2 * linux/kernel/profile.c
3 * Simple profiling. Manages a direct-mapped profile hit count buffer,
4 * with configurable resolution, support for restricting the cpus on
5 * which profiling is done, and switching between cpu time and
6 * schedule() calls via kernel command line parameters passed at boot.
8 * Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
10 * Consolidation of architecture support code for profiling,
11 * William Irwin, Oracle, July 2004
12 * Amortized hit count accounting via per-cpu open-addressed hashtables
13 * to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
16 #include <linux/module.h>
17 #include <linux/profile.h>
18 #include <linux/bootmem.h>
19 #include <linux/notifier.h>
21 #include <linux/cpumask.h>
22 #include <linux/cpu.h>
23 #include <linux/highmem.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/vmalloc.h>
27 #include <asm/sections.h>
28 #include <asm/irq_regs.h>
29 #include <asm/ptrace.h>
34 #define PROFILE_GRPSHIFT 3
35 #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT)
36 #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit))
37 #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ)
39 /* Oprofile timer tick hook */
40 static int (*timer_hook
)(struct pt_regs
*) __read_mostly
;
42 static atomic_t
*prof_buffer
;
43 static unsigned long prof_len
, prof_shift
;
45 int prof_on __read_mostly
;
46 EXPORT_SYMBOL_GPL(prof_on
);
48 static cpumask_var_t prof_cpu_mask
;
50 static DEFINE_PER_CPU(struct profile_hit
*[2], cpu_profile_hits
);
51 static DEFINE_PER_CPU(int, cpu_profile_flip
);
52 static DEFINE_MUTEX(profile_flip_mutex
);
53 #endif /* CONFIG_SMP */
55 int profile_setup(char *str
)
57 static char schedstr
[] = "schedule";
58 static char sleepstr
[] = "sleep";
59 static char kvmstr
[] = "kvm";
62 if (!strncmp(str
, sleepstr
, strlen(sleepstr
))) {
63 #ifdef CONFIG_SCHEDSTATS
64 prof_on
= SLEEP_PROFILING
;
65 if (str
[strlen(sleepstr
)] == ',')
66 str
+= strlen(sleepstr
) + 1;
67 if (get_option(&str
, &par
))
70 "kernel sleep profiling enabled (shift: %ld)\n",
74 "kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
75 #endif /* CONFIG_SCHEDSTATS */
76 } else if (!strncmp(str
, schedstr
, strlen(schedstr
))) {
77 prof_on
= SCHED_PROFILING
;
78 if (str
[strlen(schedstr
)] == ',')
79 str
+= strlen(schedstr
) + 1;
80 if (get_option(&str
, &par
))
83 "kernel schedule profiling enabled (shift: %ld)\n",
85 } else if (!strncmp(str
, kvmstr
, strlen(kvmstr
))) {
86 prof_on
= KVM_PROFILING
;
87 if (str
[strlen(kvmstr
)] == ',')
88 str
+= strlen(kvmstr
) + 1;
89 if (get_option(&str
, &par
))
92 "kernel KVM profiling enabled (shift: %ld)\n",
94 } else if (get_option(&str
, &par
)) {
96 prof_on
= CPU_PROFILING
;
97 printk(KERN_INFO
"kernel profiling enabled (shift: %ld)\n",
102 __setup("profile=", profile_setup
);
105 int __ref
profile_init(void)
111 /* only text is profiled */
112 prof_len
= (_etext
- _stext
) >> prof_shift
;
113 buffer_bytes
= prof_len
*sizeof(atomic_t
);
114 if (!slab_is_available()) {
115 prof_buffer
= alloc_bootmem(buffer_bytes
);
116 alloc_bootmem_cpumask_var(&prof_cpu_mask
);
120 if (!alloc_cpumask_var(&prof_cpu_mask
, GFP_KERNEL
))
123 prof_buffer
= kzalloc(buffer_bytes
, GFP_KERNEL
);
127 prof_buffer
= alloc_pages_exact(buffer_bytes
, GFP_KERNEL
|__GFP_ZERO
);
131 prof_buffer
= vmalloc(buffer_bytes
);
135 free_cpumask_var(prof_cpu_mask
);
139 /* Profile event notifications */
141 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier
);
142 static ATOMIC_NOTIFIER_HEAD(task_free_notifier
);
143 static BLOCKING_NOTIFIER_HEAD(munmap_notifier
);
145 void profile_task_exit(struct task_struct
*task
)
147 blocking_notifier_call_chain(&task_exit_notifier
, 0, task
);
150 int profile_handoff_task(struct task_struct
*task
)
153 ret
= atomic_notifier_call_chain(&task_free_notifier
, 0, task
);
154 return (ret
== NOTIFY_OK
) ? 1 : 0;
157 void profile_munmap(unsigned long addr
)
159 blocking_notifier_call_chain(&munmap_notifier
, 0, (void *)addr
);
162 int task_handoff_register(struct notifier_block
*n
)
164 return atomic_notifier_chain_register(&task_free_notifier
, n
);
166 EXPORT_SYMBOL_GPL(task_handoff_register
);
168 int task_handoff_unregister(struct notifier_block
*n
)
170 return atomic_notifier_chain_unregister(&task_free_notifier
, n
);
172 EXPORT_SYMBOL_GPL(task_handoff_unregister
);
174 int profile_event_register(enum profile_type type
, struct notifier_block
*n
)
179 case PROFILE_TASK_EXIT
:
180 err
= blocking_notifier_chain_register(
181 &task_exit_notifier
, n
);
184 err
= blocking_notifier_chain_register(
185 &munmap_notifier
, n
);
191 EXPORT_SYMBOL_GPL(profile_event_register
);
193 int profile_event_unregister(enum profile_type type
, struct notifier_block
*n
)
198 case PROFILE_TASK_EXIT
:
199 err
= blocking_notifier_chain_unregister(
200 &task_exit_notifier
, n
);
203 err
= blocking_notifier_chain_unregister(
204 &munmap_notifier
, n
);
210 EXPORT_SYMBOL_GPL(profile_event_unregister
);
212 int register_timer_hook(int (*hook
)(struct pt_regs
*))
219 EXPORT_SYMBOL_GPL(register_timer_hook
);
221 void unregister_timer_hook(int (*hook
)(struct pt_regs
*))
223 WARN_ON(hook
!= timer_hook
);
225 /* make sure all CPUs see the NULL hook */
226 synchronize_sched(); /* Allow ongoing interrupts to complete. */
228 EXPORT_SYMBOL_GPL(unregister_timer_hook
);
233 * Each cpu has a pair of open-addressed hashtables for pending
234 * profile hits. read_profile() IPI's all cpus to request them
235 * to flip buffers and flushes their contents to prof_buffer itself.
236 * Flip requests are serialized by the profile_flip_mutex. The sole
237 * use of having a second hashtable is for avoiding cacheline
238 * contention that would otherwise happen during flushes of pending
239 * profile hits required for the accuracy of reported profile hits
240 * and so resurrect the interrupt livelock issue.
242 * The open-addressed hashtables are indexed by profile buffer slot
243 * and hold the number of pending hits to that profile buffer slot on
244 * a cpu in an entry. When the hashtable overflows, all pending hits
245 * are accounted to their corresponding profile buffer slots with
246 * atomic_add() and the hashtable emptied. As numerous pending hits
247 * may be accounted to a profile buffer slot in a hashtable entry,
248 * this amortizes a number of atomic profile buffer increments likely
249 * to be far larger than the number of entries in the hashtable,
250 * particularly given that the number of distinct profile buffer
251 * positions to which hits are accounted during short intervals (e.g.
252 * several seconds) is usually very small. Exclusion from buffer
253 * flipping is provided by interrupt disablement (note that for
254 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
256 * The hash function is meant to be lightweight as opposed to strong,
257 * and was vaguely inspired by ppc64 firmware-supported inverted
258 * pagetable hash functions, but uses a full hashtable full of finite
259 * collision chains, not just pairs of them.
263 static void __profile_flip_buffers(void *unused
)
265 int cpu
= smp_processor_id();
267 per_cpu(cpu_profile_flip
, cpu
) = !per_cpu(cpu_profile_flip
, cpu
);
270 static void profile_flip_buffers(void)
274 mutex_lock(&profile_flip_mutex
);
275 j
= per_cpu(cpu_profile_flip
, get_cpu());
277 on_each_cpu(__profile_flip_buffers
, NULL
, 1);
278 for_each_online_cpu(cpu
) {
279 struct profile_hit
*hits
= per_cpu(cpu_profile_hits
, cpu
)[j
];
280 for (i
= 0; i
< NR_PROFILE_HIT
; ++i
) {
286 atomic_add(hits
[i
].hits
, &prof_buffer
[hits
[i
].pc
]);
287 hits
[i
].hits
= hits
[i
].pc
= 0;
290 mutex_unlock(&profile_flip_mutex
);
293 static void profile_discard_flip_buffers(void)
297 mutex_lock(&profile_flip_mutex
);
298 i
= per_cpu(cpu_profile_flip
, get_cpu());
300 on_each_cpu(__profile_flip_buffers
, NULL
, 1);
301 for_each_online_cpu(cpu
) {
302 struct profile_hit
*hits
= per_cpu(cpu_profile_hits
, cpu
)[i
];
303 memset(hits
, 0, NR_PROFILE_HIT
*sizeof(struct profile_hit
));
305 mutex_unlock(&profile_flip_mutex
);
308 void profile_hits(int type
, void *__pc
, unsigned int nr_hits
)
310 unsigned long primary
, secondary
, flags
, pc
= (unsigned long)__pc
;
312 struct profile_hit
*hits
;
314 if (prof_on
!= type
|| !prof_buffer
)
316 pc
= min((pc
- (unsigned long)_stext
) >> prof_shift
, prof_len
- 1);
317 i
= primary
= (pc
& (NR_PROFILE_GRP
- 1)) << PROFILE_GRPSHIFT
;
318 secondary
= (~(pc
<< 1) & (NR_PROFILE_GRP
- 1)) << PROFILE_GRPSHIFT
;
320 hits
= per_cpu(cpu_profile_hits
, cpu
)[per_cpu(cpu_profile_flip
, cpu
)];
326 * We buffer the global profiler buffer into a per-CPU
327 * queue and thus reduce the number of global (and possibly
328 * NUMA-alien) accesses. The write-queue is self-coalescing:
330 local_irq_save(flags
);
332 for (j
= 0; j
< PROFILE_GRPSZ
; ++j
) {
333 if (hits
[i
+ j
].pc
== pc
) {
334 hits
[i
+ j
].hits
+= nr_hits
;
336 } else if (!hits
[i
+ j
].hits
) {
338 hits
[i
+ j
].hits
= nr_hits
;
342 i
= (i
+ secondary
) & (NR_PROFILE_HIT
- 1);
343 } while (i
!= primary
);
346 * Add the current hit(s) and flush the write-queue out
347 * to the global buffer:
349 atomic_add(nr_hits
, &prof_buffer
[pc
]);
350 for (i
= 0; i
< NR_PROFILE_HIT
; ++i
) {
351 atomic_add(hits
[i
].hits
, &prof_buffer
[hits
[i
].pc
]);
352 hits
[i
].pc
= hits
[i
].hits
= 0;
355 local_irq_restore(flags
);
359 static int __cpuinit
profile_cpu_callback(struct notifier_block
*info
,
360 unsigned long action
, void *__cpu
)
362 int node
, cpu
= (unsigned long)__cpu
;
367 case CPU_UP_PREPARE_FROZEN
:
368 node
= cpu_to_node(cpu
);
369 per_cpu(cpu_profile_flip
, cpu
) = 0;
370 if (!per_cpu(cpu_profile_hits
, cpu
)[1]) {
371 page
= alloc_pages_node(node
,
372 GFP_KERNEL
| __GFP_ZERO
,
376 per_cpu(cpu_profile_hits
, cpu
)[1] = page_address(page
);
378 if (!per_cpu(cpu_profile_hits
, cpu
)[0]) {
379 page
= alloc_pages_node(node
,
380 GFP_KERNEL
| __GFP_ZERO
,
384 per_cpu(cpu_profile_hits
, cpu
)[0] = page_address(page
);
388 page
= virt_to_page(per_cpu(cpu_profile_hits
, cpu
)[1]);
389 per_cpu(cpu_profile_hits
, cpu
)[1] = NULL
;
393 case CPU_ONLINE_FROZEN
:
394 if (prof_cpu_mask
!= NULL
)
395 cpumask_set_cpu(cpu
, prof_cpu_mask
);
397 case CPU_UP_CANCELED
:
398 case CPU_UP_CANCELED_FROZEN
:
400 case CPU_DEAD_FROZEN
:
401 if (prof_cpu_mask
!= NULL
)
402 cpumask_clear_cpu(cpu
, prof_cpu_mask
);
403 if (per_cpu(cpu_profile_hits
, cpu
)[0]) {
404 page
= virt_to_page(per_cpu(cpu_profile_hits
, cpu
)[0]);
405 per_cpu(cpu_profile_hits
, cpu
)[0] = NULL
;
408 if (per_cpu(cpu_profile_hits
, cpu
)[1]) {
409 page
= virt_to_page(per_cpu(cpu_profile_hits
, cpu
)[1]);
410 per_cpu(cpu_profile_hits
, cpu
)[1] = NULL
;
417 #else /* !CONFIG_SMP */
418 #define profile_flip_buffers() do { } while (0)
419 #define profile_discard_flip_buffers() do { } while (0)
420 #define profile_cpu_callback NULL
422 void profile_hits(int type
, void *__pc
, unsigned int nr_hits
)
426 if (prof_on
!= type
|| !prof_buffer
)
428 pc
= ((unsigned long)__pc
- (unsigned long)_stext
) >> prof_shift
;
429 atomic_add(nr_hits
, &prof_buffer
[min(pc
, prof_len
- 1)]);
431 #endif /* !CONFIG_SMP */
432 EXPORT_SYMBOL_GPL(profile_hits
);
434 void profile_tick(int type
)
436 struct pt_regs
*regs
= get_irq_regs();
438 if (type
== CPU_PROFILING
&& timer_hook
)
440 if (!user_mode(regs
) && prof_cpu_mask
!= NULL
&&
441 cpumask_test_cpu(smp_processor_id(), prof_cpu_mask
))
442 profile_hit(type
, (void *)profile_pc(regs
));
445 #ifdef CONFIG_PROC_FS
446 #include <linux/proc_fs.h>
447 #include <asm/uaccess.h>
448 #include <asm/ptrace.h>
450 static int prof_cpu_mask_read_proc(char *page
, char **start
, off_t off
,
451 int count
, int *eof
, void *data
)
453 int len
= cpumask_scnprintf(page
, count
, data
);
456 len
+= sprintf(page
+ len
, "\n");
460 static int prof_cpu_mask_write_proc(struct file
*file
,
461 const char __user
*buffer
, unsigned long count
, void *data
)
463 struct cpumask
*mask
= data
;
464 unsigned long full_count
= count
, err
;
465 cpumask_var_t new_value
;
467 if (!alloc_cpumask_var(&new_value
, GFP_KERNEL
))
470 err
= cpumask_parse_user(buffer
, count
, new_value
);
472 cpumask_copy(mask
, new_value
);
475 free_cpumask_var(new_value
);
479 void create_prof_cpu_mask(struct proc_dir_entry
*root_irq_dir
)
481 struct proc_dir_entry
*entry
;
483 /* create /proc/irq/prof_cpu_mask */
484 entry
= create_proc_entry("prof_cpu_mask", 0600, root_irq_dir
);
487 entry
->data
= prof_cpu_mask
;
488 entry
->read_proc
= prof_cpu_mask_read_proc
;
489 entry
->write_proc
= prof_cpu_mask_write_proc
;
493 * This function accesses profiling information. The returned data is
494 * binary: the sampling step and the actual contents of the profile
495 * buffer. Use of the program readprofile is recommended in order to
496 * get meaningful info out of these data.
499 read_profile(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
501 unsigned long p
= *ppos
;
504 unsigned int sample_step
= 1 << prof_shift
;
506 profile_flip_buffers();
507 if (p
>= (prof_len
+1)*sizeof(unsigned int))
509 if (count
> (prof_len
+1)*sizeof(unsigned int) - p
)
510 count
= (prof_len
+1)*sizeof(unsigned int) - p
;
513 while (p
< sizeof(unsigned int) && count
> 0) {
514 if (put_user(*((char *)(&sample_step
)+p
), buf
))
516 buf
++; p
++; count
--; read
++;
518 pnt
= (char *)prof_buffer
+ p
- sizeof(atomic_t
);
519 if (copy_to_user(buf
, (void *)pnt
, count
))
527 * Writing to /proc/profile resets the counters
529 * Writing a 'profiling multiplier' value into it also re-sets the profiling
530 * interrupt frequency, on architectures that support this.
532 static ssize_t
write_profile(struct file
*file
, const char __user
*buf
,
533 size_t count
, loff_t
*ppos
)
536 extern int setup_profiling_timer(unsigned int multiplier
);
538 if (count
== sizeof(int)) {
539 unsigned int multiplier
;
541 if (copy_from_user(&multiplier
, buf
, sizeof(int)))
544 if (setup_profiling_timer(multiplier
))
548 profile_discard_flip_buffers();
549 memset(prof_buffer
, 0, prof_len
* sizeof(atomic_t
));
553 static const struct file_operations proc_profile_operations
= {
554 .read
= read_profile
,
555 .write
= write_profile
,
559 static void profile_nop(void *unused
)
563 static int create_hash_tables(void)
567 for_each_online_cpu(cpu
) {
568 int node
= cpu_to_node(cpu
);
571 page
= alloc_pages_node(node
,
572 GFP_KERNEL
| __GFP_ZERO
| GFP_THISNODE
,
576 per_cpu(cpu_profile_hits
, cpu
)[1]
577 = (struct profile_hit
*)page_address(page
);
578 page
= alloc_pages_node(node
,
579 GFP_KERNEL
| __GFP_ZERO
| GFP_THISNODE
,
583 per_cpu(cpu_profile_hits
, cpu
)[0]
584 = (struct profile_hit
*)page_address(page
);
590 on_each_cpu(profile_nop
, NULL
, 1);
591 for_each_online_cpu(cpu
) {
594 if (per_cpu(cpu_profile_hits
, cpu
)[0]) {
595 page
= virt_to_page(per_cpu(cpu_profile_hits
, cpu
)[0]);
596 per_cpu(cpu_profile_hits
, cpu
)[0] = NULL
;
599 if (per_cpu(cpu_profile_hits
, cpu
)[1]) {
600 page
= virt_to_page(per_cpu(cpu_profile_hits
, cpu
)[1]);
601 per_cpu(cpu_profile_hits
, cpu
)[1] = NULL
;
608 #define create_hash_tables() ({ 0; })
611 int __ref
create_proc_profile(void) /* false positive from hotcpu_notifier */
613 struct proc_dir_entry
*entry
;
617 if (create_hash_tables())
619 entry
= proc_create("profile", S_IWUSR
| S_IRUGO
,
620 NULL
, &proc_profile_operations
);
623 entry
->size
= (1+prof_len
) * sizeof(atomic_t
);
624 hotcpu_notifier(profile_cpu_callback
, 0);
627 module_init(create_proc_profile
);
628 #endif /* CONFIG_PROC_FS */