2 * Generic waiting primitives.
4 * (C) 2004 William Irwin, Oracle
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
10 #include <linux/wait.h>
11 #include <linux/hash.h>
13 struct lock_class_key waitqueue_lock_key
;
15 EXPORT_SYMBOL(waitqueue_lock_key
);
17 void fastcall
add_wait_queue(wait_queue_head_t
*q
, wait_queue_t
*wait
)
21 wait
->flags
&= ~WQ_FLAG_EXCLUSIVE
;
22 spin_lock_irqsave(&q
->lock
, flags
);
23 __add_wait_queue(q
, wait
);
24 spin_unlock_irqrestore(&q
->lock
, flags
);
26 EXPORT_SYMBOL(add_wait_queue
);
28 void fastcall
add_wait_queue_exclusive(wait_queue_head_t
*q
, wait_queue_t
*wait
)
32 wait
->flags
|= WQ_FLAG_EXCLUSIVE
;
33 spin_lock_irqsave(&q
->lock
, flags
);
34 __add_wait_queue_tail(q
, wait
);
35 spin_unlock_irqrestore(&q
->lock
, flags
);
37 EXPORT_SYMBOL(add_wait_queue_exclusive
);
39 void fastcall
remove_wait_queue(wait_queue_head_t
*q
, wait_queue_t
*wait
)
43 spin_lock_irqsave(&q
->lock
, flags
);
44 __remove_wait_queue(q
, wait
);
45 spin_unlock_irqrestore(&q
->lock
, flags
);
47 EXPORT_SYMBOL(remove_wait_queue
);
51 * Note: we use "set_current_state()" _after_ the wait-queue add,
52 * because we need a memory barrier there on SMP, so that any
53 * wake-function that tests for the wait-queue being active
54 * will be guaranteed to see waitqueue addition _or_ subsequent
55 * tests in this thread will see the wakeup having taken place.
57 * The spin_unlock() itself is semi-permeable and only protects
58 * one way (it only protects stuff inside the critical region and
59 * stops them from bleeding out - it would still allow subsequent
60 * loads to move into the the critical region).
63 prepare_to_wait(wait_queue_head_t
*q
, wait_queue_t
*wait
, int state
)
67 wait
->flags
&= ~WQ_FLAG_EXCLUSIVE
;
68 spin_lock_irqsave(&q
->lock
, flags
);
69 if (list_empty(&wait
->task_list
))
70 __add_wait_queue(q
, wait
);
72 * don't alter the task state if this is just going to
73 * queue an async wait queue callback
75 if (is_sync_wait(wait
))
76 set_current_state(state
);
77 spin_unlock_irqrestore(&q
->lock
, flags
);
79 EXPORT_SYMBOL(prepare_to_wait
);
82 prepare_to_wait_exclusive(wait_queue_head_t
*q
, wait_queue_t
*wait
, int state
)
86 wait
->flags
|= WQ_FLAG_EXCLUSIVE
;
87 spin_lock_irqsave(&q
->lock
, flags
);
88 if (list_empty(&wait
->task_list
))
89 __add_wait_queue_tail(q
, wait
);
91 * don't alter the task state if this is just going to
92 * queue an async wait queue callback
94 if (is_sync_wait(wait
))
95 set_current_state(state
);
96 spin_unlock_irqrestore(&q
->lock
, flags
);
98 EXPORT_SYMBOL(prepare_to_wait_exclusive
);
100 void fastcall
finish_wait(wait_queue_head_t
*q
, wait_queue_t
*wait
)
104 __set_current_state(TASK_RUNNING
);
106 * We can check for list emptiness outside the lock
108 * - we use the "careful" check that verifies both
109 * the next and prev pointers, so that there cannot
110 * be any half-pending updates in progress on other
111 * CPU's that we haven't seen yet (and that might
112 * still change the stack area.
114 * - all other users take the lock (ie we can only
115 * have _one_ other CPU that looks at or modifies
118 if (!list_empty_careful(&wait
->task_list
)) {
119 spin_lock_irqsave(&q
->lock
, flags
);
120 list_del_init(&wait
->task_list
);
121 spin_unlock_irqrestore(&q
->lock
, flags
);
124 EXPORT_SYMBOL(finish_wait
);
126 int autoremove_wake_function(wait_queue_t
*wait
, unsigned mode
, int sync
, void *key
)
128 int ret
= default_wake_function(wait
, mode
, sync
, key
);
131 list_del_init(&wait
->task_list
);
134 EXPORT_SYMBOL(autoremove_wake_function
);
136 int wake_bit_function(wait_queue_t
*wait
, unsigned mode
, int sync
, void *arg
)
138 struct wait_bit_key
*key
= arg
;
139 struct wait_bit_queue
*wait_bit
140 = container_of(wait
, struct wait_bit_queue
, wait
);
142 if (wait_bit
->key
.flags
!= key
->flags
||
143 wait_bit
->key
.bit_nr
!= key
->bit_nr
||
144 test_bit(key
->bit_nr
, key
->flags
))
147 return autoremove_wake_function(wait
, mode
, sync
, key
);
149 EXPORT_SYMBOL(wake_bit_function
);
152 * To allow interruptible waiting and asynchronous (i.e. nonblocking)
153 * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are
154 * permitted return codes. Nonzero return codes halt waiting and return.
157 __wait_on_bit(wait_queue_head_t
*wq
, struct wait_bit_queue
*q
,
158 int (*action
)(void *), unsigned mode
)
163 prepare_to_wait(wq
, &q
->wait
, mode
);
164 if (test_bit(q
->key
.bit_nr
, q
->key
.flags
))
165 ret
= (*action
)(q
->key
.flags
);
166 } while (test_bit(q
->key
.bit_nr
, q
->key
.flags
) && !ret
);
167 finish_wait(wq
, &q
->wait
);
170 EXPORT_SYMBOL(__wait_on_bit
);
172 int __sched fastcall
out_of_line_wait_on_bit(void *word
, int bit
,
173 int (*action
)(void *), unsigned mode
)
175 wait_queue_head_t
*wq
= bit_waitqueue(word
, bit
);
176 DEFINE_WAIT_BIT(wait
, word
, bit
);
178 return __wait_on_bit(wq
, &wait
, action
, mode
);
180 EXPORT_SYMBOL(out_of_line_wait_on_bit
);
183 __wait_on_bit_lock(wait_queue_head_t
*wq
, struct wait_bit_queue
*q
,
184 int (*action
)(void *), unsigned mode
)
189 prepare_to_wait_exclusive(wq
, &q
->wait
, mode
);
190 if (test_bit(q
->key
.bit_nr
, q
->key
.flags
)) {
191 if ((ret
= (*action
)(q
->key
.flags
)))
194 } while (test_and_set_bit(q
->key
.bit_nr
, q
->key
.flags
));
195 finish_wait(wq
, &q
->wait
);
198 EXPORT_SYMBOL(__wait_on_bit_lock
);
200 int __sched fastcall
out_of_line_wait_on_bit_lock(void *word
, int bit
,
201 int (*action
)(void *), unsigned mode
)
203 wait_queue_head_t
*wq
= bit_waitqueue(word
, bit
);
204 DEFINE_WAIT_BIT(wait
, word
, bit
);
206 return __wait_on_bit_lock(wq
, &wait
, action
, mode
);
208 EXPORT_SYMBOL(out_of_line_wait_on_bit_lock
);
210 void fastcall
__wake_up_bit(wait_queue_head_t
*wq
, void *word
, int bit
)
212 struct wait_bit_key key
= __WAIT_BIT_KEY_INITIALIZER(word
, bit
);
213 if (waitqueue_active(wq
))
214 __wake_up(wq
, TASK_INTERRUPTIBLE
|TASK_UNINTERRUPTIBLE
, 1, &key
);
216 EXPORT_SYMBOL(__wake_up_bit
);
219 * wake_up_bit - wake up a waiter on a bit
220 * @word: the word being waited on, a kernel virtual address
221 * @bit: the bit of the word being waited on
223 * There is a standard hashed waitqueue table for generic use. This
224 * is the part of the hashtable's accessor API that wakes up waiters
225 * on a bit. For instance, if one were to have waiters on a bitflag,
226 * one would call wake_up_bit() after clearing the bit.
228 * In order for this to function properly, as it uses waitqueue_active()
229 * internally, some kind of memory barrier must be done prior to calling
230 * this. Typically, this will be smp_mb__after_clear_bit(), but in some
231 * cases where bitflags are manipulated non-atomically under a lock, one
232 * may need to use a less regular barrier, such fs/inode.c's smp_mb(),
233 * because spin_unlock() does not guarantee a memory barrier.
235 void fastcall
wake_up_bit(void *word
, int bit
)
237 __wake_up_bit(bit_waitqueue(word
, bit
), word
, bit
);
239 EXPORT_SYMBOL(wake_up_bit
);
241 fastcall wait_queue_head_t
*bit_waitqueue(void *word
, int bit
)
243 const int shift
= BITS_PER_LONG
== 32 ? 5 : 6;
244 const struct zone
*zone
= page_zone(virt_to_page(word
));
245 unsigned long val
= (unsigned long)word
<< shift
| bit
;
247 return &zone
->wait_table
[hash_long(val
, zone
->wait_table_bits
)];
249 EXPORT_SYMBOL(bit_waitqueue
);