnum
= j
% rsp
->levelspread
[i
- 1];
1482 rnp
->grpmask
= 1UL << rnp
->grpnum
;
1483 rnp
->parent
= rsp
->level
[i
- 1] +
1484 j
/ rsp
->levelspread
[i
- 1];
1492 * Helper macro for __rcu_init(). To be used nowhere else!
1493 * Assigns leaf node pointers into each CPU's rcu_data structure.
1495 #define RCU_DATA_PTR_INIT(rsp, rcu_data) \
1497 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1499 for_each_possible_cpu(i) { \
1500 if (i > rnp[j].grphi) \
1502 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1503 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
1507 static struct notifier_block __cpuinitdata rcu_nb
= {
1508 .notifier_call
= rcu_cpu_notify
,
1511 void __init
__rcu_init(void)
1513 int i
; /* All used by RCU_DATA_PTR_INIT(). */
1515 struct rcu_node
*rnp
;
1517 printk(KERN_WARNING
"Experimental hierarchical RCU implementation.\n");
1518 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1519 printk(KERN_INFO
"RCU-based detection of stalled CPUs is enabled.\n");
1520 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
1521 rcu_init_one(&rcu_state
);
1522 RCU_DATA_PTR_INIT(&rcu_state
, rcu_data
);
1523 rcu_init_one(&rcu_bh_state
);
1524 RCU_DATA_PTR_INIT(&rcu_bh_state
, rcu_bh_data
);
1526 for_each_online_cpu(i
)
1527 rcu_cpu_notify(&rcu_nb
, CPU_UP_PREPARE
, (void *)(long)i
);
1528 /* Register notifier for non-boot CPUs */
1529 register_cpu_notifier(&rcu_nb
);
1530 printk(KERN_WARNING
"Experimental hierarchical RCU init done.\n");
1533 module_param(blimit
, int, 0);
1534 module_param(qhimark
, int, 0);
1535 module_param(qlowmark
, int, 0);