2 * linux/kernel/irq/handle.c
4 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5 * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
7 * This file contains the core interrupt handling code.
9 * Detailed information is available in Documentation/DocBook/genericirq
13 #include <linux/irq.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/random.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/rculist.h>
20 #include <linux/hash.h>
21 #include <linux/bootmem.h>
22 #include <trace/events/irq.h>
24 #include "internals.h"
27 * lockdep: we want to handle all irq_desc locks as a single lock-class:
29 struct lock_class_key irq_desc_lock_class
;
32 * handle_bad_irq - handle spurious and unhandled irqs
33 * @irq: the interrupt number
34 * @desc: description of the interrupt
36 * Handles spurious and unhandled IRQ's. It also prints a debugmessage.
38 void handle_bad_irq(unsigned int irq
, struct irq_desc
*desc
)
40 print_irq_desc(irq
, desc
);
41 kstat_incr_irqs_this_cpu(irq
, desc
);
45 #if defined(CONFIG_SMP) && defined(CONFIG_GENERIC_HARDIRQS)
46 static void __init
init_irq_default_affinity(void)
48 alloc_cpumask_var(&irq_default_affinity
, GFP_NOWAIT
);
49 cpumask_setall(irq_default_affinity
);
52 static void __init
init_irq_default_affinity(void)
58 * Linux has a controller-independent interrupt architecture.
59 * Every controller has a 'controller-template', that is used
60 * by the main code to do the right thing. Each driver-visible
61 * interrupt source is transparently wired to the appropriate
62 * controller. Thus drivers need not be aware of the
63 * interrupt-controller.
65 * The code is designed to be easily extended with new/different
66 * interrupt controllers, without having to do assembly magic or
67 * having to touch the generic code.
69 * Controller mappings for all interrupt sources:
71 int nr_irqs
= NR_IRQS
;
72 EXPORT_SYMBOL_GPL(nr_irqs
);
74 #ifdef CONFIG_SPARSE_IRQ
76 static struct irq_desc irq_desc_init
= {
78 .status
= IRQ_DISABLED
,
80 .handle_irq
= handle_bad_irq
,
82 .lock
= __SPIN_LOCK_UNLOCKED(irq_desc_init
.lock
),
85 void __ref
init_kstat_irqs(struct irq_desc
*desc
, int node
, int nr
)
89 if (slab_is_available())
90 ptr
= kzalloc_node(nr
* sizeof(*desc
->kstat_irqs
),
93 ptr
= alloc_bootmem_node(NODE_DATA(node
),
94 nr
* sizeof(*desc
->kstat_irqs
));
97 * don't overwite if can not get new one
98 * init_copy_kstat_irqs() could still use old one
101 printk(KERN_DEBUG
" alloc kstat_irqs on node %d\n", node
);
102 desc
->kstat_irqs
= ptr
;
106 static void init_one_irq_desc(int irq
, struct irq_desc
*desc
, int node
)
108 memcpy(desc
, &irq_desc_init
, sizeof(struct irq_desc
));
110 spin_lock_init(&desc
->lock
);
115 lockdep_set_class(&desc
->lock
, &irq_desc_lock_class
);
116 init_kstat_irqs(desc
, node
, nr_cpu_ids
);
117 if (!desc
->kstat_irqs
) {
118 printk(KERN_ERR
"can not alloc kstat_irqs\n");
121 if (!alloc_desc_masks(desc
, node
, false)) {
122 printk(KERN_ERR
"can not alloc irq_desc cpumasks\n");
125 init_desc_masks(desc
);
126 arch_init_chip_data(desc
, node
);
130 * Protect the sparse_irqs:
132 DEFINE_SPINLOCK(sparse_irq_lock
);
134 struct irq_desc
**irq_desc_ptrs __read_mostly
;
136 static struct irq_desc irq_desc_legacy
[NR_IRQS_LEGACY
] __cacheline_aligned_in_smp
= {
137 [0 ... NR_IRQS_LEGACY
-1] = {
139 .status
= IRQ_DISABLED
,
140 .chip
= &no_irq_chip
,
141 .handle_irq
= handle_bad_irq
,
143 .lock
= __SPIN_LOCK_UNLOCKED(irq_desc_init
.lock
),
147 static unsigned int *kstat_irqs_legacy
;
149 int __init
early_irq_init(void)
151 struct irq_desc
*desc
;
156 init_irq_default_affinity();
158 /* initialize nr_irqs based on nr_cpu_ids */
159 arch_probe_nr_irqs();
160 printk(KERN_INFO
"NR_IRQS:%d nr_irqs:%d\n", NR_IRQS
, nr_irqs
);
162 desc
= irq_desc_legacy
;
163 legacy_count
= ARRAY_SIZE(irq_desc_legacy
);
164 node
= first_online_node
;
166 /* allocate irq_desc_ptrs array based on nr_irqs */
167 irq_desc_ptrs
= kcalloc(nr_irqs
, sizeof(void *), GFP_NOWAIT
);
169 /* allocate based on nr_cpu_ids */
170 kstat_irqs_legacy
= kzalloc_node(NR_IRQS_LEGACY
* nr_cpu_ids
*
171 sizeof(int), GFP_NOWAIT
, node
);
173 for (i
= 0; i
< legacy_count
; i
++) {
175 desc
[i
].kstat_irqs
= kstat_irqs_legacy
+ i
* nr_cpu_ids
;
176 lockdep_set_class(&desc
[i
].lock
, &irq_desc_lock_class
);
177 alloc_desc_masks(&desc
[i
], node
, true);
178 init_desc_masks(&desc
[i
]);
179 irq_desc_ptrs
[i
] = desc
+ i
;
182 for (i
= legacy_count
; i
< nr_irqs
; i
++)
183 irq_desc_ptrs
[i
] = NULL
;
185 return arch_early_irq_init();
188 struct irq_desc
*irq_to_desc(unsigned int irq
)
190 if (irq_desc_ptrs
&& irq
< nr_irqs
)
191 return irq_desc_ptrs
[irq
];
196 struct irq_desc
* __ref
irq_to_desc_alloc_node(unsigned int irq
, int node
)
198 struct irq_desc
*desc
;
201 if (irq
>= nr_irqs
) {
202 WARN(1, "irq (%d) >= nr_irqs (%d) in irq_to_desc_alloc\n",
207 desc
= irq_desc_ptrs
[irq
];
211 spin_lock_irqsave(&sparse_irq_lock
, flags
);
213 /* We have to check it to avoid races with another CPU */
214 desc
= irq_desc_ptrs
[irq
];
218 if (slab_is_available())
219 desc
= kzalloc_node(sizeof(*desc
), GFP_ATOMIC
, node
);
221 desc
= alloc_bootmem_node(NODE_DATA(node
), sizeof(*desc
));
223 printk(KERN_DEBUG
" alloc irq_desc for %d on node %d\n", irq
, node
);
225 printk(KERN_ERR
"can not alloc irq_desc\n");
228 init_one_irq_desc(irq
, desc
, node
);
230 irq_desc_ptrs
[irq
] = desc
;
233 spin_unlock_irqrestore(&sparse_irq_lock
, flags
);
238 #else /* !CONFIG_SPARSE_IRQ */
240 struct irq_desc irq_desc
[NR_IRQS
] __cacheline_aligned_in_smp
= {
241 [0 ... NR_IRQS
-1] = {
242 .status
= IRQ_DISABLED
,
243 .chip
= &no_irq_chip
,
244 .handle_irq
= handle_bad_irq
,
246 .lock
= __SPIN_LOCK_UNLOCKED(irq_desc
->lock
),
250 static unsigned int kstat_irqs_all
[NR_IRQS
][NR_CPUS
];
251 int __init
early_irq_init(void)
253 struct irq_desc
*desc
;
257 init_irq_default_affinity();
259 printk(KERN_INFO
"NR_IRQS:%d\n", NR_IRQS
);
262 count
= ARRAY_SIZE(irq_desc
);
264 for (i
= 0; i
< count
; i
++) {
266 alloc_desc_masks(&desc
[i
], 0, true);
267 init_desc_masks(&desc
[i
]);
268 desc
[i
].kstat_irqs
= kstat_irqs_all
[i
];
270 return arch_early_irq_init();
273 struct irq_desc
*irq_to_desc(unsigned int irq
)
275 return (irq
< NR_IRQS
) ? irq_desc
+ irq
: NULL
;
278 struct irq_desc
*irq_to_desc_alloc_node(unsigned int irq
, int node
)
280 return irq_to_desc(irq
);
282 #endif /* !CONFIG_SPARSE_IRQ */
284 void clear_kstat_irqs(struct irq_desc
*desc
)
286 memset(desc
->kstat_irqs
, 0, nr_cpu_ids
* sizeof(*(desc
->kstat_irqs
)));
290 * What should we do if we get a hw irq event on an illegal vector?
291 * Each architecture has to answer this themself.
293 static void ack_bad(unsigned int irq
)
295 struct irq_desc
*desc
= irq_to_desc(irq
);
297 print_irq_desc(irq
, desc
);
304 static void noop(unsigned int irq
)
308 static unsigned int noop_ret(unsigned int irq
)
314 * Generic no controller implementation
316 struct irq_chip no_irq_chip
= {
327 * Generic dummy implementation which can be used for
328 * real dumb interrupt sources
330 struct irq_chip dummy_irq_chip
= {
343 * Special, empty irq handler:
345 irqreturn_t
no_action(int cpl
, void *dev_id
)
350 static void warn_no_thread(unsigned int irq
, struct irqaction
*action
)
352 if (test_and_set_bit(IRQTF_WARNED
, &action
->thread_flags
))
355 printk(KERN_WARNING
"IRQ %d device %s returned IRQ_WAKE_THREAD "
356 "but no thread function available.", irq
, action
->name
);
360 * handle_IRQ_event - irq action chain handler
361 * @irq: the interrupt number
362 * @action: the interrupt action chain for this irq
364 * Handles the action chain of an irq event
366 irqreturn_t
handle_IRQ_event(unsigned int irq
, struct irqaction
*action
)
368 irqreturn_t ret
, retval
= IRQ_NONE
;
369 unsigned int status
= 0;
371 if (!(action
->flags
& IRQF_DISABLED
))
372 local_irq_enable_in_hardirq();
375 trace_irq_handler_entry(irq
, action
);
376 ret
= action
->handler(irq
, action
->dev_id
);
377 trace_irq_handler_exit(irq
, action
, ret
);
380 case IRQ_WAKE_THREAD
:
382 * Set result to handled so the spurious check
388 * Catch drivers which return WAKE_THREAD but
389 * did not set up a thread function
391 if (unlikely(!action
->thread_fn
)) {
392 warn_no_thread(irq
, action
);
397 * Wake up the handler thread for this
398 * action. In case the thread crashed and was
399 * killed we just pretend that we handled the
400 * interrupt. The hardirq handler above has
401 * disabled the device interrupt, so no irq
404 if (likely(!test_bit(IRQTF_DIED
,
405 &action
->thread_flags
))) {
406 set_bit(IRQTF_RUNTHREAD
, &action
->thread_flags
);
407 wake_up_process(action
->thread
);
410 /* Fall through to add to randomness */
412 status
|= action
->flags
;
420 action
= action
->next
;
423 if (status
& IRQF_SAMPLE_RANDOM
)
424 add_interrupt_randomness(irq
);
430 #ifndef CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ
432 #ifdef CONFIG_ENABLE_WARN_DEPRECATED
433 # warning __do_IRQ is deprecated. Please convert to proper flow handlers
437 * __do_IRQ - original all in one highlevel IRQ handler
438 * @irq: the interrupt number
440 * __do_IRQ handles all normal device IRQ's (the special
441 * SMP cross-CPU interrupts have their own specific
444 * This is the original x86 implementation which is used for every
447 unsigned int __do_IRQ(unsigned int irq
)
449 struct irq_desc
*desc
= irq_to_desc(irq
);
450 struct irqaction
*action
;
453 kstat_incr_irqs_this_cpu(irq
, desc
);
455 if (CHECK_IRQ_PER_CPU(desc
->status
)) {
456 irqreturn_t action_ret
;
459 * No locking required for CPU-local interrupts:
462 desc
->chip
->ack(irq
);
463 if (likely(!(desc
->status
& IRQ_DISABLED
))) {
464 action_ret
= handle_IRQ_event(irq
, desc
->action
);
466 note_interrupt(irq
, desc
, action_ret
);
468 desc
->chip
->end(irq
);
472 spin_lock(&desc
->lock
);
474 desc
->chip
->ack(irq
);
476 * REPLAY is when Linux resends an IRQ that was dropped earlier
477 * WAITING is used by probe to mark irqs that are being tested
479 status
= desc
->status
& ~(IRQ_REPLAY
| IRQ_WAITING
);
480 status
|= IRQ_PENDING
; /* we _want_ to handle it */
483 * If the IRQ is disabled for whatever reason, we cannot
484 * use the action we have.
487 if (likely(!(status
& (IRQ_DISABLED
| IRQ_INPROGRESS
)))) {
488 action
= desc
->action
;
489 status
&= ~IRQ_PENDING
; /* we commit to handling */
490 status
|= IRQ_INPROGRESS
; /* we are handling it */
492 desc
->status
= status
;
495 * If there is no IRQ handler or it was disabled, exit early.
496 * Since we set PENDING, if another processor is handling
497 * a different instance of this same irq, the other processor
498 * will take care of it.
500 if (unlikely(!action
))
504 * Edge triggered interrupts need to remember
506 * This applies to any hw interrupts that allow a second
507 * instance of the same irq to arrive while we are in do_IRQ
508 * or in the handler. But the code here only handles the _second_
509 * instance of the irq, not the third or fourth. So it is mostly
510 * useful for irq hardware that does not mask cleanly in an
514 irqreturn_t action_ret
;
516 spin_unlock(&desc
->lock
);
518 action_ret
= handle_IRQ_event(irq
, action
);
520 note_interrupt(irq
, desc
, action_ret
);
522 spin_lock(&desc
->lock
);
523 if (likely(!(desc
->status
& IRQ_PENDING
)))
525 desc
->status
&= ~IRQ_PENDING
;
527 desc
->status
&= ~IRQ_INPROGRESS
;
531 * The ->end() handler has to deal with interrupts which got
532 * disabled while the handler was running.
534 desc
->chip
->end(irq
);
535 spin_unlock(&desc
->lock
);
541 void early_init_irq_lock_class(void)
543 struct irq_desc
*desc
;
546 for_each_irq_desc(i
, desc
) {
547 lockdep_set_class(&desc
->lock
, &irq_desc_lock_class
);
551 unsigned int kstat_irqs_cpu(unsigned int irq
, int cpu
)
553 struct irq_desc
*desc
= irq_to_desc(irq
);
554 return desc
? desc
->kstat_irqs
[cpu
] : 0;
556 EXPORT_SYMBOL(kstat_irqs_cpu
);