2 * Copyright (c) 2000-2003 Silicon Graphics, Inc. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it would be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12 * Further, this software is distributed without any warranty that it is
13 * free of the rightful claim of any third person regarding infringement
14 * or the like. Any license provided herein, whether implied or
15 * otherwise, applies only to this software file. Patent licenses, if
16 * any, provided herein do not apply to combinations of this program with
17 * other software, or any other product whatsoever.
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston MA 02111-1307, USA.
23 * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
24 * Mountain View, CA 94043, or:
28 * For further information regarding this notice, see:
30 * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
34 #include "xfs_macros.h"
35 #include "xfs_types.h"
38 #include "xfs_trans.h"
39 #include "xfs_trans_priv.h"
44 #include "xfs_dmapi.h"
45 #include "xfs_mount.h"
46 #include "xfs_alloc_btree.h"
47 #include "xfs_bmap_btree.h"
48 #include "xfs_ialloc_btree.h"
49 #include "xfs_btree.h"
51 #include "xfs_alloc.h"
52 #include "xfs_ialloc.h"
53 #include "xfs_attr_sf.h"
54 #include "xfs_dir_sf.h"
55 #include "xfs_dir2_sf.h"
56 #include "xfs_dinode.h"
57 #include "xfs_inode_item.h"
58 #include "xfs_inode.h"
60 #include "xfs_buf_item.h"
62 #include "xfs_error.h"
64 #include "xfs_utils.h"
65 #include "xfs_dir2_trace.h"
66 #include "xfs_quota.h"
71 kmem_zone_t
*xfs_ifork_zone
;
72 kmem_zone_t
*xfs_inode_zone
;
73 kmem_zone_t
*xfs_chashlist_zone
;
76 * Used in xfs_itruncate(). This is the maximum number of extents
77 * freed from a file in a single transaction.
79 #define XFS_ITRUNC_MAX_EXTENTS 2
81 STATIC
int xfs_iflush_int(xfs_inode_t
*, xfs_buf_t
*);
82 STATIC
int xfs_iformat_local(xfs_inode_t
*, xfs_dinode_t
*, int, int);
83 STATIC
int xfs_iformat_extents(xfs_inode_t
*, xfs_dinode_t
*, int);
84 STATIC
int xfs_iformat_btree(xfs_inode_t
*, xfs_dinode_t
*, int);
89 * Make sure that the extents in the given memory buffer
103 for (i
= 0; i
< nrecs
; i
++) {
104 rec
.l0
= get_unaligned((__uint64_t
*)&ep
->l0
);
105 rec
.l1
= get_unaligned((__uint64_t
*)&ep
->l1
);
107 xfs_bmbt_disk_get_all(&rec
, &irec
);
109 xfs_bmbt_get_all(&rec
, &irec
);
110 if (fmt
== XFS_EXTFMT_NOSTATE
)
111 ASSERT(irec
.br_state
== XFS_EXT_NORM
);
116 #define xfs_validate_extents(ep, nrecs, disk, fmt)
120 * Check that none of the inode's in the buffer have a next
121 * unlinked field of 0.
133 j
= mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
;
135 for (i
= 0; i
< j
; i
++) {
136 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
137 i
* mp
->m_sb
.sb_inodesize
);
138 if (!dip
->di_next_unlinked
) {
139 xfs_fs_cmn_err(CE_ALERT
, mp
,
140 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
142 ASSERT(dip
->di_next_unlinked
);
149 * This routine is called to map an inode number within a file
150 * system to the buffer containing the on-disk version of the
151 * inode. It returns a pointer to the buffer containing the
152 * on-disk inode in the bpp parameter, and in the dip parameter
153 * it returns a pointer to the on-disk inode within that buffer.
155 * If a non-zero error is returned, then the contents of bpp and
156 * dipp are undefined.
158 * Use xfs_imap() to determine the size and location of the
159 * buffer to read from disk.
177 * Call the space managment code to find the location of the
181 error
= xfs_imap(mp
, tp
, ino
, &imap
, XFS_IMAP_LOOKUP
);
184 "xfs_inotobp: xfs_imap() returned an "
185 "error %d on %s. Returning error.", error
, mp
->m_fsname
);
190 * If the inode number maps to a block outside the bounds of the
191 * file system then return NULL rather than calling read_buf
192 * and panicing when we get an error from the driver.
194 if ((imap
.im_blkno
+ imap
.im_len
) >
195 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
)) {
197 "xfs_inotobp: inode number (%d + %d) maps to a block outside the bounds "
198 "of the file system %s. Returning EINVAL.",
199 imap
.im_blkno
, imap
.im_len
,mp
->m_fsname
);
200 return XFS_ERROR(EINVAL
);
204 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
205 * default to just a read_buf() call.
207 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, imap
.im_blkno
,
208 (int)imap
.im_len
, XFS_BUF_LOCK
, &bp
);
212 "xfs_inotobp: xfs_trans_read_buf() returned an "
213 "error %d on %s. Returning error.", error
, mp
->m_fsname
);
216 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, 0);
218 INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
) == XFS_DINODE_MAGIC
&&
219 XFS_DINODE_GOOD_VERSION(INT_GET(dip
->di_core
.di_version
, ARCH_CONVERT
));
220 if (unlikely(XFS_TEST_ERROR(!di_ok
, mp
, XFS_ERRTAG_ITOBP_INOTOBP
,
221 XFS_RANDOM_ITOBP_INOTOBP
))) {
222 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW
, mp
, dip
);
223 xfs_trans_brelse(tp
, bp
);
225 "xfs_inotobp: XFS_TEST_ERROR() returned an "
226 "error on %s. Returning EFSCORRUPTED.", mp
->m_fsname
);
227 return XFS_ERROR(EFSCORRUPTED
);
230 xfs_inobp_check(mp
, bp
);
233 * Set *dipp to point to the on-disk inode in the buffer.
235 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, imap
.im_boffset
);
237 *offset
= imap
.im_boffset
;
243 * This routine is called to map an inode to the buffer containing
244 * the on-disk version of the inode. It returns a pointer to the
245 * buffer containing the on-disk inode in the bpp parameter, and in
246 * the dip parameter it returns a pointer to the on-disk inode within
249 * If a non-zero error is returned, then the contents of bpp and
250 * dipp are undefined.
252 * If the inode is new and has not yet been initialized, use xfs_imap()
253 * to determine the size and location of the buffer to read from disk.
254 * If the inode has already been mapped to its buffer and read in once,
255 * then use the mapping information stored in the inode rather than
256 * calling xfs_imap(). This allows us to avoid the overhead of looking
257 * at the inode btree for small block file systems (see xfs_dilocate()).
258 * We can tell whether the inode has been mapped in before by comparing
259 * its disk block address to 0. Only uninitialized inodes will have
260 * 0 for the disk block address.
279 if (ip
->i_blkno
== (xfs_daddr_t
)0) {
281 * Call the space management code to find the location of the
285 error
= xfs_imap(mp
, tp
, ip
->i_ino
, &imap
, XFS_IMAP_LOOKUP
);
291 * If the inode number maps to a block outside the bounds
292 * of the file system then return NULL rather than calling
293 * read_buf and panicing when we get an error from the
296 if ((imap
.im_blkno
+ imap
.im_len
) >
297 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
)) {
299 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_itobp: "
300 "(imap.im_blkno (0x%llx) "
301 "+ imap.im_len (0x%llx)) > "
302 " XFS_FSB_TO_BB(mp, "
303 "mp->m_sb.sb_dblocks) (0x%llx)",
304 (unsigned long long) imap
.im_blkno
,
305 (unsigned long long) imap
.im_len
,
306 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
));
308 return XFS_ERROR(EINVAL
);
312 * Fill in the fields in the inode that will be used to
313 * map the inode to its buffer from now on.
315 ip
->i_blkno
= imap
.im_blkno
;
316 ip
->i_len
= imap
.im_len
;
317 ip
->i_boffset
= imap
.im_boffset
;
320 * We've already mapped the inode once, so just use the
321 * mapping that we saved the first time.
323 imap
.im_blkno
= ip
->i_blkno
;
324 imap
.im_len
= ip
->i_len
;
325 imap
.im_boffset
= ip
->i_boffset
;
327 ASSERT(bno
== 0 || bno
== imap
.im_blkno
);
330 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
331 * default to just a read_buf() call.
333 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, imap
.im_blkno
,
334 (int)imap
.im_len
, XFS_BUF_LOCK
, &bp
);
338 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_itobp: "
339 "xfs_trans_read_buf() returned error %d, "
340 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
341 error
, (unsigned long long) imap
.im_blkno
,
342 (unsigned long long) imap
.im_len
);
348 * Validate the magic number and version of every inode in the buffer
349 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
352 ni
= BBTOB(imap
.im_len
) >> mp
->m_sb
.sb_inodelog
;
356 for (i
= 0; i
< ni
; i
++) {
360 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
361 (i
<< mp
->m_sb
.sb_inodelog
));
362 di_ok
= INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
) == XFS_DINODE_MAGIC
&&
363 XFS_DINODE_GOOD_VERSION(INT_GET(dip
->di_core
.di_version
, ARCH_CONVERT
));
364 if (unlikely(XFS_TEST_ERROR(!di_ok
, mp
, XFS_ERRTAG_ITOBP_INOTOBP
,
365 XFS_RANDOM_ITOBP_INOTOBP
))) {
367 prdev("bad inode magic/vsn daddr %lld #%d (magic=%x)",
369 (unsigned long long)imap
.im_blkno
, i
,
370 INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
));
372 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH
,
374 xfs_trans_brelse(tp
, bp
);
375 return XFS_ERROR(EFSCORRUPTED
);
378 #endif /* __KERNEL__ */
380 xfs_inobp_check(mp
, bp
);
383 * Mark the buffer as an inode buffer now that it looks good
385 XFS_BUF_SET_VTYPE(bp
, B_FS_INO
);
388 * Set *dipp to point to the on-disk inode in the buffer.
390 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, imap
.im_boffset
);
396 * Move inode type and inode format specific information from the
397 * on-disk inode to the in-core inode. For fifos, devs, and sockets
398 * this means set if_rdev to the proper value. For files, directories,
399 * and symlinks this means to bring in the in-line data or extent
400 * pointers. For a file in B-tree format, only the root is immediately
401 * brought in-core. The rest will be in-lined in if_extents when it
402 * is first referenced (see xfs_iread_extents()).
409 xfs_attr_shortform_t
*atp
;
413 ip
->i_df
.if_ext_max
=
414 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
418 INT_GET(dip
->di_core
.di_nextents
, ARCH_CONVERT
) +
419 INT_GET(dip
->di_core
.di_anextents
, ARCH_CONVERT
) >
420 INT_GET(dip
->di_core
.di_nblocks
, ARCH_CONVERT
))) {
421 xfs_fs_cmn_err(CE_WARN
, ip
->i_mount
,
422 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu."
423 " Unmount and run xfs_repair.",
424 (unsigned long long)ip
->i_ino
,
425 (int)(INT_GET(dip
->di_core
.di_nextents
, ARCH_CONVERT
)
426 + INT_GET(dip
->di_core
.di_anextents
, ARCH_CONVERT
)),
428 INT_GET(dip
->di_core
.di_nblocks
, ARCH_CONVERT
));
429 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW
,
431 return XFS_ERROR(EFSCORRUPTED
);
434 if (unlikely(INT_GET(dip
->di_core
.di_forkoff
, ARCH_CONVERT
) > ip
->i_mount
->m_sb
.sb_inodesize
)) {
435 xfs_fs_cmn_err(CE_WARN
, ip
->i_mount
,
436 "corrupt dinode %Lu, forkoff = 0x%x."
437 " Unmount and run xfs_repair.",
438 (unsigned long long)ip
->i_ino
,
439 (int)(INT_GET(dip
->di_core
.di_forkoff
, ARCH_CONVERT
)));
440 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW
,
442 return XFS_ERROR(EFSCORRUPTED
);
445 switch (ip
->i_d
.di_mode
& S_IFMT
) {
450 if (unlikely(INT_GET(dip
->di_core
.di_format
, ARCH_CONVERT
) != XFS_DINODE_FMT_DEV
)) {
451 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW
,
453 return XFS_ERROR(EFSCORRUPTED
);
456 ip
->i_df
.if_u2
.if_rdev
= INT_GET(dip
->di_u
.di_dev
, ARCH_CONVERT
);
462 switch (INT_GET(dip
->di_core
.di_format
, ARCH_CONVERT
)) {
463 case XFS_DINODE_FMT_LOCAL
:
465 * no local regular files yet
467 if (unlikely((INT_GET(dip
->di_core
.di_mode
, ARCH_CONVERT
) & S_IFMT
) == S_IFREG
)) {
468 xfs_fs_cmn_err(CE_WARN
, ip
->i_mount
,
469 "corrupt inode (local format for regular file) %Lu. Unmount and run xfs_repair.",
470 (unsigned long long) ip
->i_ino
);
471 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
474 return XFS_ERROR(EFSCORRUPTED
);
477 di_size
= INT_GET(dip
->di_core
.di_size
, ARCH_CONVERT
);
478 if (unlikely(di_size
> XFS_DFORK_DSIZE(dip
, ip
->i_mount
))) {
479 xfs_fs_cmn_err(CE_WARN
, ip
->i_mount
,
480 "corrupt inode %Lu (bad size %Ld for local inode). Unmount and run xfs_repair.",
481 (unsigned long long) ip
->i_ino
,
482 (long long) di_size
);
483 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
486 return XFS_ERROR(EFSCORRUPTED
);
490 error
= xfs_iformat_local(ip
, dip
, XFS_DATA_FORK
, size
);
492 case XFS_DINODE_FMT_EXTENTS
:
493 error
= xfs_iformat_extents(ip
, dip
, XFS_DATA_FORK
);
495 case XFS_DINODE_FMT_BTREE
:
496 error
= xfs_iformat_btree(ip
, dip
, XFS_DATA_FORK
);
499 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW
,
501 return XFS_ERROR(EFSCORRUPTED
);
506 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW
, ip
->i_mount
);
507 return XFS_ERROR(EFSCORRUPTED
);
512 if (!XFS_DFORK_Q(dip
))
514 ASSERT(ip
->i_afp
== NULL
);
515 ip
->i_afp
= kmem_zone_zalloc(xfs_ifork_zone
, KM_SLEEP
);
516 ip
->i_afp
->if_ext_max
=
517 XFS_IFORK_ASIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
518 switch (INT_GET(dip
->di_core
.di_aformat
, ARCH_CONVERT
)) {
519 case XFS_DINODE_FMT_LOCAL
:
520 atp
= (xfs_attr_shortform_t
*)XFS_DFORK_APTR(dip
);
521 size
= (int)INT_GET(atp
->hdr
.totsize
, ARCH_CONVERT
);
522 error
= xfs_iformat_local(ip
, dip
, XFS_ATTR_FORK
, size
);
524 case XFS_DINODE_FMT_EXTENTS
:
525 error
= xfs_iformat_extents(ip
, dip
, XFS_ATTR_FORK
);
527 case XFS_DINODE_FMT_BTREE
:
528 error
= xfs_iformat_btree(ip
, dip
, XFS_ATTR_FORK
);
531 error
= XFS_ERROR(EFSCORRUPTED
);
535 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
537 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
543 * The file is in-lined in the on-disk inode.
544 * If it fits into if_inline_data, then copy
545 * it there, otherwise allocate a buffer for it
546 * and copy the data there. Either way, set
547 * if_data to point at the data.
548 * If we allocate a buffer for the data, make
549 * sure that its size is a multiple of 4 and
550 * record the real size in i_real_bytes.
563 * If the size is unreasonable, then something
564 * is wrong and we just bail out rather than crash in
565 * kmem_alloc() or memcpy() below.
567 if (unlikely(size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
568 xfs_fs_cmn_err(CE_WARN
, ip
->i_mount
,
569 "corrupt inode %Lu (bad size %d for local fork, size = %d). Unmount and run xfs_repair.",
570 (unsigned long long) ip
->i_ino
, size
,
571 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
));
572 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW
,
574 return XFS_ERROR(EFSCORRUPTED
);
576 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
579 ifp
->if_u1
.if_data
= NULL
;
580 else if (size
<= sizeof(ifp
->if_u2
.if_inline_data
))
581 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
583 real_size
= roundup(size
, 4);
584 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
586 ifp
->if_bytes
= size
;
587 ifp
->if_real_bytes
= real_size
;
589 memcpy(ifp
->if_u1
.if_data
, XFS_DFORK_PTR(dip
, whichfork
), size
);
590 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
591 ifp
->if_flags
|= XFS_IFINLINE
;
596 * The file consists of a set of extents all
597 * of which fit into the on-disk inode.
598 * If there are few enough extents to fit into
599 * the if_inline_ext, then copy them there.
600 * Otherwise allocate a buffer for them and copy
601 * them into it. Either way, set if_extents
602 * to point at the extents.
610 xfs_bmbt_rec_t
*ep
, *dp
;
617 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
618 nex
= XFS_DFORK_NEXTENTS(dip
, whichfork
);
619 size
= nex
* (uint
)sizeof(xfs_bmbt_rec_t
);
622 * If the number of extents is unreasonable, then something
623 * is wrong and we just bail out rather than crash in
624 * kmem_alloc() or memcpy() below.
626 if (unlikely(size
< 0 || size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
627 xfs_fs_cmn_err(CE_WARN
, ip
->i_mount
,
628 "corrupt inode %Lu ((a)extents = %d). Unmount and run xfs_repair.",
629 (unsigned long long) ip
->i_ino
, nex
);
630 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW
,
632 return XFS_ERROR(EFSCORRUPTED
);
637 ifp
->if_u1
.if_extents
= NULL
;
638 else if (nex
<= XFS_INLINE_EXTS
)
639 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
641 ifp
->if_u1
.if_extents
= kmem_alloc(size
, KM_SLEEP
);
642 ASSERT(ifp
->if_u1
.if_extents
!= NULL
);
645 ifp
->if_bytes
= size
;
646 ifp
->if_real_bytes
= real_size
;
648 dp
= (xfs_bmbt_rec_t
*) XFS_DFORK_PTR(dip
, whichfork
);
649 xfs_validate_extents(dp
, nex
, 1, XFS_EXTFMT_INODE(ip
));
650 ep
= ifp
->if_u1
.if_extents
;
651 for (i
= 0; i
< nex
; i
++, ep
++, dp
++) {
652 ep
->l0
= INT_GET(get_unaligned((__uint64_t
*)&dp
->l0
),
654 ep
->l1
= INT_GET(get_unaligned((__uint64_t
*)&dp
->l1
),
657 xfs_bmap_trace_exlist("xfs_iformat_extents", ip
, nex
,
659 if (whichfork
!= XFS_DATA_FORK
||
660 XFS_EXTFMT_INODE(ip
) == XFS_EXTFMT_NOSTATE
)
661 if (unlikely(xfs_check_nostate_extents(
662 ifp
->if_u1
.if_extents
, nex
))) {
663 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
666 return XFS_ERROR(EFSCORRUPTED
);
669 ifp
->if_flags
|= XFS_IFEXTENTS
;
674 * The file has too many extents to fit into
675 * the inode, so they are in B-tree format.
676 * Allocate a buffer for the root of the B-tree
677 * and copy the root into it. The i_extents
678 * field will remain NULL until all of the
679 * extents are read in (when they are needed).
687 xfs_bmdr_block_t
*dfp
;
693 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
694 dfp
= (xfs_bmdr_block_t
*)XFS_DFORK_PTR(dip
, whichfork
);
695 size
= XFS_BMAP_BROOT_SPACE(dfp
);
696 nrecs
= XFS_BMAP_BROOT_NUMRECS(dfp
);
699 * blow out if -- fork has less extents than can fit in
700 * fork (fork shouldn't be a btree format), root btree
701 * block has more records than can fit into the fork,
702 * or the number of extents is greater than the number of
705 if (unlikely(XFS_IFORK_NEXTENTS(ip
, whichfork
) <= ifp
->if_ext_max
706 || XFS_BMDR_SPACE_CALC(nrecs
) >
707 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
)
708 || XFS_IFORK_NEXTENTS(ip
, whichfork
) > ip
->i_d
.di_nblocks
)) {
709 xfs_fs_cmn_err(CE_WARN
, ip
->i_mount
,
710 "corrupt inode %Lu (btree). Unmount and run xfs_repair.",
711 (unsigned long long) ip
->i_ino
);
712 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW
,
714 return XFS_ERROR(EFSCORRUPTED
);
717 ifp
->if_broot_bytes
= size
;
718 ifp
->if_broot
= kmem_alloc(size
, KM_SLEEP
);
719 ASSERT(ifp
->if_broot
!= NULL
);
721 * Copy and convert from the on-disk structure
722 * to the in-memory structure.
724 xfs_bmdr_to_bmbt(dfp
, XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
),
725 ifp
->if_broot
, size
);
726 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
727 ifp
->if_flags
|= XFS_IFBROOT
;
733 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
736 * buf = on-disk representation
737 * dip = native representation
738 * dir = direction - +ve -> disk to native
739 * -ve -> native to disk
742 xfs_xlate_dinode_core(
744 xfs_dinode_core_t
*dip
,
747 xfs_dinode_core_t
*buf_core
= (xfs_dinode_core_t
*)buf
;
748 xfs_dinode_core_t
*mem_core
= (xfs_dinode_core_t
*)dip
;
749 xfs_arch_t arch
= ARCH_CONVERT
;
753 INT_XLATE(buf_core
->di_magic
, mem_core
->di_magic
, dir
, arch
);
754 INT_XLATE(buf_core
->di_mode
, mem_core
->di_mode
, dir
, arch
);
755 INT_XLATE(buf_core
->di_version
, mem_core
->di_version
, dir
, arch
);
756 INT_XLATE(buf_core
->di_format
, mem_core
->di_format
, dir
, arch
);
757 INT_XLATE(buf_core
->di_onlink
, mem_core
->di_onlink
, dir
, arch
);
758 INT_XLATE(buf_core
->di_uid
, mem_core
->di_uid
, dir
, arch
);
759 INT_XLATE(buf_core
->di_gid
, mem_core
->di_gid
, dir
, arch
);
760 INT_XLATE(buf_core
->di_nlink
, mem_core
->di_nlink
, dir
, arch
);
761 INT_XLATE(buf_core
->di_projid
, mem_core
->di_projid
, dir
, arch
);
764 memcpy(mem_core
->di_pad
, buf_core
->di_pad
,
765 sizeof(buf_core
->di_pad
));
767 memcpy(buf_core
->di_pad
, mem_core
->di_pad
,
768 sizeof(buf_core
->di_pad
));
771 INT_XLATE(buf_core
->di_flushiter
, mem_core
->di_flushiter
, dir
, arch
);
773 INT_XLATE(buf_core
->di_atime
.t_sec
, mem_core
->di_atime
.t_sec
,
775 INT_XLATE(buf_core
->di_atime
.t_nsec
, mem_core
->di_atime
.t_nsec
,
777 INT_XLATE(buf_core
->di_mtime
.t_sec
, mem_core
->di_mtime
.t_sec
,
779 INT_XLATE(buf_core
->di_mtime
.t_nsec
, mem_core
->di_mtime
.t_nsec
,
781 INT_XLATE(buf_core
->di_ctime
.t_sec
, mem_core
->di_ctime
.t_sec
,
783 INT_XLATE(buf_core
->di_ctime
.t_nsec
, mem_core
->di_ctime
.t_nsec
,
785 INT_XLATE(buf_core
->di_size
, mem_core
->di_size
, dir
, arch
);
786 INT_XLATE(buf_core
->di_nblocks
, mem_core
->di_nblocks
, dir
, arch
);
787 INT_XLATE(buf_core
->di_extsize
, mem_core
->di_extsize
, dir
, arch
);
788 INT_XLATE(buf_core
->di_nextents
, mem_core
->di_nextents
, dir
, arch
);
789 INT_XLATE(buf_core
->di_anextents
, mem_core
->di_anextents
, dir
, arch
);
790 INT_XLATE(buf_core
->di_forkoff
, mem_core
->di_forkoff
, dir
, arch
);
791 INT_XLATE(buf_core
->di_aformat
, mem_core
->di_aformat
, dir
, arch
);
792 INT_XLATE(buf_core
->di_dmevmask
, mem_core
->di_dmevmask
, dir
, arch
);
793 INT_XLATE(buf_core
->di_dmstate
, mem_core
->di_dmstate
, dir
, arch
);
794 INT_XLATE(buf_core
->di_flags
, mem_core
->di_flags
, dir
, arch
);
795 INT_XLATE(buf_core
->di_gen
, mem_core
->di_gen
, dir
, arch
);
800 xfs_dinode_core_t
*dic
,
805 if (di_flags
& XFS_DIFLAG_ANY
) {
806 if (di_flags
& XFS_DIFLAG_REALTIME
)
807 flags
|= XFS_XFLAG_REALTIME
;
808 if (di_flags
& XFS_DIFLAG_PREALLOC
)
809 flags
|= XFS_XFLAG_PREALLOC
;
810 if (di_flags
& XFS_DIFLAG_IMMUTABLE
)
811 flags
|= XFS_XFLAG_IMMUTABLE
;
812 if (di_flags
& XFS_DIFLAG_APPEND
)
813 flags
|= XFS_XFLAG_APPEND
;
814 if (di_flags
& XFS_DIFLAG_SYNC
)
815 flags
|= XFS_XFLAG_SYNC
;
816 if (di_flags
& XFS_DIFLAG_NOATIME
)
817 flags
|= XFS_XFLAG_NOATIME
;
818 if (di_flags
& XFS_DIFLAG_NODUMP
)
819 flags
|= XFS_XFLAG_NODUMP
;
820 if (di_flags
& XFS_DIFLAG_RTINHERIT
)
821 flags
|= XFS_XFLAG_RTINHERIT
;
822 if (di_flags
& XFS_DIFLAG_PROJINHERIT
)
823 flags
|= XFS_XFLAG_PROJINHERIT
;
824 if (di_flags
& XFS_DIFLAG_NOSYMLINKS
)
825 flags
|= XFS_XFLAG_NOSYMLINKS
;
835 xfs_dinode_core_t
*dic
= &ip
->i_d
;
837 return _xfs_dic2xflags(dic
, dic
->di_flags
) |
838 (XFS_CFORK_Q(dic
) ? XFS_XFLAG_HASATTR
: 0);
843 xfs_dinode_core_t
*dic
)
845 return _xfs_dic2xflags(dic
, INT_GET(dic
->di_flags
, ARCH_CONVERT
)) |
846 (XFS_CFORK_Q_DISK(dic
) ? XFS_XFLAG_HASATTR
: 0);
850 * Given a mount structure and an inode number, return a pointer
851 * to a newly allocated in-core inode coresponding to the given
854 * Initialize the inode's attributes and extent pointers if it
855 * already has them (it will not if the inode has no links).
870 ASSERT(xfs_inode_zone
!= NULL
);
872 ip
= kmem_zone_zalloc(xfs_inode_zone
, KM_SLEEP
);
877 * Get pointer's to the on-disk inode and the buffer containing it.
878 * If the inode number refers to a block outside the file system
879 * then xfs_itobp() will return NULL. In this case we should
880 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
881 * know that this is a new incore inode.
883 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &bp
, bno
);
886 kmem_zone_free(xfs_inode_zone
, ip
);
891 * Initialize inode's trace buffers.
892 * Do this before xfs_iformat in case it adds entries.
894 #ifdef XFS_BMAP_TRACE
895 ip
->i_xtrace
= ktrace_alloc(XFS_BMAP_KTRACE_SIZE
, KM_SLEEP
);
897 #ifdef XFS_BMBT_TRACE
898 ip
->i_btrace
= ktrace_alloc(XFS_BMBT_KTRACE_SIZE
, KM_SLEEP
);
901 ip
->i_rwtrace
= ktrace_alloc(XFS_RW_KTRACE_SIZE
, KM_SLEEP
);
903 #ifdef XFS_ILOCK_TRACE
904 ip
->i_lock_trace
= ktrace_alloc(XFS_ILOCK_KTRACE_SIZE
, KM_SLEEP
);
906 #ifdef XFS_DIR2_TRACE
907 ip
->i_dir_trace
= ktrace_alloc(XFS_DIR2_KTRACE_SIZE
, KM_SLEEP
);
911 * If we got something that isn't an inode it means someone
912 * (nfs or dmi) has a stale handle.
914 if (INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
) != XFS_DINODE_MAGIC
) {
915 kmem_zone_free(xfs_inode_zone
, ip
);
916 xfs_trans_brelse(tp
, bp
);
918 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_iread: "
919 "dip->di_core.di_magic (0x%x) != "
920 "XFS_DINODE_MAGIC (0x%x)",
921 INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
),
924 return XFS_ERROR(EINVAL
);
928 * If the on-disk inode is already linked to a directory
929 * entry, copy all of the inode into the in-core inode.
930 * xfs_iformat() handles copying in the inode format
931 * specific information.
932 * Otherwise, just get the truly permanent information.
934 if (dip
->di_core
.di_mode
) {
935 xfs_xlate_dinode_core((xfs_caddr_t
)&dip
->di_core
,
937 error
= xfs_iformat(ip
, dip
);
939 kmem_zone_free(xfs_inode_zone
, ip
);
940 xfs_trans_brelse(tp
, bp
);
942 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_iread: "
943 "xfs_iformat() returned error %d",
949 ip
->i_d
.di_magic
= INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
);
950 ip
->i_d
.di_version
= INT_GET(dip
->di_core
.di_version
, ARCH_CONVERT
);
951 ip
->i_d
.di_gen
= INT_GET(dip
->di_core
.di_gen
, ARCH_CONVERT
);
952 ip
->i_d
.di_flushiter
= INT_GET(dip
->di_core
.di_flushiter
, ARCH_CONVERT
);
954 * Make sure to pull in the mode here as well in
955 * case the inode is released without being used.
956 * This ensures that xfs_inactive() will see that
957 * the inode is already free and not try to mess
958 * with the uninitialized part of it.
962 * Initialize the per-fork minima and maxima for a new
963 * inode here. xfs_iformat will do it for old inodes.
965 ip
->i_df
.if_ext_max
=
966 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
969 INIT_LIST_HEAD(&ip
->i_reclaim
);
972 * The inode format changed when we moved the link count and
973 * made it 32 bits long. If this is an old format inode,
974 * convert it in memory to look like a new one. If it gets
975 * flushed to disk we will convert back before flushing or
976 * logging it. We zero out the new projid field and the old link
977 * count field. We'll handle clearing the pad field (the remains
978 * of the old uuid field) when we actually convert the inode to
979 * the new format. We don't change the version number so that we
980 * can distinguish this from a real new format inode.
982 if (ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
) {
983 ip
->i_d
.di_nlink
= ip
->i_d
.di_onlink
;
984 ip
->i_d
.di_onlink
= 0;
985 ip
->i_d
.di_projid
= 0;
988 ip
->i_delayed_blks
= 0;
991 * Mark the buffer containing the inode as something to keep
992 * around for a while. This helps to keep recently accessed
993 * meta-data in-core longer.
995 XFS_BUF_SET_REF(bp
, XFS_INO_REF
);
998 * Use xfs_trans_brelse() to release the buffer containing the
999 * on-disk inode, because it was acquired with xfs_trans_read_buf()
1000 * in xfs_itobp() above. If tp is NULL, this is just a normal
1001 * brelse(). If we're within a transaction, then xfs_trans_brelse()
1002 * will only release the buffer if it is not dirty within the
1003 * transaction. It will be OK to release the buffer in this case,
1004 * because inodes on disk are never destroyed and we will be
1005 * locking the new in-core inode before putting it in the hash
1006 * table where other processes can find it. Thus we don't have
1007 * to worry about the inode being changed just because we released
1010 xfs_trans_brelse(tp
, bp
);
1016 * Read in extents from a btree-format inode.
1017 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1029 if (unlikely(XFS_IFORK_FORMAT(ip
, whichfork
) != XFS_DINODE_FMT_BTREE
)) {
1030 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW
,
1032 return XFS_ERROR(EFSCORRUPTED
);
1034 size
= XFS_IFORK_NEXTENTS(ip
, whichfork
) * (uint
)sizeof(xfs_bmbt_rec_t
);
1035 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
1037 * We know that the size is valid (it's checked in iformat_btree)
1039 ifp
->if_u1
.if_extents
= kmem_alloc(size
, KM_SLEEP
);
1040 ASSERT(ifp
->if_u1
.if_extents
!= NULL
);
1041 ifp
->if_lastex
= NULLEXTNUM
;
1042 ifp
->if_bytes
= ifp
->if_real_bytes
= (int)size
;
1043 ifp
->if_flags
|= XFS_IFEXTENTS
;
1044 error
= xfs_bmap_read_extents(tp
, ip
, whichfork
);
1046 kmem_free(ifp
->if_u1
.if_extents
, size
);
1047 ifp
->if_u1
.if_extents
= NULL
;
1048 ifp
->if_bytes
= ifp
->if_real_bytes
= 0;
1049 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
1052 xfs_validate_extents((xfs_bmbt_rec_t
*)ifp
->if_u1
.if_extents
,
1053 XFS_IFORK_NEXTENTS(ip
, whichfork
), 0, XFS_EXTFMT_INODE(ip
));
1058 * Allocate an inode on disk and return a copy of its in-core version.
1059 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1060 * appropriately within the inode. The uid and gid for the inode are
1061 * set according to the contents of the given cred structure.
1063 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1064 * has a free inode available, call xfs_iget()
1065 * to obtain the in-core version of the allocated inode. Finally,
1066 * fill in the inode and log its initial contents. In this case,
1067 * ialloc_context would be set to NULL and call_again set to false.
1069 * If xfs_dialloc() does not have an available inode,
1070 * it will replenish its supply by doing an allocation. Since we can
1071 * only do one allocation within a transaction without deadlocks, we
1072 * must commit the current transaction before returning the inode itself.
1073 * In this case, therefore, we will set call_again to true and return.
1074 * The caller should then commit the current transaction, start a new
1075 * transaction, and call xfs_ialloc() again to actually get the inode.
1077 * To ensure that some other process does not grab the inode that
1078 * was allocated during the first call to xfs_ialloc(), this routine
1079 * also returns the [locked] bp pointing to the head of the freelist
1080 * as ialloc_context. The caller should hold this buffer across
1081 * the commit and pass it back into this routine on the second call.
1093 xfs_buf_t
**ialloc_context
,
1094 boolean_t
*call_again
,
1104 * Call the space management code to pick
1105 * the on-disk inode to be allocated.
1107 error
= xfs_dialloc(tp
, pip
->i_ino
, mode
, okalloc
,
1108 ialloc_context
, call_again
, &ino
);
1112 if (*call_again
|| ino
== NULLFSINO
) {
1116 ASSERT(*ialloc_context
== NULL
);
1119 * Get the in-core inode with the lock held exclusively.
1120 * This is because we're setting fields here we need
1121 * to prevent others from looking at until we're done.
1123 error
= xfs_trans_iget(tp
->t_mountp
, tp
, ino
,
1124 IGET_CREATE
, XFS_ILOCK_EXCL
, &ip
);
1131 vp
->v_type
= IFTOVT(mode
);
1132 ip
->i_d
.di_mode
= (__uint16_t
)mode
;
1133 ip
->i_d
.di_onlink
= 0;
1134 ip
->i_d
.di_nlink
= nlink
;
1135 ASSERT(ip
->i_d
.di_nlink
== nlink
);
1136 ip
->i_d
.di_uid
= current_fsuid(cr
);
1137 ip
->i_d
.di_gid
= current_fsgid(cr
);
1138 ip
->i_d
.di_projid
= prid
;
1139 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
1142 * If the superblock version is up to where we support new format
1143 * inodes and this is currently an old format inode, then change
1144 * the inode version number now. This way we only do the conversion
1145 * here rather than here and in the flush/logging code.
1147 if (XFS_SB_VERSION_HASNLINK(&tp
->t_mountp
->m_sb
) &&
1148 ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
) {
1149 ip
->i_d
.di_version
= XFS_DINODE_VERSION_2
;
1151 * We've already zeroed the old link count, the projid field,
1152 * and the pad field.
1157 * Project ids won't be stored on disk if we are using a version 1 inode.
1159 if ( (prid
!= 0) && (ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
))
1160 xfs_bump_ino_vers2(tp
, ip
);
1162 if (XFS_INHERIT_GID(pip
, vp
->v_vfsp
)) {
1163 ip
->i_d
.di_gid
= pip
->i_d
.di_gid
;
1164 if ((pip
->i_d
.di_mode
& S_ISGID
) && (mode
& S_IFMT
) == S_IFDIR
) {
1165 ip
->i_d
.di_mode
|= S_ISGID
;
1170 * If the group ID of the new file does not match the effective group
1171 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1172 * (and only if the irix_sgid_inherit compatibility variable is set).
1174 if ((irix_sgid_inherit
) &&
1175 (ip
->i_d
.di_mode
& S_ISGID
) &&
1176 (!in_group_p((gid_t
)ip
->i_d
.di_gid
))) {
1177 ip
->i_d
.di_mode
&= ~S_ISGID
;
1180 ip
->i_d
.di_size
= 0;
1181 ip
->i_d
.di_nextents
= 0;
1182 ASSERT(ip
->i_d
.di_nblocks
== 0);
1183 xfs_ichgtime(ip
, XFS_ICHGTIME_CHG
|XFS_ICHGTIME_ACC
|XFS_ICHGTIME_MOD
);
1185 * di_gen will have been taken care of in xfs_iread.
1187 ip
->i_d
.di_extsize
= 0;
1188 ip
->i_d
.di_dmevmask
= 0;
1189 ip
->i_d
.di_dmstate
= 0;
1190 ip
->i_d
.di_flags
= 0;
1191 flags
= XFS_ILOG_CORE
;
1192 switch (mode
& S_IFMT
) {
1197 ip
->i_d
.di_format
= XFS_DINODE_FMT_DEV
;
1198 ip
->i_df
.if_u2
.if_rdev
= rdev
;
1199 ip
->i_df
.if_flags
= 0;
1200 flags
|= XFS_ILOG_DEV
;
1204 if (unlikely(pip
->i_d
.di_flags
& XFS_DIFLAG_ANY
)) {
1207 if ((mode
& S_IFMT
) == S_IFDIR
) {
1208 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1209 di_flags
|= XFS_DIFLAG_RTINHERIT
;
1211 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
) {
1212 di_flags
|= XFS_DIFLAG_REALTIME
;
1213 ip
->i_iocore
.io_flags
|= XFS_IOCORE_RT
;
1216 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOATIME
) &&
1217 xfs_inherit_noatime
)
1218 di_flags
|= XFS_DIFLAG_NOATIME
;
1219 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODUMP
) &&
1221 di_flags
|= XFS_DIFLAG_NODUMP
;
1222 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_SYNC
) &&
1224 di_flags
|= XFS_DIFLAG_SYNC
;
1225 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOSYMLINKS
) &&
1226 xfs_inherit_nosymlinks
)
1227 di_flags
|= XFS_DIFLAG_NOSYMLINKS
;
1228 if (pip
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
)
1229 di_flags
|= XFS_DIFLAG_PROJINHERIT
;
1230 ip
->i_d
.di_flags
|= di_flags
;
1234 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
1235 ip
->i_df
.if_flags
= XFS_IFEXTENTS
;
1236 ip
->i_df
.if_bytes
= ip
->i_df
.if_real_bytes
= 0;
1237 ip
->i_df
.if_u1
.if_extents
= NULL
;
1243 * Attribute fork settings for new inode.
1245 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
1246 ip
->i_d
.di_anextents
= 0;
1249 * Log the new values stuffed into the inode.
1251 xfs_trans_log_inode(tp
, ip
, flags
);
1253 /* now that we have a v_type we can set Linux inode ops (& unlock) */
1254 VFS_INIT_VNODE(XFS_MTOVFS(tp
->t_mountp
), vp
, XFS_ITOBHV(ip
), 1);
1261 * Check to make sure that there are no blocks allocated to the
1262 * file beyond the size of the file. We don't check this for
1263 * files with fixed size extents or real time extents, but we
1264 * at least do it for regular files.
1273 xfs_fileoff_t map_first
;
1275 xfs_bmbt_irec_t imaps
[2];
1277 if ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
)
1280 if ( ip
->i_d
.di_flags
& XFS_DIFLAG_REALTIME
)
1284 map_first
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)isize
);
1286 * The filesystem could be shutting down, so bmapi may return
1289 if (xfs_bmapi(NULL
, ip
, map_first
,
1291 (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
)) -
1293 XFS_BMAPI_ENTIRE
, NULL
, 0, imaps
, &nimaps
,
1296 ASSERT(nimaps
== 1);
1297 ASSERT(imaps
[0].br_startblock
== HOLESTARTBLOCK
);
1302 * Calculate the last possible buffered byte in a file. This must
1303 * include data that was buffered beyond the EOF by the write code.
1304 * This also needs to deal with overflowing the xfs_fsize_t type
1305 * which can happen for sizes near the limit.
1307 * We also need to take into account any blocks beyond the EOF. It
1308 * may be the case that they were buffered by a write which failed.
1309 * In that case the pages will still be in memory, but the inode size
1310 * will never have been updated.
1317 xfs_fsize_t last_byte
;
1318 xfs_fileoff_t last_block
;
1319 xfs_fileoff_t size_last_block
;
1322 ASSERT(ismrlocked(&(ip
->i_iolock
), MR_UPDATE
| MR_ACCESS
));
1326 * Only check for blocks beyond the EOF if the extents have
1327 * been read in. This eliminates the need for the inode lock,
1328 * and it also saves us from looking when it really isn't
1331 if (ip
->i_df
.if_flags
& XFS_IFEXTENTS
) {
1332 error
= xfs_bmap_last_offset(NULL
, ip
, &last_block
,
1340 size_last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)ip
->i_d
.di_size
);
1341 last_block
= XFS_FILEOFF_MAX(last_block
, size_last_block
);
1343 last_byte
= XFS_FSB_TO_B(mp
, last_block
);
1344 if (last_byte
< 0) {
1345 return XFS_MAXIOFFSET(mp
);
1347 last_byte
+= (1 << mp
->m_writeio_log
);
1348 if (last_byte
< 0) {
1349 return XFS_MAXIOFFSET(mp
);
1354 #if defined(XFS_RW_TRACE)
1360 xfs_fsize_t new_size
,
1361 xfs_off_t toss_start
,
1362 xfs_off_t toss_finish
)
1364 if (ip
->i_rwtrace
== NULL
) {
1368 ktrace_enter(ip
->i_rwtrace
,
1371 (void*)(unsigned long)((ip
->i_d
.di_size
>> 32) & 0xffffffff),
1372 (void*)(unsigned long)(ip
->i_d
.di_size
& 0xffffffff),
1373 (void*)((long)flag
),
1374 (void*)(unsigned long)((new_size
>> 32) & 0xffffffff),
1375 (void*)(unsigned long)(new_size
& 0xffffffff),
1376 (void*)(unsigned long)((toss_start
>> 32) & 0xffffffff),
1377 (void*)(unsigned long)(toss_start
& 0xffffffff),
1378 (void*)(unsigned long)((toss_finish
>> 32) & 0xffffffff),
1379 (void*)(unsigned long)(toss_finish
& 0xffffffff),
1380 (void*)(unsigned long)current_cpu(),
1387 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1391 * Start the truncation of the file to new_size. The new size
1392 * must be smaller than the current size. This routine will
1393 * clear the buffer and page caches of file data in the removed
1394 * range, and xfs_itruncate_finish() will remove the underlying
1397 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1398 * must NOT have the inode lock held at all. This is because we're
1399 * calling into the buffer/page cache code and we can't hold the
1400 * inode lock when we do so.
1402 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1403 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1404 * in the case that the caller is locking things out of order and
1405 * may not be able to call xfs_itruncate_finish() with the inode lock
1406 * held without dropping the I/O lock. If the caller must drop the
1407 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1408 * must be called again with all the same restrictions as the initial
1412 xfs_itruncate_start(
1415 xfs_fsize_t new_size
)
1417 xfs_fsize_t last_byte
;
1418 xfs_off_t toss_start
;
1422 ASSERT(ismrlocked(&ip
->i_iolock
, MR_UPDATE
) != 0);
1423 ASSERT((new_size
== 0) || (new_size
<= ip
->i_d
.di_size
));
1424 ASSERT((flags
== XFS_ITRUNC_DEFINITE
) ||
1425 (flags
== XFS_ITRUNC_MAYBE
));
1430 * Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers
1431 * overlapping the region being removed. We have to use
1432 * the less efficient VOP_FLUSHINVAL_PAGES() in the case that the
1433 * caller may not be able to finish the truncate without
1434 * dropping the inode's I/O lock. Make sure
1435 * to catch any pages brought in by buffers overlapping
1436 * the EOF by searching out beyond the isize by our
1437 * block size. We round new_size up to a block boundary
1438 * so that we don't toss things on the same block as
1439 * new_size but before it.
1441 * Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to
1442 * call remapf() over the same region if the file is mapped.
1443 * This frees up mapped file references to the pages in the
1444 * given range and for the VOP_FLUSHINVAL_PAGES() case it ensures
1445 * that we get the latest mapped changes flushed out.
1447 toss_start
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1448 toss_start
= XFS_FSB_TO_B(mp
, toss_start
);
1449 if (toss_start
< 0) {
1451 * The place to start tossing is beyond our maximum
1452 * file size, so there is no way that the data extended
1457 last_byte
= xfs_file_last_byte(ip
);
1458 xfs_itrunc_trace(XFS_ITRUNC_START
, ip
, flags
, new_size
, toss_start
,
1460 if (last_byte
> toss_start
) {
1461 if (flags
& XFS_ITRUNC_DEFINITE
) {
1462 VOP_TOSS_PAGES(vp
, toss_start
, -1, FI_REMAPF_LOCKED
);
1464 VOP_FLUSHINVAL_PAGES(vp
, toss_start
, -1, FI_REMAPF_LOCKED
);
1469 if (new_size
== 0) {
1470 ASSERT(VN_CACHED(vp
) == 0);
1476 * Shrink the file to the given new_size. The new
1477 * size must be smaller than the current size.
1478 * This will free up the underlying blocks
1479 * in the removed range after a call to xfs_itruncate_start()
1480 * or xfs_atruncate_start().
1482 * The transaction passed to this routine must have made
1483 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1484 * This routine may commit the given transaction and
1485 * start new ones, so make sure everything involved in
1486 * the transaction is tidy before calling here.
1487 * Some transaction will be returned to the caller to be
1488 * committed. The incoming transaction must already include
1489 * the inode, and both inode locks must be held exclusively.
1490 * The inode must also be "held" within the transaction. On
1491 * return the inode will be "held" within the returned transaction.
1492 * This routine does NOT require any disk space to be reserved
1493 * for it within the transaction.
1495 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1496 * and it indicates the fork which is to be truncated. For the
1497 * attribute fork we only support truncation to size 0.
1499 * We use the sync parameter to indicate whether or not the first
1500 * transaction we perform might have to be synchronous. For the attr fork,
1501 * it needs to be so if the unlink of the inode is not yet known to be
1502 * permanent in the log. This keeps us from freeing and reusing the
1503 * blocks of the attribute fork before the unlink of the inode becomes
1506 * For the data fork, we normally have to run synchronously if we're
1507 * being called out of the inactive path or we're being called
1508 * out of the create path where we're truncating an existing file.
1509 * Either way, the truncate needs to be sync so blocks don't reappear
1510 * in the file with altered data in case of a crash. wsync filesystems
1511 * can run the first case async because anything that shrinks the inode
1512 * has to run sync so by the time we're called here from inactive, the
1513 * inode size is permanently set to 0.
1515 * Calls from the truncate path always need to be sync unless we're
1516 * in a wsync filesystem and the file has already been unlinked.
1518 * The caller is responsible for correctly setting the sync parameter.
1519 * It gets too hard for us to guess here which path we're being called
1520 * out of just based on inode state.
1523 xfs_itruncate_finish(
1526 xfs_fsize_t new_size
,
1530 xfs_fsblock_t first_block
;
1531 xfs_fileoff_t first_unmap_block
;
1532 xfs_fileoff_t last_block
;
1533 xfs_filblks_t unmap_len
=0;
1538 xfs_bmap_free_t free_list
;
1541 ASSERT(ismrlocked(&ip
->i_iolock
, MR_UPDATE
) != 0);
1542 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
) != 0);
1543 ASSERT((new_size
== 0) || (new_size
<= ip
->i_d
.di_size
));
1544 ASSERT(*tp
!= NULL
);
1545 ASSERT((*tp
)->t_flags
& XFS_TRANS_PERM_LOG_RES
);
1546 ASSERT(ip
->i_transp
== *tp
);
1547 ASSERT(ip
->i_itemp
!= NULL
);
1548 ASSERT(ip
->i_itemp
->ili_flags
& XFS_ILI_HOLD
);
1552 mp
= (ntp
)->t_mountp
;
1553 ASSERT(! XFS_NOT_DQATTACHED(mp
, ip
));
1556 * We only support truncating the entire attribute fork.
1558 if (fork
== XFS_ATTR_FORK
) {
1561 first_unmap_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1562 xfs_itrunc_trace(XFS_ITRUNC_FINISH1
, ip
, 0, new_size
, 0, 0);
1564 * The first thing we do is set the size to new_size permanently
1565 * on disk. This way we don't have to worry about anyone ever
1566 * being able to look at the data being freed even in the face
1567 * of a crash. What we're getting around here is the case where
1568 * we free a block, it is allocated to another file, it is written
1569 * to, and then we crash. If the new data gets written to the
1570 * file but the log buffers containing the free and reallocation
1571 * don't, then we'd end up with garbage in the blocks being freed.
1572 * As long as we make the new_size permanent before actually
1573 * freeing any blocks it doesn't matter if they get writtten to.
1575 * The callers must signal into us whether or not the size
1576 * setting here must be synchronous. There are a few cases
1577 * where it doesn't have to be synchronous. Those cases
1578 * occur if the file is unlinked and we know the unlink is
1579 * permanent or if the blocks being truncated are guaranteed
1580 * to be beyond the inode eof (regardless of the link count)
1581 * and the eof value is permanent. Both of these cases occur
1582 * only on wsync-mounted filesystems. In those cases, we're
1583 * guaranteed that no user will ever see the data in the blocks
1584 * that are being truncated so the truncate can run async.
1585 * In the free beyond eof case, the file may wind up with
1586 * more blocks allocated to it than it needs if we crash
1587 * and that won't get fixed until the next time the file
1588 * is re-opened and closed but that's ok as that shouldn't
1589 * be too many blocks.
1591 * However, we can't just make all wsync xactions run async
1592 * because there's one call out of the create path that needs
1593 * to run sync where it's truncating an existing file to size
1594 * 0 whose size is > 0.
1596 * It's probably possible to come up with a test in this
1597 * routine that would correctly distinguish all the above
1598 * cases from the values of the function parameters and the
1599 * inode state but for sanity's sake, I've decided to let the
1600 * layers above just tell us. It's simpler to correctly figure
1601 * out in the layer above exactly under what conditions we
1602 * can run async and I think it's easier for others read and
1603 * follow the logic in case something has to be changed.
1604 * cscope is your friend -- rcc.
1606 * The attribute fork is much simpler.
1608 * For the attribute fork we allow the caller to tell us whether
1609 * the unlink of the inode that led to this call is yet permanent
1610 * in the on disk log. If it is not and we will be freeing extents
1611 * in this inode then we make the first transaction synchronous
1612 * to make sure that the unlink is permanent by the time we free
1615 if (fork
== XFS_DATA_FORK
) {
1616 if (ip
->i_d
.di_nextents
> 0) {
1617 ip
->i_d
.di_size
= new_size
;
1618 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1621 ASSERT(!(mp
->m_flags
& XFS_MOUNT_WSYNC
));
1622 if (ip
->i_d
.di_anextents
> 0)
1623 xfs_trans_set_sync(ntp
);
1625 ASSERT(fork
== XFS_DATA_FORK
||
1626 (fork
== XFS_ATTR_FORK
&&
1627 ((sync
&& !(mp
->m_flags
& XFS_MOUNT_WSYNC
)) ||
1628 (sync
== 0 && (mp
->m_flags
& XFS_MOUNT_WSYNC
)))));
1631 * Since it is possible for space to become allocated beyond
1632 * the end of the file (in a crash where the space is allocated
1633 * but the inode size is not yet updated), simply remove any
1634 * blocks which show up between the new EOF and the maximum
1635 * possible file size. If the first block to be removed is
1636 * beyond the maximum file size (ie it is the same as last_block),
1637 * then there is nothing to do.
1639 last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
));
1640 ASSERT(first_unmap_block
<= last_block
);
1642 if (last_block
== first_unmap_block
) {
1645 unmap_len
= last_block
- first_unmap_block
+ 1;
1649 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1650 * will tell us whether it freed the entire range or
1651 * not. If this is a synchronous mount (wsync),
1652 * then we can tell bunmapi to keep all the
1653 * transactions asynchronous since the unlink
1654 * transaction that made this inode inactive has
1655 * already hit the disk. There's no danger of
1656 * the freed blocks being reused, there being a
1657 * crash, and the reused blocks suddenly reappearing
1658 * in this file with garbage in them once recovery
1661 XFS_BMAP_INIT(&free_list
, &first_block
);
1662 error
= xfs_bunmapi(ntp
, ip
, first_unmap_block
,
1664 XFS_BMAPI_AFLAG(fork
) |
1665 (sync
? 0 : XFS_BMAPI_ASYNC
),
1666 XFS_ITRUNC_MAX_EXTENTS
,
1667 &first_block
, &free_list
, &done
);
1670 * If the bunmapi call encounters an error,
1671 * return to the caller where the transaction
1672 * can be properly aborted. We just need to
1673 * make sure we're not holding any resources
1674 * that we were not when we came in.
1676 xfs_bmap_cancel(&free_list
);
1681 * Duplicate the transaction that has the permanent
1682 * reservation and commit the old transaction.
1684 error
= xfs_bmap_finish(tp
, &free_list
, first_block
,
1689 * If the bmap finish call encounters an error,
1690 * return to the caller where the transaction
1691 * can be properly aborted. We just need to
1692 * make sure we're not holding any resources
1693 * that we were not when we came in.
1695 * Aborting from this point might lose some
1696 * blocks in the file system, but oh well.
1698 xfs_bmap_cancel(&free_list
);
1701 * If the passed in transaction committed
1702 * in xfs_bmap_finish(), then we want to
1703 * add the inode to this one before returning.
1704 * This keeps things simple for the higher
1705 * level code, because it always knows that
1706 * the inode is locked and held in the
1707 * transaction that returns to it whether
1708 * errors occur or not. We don't mark the
1709 * inode dirty so that this transaction can
1710 * be easily aborted if possible.
1712 xfs_trans_ijoin(ntp
, ip
,
1713 XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1714 xfs_trans_ihold(ntp
, ip
);
1721 * The first xact was committed,
1722 * so add the inode to the new one.
1723 * Mark it dirty so it will be logged
1724 * and moved forward in the log as
1725 * part of every commit.
1727 xfs_trans_ijoin(ntp
, ip
,
1728 XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1729 xfs_trans_ihold(ntp
, ip
);
1730 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1732 ntp
= xfs_trans_dup(ntp
);
1733 (void) xfs_trans_commit(*tp
, 0, NULL
);
1735 error
= xfs_trans_reserve(ntp
, 0, XFS_ITRUNCATE_LOG_RES(mp
), 0,
1736 XFS_TRANS_PERM_LOG_RES
,
1737 XFS_ITRUNCATE_LOG_COUNT
);
1739 * Add the inode being truncated to the next chained
1742 xfs_trans_ijoin(ntp
, ip
, XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1743 xfs_trans_ihold(ntp
, ip
);
1748 * Only update the size in the case of the data fork, but
1749 * always re-log the inode so that our permanent transaction
1750 * can keep on rolling it forward in the log.
1752 if (fork
== XFS_DATA_FORK
) {
1753 xfs_isize_check(mp
, ip
, new_size
);
1754 ip
->i_d
.di_size
= new_size
;
1756 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1757 ASSERT((new_size
!= 0) ||
1758 (fork
== XFS_ATTR_FORK
) ||
1759 (ip
->i_delayed_blks
== 0));
1760 ASSERT((new_size
!= 0) ||
1761 (fork
== XFS_ATTR_FORK
) ||
1762 (ip
->i_d
.di_nextents
== 0));
1763 xfs_itrunc_trace(XFS_ITRUNC_FINISH2
, ip
, 0, new_size
, 0, 0);
1771 * Do the first part of growing a file: zero any data in the last
1772 * block that is beyond the old EOF. We need to do this before
1773 * the inode is joined to the transaction to modify the i_size.
1774 * That way we can drop the inode lock and call into the buffer
1775 * cache to get the buffer mapping the EOF.
1780 xfs_fsize_t new_size
,
1786 ASSERT(ismrlocked(&(ip
->i_lock
), MR_UPDATE
) != 0);
1787 ASSERT(ismrlocked(&(ip
->i_iolock
), MR_UPDATE
) != 0);
1788 ASSERT(new_size
> ip
->i_d
.di_size
);
1791 isize
= ip
->i_d
.di_size
;
1793 * Zero any pages that may have been created by
1794 * xfs_write_file() beyond the end of the file
1795 * and any blocks between the old and new file sizes.
1797 error
= xfs_zero_eof(XFS_ITOV(ip
), &ip
->i_iocore
, new_size
, isize
,
1805 * This routine is called to extend the size of a file.
1806 * The inode must have both the iolock and the ilock locked
1807 * for update and it must be a part of the current transaction.
1808 * The xfs_igrow_start() function must have been called previously.
1809 * If the change_flag is not zero, the inode change timestamp will
1816 xfs_fsize_t new_size
,
1819 ASSERT(ismrlocked(&(ip
->i_lock
), MR_UPDATE
) != 0);
1820 ASSERT(ismrlocked(&(ip
->i_iolock
), MR_UPDATE
) != 0);
1821 ASSERT(ip
->i_transp
== tp
);
1822 ASSERT(new_size
> ip
->i_d
.di_size
);
1825 * Update the file size. Update the inode change timestamp
1826 * if change_flag set.
1828 ip
->i_d
.di_size
= new_size
;
1830 xfs_ichgtime(ip
, XFS_ICHGTIME_CHG
);
1831 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1837 * This is called when the inode's link count goes to 0.
1838 * We place the on-disk inode on a list in the AGI. It
1839 * will be pulled from this list when the inode is freed.
1851 xfs_agnumber_t agno
;
1852 xfs_daddr_t agdaddr
;
1859 ASSERT(ip
->i_d
.di_nlink
== 0);
1860 ASSERT(ip
->i_d
.di_mode
!= 0);
1861 ASSERT(ip
->i_transp
== tp
);
1865 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
1866 agdaddr
= XFS_AG_DADDR(mp
, agno
, XFS_AGI_DADDR(mp
));
1869 * Get the agi buffer first. It ensures lock ordering
1872 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, agdaddr
,
1873 XFS_FSS_TO_BB(mp
, 1), 0, &agibp
);
1878 * Validate the magic number of the agi block.
1880 agi
= XFS_BUF_TO_AGI(agibp
);
1882 INT_GET(agi
->agi_magicnum
, ARCH_CONVERT
) == XFS_AGI_MAGIC
&&
1883 XFS_AGI_GOOD_VERSION(INT_GET(agi
->agi_versionnum
, ARCH_CONVERT
));
1884 if (unlikely(XFS_TEST_ERROR(!agi_ok
, mp
, XFS_ERRTAG_IUNLINK
,
1885 XFS_RANDOM_IUNLINK
))) {
1886 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW
, mp
, agi
);
1887 xfs_trans_brelse(tp
, agibp
);
1888 return XFS_ERROR(EFSCORRUPTED
);
1891 * Get the index into the agi hash table for the
1892 * list this inode will go on.
1894 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1896 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1897 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1898 ASSERT(INT_GET(agi
->agi_unlinked
[bucket_index
], ARCH_CONVERT
) != agino
);
1900 if (INT_GET(agi
->agi_unlinked
[bucket_index
], ARCH_CONVERT
) != NULLAGINO
) {
1902 * There is already another inode in the bucket we need
1903 * to add ourselves to. Add us at the front of the list.
1904 * Here we put the head pointer into our next pointer,
1905 * and then we fall through to point the head at us.
1907 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, 0);
1911 ASSERT(INT_GET(dip
->di_next_unlinked
, ARCH_CONVERT
) == NULLAGINO
);
1912 ASSERT(dip
->di_next_unlinked
);
1913 /* both on-disk, don't endian flip twice */
1914 dip
->di_next_unlinked
= agi
->agi_unlinked
[bucket_index
];
1915 offset
= ip
->i_boffset
+
1916 offsetof(xfs_dinode_t
, di_next_unlinked
);
1917 xfs_trans_inode_buf(tp
, ibp
);
1918 xfs_trans_log_buf(tp
, ibp
, offset
,
1919 (offset
+ sizeof(xfs_agino_t
) - 1));
1920 xfs_inobp_check(mp
, ibp
);
1924 * Point the bucket head pointer at the inode being inserted.
1927 INT_SET(agi
->agi_unlinked
[bucket_index
], ARCH_CONVERT
, agino
);
1928 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1929 (sizeof(xfs_agino_t
) * bucket_index
);
1930 xfs_trans_log_buf(tp
, agibp
, offset
,
1931 (offset
+ sizeof(xfs_agino_t
) - 1));
1936 * Pull the on-disk inode from the AGI unlinked list.
1949 xfs_agnumber_t agno
;
1950 xfs_daddr_t agdaddr
;
1952 xfs_agino_t next_agino
;
1953 xfs_buf_t
*last_ibp
;
1954 xfs_dinode_t
*last_dip
;
1956 int offset
, last_offset
;
1961 * First pull the on-disk inode from the AGI unlinked list.
1965 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
1966 agdaddr
= XFS_AG_DADDR(mp
, agno
, XFS_AGI_DADDR(mp
));
1969 * Get the agi buffer first. It ensures lock ordering
1972 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, agdaddr
,
1973 XFS_FSS_TO_BB(mp
, 1), 0, &agibp
);
1976 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
1977 error
, mp
->m_fsname
);
1981 * Validate the magic number of the agi block.
1983 agi
= XFS_BUF_TO_AGI(agibp
);
1985 INT_GET(agi
->agi_magicnum
, ARCH_CONVERT
) == XFS_AGI_MAGIC
&&
1986 XFS_AGI_GOOD_VERSION(INT_GET(agi
->agi_versionnum
, ARCH_CONVERT
));
1987 if (unlikely(XFS_TEST_ERROR(!agi_ok
, mp
, XFS_ERRTAG_IUNLINK_REMOVE
,
1988 XFS_RANDOM_IUNLINK_REMOVE
))) {
1989 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW
,
1991 xfs_trans_brelse(tp
, agibp
);
1993 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
1995 return XFS_ERROR(EFSCORRUPTED
);
1998 * Get the index into the agi hash table for the
1999 * list this inode will go on.
2001 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
2003 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
2004 ASSERT(INT_GET(agi
->agi_unlinked
[bucket_index
], ARCH_CONVERT
) != NULLAGINO
);
2005 ASSERT(agi
->agi_unlinked
[bucket_index
]);
2007 if (INT_GET(agi
->agi_unlinked
[bucket_index
], ARCH_CONVERT
) == agino
) {
2009 * We're at the head of the list. Get the inode's
2010 * on-disk buffer to see if there is anyone after us
2011 * on the list. Only modify our next pointer if it
2012 * is not already NULLAGINO. This saves us the overhead
2013 * of dealing with the buffer when there is no need to
2016 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, 0);
2019 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2020 error
, mp
->m_fsname
);
2023 next_agino
= INT_GET(dip
->di_next_unlinked
, ARCH_CONVERT
);
2024 ASSERT(next_agino
!= 0);
2025 if (next_agino
!= NULLAGINO
) {
2026 INT_SET(dip
->di_next_unlinked
, ARCH_CONVERT
, NULLAGINO
);
2027 offset
= ip
->i_boffset
+
2028 offsetof(xfs_dinode_t
, di_next_unlinked
);
2029 xfs_trans_inode_buf(tp
, ibp
);
2030 xfs_trans_log_buf(tp
, ibp
, offset
,
2031 (offset
+ sizeof(xfs_agino_t
) - 1));
2032 xfs_inobp_check(mp
, ibp
);
2034 xfs_trans_brelse(tp
, ibp
);
2037 * Point the bucket head pointer at the next inode.
2039 ASSERT(next_agino
!= 0);
2040 ASSERT(next_agino
!= agino
);
2041 INT_SET(agi
->agi_unlinked
[bucket_index
], ARCH_CONVERT
, next_agino
);
2042 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
2043 (sizeof(xfs_agino_t
) * bucket_index
);
2044 xfs_trans_log_buf(tp
, agibp
, offset
,
2045 (offset
+ sizeof(xfs_agino_t
) - 1));
2048 * We need to search the list for the inode being freed.
2050 next_agino
= INT_GET(agi
->agi_unlinked
[bucket_index
], ARCH_CONVERT
);
2052 while (next_agino
!= agino
) {
2054 * If the last inode wasn't the one pointing to
2055 * us, then release its buffer since we're not
2056 * going to do anything with it.
2058 if (last_ibp
!= NULL
) {
2059 xfs_trans_brelse(tp
, last_ibp
);
2061 next_ino
= XFS_AGINO_TO_INO(mp
, agno
, next_agino
);
2062 error
= xfs_inotobp(mp
, tp
, next_ino
, &last_dip
,
2063 &last_ibp
, &last_offset
);
2066 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2067 error
, mp
->m_fsname
);
2070 next_agino
= INT_GET(last_dip
->di_next_unlinked
, ARCH_CONVERT
);
2071 ASSERT(next_agino
!= NULLAGINO
);
2072 ASSERT(next_agino
!= 0);
2075 * Now last_ibp points to the buffer previous to us on
2076 * the unlinked list. Pull us from the list.
2078 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, 0);
2081 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2082 error
, mp
->m_fsname
);
2085 next_agino
= INT_GET(dip
->di_next_unlinked
, ARCH_CONVERT
);
2086 ASSERT(next_agino
!= 0);
2087 ASSERT(next_agino
!= agino
);
2088 if (next_agino
!= NULLAGINO
) {
2089 INT_SET(dip
->di_next_unlinked
, ARCH_CONVERT
, NULLAGINO
);
2090 offset
= ip
->i_boffset
+
2091 offsetof(xfs_dinode_t
, di_next_unlinked
);
2092 xfs_trans_inode_buf(tp
, ibp
);
2093 xfs_trans_log_buf(tp
, ibp
, offset
,
2094 (offset
+ sizeof(xfs_agino_t
) - 1));
2095 xfs_inobp_check(mp
, ibp
);
2097 xfs_trans_brelse(tp
, ibp
);
2100 * Point the previous inode on the list to the next inode.
2102 INT_SET(last_dip
->di_next_unlinked
, ARCH_CONVERT
, next_agino
);
2103 ASSERT(next_agino
!= 0);
2104 offset
= last_offset
+ offsetof(xfs_dinode_t
, di_next_unlinked
);
2105 xfs_trans_inode_buf(tp
, last_ibp
);
2106 xfs_trans_log_buf(tp
, last_ibp
, offset
,
2107 (offset
+ sizeof(xfs_agino_t
) - 1));
2108 xfs_inobp_check(mp
, last_ibp
);
2113 static __inline__
int xfs_inode_clean(xfs_inode_t
*ip
)
2115 return (((ip
->i_itemp
== NULL
) ||
2116 !(ip
->i_itemp
->ili_format
.ilf_fields
& XFS_ILOG_ALL
)) &&
2117 (ip
->i_update_core
== 0));
2122 xfs_inode_t
*free_ip
,
2126 xfs_mount_t
*mp
= free_ip
->i_mount
;
2127 int blks_per_cluster
;
2130 int i
, j
, found
, pre_flushed
;
2134 xfs_inode_t
*ip
, **ip_found
;
2135 xfs_inode_log_item_t
*iip
;
2136 xfs_log_item_t
*lip
;
2139 if (mp
->m_sb
.sb_blocksize
>= XFS_INODE_CLUSTER_SIZE(mp
)) {
2140 blks_per_cluster
= 1;
2141 ninodes
= mp
->m_sb
.sb_inopblock
;
2142 nbufs
= XFS_IALLOC_BLOCKS(mp
);
2144 blks_per_cluster
= XFS_INODE_CLUSTER_SIZE(mp
) /
2145 mp
->m_sb
.sb_blocksize
;
2146 ninodes
= blks_per_cluster
* mp
->m_sb
.sb_inopblock
;
2147 nbufs
= XFS_IALLOC_BLOCKS(mp
) / blks_per_cluster
;
2150 ip_found
= kmem_alloc(ninodes
* sizeof(xfs_inode_t
*), KM_NOFS
);
2152 for (j
= 0; j
< nbufs
; j
++, inum
+= ninodes
) {
2153 blkno
= XFS_AGB_TO_DADDR(mp
, XFS_INO_TO_AGNO(mp
, inum
),
2154 XFS_INO_TO_AGBNO(mp
, inum
));
2158 * Look for each inode in memory and attempt to lock it,
2159 * we can be racing with flush and tail pushing here.
2160 * any inode we get the locks on, add to an array of
2161 * inode items to process later.
2163 * The get the buffer lock, we could beat a flush
2164 * or tail pushing thread to the lock here, in which
2165 * case they will go looking for the inode buffer
2166 * and fail, we need some other form of interlock
2170 for (i
= 0; i
< ninodes
; i
++) {
2171 ih
= XFS_IHASH(mp
, inum
+ i
);
2172 read_lock(&ih
->ih_lock
);
2173 for (ip
= ih
->ih_next
; ip
!= NULL
; ip
= ip
->i_next
) {
2174 if (ip
->i_ino
== inum
+ i
)
2178 /* Inode not in memory or we found it already,
2181 if (!ip
|| (ip
->i_flags
& XFS_ISTALE
)) {
2182 read_unlock(&ih
->ih_lock
);
2186 if (xfs_inode_clean(ip
)) {
2187 read_unlock(&ih
->ih_lock
);
2191 /* If we can get the locks then add it to the
2192 * list, otherwise by the time we get the bp lock
2193 * below it will already be attached to the
2197 /* This inode will already be locked - by us, lets
2201 if (ip
== free_ip
) {
2202 if (xfs_iflock_nowait(ip
)) {
2203 ip
->i_flags
|= XFS_ISTALE
;
2205 if (xfs_inode_clean(ip
)) {
2208 ip_found
[found
++] = ip
;
2211 read_unlock(&ih
->ih_lock
);
2215 if (xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
)) {
2216 if (xfs_iflock_nowait(ip
)) {
2217 ip
->i_flags
|= XFS_ISTALE
;
2219 if (xfs_inode_clean(ip
)) {
2221 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2223 ip_found
[found
++] = ip
;
2226 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2230 read_unlock(&ih
->ih_lock
);
2233 bp
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, blkno
,
2234 mp
->m_bsize
* blks_per_cluster
,
2238 lip
= XFS_BUF_FSPRIVATE(bp
, xfs_log_item_t
*);
2240 if (lip
->li_type
== XFS_LI_INODE
) {
2241 iip
= (xfs_inode_log_item_t
*)lip
;
2242 ASSERT(iip
->ili_logged
== 1);
2243 lip
->li_cb
= (void(*)(xfs_buf_t
*,xfs_log_item_t
*)) xfs_istale_done
;
2245 iip
->ili_flush_lsn
= iip
->ili_item
.li_lsn
;
2247 iip
->ili_inode
->i_flags
|= XFS_ISTALE
;
2250 lip
= lip
->li_bio_list
;
2253 for (i
= 0; i
< found
; i
++) {
2258 ip
->i_update_core
= 0;
2260 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2264 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
2265 iip
->ili_format
.ilf_fields
= 0;
2266 iip
->ili_logged
= 1;
2268 iip
->ili_flush_lsn
= iip
->ili_item
.li_lsn
;
2271 xfs_buf_attach_iodone(bp
,
2272 (void(*)(xfs_buf_t
*,xfs_log_item_t
*))
2273 xfs_istale_done
, (xfs_log_item_t
*)iip
);
2274 if (ip
!= free_ip
) {
2275 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2279 if (found
|| pre_flushed
)
2280 xfs_trans_stale_inode_buf(tp
, bp
);
2281 xfs_trans_binval(tp
, bp
);
2284 kmem_free(ip_found
, ninodes
* sizeof(xfs_inode_t
*));
2288 * This is called to return an inode to the inode free list.
2289 * The inode should already be truncated to 0 length and have
2290 * no pages associated with it. This routine also assumes that
2291 * the inode is already a part of the transaction.
2293 * The on-disk copy of the inode will have been added to the list
2294 * of unlinked inodes in the AGI. We need to remove the inode from
2295 * that list atomically with respect to freeing it here.
2301 xfs_bmap_free_t
*flist
)
2305 xfs_ino_t first_ino
;
2307 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
));
2308 ASSERT(ip
->i_transp
== tp
);
2309 ASSERT(ip
->i_d
.di_nlink
== 0);
2310 ASSERT(ip
->i_d
.di_nextents
== 0);
2311 ASSERT(ip
->i_d
.di_anextents
== 0);
2312 ASSERT((ip
->i_d
.di_size
== 0) ||
2313 ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
));
2314 ASSERT(ip
->i_d
.di_nblocks
== 0);
2317 * Pull the on-disk inode from the AGI unlinked list.
2319 error
= xfs_iunlink_remove(tp
, ip
);
2324 error
= xfs_difree(tp
, ip
->i_ino
, flist
, &delete, &first_ino
);
2328 ip
->i_d
.di_mode
= 0; /* mark incore inode as free */
2329 ip
->i_d
.di_flags
= 0;
2330 ip
->i_d
.di_dmevmask
= 0;
2331 ip
->i_d
.di_forkoff
= 0; /* mark the attr fork not in use */
2332 ip
->i_df
.if_ext_max
=
2333 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
2334 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
2335 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
2337 * Bump the generation count so no one will be confused
2338 * by reincarnations of this inode.
2341 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
2344 xfs_ifree_cluster(ip
, tp
, first_ino
);
2351 * Reallocate the space for if_broot based on the number of records
2352 * being added or deleted as indicated in rec_diff. Move the records
2353 * and pointers in if_broot to fit the new size. When shrinking this
2354 * will eliminate holes between the records and pointers created by
2355 * the caller. When growing this will create holes to be filled in
2358 * The caller must not request to add more records than would fit in
2359 * the on-disk inode root. If the if_broot is currently NULL, then
2360 * if we adding records one will be allocated. The caller must also
2361 * not request that the number of records go below zero, although
2362 * it can go to zero.
2364 * ip -- the inode whose if_broot area is changing
2365 * ext_diff -- the change in the number of records, positive or negative,
2366 * requested for the if_broot array.
2376 xfs_bmbt_block_t
*new_broot
;
2383 * Handle the degenerate case quietly.
2385 if (rec_diff
== 0) {
2389 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2392 * If there wasn't any memory allocated before, just
2393 * allocate it now and get out.
2395 if (ifp
->if_broot_bytes
== 0) {
2396 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff
);
2397 ifp
->if_broot
= (xfs_bmbt_block_t
*)kmem_alloc(new_size
,
2399 ifp
->if_broot_bytes
= (int)new_size
;
2404 * If there is already an existing if_broot, then we need
2405 * to realloc() it and shift the pointers to their new
2406 * location. The records don't change location because
2407 * they are kept butted up against the btree block header.
2409 cur_max
= XFS_BMAP_BROOT_MAXRECS(ifp
->if_broot_bytes
);
2410 new_max
= cur_max
+ rec_diff
;
2411 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2412 ifp
->if_broot
= (xfs_bmbt_block_t
*)
2413 kmem_realloc(ifp
->if_broot
,
2415 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max
), /* old size */
2417 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp
->if_broot
, 1,
2418 ifp
->if_broot_bytes
);
2419 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp
->if_broot
, 1,
2421 ifp
->if_broot_bytes
= (int)new_size
;
2422 ASSERT(ifp
->if_broot_bytes
<=
2423 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2424 memmove(np
, op
, cur_max
* (uint
)sizeof(xfs_dfsbno_t
));
2429 * rec_diff is less than 0. In this case, we are shrinking the
2430 * if_broot buffer. It must already exist. If we go to zero
2431 * records, just get rid of the root and clear the status bit.
2433 ASSERT((ifp
->if_broot
!= NULL
) && (ifp
->if_broot_bytes
> 0));
2434 cur_max
= XFS_BMAP_BROOT_MAXRECS(ifp
->if_broot_bytes
);
2435 new_max
= cur_max
+ rec_diff
;
2436 ASSERT(new_max
>= 0);
2438 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2442 new_broot
= (xfs_bmbt_block_t
*)kmem_alloc(new_size
, KM_SLEEP
);
2444 * First copy over the btree block header.
2446 memcpy(new_broot
, ifp
->if_broot
, sizeof(xfs_bmbt_block_t
));
2449 ifp
->if_flags
&= ~XFS_IFBROOT
;
2453 * Only copy the records and pointers if there are any.
2457 * First copy the records.
2459 op
= (char *)XFS_BMAP_BROOT_REC_ADDR(ifp
->if_broot
, 1,
2460 ifp
->if_broot_bytes
);
2461 np
= (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot
, 1,
2463 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_bmbt_rec_t
));
2466 * Then copy the pointers.
2468 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp
->if_broot
, 1,
2469 ifp
->if_broot_bytes
);
2470 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot
, 1,
2472 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_dfsbno_t
));
2474 kmem_free(ifp
->if_broot
, ifp
->if_broot_bytes
);
2475 ifp
->if_broot
= new_broot
;
2476 ifp
->if_broot_bytes
= (int)new_size
;
2477 ASSERT(ifp
->if_broot_bytes
<=
2478 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2484 * This is called when the amount of space needed for if_extents
2485 * is increased or decreased. The change in size is indicated by
2486 * the number of extents that need to be added or deleted in the
2487 * ext_diff parameter.
2489 * If the amount of space needed has decreased below the size of the
2490 * inline buffer, then switch to using the inline buffer. Otherwise,
2491 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2492 * to what is needed.
2494 * ip -- the inode whose if_extents area is changing
2495 * ext_diff -- the change in the number of extents, positive or negative,
2496 * requested for the if_extents array.
2509 if (ext_diff
== 0) {
2513 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2514 byte_diff
= ext_diff
* (uint
)sizeof(xfs_bmbt_rec_t
);
2515 new_size
= (int)ifp
->if_bytes
+ byte_diff
;
2516 ASSERT(new_size
>= 0);
2518 if (new_size
== 0) {
2519 if (ifp
->if_u1
.if_extents
!= ifp
->if_u2
.if_inline_ext
) {
2520 ASSERT(ifp
->if_real_bytes
!= 0);
2521 kmem_free(ifp
->if_u1
.if_extents
, ifp
->if_real_bytes
);
2523 ifp
->if_u1
.if_extents
= NULL
;
2525 } else if (new_size
<= sizeof(ifp
->if_u2
.if_inline_ext
)) {
2527 * If the valid extents can fit in if_inline_ext,
2528 * copy them from the malloc'd vector and free it.
2530 if (ifp
->if_u1
.if_extents
!= ifp
->if_u2
.if_inline_ext
) {
2532 * For now, empty files are format EXTENTS,
2533 * so the if_extents pointer is null.
2535 if (ifp
->if_u1
.if_extents
) {
2536 memcpy(ifp
->if_u2
.if_inline_ext
,
2537 ifp
->if_u1
.if_extents
, new_size
);
2538 kmem_free(ifp
->if_u1
.if_extents
,
2539 ifp
->if_real_bytes
);
2541 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
2545 rnew_size
= new_size
;
2546 if ((rnew_size
& (rnew_size
- 1)) != 0)
2547 rnew_size
= xfs_iroundup(rnew_size
);
2549 * Stuck with malloc/realloc.
2551 if (ifp
->if_u1
.if_extents
== ifp
->if_u2
.if_inline_ext
) {
2552 ifp
->if_u1
.if_extents
= (xfs_bmbt_rec_t
*)
2553 kmem_alloc(rnew_size
, KM_SLEEP
);
2554 memcpy(ifp
->if_u1
.if_extents
, ifp
->if_u2
.if_inline_ext
,
2555 sizeof(ifp
->if_u2
.if_inline_ext
));
2556 } else if (rnew_size
!= ifp
->if_real_bytes
) {
2557 ifp
->if_u1
.if_extents
= (xfs_bmbt_rec_t
*)
2558 kmem_realloc(ifp
->if_u1
.if_extents
,
2564 ifp
->if_real_bytes
= rnew_size
;
2565 ifp
->if_bytes
= new_size
;
2570 * This is called when the amount of space needed for if_data
2571 * is increased or decreased. The change in size is indicated by
2572 * the number of bytes that need to be added or deleted in the
2573 * byte_diff parameter.
2575 * If the amount of space needed has decreased below the size of the
2576 * inline buffer, then switch to using the inline buffer. Otherwise,
2577 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2578 * to what is needed.
2580 * ip -- the inode whose if_data area is changing
2581 * byte_diff -- the change in the number of bytes, positive or negative,
2582 * requested for the if_data array.
2594 if (byte_diff
== 0) {
2598 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2599 new_size
= (int)ifp
->if_bytes
+ byte_diff
;
2600 ASSERT(new_size
>= 0);
2602 if (new_size
== 0) {
2603 if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2604 kmem_free(ifp
->if_u1
.if_data
, ifp
->if_real_bytes
);
2606 ifp
->if_u1
.if_data
= NULL
;
2608 } else if (new_size
<= sizeof(ifp
->if_u2
.if_inline_data
)) {
2610 * If the valid extents/data can fit in if_inline_ext/data,
2611 * copy them from the malloc'd vector and free it.
2613 if (ifp
->if_u1
.if_data
== NULL
) {
2614 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2615 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2616 ASSERT(ifp
->if_real_bytes
!= 0);
2617 memcpy(ifp
->if_u2
.if_inline_data
, ifp
->if_u1
.if_data
,
2619 kmem_free(ifp
->if_u1
.if_data
, ifp
->if_real_bytes
);
2620 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2625 * Stuck with malloc/realloc.
2626 * For inline data, the underlying buffer must be
2627 * a multiple of 4 bytes in size so that it can be
2628 * logged and stay on word boundaries. We enforce
2631 real_size
= roundup(new_size
, 4);
2632 if (ifp
->if_u1
.if_data
== NULL
) {
2633 ASSERT(ifp
->if_real_bytes
== 0);
2634 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
2635 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2637 * Only do the realloc if the underlying size
2638 * is really changing.
2640 if (ifp
->if_real_bytes
!= real_size
) {
2641 ifp
->if_u1
.if_data
=
2642 kmem_realloc(ifp
->if_u1
.if_data
,
2648 ASSERT(ifp
->if_real_bytes
== 0);
2649 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
2650 memcpy(ifp
->if_u1
.if_data
, ifp
->if_u2
.if_inline_data
,
2654 ifp
->if_real_bytes
= real_size
;
2655 ifp
->if_bytes
= new_size
;
2656 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2663 * Map inode to disk block and offset.
2665 * mp -- the mount point structure for the current file system
2666 * tp -- the current transaction
2667 * ino -- the inode number of the inode to be located
2668 * imap -- this structure is filled in with the information necessary
2669 * to retrieve the given inode from disk
2670 * flags -- flags to pass to xfs_dilocate indicating whether or not
2671 * lookups in the inode btree were OK or not
2681 xfs_fsblock_t fsbno
;
2686 fsbno
= imap
->im_blkno
?
2687 XFS_DADDR_TO_FSB(mp
, imap
->im_blkno
) : NULLFSBLOCK
;
2688 error
= xfs_dilocate(mp
, tp
, ino
, &fsbno
, &len
, &off
, flags
);
2692 imap
->im_blkno
= XFS_FSB_TO_DADDR(mp
, fsbno
);
2693 imap
->im_len
= XFS_FSB_TO_BB(mp
, len
);
2694 imap
->im_agblkno
= XFS_FSB_TO_AGBNO(mp
, fsbno
);
2695 imap
->im_ioffset
= (ushort
)off
;
2696 imap
->im_boffset
= (ushort
)(off
<< mp
->m_sb
.sb_inodelog
);
2707 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2708 if (ifp
->if_broot
!= NULL
) {
2709 kmem_free(ifp
->if_broot
, ifp
->if_broot_bytes
);
2710 ifp
->if_broot
= NULL
;
2714 * If the format is local, then we can't have an extents
2715 * array so just look for an inline data array. If we're
2716 * not local then we may or may not have an extents list,
2717 * so check and free it up if we do.
2719 if (XFS_IFORK_FORMAT(ip
, whichfork
) == XFS_DINODE_FMT_LOCAL
) {
2720 if ((ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) &&
2721 (ifp
->if_u1
.if_data
!= NULL
)) {
2722 ASSERT(ifp
->if_real_bytes
!= 0);
2723 kmem_free(ifp
->if_u1
.if_data
, ifp
->if_real_bytes
);
2724 ifp
->if_u1
.if_data
= NULL
;
2725 ifp
->if_real_bytes
= 0;
2727 } else if ((ifp
->if_flags
& XFS_IFEXTENTS
) &&
2728 (ifp
->if_u1
.if_extents
!= NULL
) &&
2729 (ifp
->if_u1
.if_extents
!= ifp
->if_u2
.if_inline_ext
)) {
2730 ASSERT(ifp
->if_real_bytes
!= 0);
2731 kmem_free(ifp
->if_u1
.if_extents
, ifp
->if_real_bytes
);
2732 ifp
->if_u1
.if_extents
= NULL
;
2733 ifp
->if_real_bytes
= 0;
2735 ASSERT(ifp
->if_u1
.if_extents
== NULL
||
2736 ifp
->if_u1
.if_extents
== ifp
->if_u2
.if_inline_ext
);
2737 ASSERT(ifp
->if_real_bytes
== 0);
2738 if (whichfork
== XFS_ATTR_FORK
) {
2739 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
2745 * This is called free all the memory associated with an inode.
2746 * It must free the inode itself and any buffers allocated for
2747 * if_extents/if_data and if_broot. It must also free the lock
2748 * associated with the inode.
2755 switch (ip
->i_d
.di_mode
& S_IFMT
) {
2759 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
2763 xfs_idestroy_fork(ip
, XFS_ATTR_FORK
);
2764 mrfree(&ip
->i_lock
);
2765 mrfree(&ip
->i_iolock
);
2766 freesema(&ip
->i_flock
);
2767 #ifdef XFS_BMAP_TRACE
2768 ktrace_free(ip
->i_xtrace
);
2770 #ifdef XFS_BMBT_TRACE
2771 ktrace_free(ip
->i_btrace
);
2774 ktrace_free(ip
->i_rwtrace
);
2776 #ifdef XFS_ILOCK_TRACE
2777 ktrace_free(ip
->i_lock_trace
);
2779 #ifdef XFS_DIR2_TRACE
2780 ktrace_free(ip
->i_dir_trace
);
2783 /* XXXdpd should be able to assert this but shutdown
2784 * is leaving the AIL behind. */
2785 ASSERT(((ip
->i_itemp
->ili_item
.li_flags
& XFS_LI_IN_AIL
) == 0) ||
2786 XFS_FORCED_SHUTDOWN(ip
->i_mount
));
2787 xfs_inode_item_destroy(ip
);
2789 kmem_zone_free(xfs_inode_zone
, ip
);
2794 * Increment the pin count of the given buffer.
2795 * This value is protected by ipinlock spinlock in the mount structure.
2801 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
));
2803 atomic_inc(&ip
->i_pincount
);
2807 * Decrement the pin count of the given inode, and wake up
2808 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2809 * inode must have been previoulsy pinned with a call to xfs_ipin().
2815 ASSERT(atomic_read(&ip
->i_pincount
) > 0);
2817 if (atomic_dec_and_test(&ip
->i_pincount
)) {
2818 vnode_t
*vp
= XFS_ITOV_NULL(ip
);
2820 /* make sync come back and flush this inode */
2822 struct inode
*inode
= LINVFS_GET_IP(vp
);
2824 if (!(inode
->i_state
& I_NEW
))
2825 mark_inode_dirty_sync(inode
);
2828 wake_up(&ip
->i_ipin_wait
);
2833 * This is called to wait for the given inode to be unpinned.
2834 * It will sleep until this happens. The caller must have the
2835 * inode locked in at least shared mode so that the buffer cannot
2836 * be subsequently pinned once someone is waiting for it to be
2843 xfs_inode_log_item_t
*iip
;
2846 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
| MR_ACCESS
));
2848 if (atomic_read(&ip
->i_pincount
) == 0) {
2853 if (iip
&& iip
->ili_last_lsn
) {
2854 lsn
= iip
->ili_last_lsn
;
2860 * Give the log a push so we don't wait here too long.
2862 xfs_log_force(ip
->i_mount
, lsn
, XFS_LOG_FORCE
);
2864 wait_event(ip
->i_ipin_wait
, (atomic_read(&ip
->i_pincount
) == 0));
2869 * xfs_iextents_copy()
2871 * This is called to copy the REAL extents (as opposed to the delayed
2872 * allocation extents) from the inode into the given buffer. It
2873 * returns the number of bytes copied into the buffer.
2875 * If there are no delayed allocation extents, then we can just
2876 * memcpy() the extents into the buffer. Otherwise, we need to
2877 * examine each extent in turn and skip those which are delayed.
2882 xfs_bmbt_rec_t
*buffer
,
2886 xfs_bmbt_rec_t
*dest_ep
;
2888 #ifdef XFS_BMAP_TRACE
2889 static char fname
[] = "xfs_iextents_copy";
2894 xfs_fsblock_t start_block
;
2896 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2897 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
|MR_ACCESS
));
2898 ASSERT(ifp
->if_bytes
> 0);
2900 nrecs
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
2901 xfs_bmap_trace_exlist(fname
, ip
, nrecs
, whichfork
);
2905 * There are some delayed allocation extents in the
2906 * inode, so copy the extents one at a time and skip
2907 * the delayed ones. There must be at least one
2908 * non-delayed extent.
2910 ep
= ifp
->if_u1
.if_extents
;
2913 for (i
= 0; i
< nrecs
; i
++) {
2914 start_block
= xfs_bmbt_get_startblock(ep
);
2915 if (ISNULLSTARTBLOCK(start_block
)) {
2917 * It's a delayed allocation extent, so skip it.
2923 /* Translate to on disk format */
2924 put_unaligned(INT_GET(ep
->l0
, ARCH_CONVERT
),
2925 (__uint64_t
*)&dest_ep
->l0
);
2926 put_unaligned(INT_GET(ep
->l1
, ARCH_CONVERT
),
2927 (__uint64_t
*)&dest_ep
->l1
);
2932 ASSERT(copied
!= 0);
2933 xfs_validate_extents(buffer
, copied
, 1, XFS_EXTFMT_INODE(ip
));
2935 return (copied
* (uint
)sizeof(xfs_bmbt_rec_t
));
2939 * Each of the following cases stores data into the same region
2940 * of the on-disk inode, so only one of them can be valid at
2941 * any given time. While it is possible to have conflicting formats
2942 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2943 * in EXTENTS format, this can only happen when the fork has
2944 * changed formats after being modified but before being flushed.
2945 * In these cases, the format always takes precedence, because the
2946 * format indicates the current state of the fork.
2953 xfs_inode_log_item_t
*iip
,
2960 #ifdef XFS_TRANS_DEBUG
2963 static const short brootflag
[2] =
2964 { XFS_ILOG_DBROOT
, XFS_ILOG_ABROOT
};
2965 static const short dataflag
[2] =
2966 { XFS_ILOG_DDATA
, XFS_ILOG_ADATA
};
2967 static const short extflag
[2] =
2968 { XFS_ILOG_DEXT
, XFS_ILOG_AEXT
};
2972 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2974 * This can happen if we gave up in iformat in an error path,
2975 * for the attribute fork.
2978 ASSERT(whichfork
== XFS_ATTR_FORK
);
2981 cp
= XFS_DFORK_PTR(dip
, whichfork
);
2983 switch (XFS_IFORK_FORMAT(ip
, whichfork
)) {
2984 case XFS_DINODE_FMT_LOCAL
:
2985 if ((iip
->ili_format
.ilf_fields
& dataflag
[whichfork
]) &&
2986 (ifp
->if_bytes
> 0)) {
2987 ASSERT(ifp
->if_u1
.if_data
!= NULL
);
2988 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2989 memcpy(cp
, ifp
->if_u1
.if_data
, ifp
->if_bytes
);
2991 if (whichfork
== XFS_DATA_FORK
) {
2992 if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp
, dip
))) {
2993 XFS_ERROR_REPORT("xfs_iflush_fork",
2994 XFS_ERRLEVEL_LOW
, mp
);
2995 return XFS_ERROR(EFSCORRUPTED
);
3000 case XFS_DINODE_FMT_EXTENTS
:
3001 ASSERT((ifp
->if_flags
& XFS_IFEXTENTS
) ||
3002 !(iip
->ili_format
.ilf_fields
& extflag
[whichfork
]));
3003 ASSERT((ifp
->if_u1
.if_extents
!= NULL
) || (ifp
->if_bytes
== 0));
3004 ASSERT((ifp
->if_u1
.if_extents
== NULL
) || (ifp
->if_bytes
> 0));
3005 if ((iip
->ili_format
.ilf_fields
& extflag
[whichfork
]) &&
3006 (ifp
->if_bytes
> 0)) {
3007 ASSERT(XFS_IFORK_NEXTENTS(ip
, whichfork
) > 0);
3008 (void)xfs_iextents_copy(ip
, (xfs_bmbt_rec_t
*)cp
,
3013 case XFS_DINODE_FMT_BTREE
:
3014 if ((iip
->ili_format
.ilf_fields
& brootflag
[whichfork
]) &&
3015 (ifp
->if_broot_bytes
> 0)) {
3016 ASSERT(ifp
->if_broot
!= NULL
);
3017 ASSERT(ifp
->if_broot_bytes
<=
3018 (XFS_IFORK_SIZE(ip
, whichfork
) +
3019 XFS_BROOT_SIZE_ADJ
));
3020 xfs_bmbt_to_bmdr(ifp
->if_broot
, ifp
->if_broot_bytes
,
3021 (xfs_bmdr_block_t
*)cp
,
3022 XFS_DFORK_SIZE(dip
, mp
, whichfork
));
3026 case XFS_DINODE_FMT_DEV
:
3027 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DEV
) {
3028 ASSERT(whichfork
== XFS_DATA_FORK
);
3029 INT_SET(dip
->di_u
.di_dev
, ARCH_CONVERT
, ip
->i_df
.if_u2
.if_rdev
);
3033 case XFS_DINODE_FMT_UUID
:
3034 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_UUID
) {
3035 ASSERT(whichfork
== XFS_DATA_FORK
);
3036 memcpy(&dip
->di_u
.di_muuid
, &ip
->i_df
.if_u2
.if_uuid
,
3050 * xfs_iflush() will write a modified inode's changes out to the
3051 * inode's on disk home. The caller must have the inode lock held
3052 * in at least shared mode and the inode flush semaphore must be
3053 * held as well. The inode lock will still be held upon return from
3054 * the call and the caller is free to unlock it.
3055 * The inode flush lock will be unlocked when the inode reaches the disk.
3056 * The flags indicate how the inode's buffer should be written out.
3063 xfs_inode_log_item_t
*iip
;
3071 int clcount
; /* count of inodes clustered */
3073 enum { INT_DELWRI
= (1 << 0), INT_ASYNC
= (1 << 1) };
3076 XFS_STATS_INC(xs_iflush_count
);
3078 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
|MR_ACCESS
));
3079 ASSERT(valusema(&ip
->i_flock
) <= 0);
3080 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3081 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
3087 * If the inode isn't dirty, then just release the inode
3088 * flush lock and do nothing.
3090 if ((ip
->i_update_core
== 0) &&
3091 ((iip
== NULL
) || !(iip
->ili_format
.ilf_fields
& XFS_ILOG_ALL
))) {
3092 ASSERT((iip
!= NULL
) ?
3093 !(iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) : 1);
3099 * We can't flush the inode until it is unpinned, so
3100 * wait for it. We know noone new can pin it, because
3101 * we are holding the inode lock shared and you need
3102 * to hold it exclusively to pin the inode.
3104 xfs_iunpin_wait(ip
);
3107 * This may have been unpinned because the filesystem is shutting
3108 * down forcibly. If that's the case we must not write this inode
3109 * to disk, because the log record didn't make it to disk!
3111 if (XFS_FORCED_SHUTDOWN(mp
)) {
3112 ip
->i_update_core
= 0;
3114 iip
->ili_format
.ilf_fields
= 0;
3116 return XFS_ERROR(EIO
);
3120 * Get the buffer containing the on-disk inode.
3122 error
= xfs_itobp(mp
, NULL
, ip
, &dip
, &bp
, 0);
3129 * Decide how buffer will be flushed out. This is done before
3130 * the call to xfs_iflush_int because this field is zeroed by it.
3132 if (iip
!= NULL
&& iip
->ili_format
.ilf_fields
!= 0) {
3134 * Flush out the inode buffer according to the directions
3135 * of the caller. In the cases where the caller has given
3136 * us a choice choose the non-delwri case. This is because
3137 * the inode is in the AIL and we need to get it out soon.
3140 case XFS_IFLUSH_SYNC
:
3141 case XFS_IFLUSH_DELWRI_ELSE_SYNC
:
3144 case XFS_IFLUSH_ASYNC
:
3145 case XFS_IFLUSH_DELWRI_ELSE_ASYNC
:
3148 case XFS_IFLUSH_DELWRI
:
3158 case XFS_IFLUSH_DELWRI_ELSE_SYNC
:
3159 case XFS_IFLUSH_DELWRI_ELSE_ASYNC
:
3160 case XFS_IFLUSH_DELWRI
:
3163 case XFS_IFLUSH_ASYNC
:
3166 case XFS_IFLUSH_SYNC
:
3177 * First flush out the inode that xfs_iflush was called with.
3179 error
= xfs_iflush_int(ip
, bp
);
3186 * see if other inodes can be gathered into this write
3189 ip
->i_chash
->chl_buf
= bp
;
3191 ch
= XFS_CHASH(mp
, ip
->i_blkno
);
3192 s
= mutex_spinlock(&ch
->ch_lock
);
3195 for (iq
= ip
->i_cnext
; iq
!= ip
; iq
= iq
->i_cnext
) {
3197 * Do an un-protected check to see if the inode is dirty and
3198 * is a candidate for flushing. These checks will be repeated
3199 * later after the appropriate locks are acquired.
3202 if ((iq
->i_update_core
== 0) &&
3204 !(iip
->ili_format
.ilf_fields
& XFS_ILOG_ALL
)) &&
3205 xfs_ipincount(iq
) == 0) {
3210 * Try to get locks. If any are unavailable,
3211 * then this inode cannot be flushed and is skipped.
3214 /* get inode locks (just i_lock) */
3215 if (xfs_ilock_nowait(iq
, XFS_ILOCK_SHARED
)) {
3216 /* get inode flush lock */
3217 if (xfs_iflock_nowait(iq
)) {
3218 /* check if pinned */
3219 if (xfs_ipincount(iq
) == 0) {
3220 /* arriving here means that
3221 * this inode can be flushed.
3222 * first re-check that it's
3226 if ((iq
->i_update_core
!= 0)||
3228 (iip
->ili_format
.ilf_fields
& XFS_ILOG_ALL
))) {
3230 error
= xfs_iflush_int(iq
, bp
);
3234 goto cluster_corrupt_out
;
3243 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
3246 mutex_spinunlock(&ch
->ch_lock
, s
);
3249 XFS_STATS_INC(xs_icluster_flushcnt
);
3250 XFS_STATS_ADD(xs_icluster_flushinode
, clcount
);
3254 * If the buffer is pinned then push on the log so we won't
3255 * get stuck waiting in the write for too long.
3257 if (XFS_BUF_ISPINNED(bp
)){
3258 xfs_log_force(mp
, (xfs_lsn_t
)0, XFS_LOG_FORCE
);
3261 if (flags
& INT_DELWRI
) {
3262 xfs_bdwrite(mp
, bp
);
3263 } else if (flags
& INT_ASYNC
) {
3264 xfs_bawrite(mp
, bp
);
3266 error
= xfs_bwrite(mp
, bp
);
3272 xfs_force_shutdown(mp
, XFS_CORRUPT_INCORE
);
3273 xfs_iflush_abort(ip
);
3275 * Unlocks the flush lock
3277 return XFS_ERROR(EFSCORRUPTED
);
3279 cluster_corrupt_out
:
3280 /* Corruption detected in the clustering loop. Invalidate the
3281 * inode buffer and shut down the filesystem.
3283 mutex_spinunlock(&ch
->ch_lock
, s
);
3286 * Clean up the buffer. If it was B_DELWRI, just release it --
3287 * brelse can handle it with no problems. If not, shut down the
3288 * filesystem before releasing the buffer.
3290 if ((bufwasdelwri
= XFS_BUF_ISDELAYWRITE(bp
))) {
3294 xfs_force_shutdown(mp
, XFS_CORRUPT_INCORE
);
3298 * Just like incore_relse: if we have b_iodone functions,
3299 * mark the buffer as an error and call them. Otherwise
3300 * mark it as stale and brelse.
3302 if (XFS_BUF_IODONE_FUNC(bp
)) {
3303 XFS_BUF_CLR_BDSTRAT_FUNC(bp
);
3307 XFS_BUF_ERROR(bp
,EIO
);
3315 xfs_iflush_abort(iq
);
3317 * Unlocks the flush lock
3319 return XFS_ERROR(EFSCORRUPTED
);
3328 xfs_inode_log_item_t
*iip
;
3331 #ifdef XFS_TRANS_DEBUG
3336 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
|MR_ACCESS
));
3337 ASSERT(valusema(&ip
->i_flock
) <= 0);
3338 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3339 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
3346 * If the inode isn't dirty, then just release the inode
3347 * flush lock and do nothing.
3349 if ((ip
->i_update_core
== 0) &&
3350 ((iip
== NULL
) || !(iip
->ili_format
.ilf_fields
& XFS_ILOG_ALL
))) {
3355 /* set *dip = inode's place in the buffer */
3356 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_boffset
);
3359 * Clear i_update_core before copying out the data.
3360 * This is for coordination with our timestamp updates
3361 * that don't hold the inode lock. They will always
3362 * update the timestamps BEFORE setting i_update_core,
3363 * so if we clear i_update_core after they set it we
3364 * are guaranteed to see their updates to the timestamps.
3365 * I believe that this depends on strongly ordered memory
3366 * semantics, but we have that. We use the SYNCHRONIZE
3367 * macro to make sure that the compiler does not reorder
3368 * the i_update_core access below the data copy below.
3370 ip
->i_update_core
= 0;
3373 if (XFS_TEST_ERROR(INT_GET(dip
->di_core
.di_magic
,ARCH_CONVERT
) != XFS_DINODE_MAGIC
,
3374 mp
, XFS_ERRTAG_IFLUSH_1
, XFS_RANDOM_IFLUSH_1
)) {
3375 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3376 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3377 ip
->i_ino
, (int) INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
), dip
);
3380 if (XFS_TEST_ERROR(ip
->i_d
.di_magic
!= XFS_DINODE_MAGIC
,
3381 mp
, XFS_ERRTAG_IFLUSH_2
, XFS_RANDOM_IFLUSH_2
)) {
3382 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3383 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3384 ip
->i_ino
, ip
, ip
->i_d
.di_magic
);
3387 if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFREG
) {
3389 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3390 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
),
3391 mp
, XFS_ERRTAG_IFLUSH_3
, XFS_RANDOM_IFLUSH_3
)) {
3392 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3393 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3397 } else if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFDIR
) {
3399 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3400 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
) &&
3401 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_LOCAL
),
3402 mp
, XFS_ERRTAG_IFLUSH_4
, XFS_RANDOM_IFLUSH_4
)) {
3403 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3404 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3409 if (XFS_TEST_ERROR(ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
>
3410 ip
->i_d
.di_nblocks
, mp
, XFS_ERRTAG_IFLUSH_5
,
3411 XFS_RANDOM_IFLUSH_5
)) {
3412 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3413 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3415 ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
,
3420 if (XFS_TEST_ERROR(ip
->i_d
.di_forkoff
> mp
->m_sb
.sb_inodesize
,
3421 mp
, XFS_ERRTAG_IFLUSH_6
, XFS_RANDOM_IFLUSH_6
)) {
3422 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3423 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3424 ip
->i_ino
, ip
->i_d
.di_forkoff
, ip
);
3428 * bump the flush iteration count, used to detect flushes which
3429 * postdate a log record during recovery.
3432 ip
->i_d
.di_flushiter
++;
3435 * Copy the dirty parts of the inode into the on-disk
3436 * inode. We always copy out the core of the inode,
3437 * because if the inode is dirty at all the core must
3440 xfs_xlate_dinode_core((xfs_caddr_t
)&(dip
->di_core
), &(ip
->i_d
), -1);
3442 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3443 if (ip
->i_d
.di_flushiter
== DI_MAX_FLUSH
)
3444 ip
->i_d
.di_flushiter
= 0;
3447 * If this is really an old format inode and the superblock version
3448 * has not been updated to support only new format inodes, then
3449 * convert back to the old inode format. If the superblock version
3450 * has been updated, then make the conversion permanent.
3452 ASSERT(ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
||
3453 XFS_SB_VERSION_HASNLINK(&mp
->m_sb
));
3454 if (ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
) {
3455 if (!XFS_SB_VERSION_HASNLINK(&mp
->m_sb
)) {
3459 ASSERT(ip
->i_d
.di_nlink
<= XFS_MAXLINK_1
);
3460 INT_SET(dip
->di_core
.di_onlink
, ARCH_CONVERT
, ip
->i_d
.di_nlink
);
3463 * The superblock version has already been bumped,
3464 * so just make the conversion to the new inode
3467 ip
->i_d
.di_version
= XFS_DINODE_VERSION_2
;
3468 INT_SET(dip
->di_core
.di_version
, ARCH_CONVERT
, XFS_DINODE_VERSION_2
);
3469 ip
->i_d
.di_onlink
= 0;
3470 dip
->di_core
.di_onlink
= 0;
3471 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
3472 memset(&(dip
->di_core
.di_pad
[0]), 0,
3473 sizeof(dip
->di_core
.di_pad
));
3474 ASSERT(ip
->i_d
.di_projid
== 0);
3478 if (xfs_iflush_fork(ip
, dip
, iip
, XFS_DATA_FORK
, bp
) == EFSCORRUPTED
) {
3482 if (XFS_IFORK_Q(ip
)) {
3484 * The only error from xfs_iflush_fork is on the data fork.
3486 (void) xfs_iflush_fork(ip
, dip
, iip
, XFS_ATTR_FORK
, bp
);
3488 xfs_inobp_check(mp
, bp
);
3491 * We've recorded everything logged in the inode, so we'd
3492 * like to clear the ilf_fields bits so we don't log and
3493 * flush things unnecessarily. However, we can't stop
3494 * logging all this information until the data we've copied
3495 * into the disk buffer is written to disk. If we did we might
3496 * overwrite the copy of the inode in the log with all the
3497 * data after re-logging only part of it, and in the face of
3498 * a crash we wouldn't have all the data we need to recover.
3500 * What we do is move the bits to the ili_last_fields field.
3501 * When logging the inode, these bits are moved back to the
3502 * ilf_fields field. In the xfs_iflush_done() routine we
3503 * clear ili_last_fields, since we know that the information
3504 * those bits represent is permanently on disk. As long as
3505 * the flush completes before the inode is logged again, then
3506 * both ilf_fields and ili_last_fields will be cleared.
3508 * We can play with the ilf_fields bits here, because the inode
3509 * lock must be held exclusively in order to set bits there
3510 * and the flush lock protects the ili_last_fields bits.
3511 * Set ili_logged so the flush done
3512 * routine can tell whether or not to look in the AIL.
3513 * Also, store the current LSN of the inode so that we can tell
3514 * whether the item has moved in the AIL from xfs_iflush_done().
3515 * In order to read the lsn we need the AIL lock, because
3516 * it is a 64 bit value that cannot be read atomically.
3518 if (iip
!= NULL
&& iip
->ili_format
.ilf_fields
!= 0) {
3519 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
3520 iip
->ili_format
.ilf_fields
= 0;
3521 iip
->ili_logged
= 1;
3523 ASSERT(sizeof(xfs_lsn_t
) == 8); /* don't lock if it shrinks */
3525 iip
->ili_flush_lsn
= iip
->ili_item
.li_lsn
;
3529 * Attach the function xfs_iflush_done to the inode's
3530 * buffer. This will remove the inode from the AIL
3531 * and unlock the inode's flush lock when the inode is
3532 * completely written to disk.
3534 xfs_buf_attach_iodone(bp
, (void(*)(xfs_buf_t
*,xfs_log_item_t
*))
3535 xfs_iflush_done
, (xfs_log_item_t
*)iip
);
3537 ASSERT(XFS_BUF_FSPRIVATE(bp
, void *) != NULL
);
3538 ASSERT(XFS_BUF_IODONE_FUNC(bp
) != NULL
);
3541 * We're flushing an inode which is not in the AIL and has
3542 * not been logged but has i_update_core set. For this
3543 * case we can use a B_DELWRI flush and immediately drop
3544 * the inode flush lock because we can avoid the whole
3545 * AIL state thing. It's OK to drop the flush lock now,
3546 * because we've already locked the buffer and to do anything
3547 * you really need both.
3550 ASSERT(iip
->ili_logged
== 0);
3551 ASSERT(iip
->ili_last_fields
== 0);
3552 ASSERT((iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) == 0);
3560 return XFS_ERROR(EFSCORRUPTED
);
3565 * Flush all inactive inodes in mp.
3575 XFS_MOUNT_ILOCK(mp
);
3581 /* Make sure we skip markers inserted by sync */
3582 if (ip
->i_mount
== NULL
) {
3587 vp
= XFS_ITOV_NULL(ip
);
3589 XFS_MOUNT_IUNLOCK(mp
);
3590 xfs_finish_reclaim(ip
, 0, XFS_IFLUSH_ASYNC
);
3594 ASSERT(vn_count(vp
) == 0);
3597 } while (ip
!= mp
->m_inodes
);
3599 XFS_MOUNT_IUNLOCK(mp
);
3603 * xfs_iaccess: check accessibility of inode for mode.
3612 mode_t orgmode
= mode
;
3613 struct inode
*inode
= LINVFS_GET_IP(XFS_ITOV(ip
));
3615 if (mode
& S_IWUSR
) {
3616 umode_t imode
= inode
->i_mode
;
3618 if (IS_RDONLY(inode
) &&
3619 (S_ISREG(imode
) || S_ISDIR(imode
) || S_ISLNK(imode
)))
3620 return XFS_ERROR(EROFS
);
3622 if (IS_IMMUTABLE(inode
))
3623 return XFS_ERROR(EACCES
);
3627 * If there's an Access Control List it's used instead of
3630 if ((error
= _ACL_XFS_IACCESS(ip
, mode
, cr
)) != -1)
3631 return error
? XFS_ERROR(error
) : 0;
3633 if (current_fsuid(cr
) != ip
->i_d
.di_uid
) {
3635 if (!in_group_p((gid_t
)ip
->i_d
.di_gid
))
3640 * If the DACs are ok we don't need any capability check.
3642 if ((ip
->i_d
.di_mode
& mode
) == mode
)
3645 * Read/write DACs are always overridable.
3646 * Executable DACs are overridable if at least one exec bit is set.
3648 if (!(orgmode
& S_IXUSR
) ||
3649 (inode
->i_mode
& S_IXUGO
) || S_ISDIR(inode
->i_mode
))
3650 if (capable_cred(cr
, CAP_DAC_OVERRIDE
))
3653 if ((orgmode
== S_IRUSR
) ||
3654 (S_ISDIR(inode
->i_mode
) && (!(orgmode
& S_IWUSR
)))) {
3655 if (capable_cred(cr
, CAP_DAC_READ_SEARCH
))
3658 cmn_err(CE_NOTE
, "Ick: mode=%o, orgmode=%o", mode
, orgmode
);
3660 return XFS_ERROR(EACCES
);
3662 return XFS_ERROR(EACCES
);
3666 * xfs_iroundup: round up argument to next power of two
3675 if ((v
& (v
- 1)) == 0)
3677 ASSERT((v
& 0x80000000) == 0);
3678 if ((v
& (v
+ 1)) == 0)
3680 for (i
= 0, m
= 1; i
< 31; i
++, m
<<= 1) {
3684 if ((v
& (v
+ 1)) == 0)
3692 * Change the requested timestamp in the given inode.
3693 * We don't lock across timestamp updates, and we don't log them but
3694 * we do record the fact that there is dirty information in core.
3696 * NOTE -- callers MUST combine XFS_ICHGTIME_MOD or XFS_ICHGTIME_CHG
3697 * with XFS_ICHGTIME_ACC to be sure that access time
3698 * update will take. Calling first with XFS_ICHGTIME_ACC
3699 * and then XFS_ICHGTIME_MOD may fail to modify the access
3700 * timestamp if the filesystem is mounted noacctm.
3703 xfs_ichgtime(xfs_inode_t
*ip
,
3707 vnode_t
*vp
= XFS_ITOV(ip
);
3708 struct inode
*inode
= LINVFS_GET_IP(vp
);
3711 * We're not supposed to change timestamps in readonly-mounted
3712 * filesystems. Throw it away if anyone asks us.
3714 if (unlikely(vp
->v_vfsp
->vfs_flag
& VFS_RDONLY
))
3718 * Don't update access timestamps on reads if mounted "noatime"
3719 * Throw it away if anyone asks us.
3721 if ((ip
->i_mount
->m_flags
& XFS_MOUNT_NOATIME
|| IS_NOATIME(inode
)) &&
3722 ((flags
& (XFS_ICHGTIME_ACC
|XFS_ICHGTIME_MOD
|XFS_ICHGTIME_CHG
))
3723 == XFS_ICHGTIME_ACC
))
3727 if (flags
& XFS_ICHGTIME_MOD
) {
3728 VN_MTIMESET(vp
, &tv
);
3729 ip
->i_d
.di_mtime
.t_sec
= (__int32_t
)tv
.tv_sec
;
3730 ip
->i_d
.di_mtime
.t_nsec
= (__int32_t
)tv
.tv_nsec
;
3732 if (flags
& XFS_ICHGTIME_ACC
) {
3733 VN_ATIMESET(vp
, &tv
);
3734 ip
->i_d
.di_atime
.t_sec
= (__int32_t
)tv
.tv_sec
;
3735 ip
->i_d
.di_atime
.t_nsec
= (__int32_t
)tv
.tv_nsec
;
3737 if (flags
& XFS_ICHGTIME_CHG
) {
3738 VN_CTIMESET(vp
, &tv
);
3739 ip
->i_d
.di_ctime
.t_sec
= (__int32_t
)tv
.tv_sec
;
3740 ip
->i_d
.di_ctime
.t_nsec
= (__int32_t
)tv
.tv_nsec
;
3744 * We update the i_update_core field _after_ changing
3745 * the timestamps in order to coordinate properly with
3746 * xfs_iflush() so that we don't lose timestamp updates.
3747 * This keeps us from having to hold the inode lock
3748 * while doing this. We use the SYNCHRONIZE macro to
3749 * ensure that the compiler does not reorder the update
3750 * of i_update_core above the timestamp updates above.
3753 ip
->i_update_core
= 1;
3754 if (!(inode
->i_state
& I_LOCK
))
3755 mark_inode_dirty_sync(inode
);
3758 #ifdef XFS_ILOCK_TRACE
3759 ktrace_t
*xfs_ilock_trace_buf
;
3762 xfs_ilock_trace(xfs_inode_t
*ip
, int lock
, unsigned int lockflags
, inst_t
*ra
)
3764 ktrace_enter(ip
->i_lock_trace
,
3766 (void *)(unsigned long)lock
, /* 1 = LOCK, 3=UNLOCK, etc */
3767 (void *)(unsigned long)lockflags
, /* XFS_ILOCK_EXCL etc */
3768 (void *)ra
, /* caller of ilock */
3769 (void *)(unsigned long)current_cpu(),
3770 (void *)(unsigned long)current_pid(),
3771 NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
);