2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
18 static const int cfq_quantum
= 4; /* max queue in one round of service */
19 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
20 static const int cfq_back_max
= 16 * 1024; /* maximum backwards seek, in KiB */
21 static const int cfq_back_penalty
= 2; /* penalty of a backwards seek */
23 static const int cfq_slice_sync
= HZ
/ 10;
24 static int cfq_slice_async
= HZ
/ 25;
25 static const int cfq_slice_async_rq
= 2;
26 static int cfq_slice_idle
= HZ
/ 125;
29 * offset from end of service tree
31 #define CFQ_IDLE_DELAY (HZ / 5)
34 * below this threshold, we consider thinktime immediate
36 #define CFQ_MIN_TT (2)
38 #define CFQ_SLICE_SCALE (5)
40 #define RQ_CIC(rq) ((struct cfq_io_context*)(rq)->elevator_private)
41 #define RQ_CFQQ(rq) ((rq)->elevator_private2)
43 static struct kmem_cache
*cfq_pool
;
44 static struct kmem_cache
*cfq_ioc_pool
;
46 static DEFINE_PER_CPU(unsigned long, ioc_count
);
47 static struct completion
*ioc_gone
;
49 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
50 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
51 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
56 #define sample_valid(samples) ((samples) > 80)
59 * Most of our rbtree usage is for sorting with min extraction, so
60 * if we cache the leftmost node we don't have to walk down the tree
61 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
62 * move this into the elevator for the rq sorting as well.
68 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
71 * Per block device queue structure
74 struct request_queue
*queue
;
77 * rr list of queues with requests and the count of them
79 struct cfq_rb_root service_tree
;
80 unsigned int busy_queues
;
87 * idle window management
89 struct timer_list idle_slice_timer
;
90 struct work_struct unplug_work
;
92 struct cfq_queue
*active_queue
;
93 struct cfq_io_context
*active_cic
;
96 * async queue for each priority case
98 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
99 struct cfq_queue
*async_idle_cfqq
;
101 sector_t last_position
;
102 unsigned long last_end_request
;
105 * tunables, see top of file
107 unsigned int cfq_quantum
;
108 unsigned int cfq_fifo_expire
[2];
109 unsigned int cfq_back_penalty
;
110 unsigned int cfq_back_max
;
111 unsigned int cfq_slice
[2];
112 unsigned int cfq_slice_async_rq
;
113 unsigned int cfq_slice_idle
;
115 struct list_head cic_list
;
119 * Per process-grouping structure
122 /* reference count */
124 /* parent cfq_data */
125 struct cfq_data
*cfqd
;
126 /* service_tree member */
127 struct rb_node rb_node
;
128 /* service_tree key */
129 unsigned long rb_key
;
130 /* sorted list of pending requests */
131 struct rb_root sort_list
;
132 /* if fifo isn't expired, next request to serve */
133 struct request
*next_rq
;
134 /* requests queued in sort_list */
136 /* currently allocated requests */
138 /* pending metadata requests */
140 /* fifo list of requests in sort_list */
141 struct list_head fifo
;
143 unsigned long slice_end
;
146 /* number of requests that are on the dispatch list or inside driver */
149 /* io prio of this group */
150 unsigned short ioprio
, org_ioprio
;
151 unsigned short ioprio_class
, org_ioprio_class
;
153 /* various state flags, see below */
157 enum cfqq_state_flags
{
158 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
159 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
160 CFQ_CFQQ_FLAG_must_alloc
, /* must be allowed rq alloc */
161 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
162 CFQ_CFQQ_FLAG_must_dispatch
, /* must dispatch, even if expired */
163 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
164 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
165 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
166 CFQ_CFQQ_FLAG_queue_new
, /* queue never been serviced */
167 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
168 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
171 #define CFQ_CFQQ_FNS(name) \
172 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
174 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
176 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
178 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
180 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
182 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
186 CFQ_CFQQ_FNS(wait_request
);
187 CFQ_CFQQ_FNS(must_alloc
);
188 CFQ_CFQQ_FNS(must_alloc_slice
);
189 CFQ_CFQQ_FNS(must_dispatch
);
190 CFQ_CFQQ_FNS(fifo_expire
);
191 CFQ_CFQQ_FNS(idle_window
);
192 CFQ_CFQQ_FNS(prio_changed
);
193 CFQ_CFQQ_FNS(queue_new
);
194 CFQ_CFQQ_FNS(slice_new
);
198 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
199 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*, int,
200 struct io_context
*, gfp_t
);
201 static struct cfq_io_context
*cfq_cic_lookup(struct cfq_data
*,
202 struct io_context
*);
204 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_context
*cic
,
207 return cic
->cfqq
[!!is_sync
];
210 static inline void cic_set_cfqq(struct cfq_io_context
*cic
,
211 struct cfq_queue
*cfqq
, int is_sync
)
213 cic
->cfqq
[!!is_sync
] = cfqq
;
217 * We regard a request as SYNC, if it's either a read or has the SYNC bit
218 * set (in which case it could also be direct WRITE).
220 static inline int cfq_bio_sync(struct bio
*bio
)
222 if (bio_data_dir(bio
) == READ
|| bio_sync(bio
))
229 * scheduler run of queue, if there are requests pending and no one in the
230 * driver that will restart queueing
232 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
234 if (cfqd
->busy_queues
)
235 kblockd_schedule_work(&cfqd
->unplug_work
);
238 static int cfq_queue_empty(struct request_queue
*q
)
240 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
242 return !cfqd
->busy_queues
;
246 * Scale schedule slice based on io priority. Use the sync time slice only
247 * if a queue is marked sync and has sync io queued. A sync queue with async
248 * io only, should not get full sync slice length.
250 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, int sync
,
253 const int base_slice
= cfqd
->cfq_slice
[sync
];
255 WARN_ON(prio
>= IOPRIO_BE_NR
);
257 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
261 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
263 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
267 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
269 cfqq
->slice_end
= cfq_prio_to_slice(cfqd
, cfqq
) + jiffies
;
273 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
274 * isn't valid until the first request from the dispatch is activated
275 * and the slice time set.
277 static inline int cfq_slice_used(struct cfq_queue
*cfqq
)
279 if (cfq_cfqq_slice_new(cfqq
))
281 if (time_before(jiffies
, cfqq
->slice_end
))
288 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
289 * We choose the request that is closest to the head right now. Distance
290 * behind the head is penalized and only allowed to a certain extent.
292 static struct request
*
293 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
)
295 sector_t last
, s1
, s2
, d1
= 0, d2
= 0;
296 unsigned long back_max
;
297 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
298 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
299 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
301 if (rq1
== NULL
|| rq1
== rq2
)
306 if (rq_is_sync(rq1
) && !rq_is_sync(rq2
))
308 else if (rq_is_sync(rq2
) && !rq_is_sync(rq1
))
310 if (rq_is_meta(rq1
) && !rq_is_meta(rq2
))
312 else if (rq_is_meta(rq2
) && !rq_is_meta(rq1
))
318 last
= cfqd
->last_position
;
321 * by definition, 1KiB is 2 sectors
323 back_max
= cfqd
->cfq_back_max
* 2;
326 * Strict one way elevator _except_ in the case where we allow
327 * short backward seeks which are biased as twice the cost of a
328 * similar forward seek.
332 else if (s1
+ back_max
>= last
)
333 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
335 wrap
|= CFQ_RQ1_WRAP
;
339 else if (s2
+ back_max
>= last
)
340 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
342 wrap
|= CFQ_RQ2_WRAP
;
344 /* Found required data */
347 * By doing switch() on the bit mask "wrap" we avoid having to
348 * check two variables for all permutations: --> faster!
351 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
367 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
370 * Since both rqs are wrapped,
371 * start with the one that's further behind head
372 * (--> only *one* back seek required),
373 * since back seek takes more time than forward.
383 * The below is leftmost cache rbtree addon
385 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
388 root
->left
= rb_first(&root
->rb
);
391 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
396 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
401 rb_erase(n
, &root
->rb
);
406 * would be nice to take fifo expire time into account as well
408 static struct request
*
409 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
410 struct request
*last
)
412 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
413 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
414 struct request
*next
= NULL
, *prev
= NULL
;
416 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
419 prev
= rb_entry_rq(rbprev
);
422 next
= rb_entry_rq(rbnext
);
424 rbnext
= rb_first(&cfqq
->sort_list
);
425 if (rbnext
&& rbnext
!= &last
->rb_node
)
426 next
= rb_entry_rq(rbnext
);
429 return cfq_choose_req(cfqd
, next
, prev
);
432 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
433 struct cfq_queue
*cfqq
)
436 * just an approximation, should be ok.
438 return (cfqd
->busy_queues
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
439 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
443 * The cfqd->service_tree holds all pending cfq_queue's that have
444 * requests waiting to be processed. It is sorted in the order that
445 * we will service the queues.
447 static void cfq_service_tree_add(struct cfq_data
*cfqd
,
448 struct cfq_queue
*cfqq
, int add_front
)
450 struct rb_node
**p
, *parent
;
451 struct cfq_queue
*__cfqq
;
452 unsigned long rb_key
;
455 if (cfq_class_idle(cfqq
)) {
456 rb_key
= CFQ_IDLE_DELAY
;
457 parent
= rb_last(&cfqd
->service_tree
.rb
);
458 if (parent
&& parent
!= &cfqq
->rb_node
) {
459 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
460 rb_key
+= __cfqq
->rb_key
;
463 } else if (!add_front
) {
464 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
465 rb_key
+= cfqq
->slice_resid
;
466 cfqq
->slice_resid
= 0;
470 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
472 * same position, nothing more to do
474 if (rb_key
== cfqq
->rb_key
)
477 cfq_rb_erase(&cfqq
->rb_node
, &cfqd
->service_tree
);
482 p
= &cfqd
->service_tree
.rb
.rb_node
;
487 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
490 * sort RT queues first, we always want to give
491 * preference to them. IDLE queues goes to the back.
492 * after that, sort on the next service time.
494 if (cfq_class_rt(cfqq
) > cfq_class_rt(__cfqq
))
496 else if (cfq_class_rt(cfqq
) < cfq_class_rt(__cfqq
))
498 else if (cfq_class_idle(cfqq
) < cfq_class_idle(__cfqq
))
500 else if (cfq_class_idle(cfqq
) > cfq_class_idle(__cfqq
))
502 else if (rb_key
< __cfqq
->rb_key
)
507 if (n
== &(*p
)->rb_right
)
514 cfqd
->service_tree
.left
= &cfqq
->rb_node
;
516 cfqq
->rb_key
= rb_key
;
517 rb_link_node(&cfqq
->rb_node
, parent
, p
);
518 rb_insert_color(&cfqq
->rb_node
, &cfqd
->service_tree
.rb
);
522 * Update cfqq's position in the service tree.
524 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
527 * Resorting requires the cfqq to be on the RR list already.
529 if (cfq_cfqq_on_rr(cfqq
))
530 cfq_service_tree_add(cfqd
, cfqq
, 0);
534 * add to busy list of queues for service, trying to be fair in ordering
535 * the pending list according to last request service
537 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
539 BUG_ON(cfq_cfqq_on_rr(cfqq
));
540 cfq_mark_cfqq_on_rr(cfqq
);
543 cfq_resort_rr_list(cfqd
, cfqq
);
547 * Called when the cfqq no longer has requests pending, remove it from
550 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
552 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
553 cfq_clear_cfqq_on_rr(cfqq
);
555 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
556 cfq_rb_erase(&cfqq
->rb_node
, &cfqd
->service_tree
);
558 BUG_ON(!cfqd
->busy_queues
);
563 * rb tree support functions
565 static void cfq_del_rq_rb(struct request
*rq
)
567 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
568 struct cfq_data
*cfqd
= cfqq
->cfqd
;
569 const int sync
= rq_is_sync(rq
);
571 BUG_ON(!cfqq
->queued
[sync
]);
572 cfqq
->queued
[sync
]--;
574 elv_rb_del(&cfqq
->sort_list
, rq
);
576 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
577 cfq_del_cfqq_rr(cfqd
, cfqq
);
580 static void cfq_add_rq_rb(struct request
*rq
)
582 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
583 struct cfq_data
*cfqd
= cfqq
->cfqd
;
584 struct request
*__alias
;
586 cfqq
->queued
[rq_is_sync(rq
)]++;
589 * looks a little odd, but the first insert might return an alias.
590 * if that happens, put the alias on the dispatch list
592 while ((__alias
= elv_rb_add(&cfqq
->sort_list
, rq
)) != NULL
)
593 cfq_dispatch_insert(cfqd
->queue
, __alias
);
595 if (!cfq_cfqq_on_rr(cfqq
))
596 cfq_add_cfqq_rr(cfqd
, cfqq
);
599 * check if this request is a better next-serve candidate
601 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
);
602 BUG_ON(!cfqq
->next_rq
);
605 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
607 elv_rb_del(&cfqq
->sort_list
, rq
);
608 cfqq
->queued
[rq_is_sync(rq
)]--;
612 static struct request
*
613 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
615 struct task_struct
*tsk
= current
;
616 struct cfq_io_context
*cic
;
617 struct cfq_queue
*cfqq
;
619 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
623 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
625 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
627 return elv_rb_find(&cfqq
->sort_list
, sector
);
633 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
635 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
637 cfqd
->rq_in_driver
++;
640 * If the depth is larger 1, it really could be queueing. But lets
641 * make the mark a little higher - idling could still be good for
642 * low queueing, and a low queueing number could also just indicate
643 * a SCSI mid layer like behaviour where limit+1 is often seen.
645 if (!cfqd
->hw_tag
&& cfqd
->rq_in_driver
> 4)
648 cfqd
->last_position
= rq
->hard_sector
+ rq
->hard_nr_sectors
;
651 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
653 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
655 WARN_ON(!cfqd
->rq_in_driver
);
656 cfqd
->rq_in_driver
--;
659 static void cfq_remove_request(struct request
*rq
)
661 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
663 if (cfqq
->next_rq
== rq
)
664 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
666 list_del_init(&rq
->queuelist
);
669 if (rq_is_meta(rq
)) {
670 WARN_ON(!cfqq
->meta_pending
);
671 cfqq
->meta_pending
--;
675 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
678 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
679 struct request
*__rq
;
681 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
682 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
684 return ELEVATOR_FRONT_MERGE
;
687 return ELEVATOR_NO_MERGE
;
690 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
693 if (type
== ELEVATOR_FRONT_MERGE
) {
694 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
696 cfq_reposition_rq_rb(cfqq
, req
);
701 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
702 struct request
*next
)
705 * reposition in fifo if next is older than rq
707 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
708 time_before(next
->start_time
, rq
->start_time
))
709 list_move(&rq
->queuelist
, &next
->queuelist
);
711 cfq_remove_request(next
);
714 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
717 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
718 struct cfq_io_context
*cic
;
719 struct cfq_queue
*cfqq
;
722 * Disallow merge of a sync bio into an async request.
724 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
728 * Lookup the cfqq that this bio will be queued with. Allow
729 * merge only if rq is queued there.
731 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
735 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
736 if (cfqq
== RQ_CFQQ(rq
))
742 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
743 struct cfq_queue
*cfqq
)
747 cfq_clear_cfqq_must_alloc_slice(cfqq
);
748 cfq_clear_cfqq_fifo_expire(cfqq
);
749 cfq_mark_cfqq_slice_new(cfqq
);
750 cfq_clear_cfqq_queue_new(cfqq
);
753 cfqd
->active_queue
= cfqq
;
757 * current cfqq expired its slice (or was too idle), select new one
760 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
763 if (cfq_cfqq_wait_request(cfqq
))
764 del_timer(&cfqd
->idle_slice_timer
);
766 cfq_clear_cfqq_must_dispatch(cfqq
);
767 cfq_clear_cfqq_wait_request(cfqq
);
770 * store what was left of this slice, if the queue idled/timed out
772 if (timed_out
&& !cfq_cfqq_slice_new(cfqq
))
773 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
775 cfq_resort_rr_list(cfqd
, cfqq
);
777 if (cfqq
== cfqd
->active_queue
)
778 cfqd
->active_queue
= NULL
;
780 if (cfqd
->active_cic
) {
781 put_io_context(cfqd
->active_cic
->ioc
);
782 cfqd
->active_cic
= NULL
;
786 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, int timed_out
)
788 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
791 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
795 * Get next queue for service. Unless we have a queue preemption,
796 * we'll simply select the first cfqq in the service tree.
798 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
800 if (RB_EMPTY_ROOT(&cfqd
->service_tree
.rb
))
803 return cfq_rb_first(&cfqd
->service_tree
);
807 * Get and set a new active queue for service.
809 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
)
811 struct cfq_queue
*cfqq
;
813 cfqq
= cfq_get_next_queue(cfqd
);
814 __cfq_set_active_queue(cfqd
, cfqq
);
818 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
821 if (rq
->sector
>= cfqd
->last_position
)
822 return rq
->sector
- cfqd
->last_position
;
824 return cfqd
->last_position
- rq
->sector
;
827 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct request
*rq
)
829 struct cfq_io_context
*cic
= cfqd
->active_cic
;
831 if (!sample_valid(cic
->seek_samples
))
834 return cfq_dist_from_last(cfqd
, rq
) <= cic
->seek_mean
;
837 static int cfq_close_cooperator(struct cfq_data
*cfq_data
,
838 struct cfq_queue
*cfqq
)
841 * We should notice if some of the queues are cooperating, eg
842 * working closely on the same area of the disk. In that case,
843 * we can group them together and don't waste time idling.
848 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
850 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
852 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
853 struct cfq_io_context
*cic
;
856 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
857 WARN_ON(cfq_cfqq_slice_new(cfqq
));
860 * idle is disabled, either manually or by past process history
862 if (!cfqd
->cfq_slice_idle
|| !cfq_cfqq_idle_window(cfqq
))
866 * task has exited, don't wait
868 cic
= cfqd
->active_cic
;
869 if (!cic
|| !atomic_read(&cic
->ioc
->nr_tasks
))
873 * See if this prio level has a good candidate
875 if (cfq_close_cooperator(cfqd
, cfqq
) &&
876 (sample_valid(cic
->ttime_samples
) && cic
->ttime_mean
> 2))
879 cfq_mark_cfqq_must_dispatch(cfqq
);
880 cfq_mark_cfqq_wait_request(cfqq
);
883 * we don't want to idle for seeks, but we do want to allow
884 * fair distribution of slice time for a process doing back-to-back
885 * seeks. so allow a little bit of time for him to submit a new rq
887 sl
= cfqd
->cfq_slice_idle
;
888 if (sample_valid(cic
->seek_samples
) && CIC_SEEKY(cic
))
889 sl
= min(sl
, msecs_to_jiffies(CFQ_MIN_TT
));
891 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
895 * Move request from internal lists to the request queue dispatch list.
897 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
899 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
900 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
902 cfq_remove_request(rq
);
904 elv_dispatch_sort(q
, rq
);
906 if (cfq_cfqq_sync(cfqq
))
911 * return expired entry, or NULL to just start from scratch in rbtree
913 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
915 struct cfq_data
*cfqd
= cfqq
->cfqd
;
919 if (cfq_cfqq_fifo_expire(cfqq
))
922 cfq_mark_cfqq_fifo_expire(cfqq
);
924 if (list_empty(&cfqq
->fifo
))
927 fifo
= cfq_cfqq_sync(cfqq
);
928 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
930 if (time_before(jiffies
, rq
->start_time
+ cfqd
->cfq_fifo_expire
[fifo
]))
937 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
939 const int base_rq
= cfqd
->cfq_slice_async_rq
;
941 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
943 return 2 * (base_rq
+ base_rq
* (CFQ_PRIO_LISTS
- 1 - cfqq
->ioprio
));
947 * Select a queue for service. If we have a current active queue,
948 * check whether to continue servicing it, or retrieve and set a new one.
950 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
952 struct cfq_queue
*cfqq
;
954 cfqq
= cfqd
->active_queue
;
959 * The active queue has run out of time, expire it and select new.
961 if (cfq_slice_used(cfqq
))
965 * The active queue has requests and isn't expired, allow it to
968 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
972 * No requests pending. If the active queue still has requests in
973 * flight or is idling for a new request, allow either of these
974 * conditions to happen (or time out) before selecting a new queue.
976 if (timer_pending(&cfqd
->idle_slice_timer
) ||
977 (cfqq
->dispatched
&& cfq_cfqq_idle_window(cfqq
))) {
983 cfq_slice_expired(cfqd
, 0);
985 cfqq
= cfq_set_active_queue(cfqd
);
991 * Dispatch some requests from cfqq, moving them to the request queue
995 __cfq_dispatch_requests(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1000 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
1006 * follow expired path, else get first next available
1008 if ((rq
= cfq_check_fifo(cfqq
)) == NULL
)
1012 * finally, insert request into driver dispatch list
1014 cfq_dispatch_insert(cfqd
->queue
, rq
);
1018 if (!cfqd
->active_cic
) {
1019 atomic_inc(&RQ_CIC(rq
)->ioc
->refcount
);
1020 cfqd
->active_cic
= RQ_CIC(rq
);
1023 if (RB_EMPTY_ROOT(&cfqq
->sort_list
))
1026 } while (dispatched
< max_dispatch
);
1029 * expire an async queue immediately if it has used up its slice. idle
1030 * queue always expire after 1 dispatch round.
1032 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
1033 dispatched
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
1034 cfq_class_idle(cfqq
))) {
1035 cfqq
->slice_end
= jiffies
+ 1;
1036 cfq_slice_expired(cfqd
, 0);
1042 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
1046 while (cfqq
->next_rq
) {
1047 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
1051 BUG_ON(!list_empty(&cfqq
->fifo
));
1056 * Drain our current requests. Used for barriers and when switching
1057 * io schedulers on-the-fly.
1059 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
1061 struct cfq_queue
*cfqq
;
1064 while ((cfqq
= cfq_rb_first(&cfqd
->service_tree
)) != NULL
)
1065 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
1067 cfq_slice_expired(cfqd
, 0);
1069 BUG_ON(cfqd
->busy_queues
);
1074 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
1076 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1077 struct cfq_queue
*cfqq
;
1080 if (!cfqd
->busy_queues
)
1083 if (unlikely(force
))
1084 return cfq_forced_dispatch(cfqd
);
1087 while ((cfqq
= cfq_select_queue(cfqd
)) != NULL
) {
1090 max_dispatch
= cfqd
->cfq_quantum
;
1091 if (cfq_class_idle(cfqq
))
1094 if (cfqq
->dispatched
>= max_dispatch
) {
1095 if (cfqd
->busy_queues
> 1)
1097 if (cfqq
->dispatched
>= 4 * max_dispatch
)
1101 if (cfqd
->sync_flight
&& !cfq_cfqq_sync(cfqq
))
1104 cfq_clear_cfqq_must_dispatch(cfqq
);
1105 cfq_clear_cfqq_wait_request(cfqq
);
1106 del_timer(&cfqd
->idle_slice_timer
);
1108 dispatched
+= __cfq_dispatch_requests(cfqd
, cfqq
, max_dispatch
);
1115 * task holds one reference to the queue, dropped when task exits. each rq
1116 * in-flight on this queue also holds a reference, dropped when rq is freed.
1118 * queue lock must be held here.
1120 static void cfq_put_queue(struct cfq_queue
*cfqq
)
1122 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1124 BUG_ON(atomic_read(&cfqq
->ref
) <= 0);
1126 if (!atomic_dec_and_test(&cfqq
->ref
))
1129 BUG_ON(rb_first(&cfqq
->sort_list
));
1130 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
1131 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1133 if (unlikely(cfqd
->active_queue
== cfqq
)) {
1134 __cfq_slice_expired(cfqd
, cfqq
, 0);
1135 cfq_schedule_dispatch(cfqd
);
1138 kmem_cache_free(cfq_pool
, cfqq
);
1142 * Call func for each cic attached to this ioc. Returns number of cic's seen.
1144 #define CIC_GANG_NR 16
1146 call_for_each_cic(struct io_context
*ioc
,
1147 void (*func
)(struct io_context
*, struct cfq_io_context
*))
1149 struct cfq_io_context
*cics
[CIC_GANG_NR
];
1150 unsigned long index
= 0;
1151 unsigned int called
= 0;
1160 * Perhaps there's a better way - this just gang lookups from
1161 * 0 to the end, restarting after each CIC_GANG_NR from the
1164 nr
= radix_tree_gang_lookup(&ioc
->radix_root
, (void **) cics
,
1165 index
, CIC_GANG_NR
);
1170 index
= 1 + (unsigned long) cics
[nr
- 1]->key
;
1172 for (i
= 0; i
< nr
; i
++)
1174 } while (nr
== CIC_GANG_NR
);
1181 static void cic_free_func(struct io_context
*ioc
, struct cfq_io_context
*cic
)
1183 unsigned long flags
;
1185 BUG_ON(!cic
->dead_key
);
1187 spin_lock_irqsave(&ioc
->lock
, flags
);
1188 radix_tree_delete(&ioc
->radix_root
, cic
->dead_key
);
1189 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1191 kmem_cache_free(cfq_ioc_pool
, cic
);
1194 static void cfq_free_io_context(struct io_context
*ioc
)
1199 * ioc->refcount is zero here, so no more cic's are allowed to be
1200 * linked into this ioc. So it should be ok to iterate over the known
1201 * list, we will see all cic's since no new ones are added.
1203 freed
= call_for_each_cic(ioc
, cic_free_func
);
1205 elv_ioc_count_mod(ioc_count
, -freed
);
1207 if (ioc_gone
&& !elv_ioc_count_read(ioc_count
))
1211 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1213 if (unlikely(cfqq
== cfqd
->active_queue
)) {
1214 __cfq_slice_expired(cfqd
, cfqq
, 0);
1215 cfq_schedule_dispatch(cfqd
);
1218 cfq_put_queue(cfqq
);
1221 static void __cfq_exit_single_io_context(struct cfq_data
*cfqd
,
1222 struct cfq_io_context
*cic
)
1224 list_del_init(&cic
->queue_list
);
1227 * Make sure key == NULL is seen for dead queues
1230 cic
->dead_key
= (unsigned long) cic
->key
;
1233 if (cic
->cfqq
[ASYNC
]) {
1234 cfq_exit_cfqq(cfqd
, cic
->cfqq
[ASYNC
]);
1235 cic
->cfqq
[ASYNC
] = NULL
;
1238 if (cic
->cfqq
[SYNC
]) {
1239 cfq_exit_cfqq(cfqd
, cic
->cfqq
[SYNC
]);
1240 cic
->cfqq
[SYNC
] = NULL
;
1244 static void cfq_exit_single_io_context(struct io_context
*ioc
,
1245 struct cfq_io_context
*cic
)
1247 struct cfq_data
*cfqd
= cic
->key
;
1250 struct request_queue
*q
= cfqd
->queue
;
1251 unsigned long flags
;
1253 spin_lock_irqsave(q
->queue_lock
, flags
);
1254 __cfq_exit_single_io_context(cfqd
, cic
);
1255 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1260 * The process that ioc belongs to has exited, we need to clean up
1261 * and put the internal structures we have that belongs to that process.
1263 static void cfq_exit_io_context(struct io_context
*ioc
)
1265 rcu_assign_pointer(ioc
->ioc_data
, NULL
);
1266 call_for_each_cic(ioc
, cfq_exit_single_io_context
);
1269 static struct cfq_io_context
*
1270 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1272 struct cfq_io_context
*cic
;
1274 cic
= kmem_cache_alloc_node(cfq_ioc_pool
, gfp_mask
| __GFP_ZERO
,
1277 cic
->last_end_request
= jiffies
;
1278 INIT_LIST_HEAD(&cic
->queue_list
);
1279 cic
->dtor
= cfq_free_io_context
;
1280 cic
->exit
= cfq_exit_io_context
;
1281 elv_ioc_count_inc(ioc_count
);
1287 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct io_context
*ioc
)
1289 struct task_struct
*tsk
= current
;
1292 if (!cfq_cfqq_prio_changed(cfqq
))
1295 ioprio_class
= IOPRIO_PRIO_CLASS(ioc
->ioprio
);
1296 switch (ioprio_class
) {
1298 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
1299 case IOPRIO_CLASS_NONE
:
1301 * no prio set, place us in the middle of the BE classes
1303 cfqq
->ioprio
= task_nice_ioprio(tsk
);
1304 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1306 case IOPRIO_CLASS_RT
:
1307 cfqq
->ioprio
= task_ioprio(ioc
);
1308 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
1310 case IOPRIO_CLASS_BE
:
1311 cfqq
->ioprio
= task_ioprio(ioc
);
1312 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1314 case IOPRIO_CLASS_IDLE
:
1315 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
1317 cfq_clear_cfqq_idle_window(cfqq
);
1322 * keep track of original prio settings in case we have to temporarily
1323 * elevate the priority of this queue
1325 cfqq
->org_ioprio
= cfqq
->ioprio
;
1326 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
1327 cfq_clear_cfqq_prio_changed(cfqq
);
1330 static void changed_ioprio(struct io_context
*ioc
, struct cfq_io_context
*cic
)
1332 struct cfq_data
*cfqd
= cic
->key
;
1333 struct cfq_queue
*cfqq
;
1334 unsigned long flags
;
1336 if (unlikely(!cfqd
))
1339 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1341 cfqq
= cic
->cfqq
[ASYNC
];
1343 struct cfq_queue
*new_cfqq
;
1344 new_cfqq
= cfq_get_queue(cfqd
, ASYNC
, cic
->ioc
, GFP_ATOMIC
);
1346 cic
->cfqq
[ASYNC
] = new_cfqq
;
1347 cfq_put_queue(cfqq
);
1351 cfqq
= cic
->cfqq
[SYNC
];
1353 cfq_mark_cfqq_prio_changed(cfqq
);
1355 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1358 static void cfq_ioc_set_ioprio(struct io_context
*ioc
)
1360 call_for_each_cic(ioc
, changed_ioprio
);
1361 ioc
->ioprio_changed
= 0;
1364 static struct cfq_queue
*
1365 cfq_find_alloc_queue(struct cfq_data
*cfqd
, int is_sync
,
1366 struct io_context
*ioc
, gfp_t gfp_mask
)
1368 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
1369 struct cfq_io_context
*cic
;
1372 cic
= cfq_cic_lookup(cfqd
, ioc
);
1373 /* cic always exists here */
1374 cfqq
= cic_to_cfqq(cic
, is_sync
);
1380 } else if (gfp_mask
& __GFP_WAIT
) {
1382 * Inform the allocator of the fact that we will
1383 * just repeat this allocation if it fails, to allow
1384 * the allocator to do whatever it needs to attempt to
1387 spin_unlock_irq(cfqd
->queue
->queue_lock
);
1388 new_cfqq
= kmem_cache_alloc_node(cfq_pool
,
1389 gfp_mask
| __GFP_NOFAIL
| __GFP_ZERO
,
1391 spin_lock_irq(cfqd
->queue
->queue_lock
);
1394 cfqq
= kmem_cache_alloc_node(cfq_pool
,
1395 gfp_mask
| __GFP_ZERO
,
1401 RB_CLEAR_NODE(&cfqq
->rb_node
);
1402 INIT_LIST_HEAD(&cfqq
->fifo
);
1404 atomic_set(&cfqq
->ref
, 0);
1407 cfq_mark_cfqq_prio_changed(cfqq
);
1408 cfq_mark_cfqq_queue_new(cfqq
);
1410 cfq_init_prio_data(cfqq
, ioc
);
1413 if (!cfq_class_idle(cfqq
))
1414 cfq_mark_cfqq_idle_window(cfqq
);
1415 cfq_mark_cfqq_sync(cfqq
);
1420 kmem_cache_free(cfq_pool
, new_cfqq
);
1423 WARN_ON((gfp_mask
& __GFP_WAIT
) && !cfqq
);
1427 static struct cfq_queue
**
1428 cfq_async_queue_prio(struct cfq_data
*cfqd
, int ioprio_class
, int ioprio
)
1430 switch(ioprio_class
) {
1431 case IOPRIO_CLASS_RT
:
1432 return &cfqd
->async_cfqq
[0][ioprio
];
1433 case IOPRIO_CLASS_BE
:
1434 return &cfqd
->async_cfqq
[1][ioprio
];
1435 case IOPRIO_CLASS_IDLE
:
1436 return &cfqd
->async_idle_cfqq
;
1442 static struct cfq_queue
*
1443 cfq_get_queue(struct cfq_data
*cfqd
, int is_sync
, struct io_context
*ioc
,
1446 const int ioprio
= task_ioprio(ioc
);
1447 const int ioprio_class
= task_ioprio_class(ioc
);
1448 struct cfq_queue
**async_cfqq
= NULL
;
1449 struct cfq_queue
*cfqq
= NULL
;
1452 async_cfqq
= cfq_async_queue_prio(cfqd
, ioprio_class
, ioprio
);
1457 cfqq
= cfq_find_alloc_queue(cfqd
, is_sync
, ioc
, gfp_mask
);
1463 * pin the queue now that it's allocated, scheduler exit will prune it
1465 if (!is_sync
&& !(*async_cfqq
)) {
1466 atomic_inc(&cfqq
->ref
);
1470 atomic_inc(&cfqq
->ref
);
1474 static void cfq_cic_free(struct cfq_io_context
*cic
)
1476 kmem_cache_free(cfq_ioc_pool
, cic
);
1477 elv_ioc_count_dec(ioc_count
);
1479 if (ioc_gone
&& !elv_ioc_count_read(ioc_count
))
1484 * We drop cfq io contexts lazily, so we may find a dead one.
1487 cfq_drop_dead_cic(struct cfq_data
*cfqd
, struct io_context
*ioc
,
1488 struct cfq_io_context
*cic
)
1490 unsigned long flags
;
1492 WARN_ON(!list_empty(&cic
->queue_list
));
1494 spin_lock_irqsave(&ioc
->lock
, flags
);
1496 if (ioc
->ioc_data
== cic
)
1497 rcu_assign_pointer(ioc
->ioc_data
, NULL
);
1499 radix_tree_delete(&ioc
->radix_root
, (unsigned long) cfqd
);
1500 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1505 static struct cfq_io_context
*
1506 cfq_cic_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
1508 struct cfq_io_context
*cic
;
1515 * we maintain a last-hit cache, to avoid browsing over the tree
1517 cic
= rcu_dereference(ioc
->ioc_data
);
1518 if (cic
&& cic
->key
== cfqd
)
1523 cic
= radix_tree_lookup(&ioc
->radix_root
, (unsigned long) cfqd
);
1527 /* ->key must be copied to avoid race with cfq_exit_queue() */
1530 cfq_drop_dead_cic(cfqd
, ioc
, cic
);
1534 rcu_assign_pointer(ioc
->ioc_data
, cic
);
1542 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1543 * the process specific cfq io context when entered from the block layer.
1544 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1546 static int cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
1547 struct cfq_io_context
*cic
, gfp_t gfp_mask
)
1549 unsigned long flags
;
1552 ret
= radix_tree_preload(gfp_mask
);
1557 spin_lock_irqsave(&ioc
->lock
, flags
);
1558 ret
= radix_tree_insert(&ioc
->radix_root
,
1559 (unsigned long) cfqd
, cic
);
1560 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1562 radix_tree_preload_end();
1565 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1566 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
1567 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1572 printk(KERN_ERR
"cfq: cic link failed!\n");
1578 * Setup general io context and cfq io context. There can be several cfq
1579 * io contexts per general io context, if this process is doing io to more
1580 * than one device managed by cfq.
1582 static struct cfq_io_context
*
1583 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1585 struct io_context
*ioc
= NULL
;
1586 struct cfq_io_context
*cic
;
1588 might_sleep_if(gfp_mask
& __GFP_WAIT
);
1590 ioc
= get_io_context(gfp_mask
, cfqd
->queue
->node
);
1594 cic
= cfq_cic_lookup(cfqd
, ioc
);
1598 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
1602 if (cfq_cic_link(cfqd
, ioc
, cic
, gfp_mask
))
1606 smp_read_barrier_depends();
1607 if (unlikely(ioc
->ioprio_changed
))
1608 cfq_ioc_set_ioprio(ioc
);
1614 put_io_context(ioc
);
1619 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
1621 unsigned long elapsed
= jiffies
- cic
->last_end_request
;
1622 unsigned long ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
1624 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
1625 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
1626 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
1630 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
,
1636 if (cic
->last_request_pos
< rq
->sector
)
1637 sdist
= rq
->sector
- cic
->last_request_pos
;
1639 sdist
= cic
->last_request_pos
- rq
->sector
;
1642 * Don't allow the seek distance to get too large from the
1643 * odd fragment, pagein, etc
1645 if (cic
->seek_samples
<= 60) /* second&third seek */
1646 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*1024);
1648 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*64);
1650 cic
->seek_samples
= (7*cic
->seek_samples
+ 256) / 8;
1651 cic
->seek_total
= (7*cic
->seek_total
+ (u64
)256*sdist
) / 8;
1652 total
= cic
->seek_total
+ (cic
->seek_samples
/2);
1653 do_div(total
, cic
->seek_samples
);
1654 cic
->seek_mean
= (sector_t
)total
;
1658 * Disable idle window if the process thinks too long or seeks so much that
1662 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1663 struct cfq_io_context
*cic
)
1668 * Don't idle for async or idle io prio class
1670 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
1673 enable_idle
= cfq_cfqq_idle_window(cfqq
);
1675 if (!atomic_read(&cic
->ioc
->nr_tasks
) || !cfqd
->cfq_slice_idle
||
1676 (cfqd
->hw_tag
&& CIC_SEEKY(cic
)))
1678 else if (sample_valid(cic
->ttime_samples
)) {
1679 if (cic
->ttime_mean
> cfqd
->cfq_slice_idle
)
1686 cfq_mark_cfqq_idle_window(cfqq
);
1688 cfq_clear_cfqq_idle_window(cfqq
);
1692 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1693 * no or if we aren't sure, a 1 will cause a preempt.
1696 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
1699 struct cfq_queue
*cfqq
;
1701 cfqq
= cfqd
->active_queue
;
1705 if (cfq_slice_used(cfqq
))
1708 if (cfq_class_idle(new_cfqq
))
1711 if (cfq_class_idle(cfqq
))
1715 * if the new request is sync, but the currently running queue is
1716 * not, let the sync request have priority.
1718 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
1722 * So both queues are sync. Let the new request get disk time if
1723 * it's a metadata request and the current queue is doing regular IO.
1725 if (rq_is_meta(rq
) && !cfqq
->meta_pending
)
1728 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
1732 * if this request is as-good as one we would expect from the
1733 * current cfqq, let it preempt
1735 if (cfq_rq_close(cfqd
, rq
))
1742 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1743 * let it have half of its nominal slice.
1745 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1747 cfq_slice_expired(cfqd
, 1);
1750 * Put the new queue at the front of the of the current list,
1751 * so we know that it will be selected next.
1753 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
1755 cfq_service_tree_add(cfqd
, cfqq
, 1);
1757 cfqq
->slice_end
= 0;
1758 cfq_mark_cfqq_slice_new(cfqq
);
1762 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1763 * something we should do about it
1766 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1769 struct cfq_io_context
*cic
= RQ_CIC(rq
);
1772 cfqq
->meta_pending
++;
1774 cfq_update_io_thinktime(cfqd
, cic
);
1775 cfq_update_io_seektime(cfqd
, cic
, rq
);
1776 cfq_update_idle_window(cfqd
, cfqq
, cic
);
1778 cic
->last_request_pos
= rq
->sector
+ rq
->nr_sectors
;
1780 if (cfqq
== cfqd
->active_queue
) {
1782 * if we are waiting for a request for this queue, let it rip
1783 * immediately and flag that we must not expire this queue
1786 if (cfq_cfqq_wait_request(cfqq
)) {
1787 cfq_mark_cfqq_must_dispatch(cfqq
);
1788 del_timer(&cfqd
->idle_slice_timer
);
1789 blk_start_queueing(cfqd
->queue
);
1791 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
1793 * not the active queue - expire current slice if it is
1794 * idle and has expired it's mean thinktime or this new queue
1795 * has some old slice time left and is of higher priority
1797 cfq_preempt_queue(cfqd
, cfqq
);
1798 cfq_mark_cfqq_must_dispatch(cfqq
);
1799 blk_start_queueing(cfqd
->queue
);
1803 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
1805 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1806 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1808 cfq_init_prio_data(cfqq
, RQ_CIC(rq
)->ioc
);
1812 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
1814 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
1817 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
1819 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1820 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1821 const int sync
= rq_is_sync(rq
);
1826 WARN_ON(!cfqd
->rq_in_driver
);
1827 WARN_ON(!cfqq
->dispatched
);
1828 cfqd
->rq_in_driver
--;
1831 if (cfq_cfqq_sync(cfqq
))
1832 cfqd
->sync_flight
--;
1834 if (!cfq_class_idle(cfqq
))
1835 cfqd
->last_end_request
= now
;
1838 RQ_CIC(rq
)->last_end_request
= now
;
1841 * If this is the active queue, check if it needs to be expired,
1842 * or if we want to idle in case it has no pending requests.
1844 if (cfqd
->active_queue
== cfqq
) {
1845 if (cfq_cfqq_slice_new(cfqq
)) {
1846 cfq_set_prio_slice(cfqd
, cfqq
);
1847 cfq_clear_cfqq_slice_new(cfqq
);
1849 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
1850 cfq_slice_expired(cfqd
, 1);
1851 else if (sync
&& RB_EMPTY_ROOT(&cfqq
->sort_list
))
1852 cfq_arm_slice_timer(cfqd
);
1855 if (!cfqd
->rq_in_driver
)
1856 cfq_schedule_dispatch(cfqd
);
1860 * we temporarily boost lower priority queues if they are holding fs exclusive
1861 * resources. they are boosted to normal prio (CLASS_BE/4)
1863 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
1865 if (has_fs_excl()) {
1867 * boost idle prio on transactions that would lock out other
1868 * users of the filesystem
1870 if (cfq_class_idle(cfqq
))
1871 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1872 if (cfqq
->ioprio
> IOPRIO_NORM
)
1873 cfqq
->ioprio
= IOPRIO_NORM
;
1876 * check if we need to unboost the queue
1878 if (cfqq
->ioprio_class
!= cfqq
->org_ioprio_class
)
1879 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
1880 if (cfqq
->ioprio
!= cfqq
->org_ioprio
)
1881 cfqq
->ioprio
= cfqq
->org_ioprio
;
1885 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
1887 if ((cfq_cfqq_wait_request(cfqq
) || cfq_cfqq_must_alloc(cfqq
)) &&
1888 !cfq_cfqq_must_alloc_slice(cfqq
)) {
1889 cfq_mark_cfqq_must_alloc_slice(cfqq
);
1890 return ELV_MQUEUE_MUST
;
1893 return ELV_MQUEUE_MAY
;
1896 static int cfq_may_queue(struct request_queue
*q
, int rw
)
1898 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1899 struct task_struct
*tsk
= current
;
1900 struct cfq_io_context
*cic
;
1901 struct cfq_queue
*cfqq
;
1904 * don't force setup of a queue from here, as a call to may_queue
1905 * does not necessarily imply that a request actually will be queued.
1906 * so just lookup a possibly existing queue, or return 'may queue'
1909 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
1911 return ELV_MQUEUE_MAY
;
1913 cfqq
= cic_to_cfqq(cic
, rw
& REQ_RW_SYNC
);
1915 cfq_init_prio_data(cfqq
, cic
->ioc
);
1916 cfq_prio_boost(cfqq
);
1918 return __cfq_may_queue(cfqq
);
1921 return ELV_MQUEUE_MAY
;
1925 * queue lock held here
1927 static void cfq_put_request(struct request
*rq
)
1929 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1932 const int rw
= rq_data_dir(rq
);
1934 BUG_ON(!cfqq
->allocated
[rw
]);
1935 cfqq
->allocated
[rw
]--;
1937 put_io_context(RQ_CIC(rq
)->ioc
);
1939 rq
->elevator_private
= NULL
;
1940 rq
->elevator_private2
= NULL
;
1942 cfq_put_queue(cfqq
);
1947 * Allocate cfq data structures associated with this request.
1950 cfq_set_request(struct request_queue
*q
, struct request
*rq
, gfp_t gfp_mask
)
1952 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1953 struct cfq_io_context
*cic
;
1954 const int rw
= rq_data_dir(rq
);
1955 const int is_sync
= rq_is_sync(rq
);
1956 struct cfq_queue
*cfqq
;
1957 unsigned long flags
;
1959 might_sleep_if(gfp_mask
& __GFP_WAIT
);
1961 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
1963 spin_lock_irqsave(q
->queue_lock
, flags
);
1968 cfqq
= cic_to_cfqq(cic
, is_sync
);
1970 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
->ioc
, gfp_mask
);
1975 cic_set_cfqq(cic
, cfqq
, is_sync
);
1978 cfqq
->allocated
[rw
]++;
1979 cfq_clear_cfqq_must_alloc(cfqq
);
1980 atomic_inc(&cfqq
->ref
);
1982 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1984 rq
->elevator_private
= cic
;
1985 rq
->elevator_private2
= cfqq
;
1990 put_io_context(cic
->ioc
);
1992 cfq_schedule_dispatch(cfqd
);
1993 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1997 static void cfq_kick_queue(struct work_struct
*work
)
1999 struct cfq_data
*cfqd
=
2000 container_of(work
, struct cfq_data
, unplug_work
);
2001 struct request_queue
*q
= cfqd
->queue
;
2002 unsigned long flags
;
2004 spin_lock_irqsave(q
->queue_lock
, flags
);
2005 blk_start_queueing(q
);
2006 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2010 * Timer running if the active_queue is currently idling inside its time slice
2012 static void cfq_idle_slice_timer(unsigned long data
)
2014 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
2015 struct cfq_queue
*cfqq
;
2016 unsigned long flags
;
2019 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2021 if ((cfqq
= cfqd
->active_queue
) != NULL
) {
2027 if (cfq_slice_used(cfqq
))
2031 * only expire and reinvoke request handler, if there are
2032 * other queues with pending requests
2034 if (!cfqd
->busy_queues
)
2038 * not expired and it has a request pending, let it dispatch
2040 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
2041 cfq_mark_cfqq_must_dispatch(cfqq
);
2046 cfq_slice_expired(cfqd
, timed_out
);
2048 cfq_schedule_dispatch(cfqd
);
2050 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2053 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
2055 del_timer_sync(&cfqd
->idle_slice_timer
);
2056 kblockd_flush_work(&cfqd
->unplug_work
);
2059 static void cfq_put_async_queues(struct cfq_data
*cfqd
)
2063 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
2064 if (cfqd
->async_cfqq
[0][i
])
2065 cfq_put_queue(cfqd
->async_cfqq
[0][i
]);
2066 if (cfqd
->async_cfqq
[1][i
])
2067 cfq_put_queue(cfqd
->async_cfqq
[1][i
]);
2070 if (cfqd
->async_idle_cfqq
)
2071 cfq_put_queue(cfqd
->async_idle_cfqq
);
2074 static void cfq_exit_queue(elevator_t
*e
)
2076 struct cfq_data
*cfqd
= e
->elevator_data
;
2077 struct request_queue
*q
= cfqd
->queue
;
2079 cfq_shutdown_timer_wq(cfqd
);
2081 spin_lock_irq(q
->queue_lock
);
2083 if (cfqd
->active_queue
)
2084 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
2086 while (!list_empty(&cfqd
->cic_list
)) {
2087 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
2088 struct cfq_io_context
,
2091 __cfq_exit_single_io_context(cfqd
, cic
);
2094 cfq_put_async_queues(cfqd
);
2096 spin_unlock_irq(q
->queue_lock
);
2098 cfq_shutdown_timer_wq(cfqd
);
2103 static void *cfq_init_queue(struct request_queue
*q
)
2105 struct cfq_data
*cfqd
;
2107 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
2111 cfqd
->service_tree
= CFQ_RB_ROOT
;
2112 INIT_LIST_HEAD(&cfqd
->cic_list
);
2116 init_timer(&cfqd
->idle_slice_timer
);
2117 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
2118 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
2120 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
2122 cfqd
->last_end_request
= jiffies
;
2123 cfqd
->cfq_quantum
= cfq_quantum
;
2124 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
2125 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
2126 cfqd
->cfq_back_max
= cfq_back_max
;
2127 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
2128 cfqd
->cfq_slice
[0] = cfq_slice_async
;
2129 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
2130 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
2131 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
2136 static void cfq_slab_kill(void)
2139 kmem_cache_destroy(cfq_pool
);
2141 kmem_cache_destroy(cfq_ioc_pool
);
2144 static int __init
cfq_slab_setup(void)
2146 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
2150 cfq_ioc_pool
= KMEM_CACHE(cfq_io_context
, SLAB_DESTROY_BY_RCU
);
2161 * sysfs parts below -->
2164 cfq_var_show(unsigned int var
, char *page
)
2166 return sprintf(page
, "%d\n", var
);
2170 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
2172 char *p
= (char *) page
;
2174 *var
= simple_strtoul(p
, &p
, 10);
2178 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2179 static ssize_t __FUNC(elevator_t *e, char *page) \
2181 struct cfq_data *cfqd = e->elevator_data; \
2182 unsigned int __data = __VAR; \
2184 __data = jiffies_to_msecs(__data); \
2185 return cfq_var_show(__data, (page)); \
2187 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
2188 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
2189 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
2190 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
2191 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
2192 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
2193 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
2194 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
2195 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
2196 #undef SHOW_FUNCTION
2198 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2199 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2201 struct cfq_data *cfqd = e->elevator_data; \
2202 unsigned int __data; \
2203 int ret = cfq_var_store(&__data, (page), count); \
2204 if (__data < (MIN)) \
2206 else if (__data > (MAX)) \
2209 *(__PTR) = msecs_to_jiffies(__data); \
2211 *(__PTR) = __data; \
2214 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
2215 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1, UINT_MAX
, 1);
2216 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1, UINT_MAX
, 1);
2217 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
2218 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1, UINT_MAX
, 0);
2219 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
2220 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
2221 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
2222 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1, UINT_MAX
, 0);
2223 #undef STORE_FUNCTION
2225 #define CFQ_ATTR(name) \
2226 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2228 static struct elv_fs_entry cfq_attrs
[] = {
2230 CFQ_ATTR(fifo_expire_sync
),
2231 CFQ_ATTR(fifo_expire_async
),
2232 CFQ_ATTR(back_seek_max
),
2233 CFQ_ATTR(back_seek_penalty
),
2234 CFQ_ATTR(slice_sync
),
2235 CFQ_ATTR(slice_async
),
2236 CFQ_ATTR(slice_async_rq
),
2237 CFQ_ATTR(slice_idle
),
2241 static struct elevator_type iosched_cfq
= {
2243 .elevator_merge_fn
= cfq_merge
,
2244 .elevator_merged_fn
= cfq_merged_request
,
2245 .elevator_merge_req_fn
= cfq_merged_requests
,
2246 .elevator_allow_merge_fn
= cfq_allow_merge
,
2247 .elevator_dispatch_fn
= cfq_dispatch_requests
,
2248 .elevator_add_req_fn
= cfq_insert_request
,
2249 .elevator_activate_req_fn
= cfq_activate_request
,
2250 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
2251 .elevator_queue_empty_fn
= cfq_queue_empty
,
2252 .elevator_completed_req_fn
= cfq_completed_request
,
2253 .elevator_former_req_fn
= elv_rb_former_request
,
2254 .elevator_latter_req_fn
= elv_rb_latter_request
,
2255 .elevator_set_req_fn
= cfq_set_request
,
2256 .elevator_put_req_fn
= cfq_put_request
,
2257 .elevator_may_queue_fn
= cfq_may_queue
,
2258 .elevator_init_fn
= cfq_init_queue
,
2259 .elevator_exit_fn
= cfq_exit_queue
,
2260 .trim
= cfq_free_io_context
,
2262 .elevator_attrs
= cfq_attrs
,
2263 .elevator_name
= "cfq",
2264 .elevator_owner
= THIS_MODULE
,
2267 static int __init
cfq_init(void)
2270 * could be 0 on HZ < 1000 setups
2272 if (!cfq_slice_async
)
2273 cfq_slice_async
= 1;
2274 if (!cfq_slice_idle
)
2277 if (cfq_slab_setup())
2280 elv_register(&iosched_cfq
);
2285 static void __exit
cfq_exit(void)
2287 DECLARE_COMPLETION_ONSTACK(all_gone
);
2288 elv_unregister(&iosched_cfq
);
2289 ioc_gone
= &all_gone
;
2290 /* ioc_gone's update must be visible before reading ioc_count */
2292 if (elv_ioc_count_read(ioc_count
))
2293 wait_for_completion(ioc_gone
);
2298 module_init(cfq_init
);
2299 module_exit(cfq_exit
);
2301 MODULE_AUTHOR("Jens Axboe");
2302 MODULE_LICENSE("GPL");
2303 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");