hugetlb: new sysfs interface
[linux-2.6/mini2440.git] / mm / hugetlb.c
blobbb49ce5d0067fba7d820bee3ecbc7c8ecafb2f52
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
17 #include <linux/sysfs.h>
19 #include <asm/page.h>
20 #include <asm/pgtable.h>
22 #include <linux/hugetlb.h>
23 #include "internal.h"
25 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
26 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
27 unsigned long hugepages_treat_as_movable;
29 static int max_hstate;
30 unsigned int default_hstate_idx;
31 struct hstate hstates[HUGE_MAX_HSTATE];
33 /* for command line parsing */
34 static struct hstate * __initdata parsed_hstate;
35 static unsigned long __initdata default_hstate_max_huge_pages;
37 #define for_each_hstate(h) \
38 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
41 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
43 static DEFINE_SPINLOCK(hugetlb_lock);
46 * Region tracking -- allows tracking of reservations and instantiated pages
47 * across the pages in a mapping.
49 * The region data structures are protected by a combination of the mmap_sem
50 * and the hugetlb_instantion_mutex. To access or modify a region the caller
51 * must either hold the mmap_sem for write, or the mmap_sem for read and
52 * the hugetlb_instantiation mutex:
54 * down_write(&mm->mmap_sem);
55 * or
56 * down_read(&mm->mmap_sem);
57 * mutex_lock(&hugetlb_instantiation_mutex);
59 struct file_region {
60 struct list_head link;
61 long from;
62 long to;
65 static long region_add(struct list_head *head, long f, long t)
67 struct file_region *rg, *nrg, *trg;
69 /* Locate the region we are either in or before. */
70 list_for_each_entry(rg, head, link)
71 if (f <= rg->to)
72 break;
74 /* Round our left edge to the current segment if it encloses us. */
75 if (f > rg->from)
76 f = rg->from;
78 /* Check for and consume any regions we now overlap with. */
79 nrg = rg;
80 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
81 if (&rg->link == head)
82 break;
83 if (rg->from > t)
84 break;
86 /* If this area reaches higher then extend our area to
87 * include it completely. If this is not the first area
88 * which we intend to reuse, free it. */
89 if (rg->to > t)
90 t = rg->to;
91 if (rg != nrg) {
92 list_del(&rg->link);
93 kfree(rg);
96 nrg->from = f;
97 nrg->to = t;
98 return 0;
101 static long region_chg(struct list_head *head, long f, long t)
103 struct file_region *rg, *nrg;
104 long chg = 0;
106 /* Locate the region we are before or in. */
107 list_for_each_entry(rg, head, link)
108 if (f <= rg->to)
109 break;
111 /* If we are below the current region then a new region is required.
112 * Subtle, allocate a new region at the position but make it zero
113 * size such that we can guarantee to record the reservation. */
114 if (&rg->link == head || t < rg->from) {
115 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
116 if (!nrg)
117 return -ENOMEM;
118 nrg->from = f;
119 nrg->to = f;
120 INIT_LIST_HEAD(&nrg->link);
121 list_add(&nrg->link, rg->link.prev);
123 return t - f;
126 /* Round our left edge to the current segment if it encloses us. */
127 if (f > rg->from)
128 f = rg->from;
129 chg = t - f;
131 /* Check for and consume any regions we now overlap with. */
132 list_for_each_entry(rg, rg->link.prev, link) {
133 if (&rg->link == head)
134 break;
135 if (rg->from > t)
136 return chg;
138 /* We overlap with this area, if it extends futher than
139 * us then we must extend ourselves. Account for its
140 * existing reservation. */
141 if (rg->to > t) {
142 chg += rg->to - t;
143 t = rg->to;
145 chg -= rg->to - rg->from;
147 return chg;
150 static long region_truncate(struct list_head *head, long end)
152 struct file_region *rg, *trg;
153 long chg = 0;
155 /* Locate the region we are either in or before. */
156 list_for_each_entry(rg, head, link)
157 if (end <= rg->to)
158 break;
159 if (&rg->link == head)
160 return 0;
162 /* If we are in the middle of a region then adjust it. */
163 if (end > rg->from) {
164 chg = rg->to - end;
165 rg->to = end;
166 rg = list_entry(rg->link.next, typeof(*rg), link);
169 /* Drop any remaining regions. */
170 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
171 if (&rg->link == head)
172 break;
173 chg += rg->to - rg->from;
174 list_del(&rg->link);
175 kfree(rg);
177 return chg;
180 static long region_count(struct list_head *head, long f, long t)
182 struct file_region *rg;
183 long chg = 0;
185 /* Locate each segment we overlap with, and count that overlap. */
186 list_for_each_entry(rg, head, link) {
187 int seg_from;
188 int seg_to;
190 if (rg->to <= f)
191 continue;
192 if (rg->from >= t)
193 break;
195 seg_from = max(rg->from, f);
196 seg_to = min(rg->to, t);
198 chg += seg_to - seg_from;
201 return chg;
205 * Convert the address within this vma to the page offset within
206 * the mapping, in pagecache page units; huge pages here.
208 static pgoff_t vma_hugecache_offset(struct hstate *h,
209 struct vm_area_struct *vma, unsigned long address)
211 return ((address - vma->vm_start) >> huge_page_shift(h)) +
212 (vma->vm_pgoff >> huge_page_order(h));
216 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
217 * bits of the reservation map pointer, which are always clear due to
218 * alignment.
220 #define HPAGE_RESV_OWNER (1UL << 0)
221 #define HPAGE_RESV_UNMAPPED (1UL << 1)
222 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
225 * These helpers are used to track how many pages are reserved for
226 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
227 * is guaranteed to have their future faults succeed.
229 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
230 * the reserve counters are updated with the hugetlb_lock held. It is safe
231 * to reset the VMA at fork() time as it is not in use yet and there is no
232 * chance of the global counters getting corrupted as a result of the values.
234 * The private mapping reservation is represented in a subtly different
235 * manner to a shared mapping. A shared mapping has a region map associated
236 * with the underlying file, this region map represents the backing file
237 * pages which have ever had a reservation assigned which this persists even
238 * after the page is instantiated. A private mapping has a region map
239 * associated with the original mmap which is attached to all VMAs which
240 * reference it, this region map represents those offsets which have consumed
241 * reservation ie. where pages have been instantiated.
243 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
245 return (unsigned long)vma->vm_private_data;
248 static void set_vma_private_data(struct vm_area_struct *vma,
249 unsigned long value)
251 vma->vm_private_data = (void *)value;
254 struct resv_map {
255 struct kref refs;
256 struct list_head regions;
259 struct resv_map *resv_map_alloc(void)
261 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
262 if (!resv_map)
263 return NULL;
265 kref_init(&resv_map->refs);
266 INIT_LIST_HEAD(&resv_map->regions);
268 return resv_map;
271 void resv_map_release(struct kref *ref)
273 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
275 /* Clear out any active regions before we release the map. */
276 region_truncate(&resv_map->regions, 0);
277 kfree(resv_map);
280 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
282 VM_BUG_ON(!is_vm_hugetlb_page(vma));
283 if (!(vma->vm_flags & VM_SHARED))
284 return (struct resv_map *)(get_vma_private_data(vma) &
285 ~HPAGE_RESV_MASK);
286 return 0;
289 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
291 VM_BUG_ON(!is_vm_hugetlb_page(vma));
292 VM_BUG_ON(vma->vm_flags & VM_SHARED);
294 set_vma_private_data(vma, (get_vma_private_data(vma) &
295 HPAGE_RESV_MASK) | (unsigned long)map);
298 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
300 VM_BUG_ON(!is_vm_hugetlb_page(vma));
301 VM_BUG_ON(vma->vm_flags & VM_SHARED);
303 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
306 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
308 VM_BUG_ON(!is_vm_hugetlb_page(vma));
310 return (get_vma_private_data(vma) & flag) != 0;
313 /* Decrement the reserved pages in the hugepage pool by one */
314 static void decrement_hugepage_resv_vma(struct hstate *h,
315 struct vm_area_struct *vma)
317 if (vma->vm_flags & VM_NORESERVE)
318 return;
320 if (vma->vm_flags & VM_SHARED) {
321 /* Shared mappings always use reserves */
322 h->resv_huge_pages--;
323 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
325 * Only the process that called mmap() has reserves for
326 * private mappings.
328 h->resv_huge_pages--;
332 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
333 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
335 VM_BUG_ON(!is_vm_hugetlb_page(vma));
336 if (!(vma->vm_flags & VM_SHARED))
337 vma->vm_private_data = (void *)0;
340 /* Returns true if the VMA has associated reserve pages */
341 static int vma_has_private_reserves(struct vm_area_struct *vma)
343 if (vma->vm_flags & VM_SHARED)
344 return 0;
345 if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER))
346 return 0;
347 return 1;
350 static void clear_huge_page(struct page *page,
351 unsigned long addr, unsigned long sz)
353 int i;
355 might_sleep();
356 for (i = 0; i < sz/PAGE_SIZE; i++) {
357 cond_resched();
358 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
362 static void copy_huge_page(struct page *dst, struct page *src,
363 unsigned long addr, struct vm_area_struct *vma)
365 int i;
366 struct hstate *h = hstate_vma(vma);
368 might_sleep();
369 for (i = 0; i < pages_per_huge_page(h); i++) {
370 cond_resched();
371 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
375 static void enqueue_huge_page(struct hstate *h, struct page *page)
377 int nid = page_to_nid(page);
378 list_add(&page->lru, &h->hugepage_freelists[nid]);
379 h->free_huge_pages++;
380 h->free_huge_pages_node[nid]++;
383 static struct page *dequeue_huge_page(struct hstate *h)
385 int nid;
386 struct page *page = NULL;
388 for (nid = 0; nid < MAX_NUMNODES; ++nid) {
389 if (!list_empty(&h->hugepage_freelists[nid])) {
390 page = list_entry(h->hugepage_freelists[nid].next,
391 struct page, lru);
392 list_del(&page->lru);
393 h->free_huge_pages--;
394 h->free_huge_pages_node[nid]--;
395 break;
398 return page;
401 static struct page *dequeue_huge_page_vma(struct hstate *h,
402 struct vm_area_struct *vma,
403 unsigned long address, int avoid_reserve)
405 int nid;
406 struct page *page = NULL;
407 struct mempolicy *mpol;
408 nodemask_t *nodemask;
409 struct zonelist *zonelist = huge_zonelist(vma, address,
410 htlb_alloc_mask, &mpol, &nodemask);
411 struct zone *zone;
412 struct zoneref *z;
415 * A child process with MAP_PRIVATE mappings created by their parent
416 * have no page reserves. This check ensures that reservations are
417 * not "stolen". The child may still get SIGKILLed
419 if (!vma_has_private_reserves(vma) &&
420 h->free_huge_pages - h->resv_huge_pages == 0)
421 return NULL;
423 /* If reserves cannot be used, ensure enough pages are in the pool */
424 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
425 return NULL;
427 for_each_zone_zonelist_nodemask(zone, z, zonelist,
428 MAX_NR_ZONES - 1, nodemask) {
429 nid = zone_to_nid(zone);
430 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
431 !list_empty(&h->hugepage_freelists[nid])) {
432 page = list_entry(h->hugepage_freelists[nid].next,
433 struct page, lru);
434 list_del(&page->lru);
435 h->free_huge_pages--;
436 h->free_huge_pages_node[nid]--;
438 if (!avoid_reserve)
439 decrement_hugepage_resv_vma(h, vma);
441 break;
444 mpol_cond_put(mpol);
445 return page;
448 static void update_and_free_page(struct hstate *h, struct page *page)
450 int i;
452 h->nr_huge_pages--;
453 h->nr_huge_pages_node[page_to_nid(page)]--;
454 for (i = 0; i < pages_per_huge_page(h); i++) {
455 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
456 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
457 1 << PG_private | 1<< PG_writeback);
459 set_compound_page_dtor(page, NULL);
460 set_page_refcounted(page);
461 arch_release_hugepage(page);
462 __free_pages(page, huge_page_order(h));
465 struct hstate *size_to_hstate(unsigned long size)
467 struct hstate *h;
469 for_each_hstate(h) {
470 if (huge_page_size(h) == size)
471 return h;
473 return NULL;
476 static void free_huge_page(struct page *page)
479 * Can't pass hstate in here because it is called from the
480 * compound page destructor.
482 struct hstate *h = page_hstate(page);
483 int nid = page_to_nid(page);
484 struct address_space *mapping;
486 mapping = (struct address_space *) page_private(page);
487 set_page_private(page, 0);
488 BUG_ON(page_count(page));
489 INIT_LIST_HEAD(&page->lru);
491 spin_lock(&hugetlb_lock);
492 if (h->surplus_huge_pages_node[nid]) {
493 update_and_free_page(h, page);
494 h->surplus_huge_pages--;
495 h->surplus_huge_pages_node[nid]--;
496 } else {
497 enqueue_huge_page(h, page);
499 spin_unlock(&hugetlb_lock);
500 if (mapping)
501 hugetlb_put_quota(mapping, 1);
505 * Increment or decrement surplus_huge_pages. Keep node-specific counters
506 * balanced by operating on them in a round-robin fashion.
507 * Returns 1 if an adjustment was made.
509 static int adjust_pool_surplus(struct hstate *h, int delta)
511 static int prev_nid;
512 int nid = prev_nid;
513 int ret = 0;
515 VM_BUG_ON(delta != -1 && delta != 1);
516 do {
517 nid = next_node(nid, node_online_map);
518 if (nid == MAX_NUMNODES)
519 nid = first_node(node_online_map);
521 /* To shrink on this node, there must be a surplus page */
522 if (delta < 0 && !h->surplus_huge_pages_node[nid])
523 continue;
524 /* Surplus cannot exceed the total number of pages */
525 if (delta > 0 && h->surplus_huge_pages_node[nid] >=
526 h->nr_huge_pages_node[nid])
527 continue;
529 h->surplus_huge_pages += delta;
530 h->surplus_huge_pages_node[nid] += delta;
531 ret = 1;
532 break;
533 } while (nid != prev_nid);
535 prev_nid = nid;
536 return ret;
539 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
541 set_compound_page_dtor(page, free_huge_page);
542 spin_lock(&hugetlb_lock);
543 h->nr_huge_pages++;
544 h->nr_huge_pages_node[nid]++;
545 spin_unlock(&hugetlb_lock);
546 put_page(page); /* free it into the hugepage allocator */
549 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
551 struct page *page;
553 page = alloc_pages_node(nid,
554 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
555 __GFP_REPEAT|__GFP_NOWARN,
556 huge_page_order(h));
557 if (page) {
558 if (arch_prepare_hugepage(page)) {
559 __free_pages(page, HUGETLB_PAGE_ORDER);
560 return NULL;
562 prep_new_huge_page(h, page, nid);
565 return page;
568 static int alloc_fresh_huge_page(struct hstate *h)
570 struct page *page;
571 int start_nid;
572 int next_nid;
573 int ret = 0;
575 start_nid = h->hugetlb_next_nid;
577 do {
578 page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
579 if (page)
580 ret = 1;
582 * Use a helper variable to find the next node and then
583 * copy it back to hugetlb_next_nid afterwards:
584 * otherwise there's a window in which a racer might
585 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
586 * But we don't need to use a spin_lock here: it really
587 * doesn't matter if occasionally a racer chooses the
588 * same nid as we do. Move nid forward in the mask even
589 * if we just successfully allocated a hugepage so that
590 * the next caller gets hugepages on the next node.
592 next_nid = next_node(h->hugetlb_next_nid, node_online_map);
593 if (next_nid == MAX_NUMNODES)
594 next_nid = first_node(node_online_map);
595 h->hugetlb_next_nid = next_nid;
596 } while (!page && h->hugetlb_next_nid != start_nid);
598 if (ret)
599 count_vm_event(HTLB_BUDDY_PGALLOC);
600 else
601 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
603 return ret;
606 static struct page *alloc_buddy_huge_page(struct hstate *h,
607 struct vm_area_struct *vma, unsigned long address)
609 struct page *page;
610 unsigned int nid;
613 * Assume we will successfully allocate the surplus page to
614 * prevent racing processes from causing the surplus to exceed
615 * overcommit
617 * This however introduces a different race, where a process B
618 * tries to grow the static hugepage pool while alloc_pages() is
619 * called by process A. B will only examine the per-node
620 * counters in determining if surplus huge pages can be
621 * converted to normal huge pages in adjust_pool_surplus(). A
622 * won't be able to increment the per-node counter, until the
623 * lock is dropped by B, but B doesn't drop hugetlb_lock until
624 * no more huge pages can be converted from surplus to normal
625 * state (and doesn't try to convert again). Thus, we have a
626 * case where a surplus huge page exists, the pool is grown, and
627 * the surplus huge page still exists after, even though it
628 * should just have been converted to a normal huge page. This
629 * does not leak memory, though, as the hugepage will be freed
630 * once it is out of use. It also does not allow the counters to
631 * go out of whack in adjust_pool_surplus() as we don't modify
632 * the node values until we've gotten the hugepage and only the
633 * per-node value is checked there.
635 spin_lock(&hugetlb_lock);
636 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
637 spin_unlock(&hugetlb_lock);
638 return NULL;
639 } else {
640 h->nr_huge_pages++;
641 h->surplus_huge_pages++;
643 spin_unlock(&hugetlb_lock);
645 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
646 __GFP_REPEAT|__GFP_NOWARN,
647 huge_page_order(h));
649 spin_lock(&hugetlb_lock);
650 if (page) {
652 * This page is now managed by the hugetlb allocator and has
653 * no users -- drop the buddy allocator's reference.
655 put_page_testzero(page);
656 VM_BUG_ON(page_count(page));
657 nid = page_to_nid(page);
658 set_compound_page_dtor(page, free_huge_page);
660 * We incremented the global counters already
662 h->nr_huge_pages_node[nid]++;
663 h->surplus_huge_pages_node[nid]++;
664 __count_vm_event(HTLB_BUDDY_PGALLOC);
665 } else {
666 h->nr_huge_pages--;
667 h->surplus_huge_pages--;
668 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
670 spin_unlock(&hugetlb_lock);
672 return page;
676 * Increase the hugetlb pool such that it can accomodate a reservation
677 * of size 'delta'.
679 static int gather_surplus_pages(struct hstate *h, int delta)
681 struct list_head surplus_list;
682 struct page *page, *tmp;
683 int ret, i;
684 int needed, allocated;
686 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
687 if (needed <= 0) {
688 h->resv_huge_pages += delta;
689 return 0;
692 allocated = 0;
693 INIT_LIST_HEAD(&surplus_list);
695 ret = -ENOMEM;
696 retry:
697 spin_unlock(&hugetlb_lock);
698 for (i = 0; i < needed; i++) {
699 page = alloc_buddy_huge_page(h, NULL, 0);
700 if (!page) {
702 * We were not able to allocate enough pages to
703 * satisfy the entire reservation so we free what
704 * we've allocated so far.
706 spin_lock(&hugetlb_lock);
707 needed = 0;
708 goto free;
711 list_add(&page->lru, &surplus_list);
713 allocated += needed;
716 * After retaking hugetlb_lock, we need to recalculate 'needed'
717 * because either resv_huge_pages or free_huge_pages may have changed.
719 spin_lock(&hugetlb_lock);
720 needed = (h->resv_huge_pages + delta) -
721 (h->free_huge_pages + allocated);
722 if (needed > 0)
723 goto retry;
726 * The surplus_list now contains _at_least_ the number of extra pages
727 * needed to accomodate the reservation. Add the appropriate number
728 * of pages to the hugetlb pool and free the extras back to the buddy
729 * allocator. Commit the entire reservation here to prevent another
730 * process from stealing the pages as they are added to the pool but
731 * before they are reserved.
733 needed += allocated;
734 h->resv_huge_pages += delta;
735 ret = 0;
736 free:
737 /* Free the needed pages to the hugetlb pool */
738 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
739 if ((--needed) < 0)
740 break;
741 list_del(&page->lru);
742 enqueue_huge_page(h, page);
745 /* Free unnecessary surplus pages to the buddy allocator */
746 if (!list_empty(&surplus_list)) {
747 spin_unlock(&hugetlb_lock);
748 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
749 list_del(&page->lru);
751 * The page has a reference count of zero already, so
752 * call free_huge_page directly instead of using
753 * put_page. This must be done with hugetlb_lock
754 * unlocked which is safe because free_huge_page takes
755 * hugetlb_lock before deciding how to free the page.
757 free_huge_page(page);
759 spin_lock(&hugetlb_lock);
762 return ret;
766 * When releasing a hugetlb pool reservation, any surplus pages that were
767 * allocated to satisfy the reservation must be explicitly freed if they were
768 * never used.
770 static void return_unused_surplus_pages(struct hstate *h,
771 unsigned long unused_resv_pages)
773 static int nid = -1;
774 struct page *page;
775 unsigned long nr_pages;
778 * We want to release as many surplus pages as possible, spread
779 * evenly across all nodes. Iterate across all nodes until we
780 * can no longer free unreserved surplus pages. This occurs when
781 * the nodes with surplus pages have no free pages.
783 unsigned long remaining_iterations = num_online_nodes();
785 /* Uncommit the reservation */
786 h->resv_huge_pages -= unused_resv_pages;
788 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
790 while (remaining_iterations-- && nr_pages) {
791 nid = next_node(nid, node_online_map);
792 if (nid == MAX_NUMNODES)
793 nid = first_node(node_online_map);
795 if (!h->surplus_huge_pages_node[nid])
796 continue;
798 if (!list_empty(&h->hugepage_freelists[nid])) {
799 page = list_entry(h->hugepage_freelists[nid].next,
800 struct page, lru);
801 list_del(&page->lru);
802 update_and_free_page(h, page);
803 h->free_huge_pages--;
804 h->free_huge_pages_node[nid]--;
805 h->surplus_huge_pages--;
806 h->surplus_huge_pages_node[nid]--;
807 nr_pages--;
808 remaining_iterations = num_online_nodes();
814 * Determine if the huge page at addr within the vma has an associated
815 * reservation. Where it does not we will need to logically increase
816 * reservation and actually increase quota before an allocation can occur.
817 * Where any new reservation would be required the reservation change is
818 * prepared, but not committed. Once the page has been quota'd allocated
819 * an instantiated the change should be committed via vma_commit_reservation.
820 * No action is required on failure.
822 static int vma_needs_reservation(struct hstate *h,
823 struct vm_area_struct *vma, unsigned long addr)
825 struct address_space *mapping = vma->vm_file->f_mapping;
826 struct inode *inode = mapping->host;
828 if (vma->vm_flags & VM_SHARED) {
829 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
830 return region_chg(&inode->i_mapping->private_list,
831 idx, idx + 1);
833 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
834 return 1;
836 } else {
837 int err;
838 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
839 struct resv_map *reservations = vma_resv_map(vma);
841 err = region_chg(&reservations->regions, idx, idx + 1);
842 if (err < 0)
843 return err;
844 return 0;
847 static void vma_commit_reservation(struct hstate *h,
848 struct vm_area_struct *vma, unsigned long addr)
850 struct address_space *mapping = vma->vm_file->f_mapping;
851 struct inode *inode = mapping->host;
853 if (vma->vm_flags & VM_SHARED) {
854 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
855 region_add(&inode->i_mapping->private_list, idx, idx + 1);
857 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
858 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
859 struct resv_map *reservations = vma_resv_map(vma);
861 /* Mark this page used in the map. */
862 region_add(&reservations->regions, idx, idx + 1);
866 static struct page *alloc_huge_page(struct vm_area_struct *vma,
867 unsigned long addr, int avoid_reserve)
869 struct hstate *h = hstate_vma(vma);
870 struct page *page;
871 struct address_space *mapping = vma->vm_file->f_mapping;
872 struct inode *inode = mapping->host;
873 unsigned int chg;
876 * Processes that did not create the mapping will have no reserves and
877 * will not have accounted against quota. Check that the quota can be
878 * made before satisfying the allocation
879 * MAP_NORESERVE mappings may also need pages and quota allocated
880 * if no reserve mapping overlaps.
882 chg = vma_needs_reservation(h, vma, addr);
883 if (chg < 0)
884 return ERR_PTR(chg);
885 if (chg)
886 if (hugetlb_get_quota(inode->i_mapping, chg))
887 return ERR_PTR(-ENOSPC);
889 spin_lock(&hugetlb_lock);
890 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
891 spin_unlock(&hugetlb_lock);
893 if (!page) {
894 page = alloc_buddy_huge_page(h, vma, addr);
895 if (!page) {
896 hugetlb_put_quota(inode->i_mapping, chg);
897 return ERR_PTR(-VM_FAULT_OOM);
901 set_page_refcounted(page);
902 set_page_private(page, (unsigned long) mapping);
904 vma_commit_reservation(h, vma, addr);
906 return page;
909 static void __init hugetlb_init_one_hstate(struct hstate *h)
911 unsigned long i;
913 for (i = 0; i < MAX_NUMNODES; ++i)
914 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
916 h->hugetlb_next_nid = first_node(node_online_map);
918 for (i = 0; i < h->max_huge_pages; ++i) {
919 if (!alloc_fresh_huge_page(h))
920 break;
922 h->max_huge_pages = h->free_huge_pages = h->nr_huge_pages = i;
925 static void __init hugetlb_init_hstates(void)
927 struct hstate *h;
929 for_each_hstate(h) {
930 hugetlb_init_one_hstate(h);
934 static void __init report_hugepages(void)
936 struct hstate *h;
938 for_each_hstate(h) {
939 printk(KERN_INFO "Total HugeTLB memory allocated, "
940 "%ld %dMB pages\n",
941 h->free_huge_pages,
942 1 << (h->order + PAGE_SHIFT - 20));
946 #ifdef CONFIG_SYSCTL
947 #ifdef CONFIG_HIGHMEM
948 static void try_to_free_low(struct hstate *h, unsigned long count)
950 int i;
952 for (i = 0; i < MAX_NUMNODES; ++i) {
953 struct page *page, *next;
954 struct list_head *freel = &h->hugepage_freelists[i];
955 list_for_each_entry_safe(page, next, freel, lru) {
956 if (count >= h->nr_huge_pages)
957 return;
958 if (PageHighMem(page))
959 continue;
960 list_del(&page->lru);
961 update_and_free_page(h, page);
962 h->free_huge_pages--;
963 h->free_huge_pages_node[page_to_nid(page)]--;
967 #else
968 static inline void try_to_free_low(struct hstate *h, unsigned long count)
971 #endif
973 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
974 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
976 unsigned long min_count, ret;
979 * Increase the pool size
980 * First take pages out of surplus state. Then make up the
981 * remaining difference by allocating fresh huge pages.
983 * We might race with alloc_buddy_huge_page() here and be unable
984 * to convert a surplus huge page to a normal huge page. That is
985 * not critical, though, it just means the overall size of the
986 * pool might be one hugepage larger than it needs to be, but
987 * within all the constraints specified by the sysctls.
989 spin_lock(&hugetlb_lock);
990 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
991 if (!adjust_pool_surplus(h, -1))
992 break;
995 while (count > persistent_huge_pages(h)) {
997 * If this allocation races such that we no longer need the
998 * page, free_huge_page will handle it by freeing the page
999 * and reducing the surplus.
1001 spin_unlock(&hugetlb_lock);
1002 ret = alloc_fresh_huge_page(h);
1003 spin_lock(&hugetlb_lock);
1004 if (!ret)
1005 goto out;
1010 * Decrease the pool size
1011 * First return free pages to the buddy allocator (being careful
1012 * to keep enough around to satisfy reservations). Then place
1013 * pages into surplus state as needed so the pool will shrink
1014 * to the desired size as pages become free.
1016 * By placing pages into the surplus state independent of the
1017 * overcommit value, we are allowing the surplus pool size to
1018 * exceed overcommit. There are few sane options here. Since
1019 * alloc_buddy_huge_page() is checking the global counter,
1020 * though, we'll note that we're not allowed to exceed surplus
1021 * and won't grow the pool anywhere else. Not until one of the
1022 * sysctls are changed, or the surplus pages go out of use.
1024 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1025 min_count = max(count, min_count);
1026 try_to_free_low(h, min_count);
1027 while (min_count < persistent_huge_pages(h)) {
1028 struct page *page = dequeue_huge_page(h);
1029 if (!page)
1030 break;
1031 update_and_free_page(h, page);
1033 while (count < persistent_huge_pages(h)) {
1034 if (!adjust_pool_surplus(h, 1))
1035 break;
1037 out:
1038 ret = persistent_huge_pages(h);
1039 spin_unlock(&hugetlb_lock);
1040 return ret;
1043 #define HSTATE_ATTR_RO(_name) \
1044 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1046 #define HSTATE_ATTR(_name) \
1047 static struct kobj_attribute _name##_attr = \
1048 __ATTR(_name, 0644, _name##_show, _name##_store)
1050 static struct kobject *hugepages_kobj;
1051 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1053 static struct hstate *kobj_to_hstate(struct kobject *kobj)
1055 int i;
1056 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1057 if (hstate_kobjs[i] == kobj)
1058 return &hstates[i];
1059 BUG();
1060 return NULL;
1063 static ssize_t nr_hugepages_show(struct kobject *kobj,
1064 struct kobj_attribute *attr, char *buf)
1066 struct hstate *h = kobj_to_hstate(kobj);
1067 return sprintf(buf, "%lu\n", h->nr_huge_pages);
1069 static ssize_t nr_hugepages_store(struct kobject *kobj,
1070 struct kobj_attribute *attr, const char *buf, size_t count)
1072 int err;
1073 unsigned long input;
1074 struct hstate *h = kobj_to_hstate(kobj);
1076 err = strict_strtoul(buf, 10, &input);
1077 if (err)
1078 return 0;
1080 h->max_huge_pages = set_max_huge_pages(h, input);
1082 return count;
1084 HSTATE_ATTR(nr_hugepages);
1086 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1087 struct kobj_attribute *attr, char *buf)
1089 struct hstate *h = kobj_to_hstate(kobj);
1090 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1092 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1093 struct kobj_attribute *attr, const char *buf, size_t count)
1095 int err;
1096 unsigned long input;
1097 struct hstate *h = kobj_to_hstate(kobj);
1099 err = strict_strtoul(buf, 10, &input);
1100 if (err)
1101 return 0;
1103 spin_lock(&hugetlb_lock);
1104 h->nr_overcommit_huge_pages = input;
1105 spin_unlock(&hugetlb_lock);
1107 return count;
1109 HSTATE_ATTR(nr_overcommit_hugepages);
1111 static ssize_t free_hugepages_show(struct kobject *kobj,
1112 struct kobj_attribute *attr, char *buf)
1114 struct hstate *h = kobj_to_hstate(kobj);
1115 return sprintf(buf, "%lu\n", h->free_huge_pages);
1117 HSTATE_ATTR_RO(free_hugepages);
1119 static ssize_t resv_hugepages_show(struct kobject *kobj,
1120 struct kobj_attribute *attr, char *buf)
1122 struct hstate *h = kobj_to_hstate(kobj);
1123 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1125 HSTATE_ATTR_RO(resv_hugepages);
1127 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1128 struct kobj_attribute *attr, char *buf)
1130 struct hstate *h = kobj_to_hstate(kobj);
1131 return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1133 HSTATE_ATTR_RO(surplus_hugepages);
1135 static struct attribute *hstate_attrs[] = {
1136 &nr_hugepages_attr.attr,
1137 &nr_overcommit_hugepages_attr.attr,
1138 &free_hugepages_attr.attr,
1139 &resv_hugepages_attr.attr,
1140 &surplus_hugepages_attr.attr,
1141 NULL,
1144 static struct attribute_group hstate_attr_group = {
1145 .attrs = hstate_attrs,
1148 static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1150 int retval;
1152 hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1153 hugepages_kobj);
1154 if (!hstate_kobjs[h - hstates])
1155 return -ENOMEM;
1157 retval = sysfs_create_group(hstate_kobjs[h - hstates],
1158 &hstate_attr_group);
1159 if (retval)
1160 kobject_put(hstate_kobjs[h - hstates]);
1162 return retval;
1165 static void __init hugetlb_sysfs_init(void)
1167 struct hstate *h;
1168 int err;
1170 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1171 if (!hugepages_kobj)
1172 return;
1174 for_each_hstate(h) {
1175 err = hugetlb_sysfs_add_hstate(h);
1176 if (err)
1177 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1178 h->name);
1182 static void __exit hugetlb_exit(void)
1184 struct hstate *h;
1186 for_each_hstate(h) {
1187 kobject_put(hstate_kobjs[h - hstates]);
1190 kobject_put(hugepages_kobj);
1192 module_exit(hugetlb_exit);
1194 static int __init hugetlb_init(void)
1196 BUILD_BUG_ON(HPAGE_SHIFT == 0);
1198 if (!size_to_hstate(HPAGE_SIZE)) {
1199 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1200 parsed_hstate->max_huge_pages = default_hstate_max_huge_pages;
1202 default_hstate_idx = size_to_hstate(HPAGE_SIZE) - hstates;
1204 hugetlb_init_hstates();
1206 report_hugepages();
1208 hugetlb_sysfs_init();
1210 return 0;
1212 module_init(hugetlb_init);
1214 /* Should be called on processing a hugepagesz=... option */
1215 void __init hugetlb_add_hstate(unsigned order)
1217 struct hstate *h;
1218 if (size_to_hstate(PAGE_SIZE << order)) {
1219 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1220 return;
1222 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1223 BUG_ON(order == 0);
1224 h = &hstates[max_hstate++];
1225 h->order = order;
1226 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1227 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1228 huge_page_size(h)/1024);
1229 hugetlb_init_one_hstate(h);
1230 parsed_hstate = h;
1233 static int __init hugetlb_setup(char *s)
1235 unsigned long *mhp;
1238 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1239 * so this hugepages= parameter goes to the "default hstate".
1241 if (!max_hstate)
1242 mhp = &default_hstate_max_huge_pages;
1243 else
1244 mhp = &parsed_hstate->max_huge_pages;
1246 if (sscanf(s, "%lu", mhp) <= 0)
1247 *mhp = 0;
1249 return 1;
1251 __setup("hugepages=", hugetlb_setup);
1253 static unsigned int cpuset_mems_nr(unsigned int *array)
1255 int node;
1256 unsigned int nr = 0;
1258 for_each_node_mask(node, cpuset_current_mems_allowed)
1259 nr += array[node];
1261 return nr;
1264 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1265 struct file *file, void __user *buffer,
1266 size_t *length, loff_t *ppos)
1268 struct hstate *h = &default_hstate;
1269 unsigned long tmp;
1271 if (!write)
1272 tmp = h->max_huge_pages;
1274 table->data = &tmp;
1275 table->maxlen = sizeof(unsigned long);
1276 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1278 if (write)
1279 h->max_huge_pages = set_max_huge_pages(h, tmp);
1281 return 0;
1284 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1285 struct file *file, void __user *buffer,
1286 size_t *length, loff_t *ppos)
1288 proc_dointvec(table, write, file, buffer, length, ppos);
1289 if (hugepages_treat_as_movable)
1290 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1291 else
1292 htlb_alloc_mask = GFP_HIGHUSER;
1293 return 0;
1296 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1297 struct file *file, void __user *buffer,
1298 size_t *length, loff_t *ppos)
1300 struct hstate *h = &default_hstate;
1301 unsigned long tmp;
1303 if (!write)
1304 tmp = h->nr_overcommit_huge_pages;
1306 table->data = &tmp;
1307 table->maxlen = sizeof(unsigned long);
1308 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1310 if (write) {
1311 spin_lock(&hugetlb_lock);
1312 h->nr_overcommit_huge_pages = tmp;
1313 spin_unlock(&hugetlb_lock);
1316 return 0;
1319 #endif /* CONFIG_SYSCTL */
1321 int hugetlb_report_meminfo(char *buf)
1323 struct hstate *h = &default_hstate;
1324 return sprintf(buf,
1325 "HugePages_Total: %5lu\n"
1326 "HugePages_Free: %5lu\n"
1327 "HugePages_Rsvd: %5lu\n"
1328 "HugePages_Surp: %5lu\n"
1329 "Hugepagesize: %5lu kB\n",
1330 h->nr_huge_pages,
1331 h->free_huge_pages,
1332 h->resv_huge_pages,
1333 h->surplus_huge_pages,
1334 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1337 int hugetlb_report_node_meminfo(int nid, char *buf)
1339 struct hstate *h = &default_hstate;
1340 return sprintf(buf,
1341 "Node %d HugePages_Total: %5u\n"
1342 "Node %d HugePages_Free: %5u\n"
1343 "Node %d HugePages_Surp: %5u\n",
1344 nid, h->nr_huge_pages_node[nid],
1345 nid, h->free_huge_pages_node[nid],
1346 nid, h->surplus_huge_pages_node[nid]);
1349 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1350 unsigned long hugetlb_total_pages(void)
1352 struct hstate *h = &default_hstate;
1353 return h->nr_huge_pages * pages_per_huge_page(h);
1356 static int hugetlb_acct_memory(struct hstate *h, long delta)
1358 int ret = -ENOMEM;
1360 spin_lock(&hugetlb_lock);
1362 * When cpuset is configured, it breaks the strict hugetlb page
1363 * reservation as the accounting is done on a global variable. Such
1364 * reservation is completely rubbish in the presence of cpuset because
1365 * the reservation is not checked against page availability for the
1366 * current cpuset. Application can still potentially OOM'ed by kernel
1367 * with lack of free htlb page in cpuset that the task is in.
1368 * Attempt to enforce strict accounting with cpuset is almost
1369 * impossible (or too ugly) because cpuset is too fluid that
1370 * task or memory node can be dynamically moved between cpusets.
1372 * The change of semantics for shared hugetlb mapping with cpuset is
1373 * undesirable. However, in order to preserve some of the semantics,
1374 * we fall back to check against current free page availability as
1375 * a best attempt and hopefully to minimize the impact of changing
1376 * semantics that cpuset has.
1378 if (delta > 0) {
1379 if (gather_surplus_pages(h, delta) < 0)
1380 goto out;
1382 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1383 return_unused_surplus_pages(h, delta);
1384 goto out;
1388 ret = 0;
1389 if (delta < 0)
1390 return_unused_surplus_pages(h, (unsigned long) -delta);
1392 out:
1393 spin_unlock(&hugetlb_lock);
1394 return ret;
1397 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1399 struct resv_map *reservations = vma_resv_map(vma);
1402 * This new VMA should share its siblings reservation map if present.
1403 * The VMA will only ever have a valid reservation map pointer where
1404 * it is being copied for another still existing VMA. As that VMA
1405 * has a reference to the reservation map it cannot dissappear until
1406 * after this open call completes. It is therefore safe to take a
1407 * new reference here without additional locking.
1409 if (reservations)
1410 kref_get(&reservations->refs);
1413 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1415 struct hstate *h = hstate_vma(vma);
1416 struct resv_map *reservations = vma_resv_map(vma);
1417 unsigned long reserve;
1418 unsigned long start;
1419 unsigned long end;
1421 if (reservations) {
1422 start = vma_hugecache_offset(h, vma, vma->vm_start);
1423 end = vma_hugecache_offset(h, vma, vma->vm_end);
1425 reserve = (end - start) -
1426 region_count(&reservations->regions, start, end);
1428 kref_put(&reservations->refs, resv_map_release);
1430 if (reserve)
1431 hugetlb_acct_memory(h, -reserve);
1436 * We cannot handle pagefaults against hugetlb pages at all. They cause
1437 * handle_mm_fault() to try to instantiate regular-sized pages in the
1438 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1439 * this far.
1441 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1443 BUG();
1444 return 0;
1447 struct vm_operations_struct hugetlb_vm_ops = {
1448 .fault = hugetlb_vm_op_fault,
1449 .open = hugetlb_vm_op_open,
1450 .close = hugetlb_vm_op_close,
1453 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1454 int writable)
1456 pte_t entry;
1458 if (writable) {
1459 entry =
1460 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1461 } else {
1462 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1464 entry = pte_mkyoung(entry);
1465 entry = pte_mkhuge(entry);
1467 return entry;
1470 static void set_huge_ptep_writable(struct vm_area_struct *vma,
1471 unsigned long address, pte_t *ptep)
1473 pte_t entry;
1475 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1476 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1477 update_mmu_cache(vma, address, entry);
1482 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1483 struct vm_area_struct *vma)
1485 pte_t *src_pte, *dst_pte, entry;
1486 struct page *ptepage;
1487 unsigned long addr;
1488 int cow;
1489 struct hstate *h = hstate_vma(vma);
1490 unsigned long sz = huge_page_size(h);
1492 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1494 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
1495 src_pte = huge_pte_offset(src, addr);
1496 if (!src_pte)
1497 continue;
1498 dst_pte = huge_pte_alloc(dst, addr, sz);
1499 if (!dst_pte)
1500 goto nomem;
1502 /* If the pagetables are shared don't copy or take references */
1503 if (dst_pte == src_pte)
1504 continue;
1506 spin_lock(&dst->page_table_lock);
1507 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1508 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1509 if (cow)
1510 huge_ptep_set_wrprotect(src, addr, src_pte);
1511 entry = huge_ptep_get(src_pte);
1512 ptepage = pte_page(entry);
1513 get_page(ptepage);
1514 set_huge_pte_at(dst, addr, dst_pte, entry);
1516 spin_unlock(&src->page_table_lock);
1517 spin_unlock(&dst->page_table_lock);
1519 return 0;
1521 nomem:
1522 return -ENOMEM;
1525 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1526 unsigned long end, struct page *ref_page)
1528 struct mm_struct *mm = vma->vm_mm;
1529 unsigned long address;
1530 pte_t *ptep;
1531 pte_t pte;
1532 struct page *page;
1533 struct page *tmp;
1534 struct hstate *h = hstate_vma(vma);
1535 unsigned long sz = huge_page_size(h);
1538 * A page gathering list, protected by per file i_mmap_lock. The
1539 * lock is used to avoid list corruption from multiple unmapping
1540 * of the same page since we are using page->lru.
1542 LIST_HEAD(page_list);
1544 WARN_ON(!is_vm_hugetlb_page(vma));
1545 BUG_ON(start & ~huge_page_mask(h));
1546 BUG_ON(end & ~huge_page_mask(h));
1548 spin_lock(&mm->page_table_lock);
1549 for (address = start; address < end; address += sz) {
1550 ptep = huge_pte_offset(mm, address);
1551 if (!ptep)
1552 continue;
1554 if (huge_pmd_unshare(mm, &address, ptep))
1555 continue;
1558 * If a reference page is supplied, it is because a specific
1559 * page is being unmapped, not a range. Ensure the page we
1560 * are about to unmap is the actual page of interest.
1562 if (ref_page) {
1563 pte = huge_ptep_get(ptep);
1564 if (huge_pte_none(pte))
1565 continue;
1566 page = pte_page(pte);
1567 if (page != ref_page)
1568 continue;
1571 * Mark the VMA as having unmapped its page so that
1572 * future faults in this VMA will fail rather than
1573 * looking like data was lost
1575 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1578 pte = huge_ptep_get_and_clear(mm, address, ptep);
1579 if (huge_pte_none(pte))
1580 continue;
1582 page = pte_page(pte);
1583 if (pte_dirty(pte))
1584 set_page_dirty(page);
1585 list_add(&page->lru, &page_list);
1587 spin_unlock(&mm->page_table_lock);
1588 flush_tlb_range(vma, start, end);
1589 list_for_each_entry_safe(page, tmp, &page_list, lru) {
1590 list_del(&page->lru);
1591 put_page(page);
1595 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1596 unsigned long end, struct page *ref_page)
1598 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1599 __unmap_hugepage_range(vma, start, end, ref_page);
1600 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1604 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1605 * mappping it owns the reserve page for. The intention is to unmap the page
1606 * from other VMAs and let the children be SIGKILLed if they are faulting the
1607 * same region.
1609 int unmap_ref_private(struct mm_struct *mm,
1610 struct vm_area_struct *vma,
1611 struct page *page,
1612 unsigned long address)
1614 struct vm_area_struct *iter_vma;
1615 struct address_space *mapping;
1616 struct prio_tree_iter iter;
1617 pgoff_t pgoff;
1620 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1621 * from page cache lookup which is in HPAGE_SIZE units.
1623 address = address & huge_page_mask(hstate_vma(vma));
1624 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1625 + (vma->vm_pgoff >> PAGE_SHIFT);
1626 mapping = (struct address_space *)page_private(page);
1628 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1629 /* Do not unmap the current VMA */
1630 if (iter_vma == vma)
1631 continue;
1634 * Unmap the page from other VMAs without their own reserves.
1635 * They get marked to be SIGKILLed if they fault in these
1636 * areas. This is because a future no-page fault on this VMA
1637 * could insert a zeroed page instead of the data existing
1638 * from the time of fork. This would look like data corruption
1640 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1641 unmap_hugepage_range(iter_vma,
1642 address, address + HPAGE_SIZE,
1643 page);
1646 return 1;
1649 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1650 unsigned long address, pte_t *ptep, pte_t pte,
1651 struct page *pagecache_page)
1653 struct hstate *h = hstate_vma(vma);
1654 struct page *old_page, *new_page;
1655 int avoidcopy;
1656 int outside_reserve = 0;
1658 old_page = pte_page(pte);
1660 retry_avoidcopy:
1661 /* If no-one else is actually using this page, avoid the copy
1662 * and just make the page writable */
1663 avoidcopy = (page_count(old_page) == 1);
1664 if (avoidcopy) {
1665 set_huge_ptep_writable(vma, address, ptep);
1666 return 0;
1670 * If the process that created a MAP_PRIVATE mapping is about to
1671 * perform a COW due to a shared page count, attempt to satisfy
1672 * the allocation without using the existing reserves. The pagecache
1673 * page is used to determine if the reserve at this address was
1674 * consumed or not. If reserves were used, a partial faulted mapping
1675 * at the time of fork() could consume its reserves on COW instead
1676 * of the full address range.
1678 if (!(vma->vm_flags & VM_SHARED) &&
1679 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1680 old_page != pagecache_page)
1681 outside_reserve = 1;
1683 page_cache_get(old_page);
1684 new_page = alloc_huge_page(vma, address, outside_reserve);
1686 if (IS_ERR(new_page)) {
1687 page_cache_release(old_page);
1690 * If a process owning a MAP_PRIVATE mapping fails to COW,
1691 * it is due to references held by a child and an insufficient
1692 * huge page pool. To guarantee the original mappers
1693 * reliability, unmap the page from child processes. The child
1694 * may get SIGKILLed if it later faults.
1696 if (outside_reserve) {
1697 BUG_ON(huge_pte_none(pte));
1698 if (unmap_ref_private(mm, vma, old_page, address)) {
1699 BUG_ON(page_count(old_page) != 1);
1700 BUG_ON(huge_pte_none(pte));
1701 goto retry_avoidcopy;
1703 WARN_ON_ONCE(1);
1706 return -PTR_ERR(new_page);
1709 spin_unlock(&mm->page_table_lock);
1710 copy_huge_page(new_page, old_page, address, vma);
1711 __SetPageUptodate(new_page);
1712 spin_lock(&mm->page_table_lock);
1714 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1715 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1716 /* Break COW */
1717 huge_ptep_clear_flush(vma, address, ptep);
1718 set_huge_pte_at(mm, address, ptep,
1719 make_huge_pte(vma, new_page, 1));
1720 /* Make the old page be freed below */
1721 new_page = old_page;
1723 page_cache_release(new_page);
1724 page_cache_release(old_page);
1725 return 0;
1728 /* Return the pagecache page at a given address within a VMA */
1729 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
1730 struct vm_area_struct *vma, unsigned long address)
1732 struct address_space *mapping;
1733 pgoff_t idx;
1735 mapping = vma->vm_file->f_mapping;
1736 idx = vma_hugecache_offset(h, vma, address);
1738 return find_lock_page(mapping, idx);
1741 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1742 unsigned long address, pte_t *ptep, int write_access)
1744 struct hstate *h = hstate_vma(vma);
1745 int ret = VM_FAULT_SIGBUS;
1746 pgoff_t idx;
1747 unsigned long size;
1748 struct page *page;
1749 struct address_space *mapping;
1750 pte_t new_pte;
1753 * Currently, we are forced to kill the process in the event the
1754 * original mapper has unmapped pages from the child due to a failed
1755 * COW. Warn that such a situation has occured as it may not be obvious
1757 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
1758 printk(KERN_WARNING
1759 "PID %d killed due to inadequate hugepage pool\n",
1760 current->pid);
1761 return ret;
1764 mapping = vma->vm_file->f_mapping;
1765 idx = vma_hugecache_offset(h, vma, address);
1768 * Use page lock to guard against racing truncation
1769 * before we get page_table_lock.
1771 retry:
1772 page = find_lock_page(mapping, idx);
1773 if (!page) {
1774 size = i_size_read(mapping->host) >> huge_page_shift(h);
1775 if (idx >= size)
1776 goto out;
1777 page = alloc_huge_page(vma, address, 0);
1778 if (IS_ERR(page)) {
1779 ret = -PTR_ERR(page);
1780 goto out;
1782 clear_huge_page(page, address, huge_page_size(h));
1783 __SetPageUptodate(page);
1785 if (vma->vm_flags & VM_SHARED) {
1786 int err;
1787 struct inode *inode = mapping->host;
1789 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
1790 if (err) {
1791 put_page(page);
1792 if (err == -EEXIST)
1793 goto retry;
1794 goto out;
1797 spin_lock(&inode->i_lock);
1798 inode->i_blocks += blocks_per_huge_page(h);
1799 spin_unlock(&inode->i_lock);
1800 } else
1801 lock_page(page);
1804 spin_lock(&mm->page_table_lock);
1805 size = i_size_read(mapping->host) >> huge_page_shift(h);
1806 if (idx >= size)
1807 goto backout;
1809 ret = 0;
1810 if (!huge_pte_none(huge_ptep_get(ptep)))
1811 goto backout;
1813 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
1814 && (vma->vm_flags & VM_SHARED)));
1815 set_huge_pte_at(mm, address, ptep, new_pte);
1817 if (write_access && !(vma->vm_flags & VM_SHARED)) {
1818 /* Optimization, do the COW without a second fault */
1819 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1822 spin_unlock(&mm->page_table_lock);
1823 unlock_page(page);
1824 out:
1825 return ret;
1827 backout:
1828 spin_unlock(&mm->page_table_lock);
1829 unlock_page(page);
1830 put_page(page);
1831 goto out;
1834 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1835 unsigned long address, int write_access)
1837 pte_t *ptep;
1838 pte_t entry;
1839 int ret;
1840 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
1841 struct hstate *h = hstate_vma(vma);
1843 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
1844 if (!ptep)
1845 return VM_FAULT_OOM;
1848 * Serialize hugepage allocation and instantiation, so that we don't
1849 * get spurious allocation failures if two CPUs race to instantiate
1850 * the same page in the page cache.
1852 mutex_lock(&hugetlb_instantiation_mutex);
1853 entry = huge_ptep_get(ptep);
1854 if (huge_pte_none(entry)) {
1855 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
1856 mutex_unlock(&hugetlb_instantiation_mutex);
1857 return ret;
1860 ret = 0;
1862 spin_lock(&mm->page_table_lock);
1863 /* Check for a racing update before calling hugetlb_cow */
1864 if (likely(pte_same(entry, huge_ptep_get(ptep))))
1865 if (write_access && !pte_write(entry)) {
1866 struct page *page;
1867 page = hugetlbfs_pagecache_page(h, vma, address);
1868 ret = hugetlb_cow(mm, vma, address, ptep, entry, page);
1869 if (page) {
1870 unlock_page(page);
1871 put_page(page);
1874 spin_unlock(&mm->page_table_lock);
1875 mutex_unlock(&hugetlb_instantiation_mutex);
1877 return ret;
1880 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
1881 struct page **pages, struct vm_area_struct **vmas,
1882 unsigned long *position, int *length, int i,
1883 int write)
1885 unsigned long pfn_offset;
1886 unsigned long vaddr = *position;
1887 int remainder = *length;
1888 struct hstate *h = hstate_vma(vma);
1890 spin_lock(&mm->page_table_lock);
1891 while (vaddr < vma->vm_end && remainder) {
1892 pte_t *pte;
1893 struct page *page;
1896 * Some archs (sparc64, sh*) have multiple pte_ts to
1897 * each hugepage. We have to make * sure we get the
1898 * first, for the page indexing below to work.
1900 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
1902 if (!pte || huge_pte_none(huge_ptep_get(pte)) ||
1903 (write && !pte_write(huge_ptep_get(pte)))) {
1904 int ret;
1906 spin_unlock(&mm->page_table_lock);
1907 ret = hugetlb_fault(mm, vma, vaddr, write);
1908 spin_lock(&mm->page_table_lock);
1909 if (!(ret & VM_FAULT_ERROR))
1910 continue;
1912 remainder = 0;
1913 if (!i)
1914 i = -EFAULT;
1915 break;
1918 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
1919 page = pte_page(huge_ptep_get(pte));
1920 same_page:
1921 if (pages) {
1922 get_page(page);
1923 pages[i] = page + pfn_offset;
1926 if (vmas)
1927 vmas[i] = vma;
1929 vaddr += PAGE_SIZE;
1930 ++pfn_offset;
1931 --remainder;
1932 ++i;
1933 if (vaddr < vma->vm_end && remainder &&
1934 pfn_offset < pages_per_huge_page(h)) {
1936 * We use pfn_offset to avoid touching the pageframes
1937 * of this compound page.
1939 goto same_page;
1942 spin_unlock(&mm->page_table_lock);
1943 *length = remainder;
1944 *position = vaddr;
1946 return i;
1949 void hugetlb_change_protection(struct vm_area_struct *vma,
1950 unsigned long address, unsigned long end, pgprot_t newprot)
1952 struct mm_struct *mm = vma->vm_mm;
1953 unsigned long start = address;
1954 pte_t *ptep;
1955 pte_t pte;
1956 struct hstate *h = hstate_vma(vma);
1958 BUG_ON(address >= end);
1959 flush_cache_range(vma, address, end);
1961 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1962 spin_lock(&mm->page_table_lock);
1963 for (; address < end; address += huge_page_size(h)) {
1964 ptep = huge_pte_offset(mm, address);
1965 if (!ptep)
1966 continue;
1967 if (huge_pmd_unshare(mm, &address, ptep))
1968 continue;
1969 if (!huge_pte_none(huge_ptep_get(ptep))) {
1970 pte = huge_ptep_get_and_clear(mm, address, ptep);
1971 pte = pte_mkhuge(pte_modify(pte, newprot));
1972 set_huge_pte_at(mm, address, ptep, pte);
1975 spin_unlock(&mm->page_table_lock);
1976 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1978 flush_tlb_range(vma, start, end);
1981 int hugetlb_reserve_pages(struct inode *inode,
1982 long from, long to,
1983 struct vm_area_struct *vma)
1985 long ret, chg;
1986 struct hstate *h = hstate_inode(inode);
1988 if (vma && vma->vm_flags & VM_NORESERVE)
1989 return 0;
1992 * Shared mappings base their reservation on the number of pages that
1993 * are already allocated on behalf of the file. Private mappings need
1994 * to reserve the full area even if read-only as mprotect() may be
1995 * called to make the mapping read-write. Assume !vma is a shm mapping
1997 if (!vma || vma->vm_flags & VM_SHARED)
1998 chg = region_chg(&inode->i_mapping->private_list, from, to);
1999 else {
2000 struct resv_map *resv_map = resv_map_alloc();
2001 if (!resv_map)
2002 return -ENOMEM;
2004 chg = to - from;
2006 set_vma_resv_map(vma, resv_map);
2007 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2010 if (chg < 0)
2011 return chg;
2013 if (hugetlb_get_quota(inode->i_mapping, chg))
2014 return -ENOSPC;
2015 ret = hugetlb_acct_memory(h, chg);
2016 if (ret < 0) {
2017 hugetlb_put_quota(inode->i_mapping, chg);
2018 return ret;
2020 if (!vma || vma->vm_flags & VM_SHARED)
2021 region_add(&inode->i_mapping->private_list, from, to);
2022 return 0;
2025 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2027 struct hstate *h = hstate_inode(inode);
2028 long chg = region_truncate(&inode->i_mapping->private_list, offset);
2030 spin_lock(&inode->i_lock);
2031 inode->i_blocks -= blocks_per_huge_page(h);
2032 spin_unlock(&inode->i_lock);
2034 hugetlb_put_quota(inode->i_mapping, (chg - freed));
2035 hugetlb_acct_memory(h, -(chg - freed));