usb: return error code instead of 0 in the enqueue function.
[linux-2.6/mini2440.git] / kernel / sched_debug.c
blobbbe6b31c3c560d864285ad696d0e885f0ee3e5d6
1 /*
2 * kernel/time/sched_debug.c
4 * Print the CFS rbtree
6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/proc_fs.h>
14 #include <linux/sched.h>
15 #include <linux/seq_file.h>
16 #include <linux/kallsyms.h>
17 #include <linux/utsname.h>
20 * This allows printing both to /proc/sched_debug and
21 * to the console
23 #define SEQ_printf(m, x...) \
24 do { \
25 if (m) \
26 seq_printf(m, x); \
27 else \
28 printk(x); \
29 } while (0)
32 * Ease the printing of nsec fields:
34 static long long nsec_high(unsigned long long nsec)
36 if ((long long)nsec < 0) {
37 nsec = -nsec;
38 do_div(nsec, 1000000);
39 return -nsec;
41 do_div(nsec, 1000000);
43 return nsec;
46 static unsigned long nsec_low(unsigned long long nsec)
48 if ((long long)nsec < 0)
49 nsec = -nsec;
51 return do_div(nsec, 1000000);
54 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
56 static void
57 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
59 if (rq->curr == p)
60 SEQ_printf(m, "R");
61 else
62 SEQ_printf(m, " ");
64 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
65 p->comm, p->pid,
66 SPLIT_NS(p->se.vruntime),
67 (long long)(p->nvcsw + p->nivcsw),
68 p->prio);
69 #ifdef CONFIG_SCHEDSTATS
70 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
71 SPLIT_NS(p->se.vruntime),
72 SPLIT_NS(p->se.sum_exec_runtime),
73 SPLIT_NS(p->se.sum_sleep_runtime));
74 #else
75 SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld",
76 0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L);
77 #endif
79 #ifdef CONFIG_CGROUP_SCHED
81 char path[64];
83 cgroup_path(task_group(p)->css.cgroup, path, sizeof(path));
84 SEQ_printf(m, " %s", path);
86 #endif
87 SEQ_printf(m, "\n");
90 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
92 struct task_struct *g, *p;
93 unsigned long flags;
95 SEQ_printf(m,
96 "\nrunnable tasks:\n"
97 " task PID tree-key switches prio"
98 " exec-runtime sum-exec sum-sleep\n"
99 "------------------------------------------------------"
100 "----------------------------------------------------\n");
102 read_lock_irqsave(&tasklist_lock, flags);
104 do_each_thread(g, p) {
105 if (!p->se.on_rq || task_cpu(p) != rq_cpu)
106 continue;
108 print_task(m, rq, p);
109 } while_each_thread(g, p);
111 read_unlock_irqrestore(&tasklist_lock, flags);
114 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
116 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
117 spread, rq0_min_vruntime, spread0;
118 struct rq *rq = &per_cpu(runqueues, cpu);
119 struct sched_entity *last;
120 unsigned long flags;
122 #if defined(CONFIG_CGROUP_SCHED) && defined(CONFIG_FAIR_GROUP_SCHED)
123 char path[128] = "";
124 struct cgroup *cgroup = NULL;
125 struct task_group *tg = cfs_rq->tg;
127 if (tg)
128 cgroup = tg->css.cgroup;
130 if (cgroup)
131 cgroup_path(cgroup, path, sizeof(path));
133 SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, path);
134 #else
135 SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu);
136 #endif
138 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
139 SPLIT_NS(cfs_rq->exec_clock));
141 spin_lock_irqsave(&rq->lock, flags);
142 if (cfs_rq->rb_leftmost)
143 MIN_vruntime = (__pick_next_entity(cfs_rq))->vruntime;
144 last = __pick_last_entity(cfs_rq);
145 if (last)
146 max_vruntime = last->vruntime;
147 min_vruntime = rq->cfs.min_vruntime;
148 rq0_min_vruntime = per_cpu(runqueues, 0).cfs.min_vruntime;
149 spin_unlock_irqrestore(&rq->lock, flags);
150 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
151 SPLIT_NS(MIN_vruntime));
152 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
153 SPLIT_NS(min_vruntime));
154 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime",
155 SPLIT_NS(max_vruntime));
156 spread = max_vruntime - MIN_vruntime;
157 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread",
158 SPLIT_NS(spread));
159 spread0 = min_vruntime - rq0_min_vruntime;
160 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0",
161 SPLIT_NS(spread0));
162 SEQ_printf(m, " .%-30s: %ld\n", "nr_running", cfs_rq->nr_running);
163 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
164 #ifdef CONFIG_SCHEDSTATS
165 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, rq->n);
167 P(yld_exp_empty);
168 P(yld_act_empty);
169 P(yld_both_empty);
170 P(yld_count);
172 P(sched_switch);
173 P(sched_count);
174 P(sched_goidle);
176 P(ttwu_count);
177 P(ttwu_local);
179 P(bkl_count);
181 #undef P
182 #endif
183 SEQ_printf(m, " .%-30s: %ld\n", "nr_spread_over",
184 cfs_rq->nr_spread_over);
185 #ifdef CONFIG_FAIR_GROUP_SCHED
186 #ifdef CONFIG_SMP
187 SEQ_printf(m, " .%-30s: %lu\n", "shares", cfs_rq->shares);
188 #endif
189 #endif
192 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
194 #if defined(CONFIG_CGROUP_SCHED) && defined(CONFIG_RT_GROUP_SCHED)
195 char path[128] = "";
196 struct cgroup *cgroup = NULL;
197 struct task_group *tg = rt_rq->tg;
199 if (tg)
200 cgroup = tg->css.cgroup;
202 if (cgroup)
203 cgroup_path(cgroup, path, sizeof(path));
205 SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, path);
206 #else
207 SEQ_printf(m, "\nrt_rq[%d]:\n", cpu);
208 #endif
211 #define P(x) \
212 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
213 #define PN(x) \
214 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
216 P(rt_nr_running);
217 P(rt_throttled);
218 PN(rt_time);
219 PN(rt_runtime);
221 #undef PN
222 #undef P
225 static void print_cpu(struct seq_file *m, int cpu)
227 struct rq *rq = &per_cpu(runqueues, cpu);
229 #ifdef CONFIG_X86
231 unsigned int freq = cpu_khz ? : 1;
233 SEQ_printf(m, "\ncpu#%d, %u.%03u MHz\n",
234 cpu, freq / 1000, (freq % 1000));
236 #else
237 SEQ_printf(m, "\ncpu#%d\n", cpu);
238 #endif
240 #define P(x) \
241 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x))
242 #define PN(x) \
243 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
245 P(nr_running);
246 SEQ_printf(m, " .%-30s: %lu\n", "load",
247 rq->load.weight);
248 P(nr_switches);
249 P(nr_load_updates);
250 P(nr_uninterruptible);
251 SEQ_printf(m, " .%-30s: %lu\n", "jiffies", jiffies);
252 PN(next_balance);
253 P(curr->pid);
254 PN(clock);
255 P(cpu_load[0]);
256 P(cpu_load[1]);
257 P(cpu_load[2]);
258 P(cpu_load[3]);
259 P(cpu_load[4]);
260 #undef P
261 #undef PN
263 print_cfs_stats(m, cpu);
264 print_rt_stats(m, cpu);
266 print_rq(m, rq, cpu);
269 static int sched_debug_show(struct seq_file *m, void *v)
271 u64 now = ktime_to_ns(ktime_get());
272 int cpu;
274 SEQ_printf(m, "Sched Debug Version: v0.07, %s %.*s\n",
275 init_utsname()->release,
276 (int)strcspn(init_utsname()->version, " "),
277 init_utsname()->version);
279 SEQ_printf(m, "now at %Lu.%06ld msecs\n", SPLIT_NS(now));
281 #define P(x) \
282 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
283 #define PN(x) \
284 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
285 PN(sysctl_sched_latency);
286 PN(sysctl_sched_min_granularity);
287 PN(sysctl_sched_wakeup_granularity);
288 PN(sysctl_sched_child_runs_first);
289 P(sysctl_sched_features);
290 #undef PN
291 #undef P
293 for_each_online_cpu(cpu)
294 print_cpu(m, cpu);
296 SEQ_printf(m, "\n");
298 return 0;
301 static void sysrq_sched_debug_show(void)
303 sched_debug_show(NULL, NULL);
306 static int sched_debug_open(struct inode *inode, struct file *filp)
308 return single_open(filp, sched_debug_show, NULL);
311 static const struct file_operations sched_debug_fops = {
312 .open = sched_debug_open,
313 .read = seq_read,
314 .llseek = seq_lseek,
315 .release = single_release,
318 static int __init init_sched_debug_procfs(void)
320 struct proc_dir_entry *pe;
322 pe = proc_create("sched_debug", 0644, NULL, &sched_debug_fops);
323 if (!pe)
324 return -ENOMEM;
325 return 0;
328 __initcall(init_sched_debug_procfs);
330 void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
332 unsigned long nr_switches;
333 unsigned long flags;
334 int num_threads = 1;
336 rcu_read_lock();
337 if (lock_task_sighand(p, &flags)) {
338 num_threads = atomic_read(&p->signal->count);
339 unlock_task_sighand(p, &flags);
341 rcu_read_unlock();
343 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, p->pid, num_threads);
344 SEQ_printf(m,
345 "---------------------------------------------------------\n");
346 #define __P(F) \
347 SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)F)
348 #define P(F) \
349 SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)p->F)
350 #define __PN(F) \
351 SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
352 #define PN(F) \
353 SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
355 PN(se.exec_start);
356 PN(se.vruntime);
357 PN(se.sum_exec_runtime);
358 PN(se.avg_overlap);
360 nr_switches = p->nvcsw + p->nivcsw;
362 #ifdef CONFIG_SCHEDSTATS
363 PN(se.wait_start);
364 PN(se.sleep_start);
365 PN(se.block_start);
366 PN(se.sleep_max);
367 PN(se.block_max);
368 PN(se.exec_max);
369 PN(se.slice_max);
370 PN(se.wait_max);
371 PN(se.wait_sum);
372 P(se.wait_count);
373 P(sched_info.bkl_count);
374 P(se.nr_migrations);
375 P(se.nr_migrations_cold);
376 P(se.nr_failed_migrations_affine);
377 P(se.nr_failed_migrations_running);
378 P(se.nr_failed_migrations_hot);
379 P(se.nr_forced_migrations);
380 P(se.nr_forced2_migrations);
381 P(se.nr_wakeups);
382 P(se.nr_wakeups_sync);
383 P(se.nr_wakeups_migrate);
384 P(se.nr_wakeups_local);
385 P(se.nr_wakeups_remote);
386 P(se.nr_wakeups_affine);
387 P(se.nr_wakeups_affine_attempts);
388 P(se.nr_wakeups_passive);
389 P(se.nr_wakeups_idle);
392 u64 avg_atom, avg_per_cpu;
394 avg_atom = p->se.sum_exec_runtime;
395 if (nr_switches)
396 do_div(avg_atom, nr_switches);
397 else
398 avg_atom = -1LL;
400 avg_per_cpu = p->se.sum_exec_runtime;
401 if (p->se.nr_migrations) {
402 avg_per_cpu = div64_u64(avg_per_cpu,
403 p->se.nr_migrations);
404 } else {
405 avg_per_cpu = -1LL;
408 __PN(avg_atom);
409 __PN(avg_per_cpu);
411 #endif
412 __P(nr_switches);
413 SEQ_printf(m, "%-35s:%21Ld\n",
414 "nr_voluntary_switches", (long long)p->nvcsw);
415 SEQ_printf(m, "%-35s:%21Ld\n",
416 "nr_involuntary_switches", (long long)p->nivcsw);
418 P(se.load.weight);
419 P(policy);
420 P(prio);
421 #undef PN
422 #undef __PN
423 #undef P
424 #undef __P
427 u64 t0, t1;
429 t0 = sched_clock();
430 t1 = sched_clock();
431 SEQ_printf(m, "%-35s:%21Ld\n",
432 "clock-delta", (long long)(t1-t0));
436 void proc_sched_set_task(struct task_struct *p)
438 #ifdef CONFIG_SCHEDSTATS
439 p->se.wait_max = 0;
440 p->se.wait_sum = 0;
441 p->se.wait_count = 0;
442 p->se.sleep_max = 0;
443 p->se.sum_sleep_runtime = 0;
444 p->se.block_max = 0;
445 p->se.exec_max = 0;
446 p->se.slice_max = 0;
447 p->se.nr_migrations = 0;
448 p->se.nr_migrations_cold = 0;
449 p->se.nr_failed_migrations_affine = 0;
450 p->se.nr_failed_migrations_running = 0;
451 p->se.nr_failed_migrations_hot = 0;
452 p->se.nr_forced_migrations = 0;
453 p->se.nr_forced2_migrations = 0;
454 p->se.nr_wakeups = 0;
455 p->se.nr_wakeups_sync = 0;
456 p->se.nr_wakeups_migrate = 0;
457 p->se.nr_wakeups_local = 0;
458 p->se.nr_wakeups_remote = 0;
459 p->se.nr_wakeups_affine = 0;
460 p->se.nr_wakeups_affine_attempts = 0;
461 p->se.nr_wakeups_passive = 0;
462 p->se.nr_wakeups_idle = 0;
463 p->sched_info.bkl_count = 0;
464 #endif
465 p->se.sum_exec_runtime = 0;
466 p->se.prev_sum_exec_runtime = 0;
467 p->nvcsw = 0;
468 p->nivcsw = 0;