3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/config.h>
90 #include <linux/slab.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/nodemask.h>
108 #include <linux/mempolicy.h>
109 #include <linux/mutex.h>
110 #include <linux/rtmutex.h>
112 #include <asm/uaccess.h>
113 #include <asm/cacheflush.h>
114 #include <asm/tlbflush.h>
115 #include <asm/page.h>
118 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
119 * SLAB_RED_ZONE & SLAB_POISON.
120 * 0 for faster, smaller code (especially in the critical paths).
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
128 #ifdef CONFIG_DEBUG_SLAB
131 #define FORCED_DEBUG 1
135 #define FORCED_DEBUG 0
138 /* Shouldn't this be in a header file somewhere? */
139 #define BYTES_PER_WORD sizeof(void *)
141 #ifndef cache_line_size
142 #define cache_line_size() L1_CACHE_BYTES
145 #ifndef ARCH_KMALLOC_MINALIGN
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
151 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
152 * Note that this flag disables some debug features.
154 #define ARCH_KMALLOC_MINALIGN 0
157 #ifndef ARCH_SLAB_MINALIGN
159 * Enforce a minimum alignment for all caches.
160 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
161 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
162 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
163 * some debug features.
165 #define ARCH_SLAB_MINALIGN 0
168 #ifndef ARCH_KMALLOC_FLAGS
169 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
172 /* Legal flag mask for kmem_cache_create(). */
174 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
175 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
177 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
178 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
179 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
181 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
182 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
183 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
184 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
190 * Bufctl's are used for linking objs within a slab
193 * This implementation relies on "struct page" for locating the cache &
194 * slab an object belongs to.
195 * This allows the bufctl structure to be small (one int), but limits
196 * the number of objects a slab (not a cache) can contain when off-slab
197 * bufctls are used. The limit is the size of the largest general cache
198 * that does not use off-slab slabs.
199 * For 32bit archs with 4 kB pages, is this 56.
200 * This is not serious, as it is only for large objects, when it is unwise
201 * to have too many per slab.
202 * Note: This limit can be raised by introducing a general cache whose size
203 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
206 typedef unsigned int kmem_bufctl_t
;
207 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
208 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
209 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
210 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
215 * Manages the objs in a slab. Placed either at the beginning of mem allocated
216 * for a slab, or allocated from an general cache.
217 * Slabs are chained into three list: fully used, partial, fully free slabs.
220 struct list_head list
;
221 unsigned long colouroff
;
222 void *s_mem
; /* including colour offset */
223 unsigned int inuse
; /* num of objs active in slab */
225 unsigned short nodeid
;
231 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
232 * arrange for kmem_freepages to be called via RCU. This is useful if
233 * we need to approach a kernel structure obliquely, from its address
234 * obtained without the usual locking. We can lock the structure to
235 * stabilize it and check it's still at the given address, only if we
236 * can be sure that the memory has not been meanwhile reused for some
237 * other kind of object (which our subsystem's lock might corrupt).
239 * rcu_read_lock before reading the address, then rcu_read_unlock after
240 * taking the spinlock within the structure expected at that address.
242 * We assume struct slab_rcu can overlay struct slab when destroying.
245 struct rcu_head head
;
246 struct kmem_cache
*cachep
;
254 * - LIFO ordering, to hand out cache-warm objects from _alloc
255 * - reduce the number of linked list operations
256 * - reduce spinlock operations
258 * The limit is stored in the per-cpu structure to reduce the data cache
265 unsigned int batchcount
;
266 unsigned int touched
;
269 * Must have this definition in here for the proper
270 * alignment of array_cache. Also simplifies accessing
272 * [0] is for gcc 2.95. It should really be [].
277 * bootstrap: The caches do not work without cpuarrays anymore, but the
278 * cpuarrays are allocated from the generic caches...
280 #define BOOT_CPUCACHE_ENTRIES 1
281 struct arraycache_init
{
282 struct array_cache cache
;
283 void *entries
[BOOT_CPUCACHE_ENTRIES
];
287 * The slab lists for all objects.
290 struct list_head slabs_partial
; /* partial list first, better asm code */
291 struct list_head slabs_full
;
292 struct list_head slabs_free
;
293 unsigned long free_objects
;
294 unsigned int free_limit
;
295 unsigned int colour_next
; /* Per-node cache coloring */
296 spinlock_t list_lock
;
297 struct array_cache
*shared
; /* shared per node */
298 struct array_cache
**alien
; /* on other nodes */
299 unsigned long next_reap
; /* updated without locking */
300 int free_touched
; /* updated without locking */
304 * Need this for bootstrapping a per node allocator.
306 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
307 struct kmem_list3 __initdata initkmem_list3
[NUM_INIT_LISTS
];
308 #define CACHE_CACHE 0
310 #define SIZE_L3 (1 + MAX_NUMNODES)
312 static int drain_freelist(struct kmem_cache
*cache
,
313 struct kmem_list3
*l3
, int tofree
);
314 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
316 static void enable_cpucache(struct kmem_cache
*cachep
);
317 static void cache_reap(void *unused
);
320 * This function must be completely optimized away if a constant is passed to
321 * it. Mostly the same as what is in linux/slab.h except it returns an index.
323 static __always_inline
int index_of(const size_t size
)
325 extern void __bad_size(void);
327 if (__builtin_constant_p(size
)) {
335 #include "linux/kmalloc_sizes.h"
343 static int slab_early_init
= 1;
345 #define INDEX_AC index_of(sizeof(struct arraycache_init))
346 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
348 static void kmem_list3_init(struct kmem_list3
*parent
)
350 INIT_LIST_HEAD(&parent
->slabs_full
);
351 INIT_LIST_HEAD(&parent
->slabs_partial
);
352 INIT_LIST_HEAD(&parent
->slabs_free
);
353 parent
->shared
= NULL
;
354 parent
->alien
= NULL
;
355 parent
->colour_next
= 0;
356 spin_lock_init(&parent
->list_lock
);
357 parent
->free_objects
= 0;
358 parent
->free_touched
= 0;
361 #define MAKE_LIST(cachep, listp, slab, nodeid) \
363 INIT_LIST_HEAD(listp); \
364 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
367 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
370 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
381 /* 1) per-cpu data, touched during every alloc/free */
382 struct array_cache
*array
[NR_CPUS
];
383 /* 2) Cache tunables. Protected by cache_chain_mutex */
384 unsigned int batchcount
;
388 unsigned int buffer_size
;
389 /* 3) touched by every alloc & free from the backend */
390 struct kmem_list3
*nodelists
[MAX_NUMNODES
];
392 unsigned int flags
; /* constant flags */
393 unsigned int num
; /* # of objs per slab */
395 /* 4) cache_grow/shrink */
396 /* order of pgs per slab (2^n) */
397 unsigned int gfporder
;
399 /* force GFP flags, e.g. GFP_DMA */
402 size_t colour
; /* cache colouring range */
403 unsigned int colour_off
; /* colour offset */
404 struct kmem_cache
*slabp_cache
;
405 unsigned int slab_size
;
406 unsigned int dflags
; /* dynamic flags */
408 /* constructor func */
409 void (*ctor
) (void *, struct kmem_cache
*, unsigned long);
411 /* de-constructor func */
412 void (*dtor
) (void *, struct kmem_cache
*, unsigned long);
414 /* 5) cache creation/removal */
416 struct list_head next
;
420 unsigned long num_active
;
421 unsigned long num_allocations
;
422 unsigned long high_mark
;
424 unsigned long reaped
;
425 unsigned long errors
;
426 unsigned long max_freeable
;
427 unsigned long node_allocs
;
428 unsigned long node_frees
;
429 unsigned long node_overflow
;
437 * If debugging is enabled, then the allocator can add additional
438 * fields and/or padding to every object. buffer_size contains the total
439 * object size including these internal fields, the following two
440 * variables contain the offset to the user object and its size.
447 #define CFLGS_OFF_SLAB (0x80000000UL)
448 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
450 #define BATCHREFILL_LIMIT 16
452 * Optimization question: fewer reaps means less probability for unnessary
453 * cpucache drain/refill cycles.
455 * OTOH the cpuarrays can contain lots of objects,
456 * which could lock up otherwise freeable slabs.
458 #define REAPTIMEOUT_CPUC (2*HZ)
459 #define REAPTIMEOUT_LIST3 (4*HZ)
462 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
463 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
464 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
465 #define STATS_INC_GROWN(x) ((x)->grown++)
466 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
467 #define STATS_SET_HIGH(x) \
469 if ((x)->num_active > (x)->high_mark) \
470 (x)->high_mark = (x)->num_active; \
472 #define STATS_INC_ERR(x) ((x)->errors++)
473 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
474 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
475 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
476 #define STATS_SET_FREEABLE(x, i) \
478 if ((x)->max_freeable < i) \
479 (x)->max_freeable = i; \
481 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
482 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
483 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
484 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
486 #define STATS_INC_ACTIVE(x) do { } while (0)
487 #define STATS_DEC_ACTIVE(x) do { } while (0)
488 #define STATS_INC_ALLOCED(x) do { } while (0)
489 #define STATS_INC_GROWN(x) do { } while (0)
490 #define STATS_ADD_REAPED(x,y) do { } while (0)
491 #define STATS_SET_HIGH(x) do { } while (0)
492 #define STATS_INC_ERR(x) do { } while (0)
493 #define STATS_INC_NODEALLOCS(x) do { } while (0)
494 #define STATS_INC_NODEFREES(x) do { } while (0)
495 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
496 #define STATS_SET_FREEABLE(x, i) do { } while (0)
497 #define STATS_INC_ALLOCHIT(x) do { } while (0)
498 #define STATS_INC_ALLOCMISS(x) do { } while (0)
499 #define STATS_INC_FREEHIT(x) do { } while (0)
500 #define STATS_INC_FREEMISS(x) do { } while (0)
506 * memory layout of objects:
508 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
509 * the end of an object is aligned with the end of the real
510 * allocation. Catches writes behind the end of the allocation.
511 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
513 * cachep->obj_offset: The real object.
514 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
515 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
516 * [BYTES_PER_WORD long]
518 static int obj_offset(struct kmem_cache
*cachep
)
520 return cachep
->obj_offset
;
523 static int obj_size(struct kmem_cache
*cachep
)
525 return cachep
->obj_size
;
528 static unsigned long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
530 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
531 return (unsigned long*) (objp
+obj_offset(cachep
)-BYTES_PER_WORD
);
534 static unsigned long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
536 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
537 if (cachep
->flags
& SLAB_STORE_USER
)
538 return (unsigned long *)(objp
+ cachep
->buffer_size
-
540 return (unsigned long *)(objp
+ cachep
->buffer_size
- BYTES_PER_WORD
);
543 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
545 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
546 return (void **)(objp
+ cachep
->buffer_size
- BYTES_PER_WORD
);
551 #define obj_offset(x) 0
552 #define obj_size(cachep) (cachep->buffer_size)
553 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
554 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
555 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
560 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
563 #if defined(CONFIG_LARGE_ALLOCS)
564 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
565 #define MAX_GFP_ORDER 13 /* up to 32Mb */
566 #elif defined(CONFIG_MMU)
567 #define MAX_OBJ_ORDER 5 /* 32 pages */
568 #define MAX_GFP_ORDER 5 /* 32 pages */
570 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
571 #define MAX_GFP_ORDER 8 /* up to 1Mb */
575 * Do not go above this order unless 0 objects fit into the slab.
577 #define BREAK_GFP_ORDER_HI 1
578 #define BREAK_GFP_ORDER_LO 0
579 static int slab_break_gfp_order
= BREAK_GFP_ORDER_LO
;
582 * Functions for storing/retrieving the cachep and or slab from the page
583 * allocator. These are used to find the slab an obj belongs to. With kfree(),
584 * these are used to find the cache which an obj belongs to.
586 static inline void page_set_cache(struct page
*page
, struct kmem_cache
*cache
)
588 page
->lru
.next
= (struct list_head
*)cache
;
591 static inline struct kmem_cache
*page_get_cache(struct page
*page
)
593 if (unlikely(PageCompound(page
)))
594 page
= (struct page
*)page_private(page
);
595 BUG_ON(!PageSlab(page
));
596 return (struct kmem_cache
*)page
->lru
.next
;
599 static inline void page_set_slab(struct page
*page
, struct slab
*slab
)
601 page
->lru
.prev
= (struct list_head
*)slab
;
604 static inline struct slab
*page_get_slab(struct page
*page
)
606 if (unlikely(PageCompound(page
)))
607 page
= (struct page
*)page_private(page
);
608 BUG_ON(!PageSlab(page
));
609 return (struct slab
*)page
->lru
.prev
;
612 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
614 struct page
*page
= virt_to_page(obj
);
615 return page_get_cache(page
);
618 static inline struct slab
*virt_to_slab(const void *obj
)
620 struct page
*page
= virt_to_page(obj
);
621 return page_get_slab(page
);
624 static inline void *index_to_obj(struct kmem_cache
*cache
, struct slab
*slab
,
627 return slab
->s_mem
+ cache
->buffer_size
* idx
;
630 static inline unsigned int obj_to_index(struct kmem_cache
*cache
,
631 struct slab
*slab
, void *obj
)
633 return (unsigned)(obj
- slab
->s_mem
) / cache
->buffer_size
;
637 * These are the default caches for kmalloc. Custom caches can have other sizes.
639 struct cache_sizes malloc_sizes
[] = {
640 #define CACHE(x) { .cs_size = (x) },
641 #include <linux/kmalloc_sizes.h>
645 EXPORT_SYMBOL(malloc_sizes
);
647 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
653 static struct cache_names __initdata cache_names
[] = {
654 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
655 #include <linux/kmalloc_sizes.h>
660 static struct arraycache_init initarray_cache __initdata
=
661 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
662 static struct arraycache_init initarray_generic
=
663 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
665 /* internal cache of cache description objs */
666 static struct kmem_cache cache_cache
= {
668 .limit
= BOOT_CPUCACHE_ENTRIES
,
670 .buffer_size
= sizeof(struct kmem_cache
),
671 .name
= "kmem_cache",
673 .obj_size
= sizeof(struct kmem_cache
),
677 #ifdef CONFIG_LOCKDEP
680 * Slab sometimes uses the kmalloc slabs to store the slab headers
681 * for other slabs "off slab".
682 * The locking for this is tricky in that it nests within the locks
683 * of all other slabs in a few places; to deal with this special
684 * locking we put on-slab caches into a separate lock-class.
686 static struct lock_class_key on_slab_key
;
688 static inline void init_lock_keys(struct cache_sizes
*s
)
692 for (q
= 0; q
< MAX_NUMNODES
; q
++) {
693 if (!s
->cs_cachep
->nodelists
[q
] || OFF_SLAB(s
->cs_cachep
))
695 lockdep_set_class(&s
->cs_cachep
->nodelists
[q
]->list_lock
,
701 static inline void init_lock_keys(struct cache_sizes
*s
)
708 /* Guard access to the cache-chain. */
709 static DEFINE_MUTEX(cache_chain_mutex
);
710 static struct list_head cache_chain
;
713 * vm_enough_memory() looks at this to determine how many slab-allocated pages
714 * are possibly freeable under pressure
716 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
718 atomic_t slab_reclaim_pages
;
721 * chicken and egg problem: delay the per-cpu array allocation
722 * until the general caches are up.
732 * used by boot code to determine if it can use slab based allocator
734 int slab_is_available(void)
736 return g_cpucache_up
== FULL
;
739 static DEFINE_PER_CPU(struct work_struct
, reap_work
);
741 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
743 return cachep
->array
[smp_processor_id()];
746 static inline struct kmem_cache
*__find_general_cachep(size_t size
,
749 struct cache_sizes
*csizep
= malloc_sizes
;
752 /* This happens if someone tries to call
753 * kmem_cache_create(), or __kmalloc(), before
754 * the generic caches are initialized.
756 BUG_ON(malloc_sizes
[INDEX_AC
].cs_cachep
== NULL
);
758 while (size
> csizep
->cs_size
)
762 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
763 * has cs_{dma,}cachep==NULL. Thus no special case
764 * for large kmalloc calls required.
766 if (unlikely(gfpflags
& GFP_DMA
))
767 return csizep
->cs_dmacachep
;
768 return csizep
->cs_cachep
;
771 struct kmem_cache
*kmem_find_general_cachep(size_t size
, gfp_t gfpflags
)
773 return __find_general_cachep(size
, gfpflags
);
775 EXPORT_SYMBOL(kmem_find_general_cachep
);
777 static size_t slab_mgmt_size(size_t nr_objs
, size_t align
)
779 return ALIGN(sizeof(struct slab
)+nr_objs
*sizeof(kmem_bufctl_t
), align
);
783 * Calculate the number of objects and left-over bytes for a given buffer size.
785 static void cache_estimate(unsigned long gfporder
, size_t buffer_size
,
786 size_t align
, int flags
, size_t *left_over
,
791 size_t slab_size
= PAGE_SIZE
<< gfporder
;
794 * The slab management structure can be either off the slab or
795 * on it. For the latter case, the memory allocated for a
799 * - One kmem_bufctl_t for each object
800 * - Padding to respect alignment of @align
801 * - @buffer_size bytes for each object
803 * If the slab management structure is off the slab, then the
804 * alignment will already be calculated into the size. Because
805 * the slabs are all pages aligned, the objects will be at the
806 * correct alignment when allocated.
808 if (flags
& CFLGS_OFF_SLAB
) {
810 nr_objs
= slab_size
/ buffer_size
;
812 if (nr_objs
> SLAB_LIMIT
)
813 nr_objs
= SLAB_LIMIT
;
816 * Ignore padding for the initial guess. The padding
817 * is at most @align-1 bytes, and @buffer_size is at
818 * least @align. In the worst case, this result will
819 * be one greater than the number of objects that fit
820 * into the memory allocation when taking the padding
823 nr_objs
= (slab_size
- sizeof(struct slab
)) /
824 (buffer_size
+ sizeof(kmem_bufctl_t
));
827 * This calculated number will be either the right
828 * amount, or one greater than what we want.
830 if (slab_mgmt_size(nr_objs
, align
) + nr_objs
*buffer_size
834 if (nr_objs
> SLAB_LIMIT
)
835 nr_objs
= SLAB_LIMIT
;
837 mgmt_size
= slab_mgmt_size(nr_objs
, align
);
840 *left_over
= slab_size
- nr_objs
*buffer_size
- mgmt_size
;
843 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
845 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
848 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
849 function
, cachep
->name
, msg
);
855 * Special reaping functions for NUMA systems called from cache_reap().
856 * These take care of doing round robin flushing of alien caches (containing
857 * objects freed on different nodes from which they were allocated) and the
858 * flushing of remote pcps by calling drain_node_pages.
860 static DEFINE_PER_CPU(unsigned long, reap_node
);
862 static void init_reap_node(int cpu
)
866 node
= next_node(cpu_to_node(cpu
), node_online_map
);
867 if (node
== MAX_NUMNODES
)
868 node
= first_node(node_online_map
);
870 __get_cpu_var(reap_node
) = node
;
873 static void next_reap_node(void)
875 int node
= __get_cpu_var(reap_node
);
878 * Also drain per cpu pages on remote zones
880 if (node
!= numa_node_id())
881 drain_node_pages(node
);
883 node
= next_node(node
, node_online_map
);
884 if (unlikely(node
>= MAX_NUMNODES
))
885 node
= first_node(node_online_map
);
886 __get_cpu_var(reap_node
) = node
;
890 #define init_reap_node(cpu) do { } while (0)
891 #define next_reap_node(void) do { } while (0)
895 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
896 * via the workqueue/eventd.
897 * Add the CPU number into the expiration time to minimize the possibility of
898 * the CPUs getting into lockstep and contending for the global cache chain
901 static void __devinit
start_cpu_timer(int cpu
)
903 struct work_struct
*reap_work
= &per_cpu(reap_work
, cpu
);
906 * When this gets called from do_initcalls via cpucache_init(),
907 * init_workqueues() has already run, so keventd will be setup
910 if (keventd_up() && reap_work
->func
== NULL
) {
912 INIT_WORK(reap_work
, cache_reap
, NULL
);
913 schedule_delayed_work_on(cpu
, reap_work
, HZ
+ 3 * cpu
);
917 static struct array_cache
*alloc_arraycache(int node
, int entries
,
920 int memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
921 struct array_cache
*nc
= NULL
;
923 nc
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
927 nc
->batchcount
= batchcount
;
929 spin_lock_init(&nc
->lock
);
935 * Transfer objects in one arraycache to another.
936 * Locking must be handled by the caller.
938 * Return the number of entries transferred.
940 static int transfer_objects(struct array_cache
*to
,
941 struct array_cache
*from
, unsigned int max
)
943 /* Figure out how many entries to transfer */
944 int nr
= min(min(from
->avail
, max
), to
->limit
- to
->avail
);
949 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
959 static void *__cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
960 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
962 static struct array_cache
**alloc_alien_cache(int node
, int limit
)
964 struct array_cache
**ac_ptr
;
965 int memsize
= sizeof(void *) * MAX_NUMNODES
;
970 ac_ptr
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
973 if (i
== node
|| !node_online(i
)) {
977 ac_ptr
[i
] = alloc_arraycache(node
, limit
, 0xbaadf00d);
979 for (i
--; i
<= 0; i
--)
989 static void free_alien_cache(struct array_cache
**ac_ptr
)
1000 static void __drain_alien_cache(struct kmem_cache
*cachep
,
1001 struct array_cache
*ac
, int node
)
1003 struct kmem_list3
*rl3
= cachep
->nodelists
[node
];
1006 spin_lock(&rl3
->list_lock
);
1008 * Stuff objects into the remote nodes shared array first.
1009 * That way we could avoid the overhead of putting the objects
1010 * into the free lists and getting them back later.
1013 transfer_objects(rl3
->shared
, ac
, ac
->limit
);
1015 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
1017 spin_unlock(&rl3
->list_lock
);
1022 * Called from cache_reap() to regularly drain alien caches round robin.
1024 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_list3
*l3
)
1026 int node
= __get_cpu_var(reap_node
);
1029 struct array_cache
*ac
= l3
->alien
[node
];
1031 if (ac
&& ac
->avail
&& spin_trylock_irq(&ac
->lock
)) {
1032 __drain_alien_cache(cachep
, ac
, node
);
1033 spin_unlock_irq(&ac
->lock
);
1038 static void drain_alien_cache(struct kmem_cache
*cachep
,
1039 struct array_cache
**alien
)
1042 struct array_cache
*ac
;
1043 unsigned long flags
;
1045 for_each_online_node(i
) {
1048 spin_lock_irqsave(&ac
->lock
, flags
);
1049 __drain_alien_cache(cachep
, ac
, i
);
1050 spin_unlock_irqrestore(&ac
->lock
, flags
);
1055 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1057 struct slab
*slabp
= virt_to_slab(objp
);
1058 int nodeid
= slabp
->nodeid
;
1059 struct kmem_list3
*l3
;
1060 struct array_cache
*alien
= NULL
;
1063 * Make sure we are not freeing a object from another node to the array
1064 * cache on this cpu.
1066 if (likely(slabp
->nodeid
== numa_node_id()))
1069 l3
= cachep
->nodelists
[numa_node_id()];
1070 STATS_INC_NODEFREES(cachep
);
1071 if (l3
->alien
&& l3
->alien
[nodeid
]) {
1072 alien
= l3
->alien
[nodeid
];
1073 spin_lock(&alien
->lock
);
1074 if (unlikely(alien
->avail
== alien
->limit
)) {
1075 STATS_INC_ACOVERFLOW(cachep
);
1076 __drain_alien_cache(cachep
, alien
, nodeid
);
1078 alien
->entry
[alien
->avail
++] = objp
;
1079 spin_unlock(&alien
->lock
);
1081 spin_lock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1082 free_block(cachep
, &objp
, 1, nodeid
);
1083 spin_unlock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1090 #define drain_alien_cache(cachep, alien) do { } while (0)
1091 #define reap_alien(cachep, l3) do { } while (0)
1093 static inline struct array_cache
**alloc_alien_cache(int node
, int limit
)
1095 return (struct array_cache
**) 0x01020304ul
;
1098 static inline void free_alien_cache(struct array_cache
**ac_ptr
)
1102 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1109 static int __cpuinit
cpuup_callback(struct notifier_block
*nfb
,
1110 unsigned long action
, void *hcpu
)
1112 long cpu
= (long)hcpu
;
1113 struct kmem_cache
*cachep
;
1114 struct kmem_list3
*l3
= NULL
;
1115 int node
= cpu_to_node(cpu
);
1116 int memsize
= sizeof(struct kmem_list3
);
1119 case CPU_UP_PREPARE
:
1120 mutex_lock(&cache_chain_mutex
);
1122 * We need to do this right in the beginning since
1123 * alloc_arraycache's are going to use this list.
1124 * kmalloc_node allows us to add the slab to the right
1125 * kmem_list3 and not this cpu's kmem_list3
1128 list_for_each_entry(cachep
, &cache_chain
, next
) {
1130 * Set up the size64 kmemlist for cpu before we can
1131 * begin anything. Make sure some other cpu on this
1132 * node has not already allocated this
1134 if (!cachep
->nodelists
[node
]) {
1135 l3
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1138 kmem_list3_init(l3
);
1139 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
1140 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1143 * The l3s don't come and go as CPUs come and
1144 * go. cache_chain_mutex is sufficient
1147 cachep
->nodelists
[node
] = l3
;
1150 spin_lock_irq(&cachep
->nodelists
[node
]->list_lock
);
1151 cachep
->nodelists
[node
]->free_limit
=
1152 (1 + nr_cpus_node(node
)) *
1153 cachep
->batchcount
+ cachep
->num
;
1154 spin_unlock_irq(&cachep
->nodelists
[node
]->list_lock
);
1158 * Now we can go ahead with allocating the shared arrays and
1161 list_for_each_entry(cachep
, &cache_chain
, next
) {
1162 struct array_cache
*nc
;
1163 struct array_cache
*shared
;
1164 struct array_cache
**alien
;
1166 nc
= alloc_arraycache(node
, cachep
->limit
,
1167 cachep
->batchcount
);
1170 shared
= alloc_arraycache(node
,
1171 cachep
->shared
* cachep
->batchcount
,
1176 alien
= alloc_alien_cache(node
, cachep
->limit
);
1179 cachep
->array
[cpu
] = nc
;
1180 l3
= cachep
->nodelists
[node
];
1183 spin_lock_irq(&l3
->list_lock
);
1186 * We are serialised from CPU_DEAD or
1187 * CPU_UP_CANCELLED by the cpucontrol lock
1189 l3
->shared
= shared
;
1198 spin_unlock_irq(&l3
->list_lock
);
1200 free_alien_cache(alien
);
1202 mutex_unlock(&cache_chain_mutex
);
1205 start_cpu_timer(cpu
);
1207 #ifdef CONFIG_HOTPLUG_CPU
1210 * Even if all the cpus of a node are down, we don't free the
1211 * kmem_list3 of any cache. This to avoid a race between
1212 * cpu_down, and a kmalloc allocation from another cpu for
1213 * memory from the node of the cpu going down. The list3
1214 * structure is usually allocated from kmem_cache_create() and
1215 * gets destroyed at kmem_cache_destroy().
1218 case CPU_UP_CANCELED
:
1219 mutex_lock(&cache_chain_mutex
);
1220 list_for_each_entry(cachep
, &cache_chain
, next
) {
1221 struct array_cache
*nc
;
1222 struct array_cache
*shared
;
1223 struct array_cache
**alien
;
1226 mask
= node_to_cpumask(node
);
1227 /* cpu is dead; no one can alloc from it. */
1228 nc
= cachep
->array
[cpu
];
1229 cachep
->array
[cpu
] = NULL
;
1230 l3
= cachep
->nodelists
[node
];
1233 goto free_array_cache
;
1235 spin_lock_irq(&l3
->list_lock
);
1237 /* Free limit for this kmem_list3 */
1238 l3
->free_limit
-= cachep
->batchcount
;
1240 free_block(cachep
, nc
->entry
, nc
->avail
, node
);
1242 if (!cpus_empty(mask
)) {
1243 spin_unlock_irq(&l3
->list_lock
);
1244 goto free_array_cache
;
1247 shared
= l3
->shared
;
1249 free_block(cachep
, l3
->shared
->entry
,
1250 l3
->shared
->avail
, node
);
1257 spin_unlock_irq(&l3
->list_lock
);
1261 drain_alien_cache(cachep
, alien
);
1262 free_alien_cache(alien
);
1268 * In the previous loop, all the objects were freed to
1269 * the respective cache's slabs, now we can go ahead and
1270 * shrink each nodelist to its limit.
1272 list_for_each_entry(cachep
, &cache_chain
, next
) {
1273 l3
= cachep
->nodelists
[node
];
1276 drain_freelist(cachep
, l3
, l3
->free_objects
);
1278 mutex_unlock(&cache_chain_mutex
);
1284 mutex_unlock(&cache_chain_mutex
);
1288 static struct notifier_block __cpuinitdata cpucache_notifier
= {
1289 &cpuup_callback
, NULL
, 0
1293 * swap the static kmem_list3 with kmalloced memory
1295 static void init_list(struct kmem_cache
*cachep
, struct kmem_list3
*list
,
1298 struct kmem_list3
*ptr
;
1300 BUG_ON(cachep
->nodelists
[nodeid
] != list
);
1301 ptr
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, nodeid
);
1304 local_irq_disable();
1305 memcpy(ptr
, list
, sizeof(struct kmem_list3
));
1307 * Do not assume that spinlocks can be initialized via memcpy:
1309 spin_lock_init(&ptr
->list_lock
);
1311 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1312 cachep
->nodelists
[nodeid
] = ptr
;
1317 * Initialisation. Called after the page allocator have been initialised and
1318 * before smp_init().
1320 void __init
kmem_cache_init(void)
1323 struct cache_sizes
*sizes
;
1324 struct cache_names
*names
;
1328 for (i
= 0; i
< NUM_INIT_LISTS
; i
++) {
1329 kmem_list3_init(&initkmem_list3
[i
]);
1330 if (i
< MAX_NUMNODES
)
1331 cache_cache
.nodelists
[i
] = NULL
;
1335 * Fragmentation resistance on low memory - only use bigger
1336 * page orders on machines with more than 32MB of memory.
1338 if (num_physpages
> (32 << 20) >> PAGE_SHIFT
)
1339 slab_break_gfp_order
= BREAK_GFP_ORDER_HI
;
1341 /* Bootstrap is tricky, because several objects are allocated
1342 * from caches that do not exist yet:
1343 * 1) initialize the cache_cache cache: it contains the struct
1344 * kmem_cache structures of all caches, except cache_cache itself:
1345 * cache_cache is statically allocated.
1346 * Initially an __init data area is used for the head array and the
1347 * kmem_list3 structures, it's replaced with a kmalloc allocated
1348 * array at the end of the bootstrap.
1349 * 2) Create the first kmalloc cache.
1350 * The struct kmem_cache for the new cache is allocated normally.
1351 * An __init data area is used for the head array.
1352 * 3) Create the remaining kmalloc caches, with minimally sized
1354 * 4) Replace the __init data head arrays for cache_cache and the first
1355 * kmalloc cache with kmalloc allocated arrays.
1356 * 5) Replace the __init data for kmem_list3 for cache_cache and
1357 * the other cache's with kmalloc allocated memory.
1358 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1361 /* 1) create the cache_cache */
1362 INIT_LIST_HEAD(&cache_chain
);
1363 list_add(&cache_cache
.next
, &cache_chain
);
1364 cache_cache
.colour_off
= cache_line_size();
1365 cache_cache
.array
[smp_processor_id()] = &initarray_cache
.cache
;
1366 cache_cache
.nodelists
[numa_node_id()] = &initkmem_list3
[CACHE_CACHE
];
1368 cache_cache
.buffer_size
= ALIGN(cache_cache
.buffer_size
,
1371 for (order
= 0; order
< MAX_ORDER
; order
++) {
1372 cache_estimate(order
, cache_cache
.buffer_size
,
1373 cache_line_size(), 0, &left_over
, &cache_cache
.num
);
1374 if (cache_cache
.num
)
1377 BUG_ON(!cache_cache
.num
);
1378 cache_cache
.gfporder
= order
;
1379 cache_cache
.colour
= left_over
/ cache_cache
.colour_off
;
1380 cache_cache
.slab_size
= ALIGN(cache_cache
.num
* sizeof(kmem_bufctl_t
) +
1381 sizeof(struct slab
), cache_line_size());
1383 /* 2+3) create the kmalloc caches */
1384 sizes
= malloc_sizes
;
1385 names
= cache_names
;
1388 * Initialize the caches that provide memory for the array cache and the
1389 * kmem_list3 structures first. Without this, further allocations will
1393 sizes
[INDEX_AC
].cs_cachep
= kmem_cache_create(names
[INDEX_AC
].name
,
1394 sizes
[INDEX_AC
].cs_size
,
1395 ARCH_KMALLOC_MINALIGN
,
1396 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1399 if (INDEX_AC
!= INDEX_L3
) {
1400 sizes
[INDEX_L3
].cs_cachep
=
1401 kmem_cache_create(names
[INDEX_L3
].name
,
1402 sizes
[INDEX_L3
].cs_size
,
1403 ARCH_KMALLOC_MINALIGN
,
1404 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1408 slab_early_init
= 0;
1410 while (sizes
->cs_size
!= ULONG_MAX
) {
1412 * For performance, all the general caches are L1 aligned.
1413 * This should be particularly beneficial on SMP boxes, as it
1414 * eliminates "false sharing".
1415 * Note for systems short on memory removing the alignment will
1416 * allow tighter packing of the smaller caches.
1418 if (!sizes
->cs_cachep
) {
1419 sizes
->cs_cachep
= kmem_cache_create(names
->name
,
1421 ARCH_KMALLOC_MINALIGN
,
1422 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1425 init_lock_keys(sizes
);
1427 sizes
->cs_dmacachep
= kmem_cache_create(names
->name_dma
,
1429 ARCH_KMALLOC_MINALIGN
,
1430 ARCH_KMALLOC_FLAGS
|SLAB_CACHE_DMA
|
1436 /* 4) Replace the bootstrap head arrays */
1438 struct array_cache
*ptr
;
1440 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1442 local_irq_disable();
1443 BUG_ON(cpu_cache_get(&cache_cache
) != &initarray_cache
.cache
);
1444 memcpy(ptr
, cpu_cache_get(&cache_cache
),
1445 sizeof(struct arraycache_init
));
1447 * Do not assume that spinlocks can be initialized via memcpy:
1449 spin_lock_init(&ptr
->lock
);
1451 cache_cache
.array
[smp_processor_id()] = ptr
;
1454 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1456 local_irq_disable();
1457 BUG_ON(cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
)
1458 != &initarray_generic
.cache
);
1459 memcpy(ptr
, cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
),
1460 sizeof(struct arraycache_init
));
1462 * Do not assume that spinlocks can be initialized via memcpy:
1464 spin_lock_init(&ptr
->lock
);
1466 malloc_sizes
[INDEX_AC
].cs_cachep
->array
[smp_processor_id()] =
1470 /* 5) Replace the bootstrap kmem_list3's */
1473 /* Replace the static kmem_list3 structures for the boot cpu */
1474 init_list(&cache_cache
, &initkmem_list3
[CACHE_CACHE
],
1477 for_each_online_node(node
) {
1478 init_list(malloc_sizes
[INDEX_AC
].cs_cachep
,
1479 &initkmem_list3
[SIZE_AC
+ node
], node
);
1481 if (INDEX_AC
!= INDEX_L3
) {
1482 init_list(malloc_sizes
[INDEX_L3
].cs_cachep
,
1483 &initkmem_list3
[SIZE_L3
+ node
],
1489 /* 6) resize the head arrays to their final sizes */
1491 struct kmem_cache
*cachep
;
1492 mutex_lock(&cache_chain_mutex
);
1493 list_for_each_entry(cachep
, &cache_chain
, next
)
1494 enable_cpucache(cachep
);
1495 mutex_unlock(&cache_chain_mutex
);
1499 g_cpucache_up
= FULL
;
1502 * Register a cpu startup notifier callback that initializes
1503 * cpu_cache_get for all new cpus
1505 register_cpu_notifier(&cpucache_notifier
);
1508 * The reap timers are started later, with a module init call: That part
1509 * of the kernel is not yet operational.
1513 static int __init
cpucache_init(void)
1518 * Register the timers that return unneeded pages to the page allocator
1520 for_each_online_cpu(cpu
)
1521 start_cpu_timer(cpu
);
1524 __initcall(cpucache_init
);
1527 * Interface to system's page allocator. No need to hold the cache-lock.
1529 * If we requested dmaable memory, we will get it. Even if we
1530 * did not request dmaable memory, we might get it, but that
1531 * would be relatively rare and ignorable.
1533 static void *kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
1541 * Nommu uses slab's for process anonymous memory allocations, and thus
1542 * requires __GFP_COMP to properly refcount higher order allocations
1544 flags
|= __GFP_COMP
;
1546 flags
|= cachep
->gfpflags
;
1548 page
= alloc_pages_node(nodeid
, flags
, cachep
->gfporder
);
1552 nr_pages
= (1 << cachep
->gfporder
);
1553 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1554 atomic_add(nr_pages
, &slab_reclaim_pages
);
1555 add_zone_page_state(page_zone(page
), NR_SLAB
, nr_pages
);
1556 for (i
= 0; i
< nr_pages
; i
++)
1557 __SetPageSlab(page
+ i
);
1558 return page_address(page
);
1562 * Interface to system's page release.
1564 static void kmem_freepages(struct kmem_cache
*cachep
, void *addr
)
1566 unsigned long i
= (1 << cachep
->gfporder
);
1567 struct page
*page
= virt_to_page(addr
);
1568 const unsigned long nr_freed
= i
;
1570 sub_zone_page_state(page_zone(page
), NR_SLAB
, nr_freed
);
1572 BUG_ON(!PageSlab(page
));
1573 __ClearPageSlab(page
);
1576 if (current
->reclaim_state
)
1577 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1578 free_pages((unsigned long)addr
, cachep
->gfporder
);
1579 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1580 atomic_sub(1 << cachep
->gfporder
, &slab_reclaim_pages
);
1583 static void kmem_rcu_free(struct rcu_head
*head
)
1585 struct slab_rcu
*slab_rcu
= (struct slab_rcu
*)head
;
1586 struct kmem_cache
*cachep
= slab_rcu
->cachep
;
1588 kmem_freepages(cachep
, slab_rcu
->addr
);
1589 if (OFF_SLAB(cachep
))
1590 kmem_cache_free(cachep
->slabp_cache
, slab_rcu
);
1595 #ifdef CONFIG_DEBUG_PAGEALLOC
1596 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1597 unsigned long caller
)
1599 int size
= obj_size(cachep
);
1601 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1603 if (size
< 5 * sizeof(unsigned long))
1606 *addr
++ = 0x12345678;
1608 *addr
++ = smp_processor_id();
1609 size
-= 3 * sizeof(unsigned long);
1611 unsigned long *sptr
= &caller
;
1612 unsigned long svalue
;
1614 while (!kstack_end(sptr
)) {
1616 if (kernel_text_address(svalue
)) {
1618 size
-= sizeof(unsigned long);
1619 if (size
<= sizeof(unsigned long))
1625 *addr
++ = 0x87654321;
1629 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1631 int size
= obj_size(cachep
);
1632 addr
= &((char *)addr
)[obj_offset(cachep
)];
1634 memset(addr
, val
, size
);
1635 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1638 static void dump_line(char *data
, int offset
, int limit
)
1641 printk(KERN_ERR
"%03x:", offset
);
1642 for (i
= 0; i
< limit
; i
++)
1643 printk(" %02x", (unsigned char)data
[offset
+ i
]);
1650 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
1655 if (cachep
->flags
& SLAB_RED_ZONE
) {
1656 printk(KERN_ERR
"Redzone: 0x%lx/0x%lx.\n",
1657 *dbg_redzone1(cachep
, objp
),
1658 *dbg_redzone2(cachep
, objp
));
1661 if (cachep
->flags
& SLAB_STORE_USER
) {
1662 printk(KERN_ERR
"Last user: [<%p>]",
1663 *dbg_userword(cachep
, objp
));
1664 print_symbol("(%s)",
1665 (unsigned long)*dbg_userword(cachep
, objp
));
1668 realobj
= (char *)objp
+ obj_offset(cachep
);
1669 size
= obj_size(cachep
);
1670 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
1673 if (i
+ limit
> size
)
1675 dump_line(realobj
, i
, limit
);
1679 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
1685 realobj
= (char *)objp
+ obj_offset(cachep
);
1686 size
= obj_size(cachep
);
1688 for (i
= 0; i
< size
; i
++) {
1689 char exp
= POISON_FREE
;
1692 if (realobj
[i
] != exp
) {
1698 "Slab corruption: start=%p, len=%d\n",
1700 print_objinfo(cachep
, objp
, 0);
1702 /* Hexdump the affected line */
1705 if (i
+ limit
> size
)
1707 dump_line(realobj
, i
, limit
);
1710 /* Limit to 5 lines */
1716 /* Print some data about the neighboring objects, if they
1719 struct slab
*slabp
= virt_to_slab(objp
);
1722 objnr
= obj_to_index(cachep
, slabp
, objp
);
1724 objp
= index_to_obj(cachep
, slabp
, objnr
- 1);
1725 realobj
= (char *)objp
+ obj_offset(cachep
);
1726 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
1728 print_objinfo(cachep
, objp
, 2);
1730 if (objnr
+ 1 < cachep
->num
) {
1731 objp
= index_to_obj(cachep
, slabp
, objnr
+ 1);
1732 realobj
= (char *)objp
+ obj_offset(cachep
);
1733 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
1735 print_objinfo(cachep
, objp
, 2);
1743 * slab_destroy_objs - destroy a slab and its objects
1744 * @cachep: cache pointer being destroyed
1745 * @slabp: slab pointer being destroyed
1747 * Call the registered destructor for each object in a slab that is being
1750 static void slab_destroy_objs(struct kmem_cache
*cachep
, struct slab
*slabp
)
1753 for (i
= 0; i
< cachep
->num
; i
++) {
1754 void *objp
= index_to_obj(cachep
, slabp
, i
);
1756 if (cachep
->flags
& SLAB_POISON
) {
1757 #ifdef CONFIG_DEBUG_PAGEALLOC
1758 if (cachep
->buffer_size
% PAGE_SIZE
== 0 &&
1760 kernel_map_pages(virt_to_page(objp
),
1761 cachep
->buffer_size
/ PAGE_SIZE
, 1);
1763 check_poison_obj(cachep
, objp
);
1765 check_poison_obj(cachep
, objp
);
1768 if (cachep
->flags
& SLAB_RED_ZONE
) {
1769 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1770 slab_error(cachep
, "start of a freed object "
1772 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1773 slab_error(cachep
, "end of a freed object "
1776 if (cachep
->dtor
&& !(cachep
->flags
& SLAB_POISON
))
1777 (cachep
->dtor
) (objp
+ obj_offset(cachep
), cachep
, 0);
1781 static void slab_destroy_objs(struct kmem_cache
*cachep
, struct slab
*slabp
)
1785 for (i
= 0; i
< cachep
->num
; i
++) {
1786 void *objp
= index_to_obj(cachep
, slabp
, i
);
1787 (cachep
->dtor
) (objp
, cachep
, 0);
1794 * slab_destroy - destroy and release all objects in a slab
1795 * @cachep: cache pointer being destroyed
1796 * @slabp: slab pointer being destroyed
1798 * Destroy all the objs in a slab, and release the mem back to the system.
1799 * Before calling the slab must have been unlinked from the cache. The
1800 * cache-lock is not held/needed.
1802 static void slab_destroy(struct kmem_cache
*cachep
, struct slab
*slabp
)
1804 void *addr
= slabp
->s_mem
- slabp
->colouroff
;
1806 slab_destroy_objs(cachep
, slabp
);
1807 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
1808 struct slab_rcu
*slab_rcu
;
1810 slab_rcu
= (struct slab_rcu
*)slabp
;
1811 slab_rcu
->cachep
= cachep
;
1812 slab_rcu
->addr
= addr
;
1813 call_rcu(&slab_rcu
->head
, kmem_rcu_free
);
1815 kmem_freepages(cachep
, addr
);
1816 if (OFF_SLAB(cachep
))
1817 kmem_cache_free(cachep
->slabp_cache
, slabp
);
1822 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1823 * size of kmem_list3.
1825 static void set_up_list3s(struct kmem_cache
*cachep
, int index
)
1829 for_each_online_node(node
) {
1830 cachep
->nodelists
[node
] = &initkmem_list3
[index
+ node
];
1831 cachep
->nodelists
[node
]->next_reap
= jiffies
+
1833 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1838 * calculate_slab_order - calculate size (page order) of slabs
1839 * @cachep: pointer to the cache that is being created
1840 * @size: size of objects to be created in this cache.
1841 * @align: required alignment for the objects.
1842 * @flags: slab allocation flags
1844 * Also calculates the number of objects per slab.
1846 * This could be made much more intelligent. For now, try to avoid using
1847 * high order pages for slabs. When the gfp() functions are more friendly
1848 * towards high-order requests, this should be changed.
1850 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
1851 size_t size
, size_t align
, unsigned long flags
)
1853 unsigned long offslab_limit
;
1854 size_t left_over
= 0;
1857 for (gfporder
= 0; gfporder
<= MAX_GFP_ORDER
; gfporder
++) {
1861 cache_estimate(gfporder
, size
, align
, flags
, &remainder
, &num
);
1865 if (flags
& CFLGS_OFF_SLAB
) {
1867 * Max number of objs-per-slab for caches which
1868 * use off-slab slabs. Needed to avoid a possible
1869 * looping condition in cache_grow().
1871 offslab_limit
= size
- sizeof(struct slab
);
1872 offslab_limit
/= sizeof(kmem_bufctl_t
);
1874 if (num
> offslab_limit
)
1878 /* Found something acceptable - save it away */
1880 cachep
->gfporder
= gfporder
;
1881 left_over
= remainder
;
1884 * A VFS-reclaimable slab tends to have most allocations
1885 * as GFP_NOFS and we really don't want to have to be allocating
1886 * higher-order pages when we are unable to shrink dcache.
1888 if (flags
& SLAB_RECLAIM_ACCOUNT
)
1892 * Large number of objects is good, but very large slabs are
1893 * currently bad for the gfp()s.
1895 if (gfporder
>= slab_break_gfp_order
)
1899 * Acceptable internal fragmentation?
1901 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
1907 static void setup_cpu_cache(struct kmem_cache
*cachep
)
1909 if (g_cpucache_up
== FULL
) {
1910 enable_cpucache(cachep
);
1913 if (g_cpucache_up
== NONE
) {
1915 * Note: the first kmem_cache_create must create the cache
1916 * that's used by kmalloc(24), otherwise the creation of
1917 * further caches will BUG().
1919 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
1922 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1923 * the first cache, then we need to set up all its list3s,
1924 * otherwise the creation of further caches will BUG().
1926 set_up_list3s(cachep
, SIZE_AC
);
1927 if (INDEX_AC
== INDEX_L3
)
1928 g_cpucache_up
= PARTIAL_L3
;
1930 g_cpucache_up
= PARTIAL_AC
;
1932 cachep
->array
[smp_processor_id()] =
1933 kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1935 if (g_cpucache_up
== PARTIAL_AC
) {
1936 set_up_list3s(cachep
, SIZE_L3
);
1937 g_cpucache_up
= PARTIAL_L3
;
1940 for_each_online_node(node
) {
1941 cachep
->nodelists
[node
] =
1942 kmalloc_node(sizeof(struct kmem_list3
),
1944 BUG_ON(!cachep
->nodelists
[node
]);
1945 kmem_list3_init(cachep
->nodelists
[node
]);
1949 cachep
->nodelists
[numa_node_id()]->next_reap
=
1950 jiffies
+ REAPTIMEOUT_LIST3
+
1951 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1953 cpu_cache_get(cachep
)->avail
= 0;
1954 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
1955 cpu_cache_get(cachep
)->batchcount
= 1;
1956 cpu_cache_get(cachep
)->touched
= 0;
1957 cachep
->batchcount
= 1;
1958 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
1962 * kmem_cache_create - Create a cache.
1963 * @name: A string which is used in /proc/slabinfo to identify this cache.
1964 * @size: The size of objects to be created in this cache.
1965 * @align: The required alignment for the objects.
1966 * @flags: SLAB flags
1967 * @ctor: A constructor for the objects.
1968 * @dtor: A destructor for the objects.
1970 * Returns a ptr to the cache on success, NULL on failure.
1971 * Cannot be called within a int, but can be interrupted.
1972 * The @ctor is run when new pages are allocated by the cache
1973 * and the @dtor is run before the pages are handed back.
1975 * @name must be valid until the cache is destroyed. This implies that
1976 * the module calling this has to destroy the cache before getting unloaded.
1980 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1981 * to catch references to uninitialised memory.
1983 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1984 * for buffer overruns.
1986 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1987 * cacheline. This can be beneficial if you're counting cycles as closely
1991 kmem_cache_create (const char *name
, size_t size
, size_t align
,
1992 unsigned long flags
,
1993 void (*ctor
)(void*, struct kmem_cache
*, unsigned long),
1994 void (*dtor
)(void*, struct kmem_cache
*, unsigned long))
1996 size_t left_over
, slab_size
, ralign
;
1997 struct kmem_cache
*cachep
= NULL
, *pc
;
2000 * Sanity checks... these are all serious usage bugs.
2002 if (!name
|| in_interrupt() || (size
< BYTES_PER_WORD
) ||
2003 (size
> (1 << MAX_OBJ_ORDER
) * PAGE_SIZE
) || (dtor
&& !ctor
)) {
2004 printk(KERN_ERR
"%s: Early error in slab %s\n", __FUNCTION__
,
2010 * Prevent CPUs from coming and going.
2011 * lock_cpu_hotplug() nests outside cache_chain_mutex
2015 mutex_lock(&cache_chain_mutex
);
2017 list_for_each_entry(pc
, &cache_chain
, next
) {
2018 mm_segment_t old_fs
= get_fs();
2023 * This happens when the module gets unloaded and doesn't
2024 * destroy its slab cache and no-one else reuses the vmalloc
2025 * area of the module. Print a warning.
2028 res
= __get_user(tmp
, pc
->name
);
2031 printk("SLAB: cache with size %d has lost its name\n",
2036 if (!strcmp(pc
->name
, name
)) {
2037 printk("kmem_cache_create: duplicate cache %s\n", name
);
2044 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
2045 if ((flags
& SLAB_DEBUG_INITIAL
) && !ctor
) {
2046 /* No constructor, but inital state check requested */
2047 printk(KERN_ERR
"%s: No con, but init state check "
2048 "requested - %s\n", __FUNCTION__
, name
);
2049 flags
&= ~SLAB_DEBUG_INITIAL
;
2053 * Enable redzoning and last user accounting, except for caches with
2054 * large objects, if the increased size would increase the object size
2055 * above the next power of two: caches with object sizes just above a
2056 * power of two have a significant amount of internal fragmentation.
2058 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + 3 * BYTES_PER_WORD
))
2059 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
2060 if (!(flags
& SLAB_DESTROY_BY_RCU
))
2061 flags
|= SLAB_POISON
;
2063 if (flags
& SLAB_DESTROY_BY_RCU
)
2064 BUG_ON(flags
& SLAB_POISON
);
2066 if (flags
& SLAB_DESTROY_BY_RCU
)
2070 * Always checks flags, a caller might be expecting debug support which
2073 BUG_ON(flags
& ~CREATE_MASK
);
2076 * Check that size is in terms of words. This is needed to avoid
2077 * unaligned accesses for some archs when redzoning is used, and makes
2078 * sure any on-slab bufctl's are also correctly aligned.
2080 if (size
& (BYTES_PER_WORD
- 1)) {
2081 size
+= (BYTES_PER_WORD
- 1);
2082 size
&= ~(BYTES_PER_WORD
- 1);
2085 /* calculate the final buffer alignment: */
2087 /* 1) arch recommendation: can be overridden for debug */
2088 if (flags
& SLAB_HWCACHE_ALIGN
) {
2090 * Default alignment: as specified by the arch code. Except if
2091 * an object is really small, then squeeze multiple objects into
2094 ralign
= cache_line_size();
2095 while (size
<= ralign
/ 2)
2098 ralign
= BYTES_PER_WORD
;
2100 /* 2) arch mandated alignment: disables debug if necessary */
2101 if (ralign
< ARCH_SLAB_MINALIGN
) {
2102 ralign
= ARCH_SLAB_MINALIGN
;
2103 if (ralign
> BYTES_PER_WORD
)
2104 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2106 /* 3) caller mandated alignment: disables debug if necessary */
2107 if (ralign
< align
) {
2109 if (ralign
> BYTES_PER_WORD
)
2110 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2113 * 4) Store it. Note that the debug code below can reduce
2114 * the alignment to BYTES_PER_WORD.
2118 /* Get cache's description obj. */
2119 cachep
= kmem_cache_zalloc(&cache_cache
, SLAB_KERNEL
);
2124 cachep
->obj_size
= size
;
2126 if (flags
& SLAB_RED_ZONE
) {
2127 /* redzoning only works with word aligned caches */
2128 align
= BYTES_PER_WORD
;
2130 /* add space for red zone words */
2131 cachep
->obj_offset
+= BYTES_PER_WORD
;
2132 size
+= 2 * BYTES_PER_WORD
;
2134 if (flags
& SLAB_STORE_USER
) {
2135 /* user store requires word alignment and
2136 * one word storage behind the end of the real
2139 align
= BYTES_PER_WORD
;
2140 size
+= BYTES_PER_WORD
;
2142 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2143 if (size
>= malloc_sizes
[INDEX_L3
+ 1].cs_size
2144 && cachep
->obj_size
> cache_line_size() && size
< PAGE_SIZE
) {
2145 cachep
->obj_offset
+= PAGE_SIZE
- size
;
2152 * Determine if the slab management is 'on' or 'off' slab.
2153 * (bootstrapping cannot cope with offslab caches so don't do
2156 if ((size
>= (PAGE_SIZE
>> 3)) && !slab_early_init
)
2158 * Size is large, assume best to place the slab management obj
2159 * off-slab (should allow better packing of objs).
2161 flags
|= CFLGS_OFF_SLAB
;
2163 size
= ALIGN(size
, align
);
2165 left_over
= calculate_slab_order(cachep
, size
, align
, flags
);
2168 printk("kmem_cache_create: couldn't create cache %s.\n", name
);
2169 kmem_cache_free(&cache_cache
, cachep
);
2173 slab_size
= ALIGN(cachep
->num
* sizeof(kmem_bufctl_t
)
2174 + sizeof(struct slab
), align
);
2177 * If the slab has been placed off-slab, and we have enough space then
2178 * move it on-slab. This is at the expense of any extra colouring.
2180 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= slab_size
) {
2181 flags
&= ~CFLGS_OFF_SLAB
;
2182 left_over
-= slab_size
;
2185 if (flags
& CFLGS_OFF_SLAB
) {
2186 /* really off slab. No need for manual alignment */
2188 cachep
->num
* sizeof(kmem_bufctl_t
) + sizeof(struct slab
);
2191 cachep
->colour_off
= cache_line_size();
2192 /* Offset must be a multiple of the alignment. */
2193 if (cachep
->colour_off
< align
)
2194 cachep
->colour_off
= align
;
2195 cachep
->colour
= left_over
/ cachep
->colour_off
;
2196 cachep
->slab_size
= slab_size
;
2197 cachep
->flags
= flags
;
2198 cachep
->gfpflags
= 0;
2199 if (flags
& SLAB_CACHE_DMA
)
2200 cachep
->gfpflags
|= GFP_DMA
;
2201 cachep
->buffer_size
= size
;
2203 if (flags
& CFLGS_OFF_SLAB
)
2204 cachep
->slabp_cache
= kmem_find_general_cachep(slab_size
, 0u);
2205 cachep
->ctor
= ctor
;
2206 cachep
->dtor
= dtor
;
2207 cachep
->name
= name
;
2210 setup_cpu_cache(cachep
);
2212 /* cache setup completed, link it into the list */
2213 list_add(&cachep
->next
, &cache_chain
);
2215 if (!cachep
&& (flags
& SLAB_PANIC
))
2216 panic("kmem_cache_create(): failed to create slab `%s'\n",
2218 mutex_unlock(&cache_chain_mutex
);
2219 unlock_cpu_hotplug();
2222 EXPORT_SYMBOL(kmem_cache_create
);
2225 static void check_irq_off(void)
2227 BUG_ON(!irqs_disabled());
2230 static void check_irq_on(void)
2232 BUG_ON(irqs_disabled());
2235 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2239 assert_spin_locked(&cachep
->nodelists
[numa_node_id()]->list_lock
);
2243 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2247 assert_spin_locked(&cachep
->nodelists
[node
]->list_lock
);
2252 #define check_irq_off() do { } while(0)
2253 #define check_irq_on() do { } while(0)
2254 #define check_spinlock_acquired(x) do { } while(0)
2255 #define check_spinlock_acquired_node(x, y) do { } while(0)
2258 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
2259 struct array_cache
*ac
,
2260 int force
, int node
);
2262 static void do_drain(void *arg
)
2264 struct kmem_cache
*cachep
= arg
;
2265 struct array_cache
*ac
;
2266 int node
= numa_node_id();
2269 ac
= cpu_cache_get(cachep
);
2270 spin_lock(&cachep
->nodelists
[node
]->list_lock
);
2271 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
2272 spin_unlock(&cachep
->nodelists
[node
]->list_lock
);
2276 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2278 struct kmem_list3
*l3
;
2281 on_each_cpu(do_drain
, cachep
, 1, 1);
2283 for_each_online_node(node
) {
2284 l3
= cachep
->nodelists
[node
];
2285 if (l3
&& l3
->alien
)
2286 drain_alien_cache(cachep
, l3
->alien
);
2289 for_each_online_node(node
) {
2290 l3
= cachep
->nodelists
[node
];
2292 drain_array(cachep
, l3
, l3
->shared
, 1, node
);
2297 * Remove slabs from the list of free slabs.
2298 * Specify the number of slabs to drain in tofree.
2300 * Returns the actual number of slabs released.
2302 static int drain_freelist(struct kmem_cache
*cache
,
2303 struct kmem_list3
*l3
, int tofree
)
2305 struct list_head
*p
;
2310 while (nr_freed
< tofree
&& !list_empty(&l3
->slabs_free
)) {
2312 spin_lock_irq(&l3
->list_lock
);
2313 p
= l3
->slabs_free
.prev
;
2314 if (p
== &l3
->slabs_free
) {
2315 spin_unlock_irq(&l3
->list_lock
);
2319 slabp
= list_entry(p
, struct slab
, list
);
2321 BUG_ON(slabp
->inuse
);
2323 list_del(&slabp
->list
);
2325 * Safe to drop the lock. The slab is no longer linked
2328 l3
->free_objects
-= cache
->num
;
2329 spin_unlock_irq(&l3
->list_lock
);
2330 slab_destroy(cache
, slabp
);
2337 static int __cache_shrink(struct kmem_cache
*cachep
)
2340 struct kmem_list3
*l3
;
2342 drain_cpu_caches(cachep
);
2345 for_each_online_node(i
) {
2346 l3
= cachep
->nodelists
[i
];
2350 drain_freelist(cachep
, l3
, l3
->free_objects
);
2352 ret
+= !list_empty(&l3
->slabs_full
) ||
2353 !list_empty(&l3
->slabs_partial
);
2355 return (ret
? 1 : 0);
2359 * kmem_cache_shrink - Shrink a cache.
2360 * @cachep: The cache to shrink.
2362 * Releases as many slabs as possible for a cache.
2363 * To help debugging, a zero exit status indicates all slabs were released.
2365 int kmem_cache_shrink(struct kmem_cache
*cachep
)
2367 BUG_ON(!cachep
|| in_interrupt());
2369 return __cache_shrink(cachep
);
2371 EXPORT_SYMBOL(kmem_cache_shrink
);
2374 * kmem_cache_destroy - delete a cache
2375 * @cachep: the cache to destroy
2377 * Remove a struct kmem_cache object from the slab cache.
2378 * Returns 0 on success.
2380 * It is expected this function will be called by a module when it is
2381 * unloaded. This will remove the cache completely, and avoid a duplicate
2382 * cache being allocated each time a module is loaded and unloaded, if the
2383 * module doesn't have persistent in-kernel storage across loads and unloads.
2385 * The cache must be empty before calling this function.
2387 * The caller must guarantee that noone will allocate memory from the cache
2388 * during the kmem_cache_destroy().
2390 int kmem_cache_destroy(struct kmem_cache
*cachep
)
2393 struct kmem_list3
*l3
;
2395 BUG_ON(!cachep
|| in_interrupt());
2397 /* Don't let CPUs to come and go */
2400 /* Find the cache in the chain of caches. */
2401 mutex_lock(&cache_chain_mutex
);
2403 * the chain is never empty, cache_cache is never destroyed
2405 list_del(&cachep
->next
);
2406 mutex_unlock(&cache_chain_mutex
);
2408 if (__cache_shrink(cachep
)) {
2409 slab_error(cachep
, "Can't free all objects");
2410 mutex_lock(&cache_chain_mutex
);
2411 list_add(&cachep
->next
, &cache_chain
);
2412 mutex_unlock(&cache_chain_mutex
);
2413 unlock_cpu_hotplug();
2417 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
2420 for_each_online_cpu(i
)
2421 kfree(cachep
->array
[i
]);
2423 /* NUMA: free the list3 structures */
2424 for_each_online_node(i
) {
2425 l3
= cachep
->nodelists
[i
];
2428 free_alien_cache(l3
->alien
);
2432 kmem_cache_free(&cache_cache
, cachep
);
2433 unlock_cpu_hotplug();
2436 EXPORT_SYMBOL(kmem_cache_destroy
);
2438 /* Get the memory for a slab management obj. */
2439 static struct slab
*alloc_slabmgmt(struct kmem_cache
*cachep
, void *objp
,
2440 int colour_off
, gfp_t local_flags
,
2445 if (OFF_SLAB(cachep
)) {
2446 /* Slab management obj is off-slab. */
2447 slabp
= kmem_cache_alloc_node(cachep
->slabp_cache
,
2448 local_flags
, nodeid
);
2452 slabp
= objp
+ colour_off
;
2453 colour_off
+= cachep
->slab_size
;
2456 slabp
->colouroff
= colour_off
;
2457 slabp
->s_mem
= objp
+ colour_off
;
2458 slabp
->nodeid
= nodeid
;
2462 static inline kmem_bufctl_t
*slab_bufctl(struct slab
*slabp
)
2464 return (kmem_bufctl_t
*) (slabp
+ 1);
2467 static void cache_init_objs(struct kmem_cache
*cachep
,
2468 struct slab
*slabp
, unsigned long ctor_flags
)
2472 for (i
= 0; i
< cachep
->num
; i
++) {
2473 void *objp
= index_to_obj(cachep
, slabp
, i
);
2475 /* need to poison the objs? */
2476 if (cachep
->flags
& SLAB_POISON
)
2477 poison_obj(cachep
, objp
, POISON_FREE
);
2478 if (cachep
->flags
& SLAB_STORE_USER
)
2479 *dbg_userword(cachep
, objp
) = NULL
;
2481 if (cachep
->flags
& SLAB_RED_ZONE
) {
2482 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2483 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2486 * Constructors are not allowed to allocate memory from the same
2487 * cache which they are a constructor for. Otherwise, deadlock.
2488 * They must also be threaded.
2490 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2491 cachep
->ctor(objp
+ obj_offset(cachep
), cachep
,
2494 if (cachep
->flags
& SLAB_RED_ZONE
) {
2495 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2496 slab_error(cachep
, "constructor overwrote the"
2497 " end of an object");
2498 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2499 slab_error(cachep
, "constructor overwrote the"
2500 " start of an object");
2502 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 &&
2503 OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
2504 kernel_map_pages(virt_to_page(objp
),
2505 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2508 cachep
->ctor(objp
, cachep
, ctor_flags
);
2510 slab_bufctl(slabp
)[i
] = i
+ 1;
2512 slab_bufctl(slabp
)[i
- 1] = BUFCTL_END
;
2516 static void kmem_flagcheck(struct kmem_cache
*cachep
, gfp_t flags
)
2518 if (flags
& SLAB_DMA
)
2519 BUG_ON(!(cachep
->gfpflags
& GFP_DMA
));
2521 BUG_ON(cachep
->gfpflags
& GFP_DMA
);
2524 static void *slab_get_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2527 void *objp
= index_to_obj(cachep
, slabp
, slabp
->free
);
2531 next
= slab_bufctl(slabp
)[slabp
->free
];
2533 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2534 WARN_ON(slabp
->nodeid
!= nodeid
);
2541 static void slab_put_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2542 void *objp
, int nodeid
)
2544 unsigned int objnr
= obj_to_index(cachep
, slabp
, objp
);
2547 /* Verify that the slab belongs to the intended node */
2548 WARN_ON(slabp
->nodeid
!= nodeid
);
2550 if (slab_bufctl(slabp
)[objnr
] + 1 <= SLAB_LIMIT
+ 1) {
2551 printk(KERN_ERR
"slab: double free detected in cache "
2552 "'%s', objp %p\n", cachep
->name
, objp
);
2556 slab_bufctl(slabp
)[objnr
] = slabp
->free
;
2557 slabp
->free
= objnr
;
2562 * Map pages beginning at addr to the given cache and slab. This is required
2563 * for the slab allocator to be able to lookup the cache and slab of a
2564 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2566 static void slab_map_pages(struct kmem_cache
*cache
, struct slab
*slab
,
2572 page
= virt_to_page(addr
);
2575 if (likely(!PageCompound(page
)))
2576 nr_pages
<<= cache
->gfporder
;
2579 page_set_cache(page
, cache
);
2580 page_set_slab(page
, slab
);
2582 } while (--nr_pages
);
2586 * Grow (by 1) the number of slabs within a cache. This is called by
2587 * kmem_cache_alloc() when there are no active objs left in a cache.
2589 static int cache_grow(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
2595 unsigned long ctor_flags
;
2596 struct kmem_list3
*l3
;
2599 * Be lazy and only check for valid flags here, keeping it out of the
2600 * critical path in kmem_cache_alloc().
2602 BUG_ON(flags
& ~(SLAB_DMA
| SLAB_LEVEL_MASK
| SLAB_NO_GROW
));
2603 if (flags
& SLAB_NO_GROW
)
2606 ctor_flags
= SLAB_CTOR_CONSTRUCTOR
;
2607 local_flags
= (flags
& SLAB_LEVEL_MASK
);
2608 if (!(local_flags
& __GFP_WAIT
))
2610 * Not allowed to sleep. Need to tell a constructor about
2611 * this - it might need to know...
2613 ctor_flags
|= SLAB_CTOR_ATOMIC
;
2615 /* Take the l3 list lock to change the colour_next on this node */
2617 l3
= cachep
->nodelists
[nodeid
];
2618 spin_lock(&l3
->list_lock
);
2620 /* Get colour for the slab, and cal the next value. */
2621 offset
= l3
->colour_next
;
2623 if (l3
->colour_next
>= cachep
->colour
)
2624 l3
->colour_next
= 0;
2625 spin_unlock(&l3
->list_lock
);
2627 offset
*= cachep
->colour_off
;
2629 if (local_flags
& __GFP_WAIT
)
2633 * The test for missing atomic flag is performed here, rather than
2634 * the more obvious place, simply to reduce the critical path length
2635 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2636 * will eventually be caught here (where it matters).
2638 kmem_flagcheck(cachep
, flags
);
2641 * Get mem for the objs. Attempt to allocate a physical page from
2644 objp
= kmem_getpages(cachep
, flags
, nodeid
);
2648 /* Get slab management. */
2649 slabp
= alloc_slabmgmt(cachep
, objp
, offset
, local_flags
, nodeid
);
2653 slabp
->nodeid
= nodeid
;
2654 slab_map_pages(cachep
, slabp
, objp
);
2656 cache_init_objs(cachep
, slabp
, ctor_flags
);
2658 if (local_flags
& __GFP_WAIT
)
2659 local_irq_disable();
2661 spin_lock(&l3
->list_lock
);
2663 /* Make slab active. */
2664 list_add_tail(&slabp
->list
, &(l3
->slabs_free
));
2665 STATS_INC_GROWN(cachep
);
2666 l3
->free_objects
+= cachep
->num
;
2667 spin_unlock(&l3
->list_lock
);
2670 kmem_freepages(cachep
, objp
);
2672 if (local_flags
& __GFP_WAIT
)
2673 local_irq_disable();
2680 * Perform extra freeing checks:
2681 * - detect bad pointers.
2682 * - POISON/RED_ZONE checking
2683 * - destructor calls, for caches with POISON+dtor
2685 static void kfree_debugcheck(const void *objp
)
2689 if (!virt_addr_valid(objp
)) {
2690 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
2691 (unsigned long)objp
);
2694 page
= virt_to_page(objp
);
2695 if (!PageSlab(page
)) {
2696 printk(KERN_ERR
"kfree_debugcheck: bad ptr %lxh.\n",
2697 (unsigned long)objp
);
2702 static inline void verify_redzone_free(struct kmem_cache
*cache
, void *obj
)
2704 unsigned long redzone1
, redzone2
;
2706 redzone1
= *dbg_redzone1(cache
, obj
);
2707 redzone2
= *dbg_redzone2(cache
, obj
);
2712 if (redzone1
== RED_ACTIVE
&& redzone2
== RED_ACTIVE
)
2715 if (redzone1
== RED_INACTIVE
&& redzone2
== RED_INACTIVE
)
2716 slab_error(cache
, "double free detected");
2718 slab_error(cache
, "memory outside object was overwritten");
2720 printk(KERN_ERR
"%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2721 obj
, redzone1
, redzone2
);
2724 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
2731 objp
-= obj_offset(cachep
);
2732 kfree_debugcheck(objp
);
2733 page
= virt_to_page(objp
);
2735 slabp
= page_get_slab(page
);
2737 if (cachep
->flags
& SLAB_RED_ZONE
) {
2738 verify_redzone_free(cachep
, objp
);
2739 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2740 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2742 if (cachep
->flags
& SLAB_STORE_USER
)
2743 *dbg_userword(cachep
, objp
) = caller
;
2745 objnr
= obj_to_index(cachep
, slabp
, objp
);
2747 BUG_ON(objnr
>= cachep
->num
);
2748 BUG_ON(objp
!= index_to_obj(cachep
, slabp
, objnr
));
2750 if (cachep
->flags
& SLAB_DEBUG_INITIAL
) {
2752 * Need to call the slab's constructor so the caller can
2753 * perform a verify of its state (debugging). Called without
2754 * the cache-lock held.
2756 cachep
->ctor(objp
+ obj_offset(cachep
),
2757 cachep
, SLAB_CTOR_CONSTRUCTOR
| SLAB_CTOR_VERIFY
);
2759 if (cachep
->flags
& SLAB_POISON
&& cachep
->dtor
) {
2760 /* we want to cache poison the object,
2761 * call the destruction callback
2763 cachep
->dtor(objp
+ obj_offset(cachep
), cachep
, 0);
2765 #ifdef CONFIG_DEBUG_SLAB_LEAK
2766 slab_bufctl(slabp
)[objnr
] = BUFCTL_FREE
;
2768 if (cachep
->flags
& SLAB_POISON
) {
2769 #ifdef CONFIG_DEBUG_PAGEALLOC
2770 if ((cachep
->buffer_size
% PAGE_SIZE
)==0 && OFF_SLAB(cachep
)) {
2771 store_stackinfo(cachep
, objp
, (unsigned long)caller
);
2772 kernel_map_pages(virt_to_page(objp
),
2773 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2775 poison_obj(cachep
, objp
, POISON_FREE
);
2778 poison_obj(cachep
, objp
, POISON_FREE
);
2784 static void check_slabp(struct kmem_cache
*cachep
, struct slab
*slabp
)
2789 /* Check slab's freelist to see if this obj is there. */
2790 for (i
= slabp
->free
; i
!= BUFCTL_END
; i
= slab_bufctl(slabp
)[i
]) {
2792 if (entries
> cachep
->num
|| i
>= cachep
->num
)
2795 if (entries
!= cachep
->num
- slabp
->inuse
) {
2797 printk(KERN_ERR
"slab: Internal list corruption detected in "
2798 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2799 cachep
->name
, cachep
->num
, slabp
, slabp
->inuse
);
2801 i
< sizeof(*slabp
) + cachep
->num
* sizeof(kmem_bufctl_t
);
2804 printk("\n%03x:", i
);
2805 printk(" %02x", ((unsigned char *)slabp
)[i
]);
2812 #define kfree_debugcheck(x) do { } while(0)
2813 #define cache_free_debugcheck(x,objp,z) (objp)
2814 #define check_slabp(x,y) do { } while(0)
2817 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
)
2820 struct kmem_list3
*l3
;
2821 struct array_cache
*ac
;
2824 ac
= cpu_cache_get(cachep
);
2826 batchcount
= ac
->batchcount
;
2827 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
2829 * If there was little recent activity on this cache, then
2830 * perform only a partial refill. Otherwise we could generate
2833 batchcount
= BATCHREFILL_LIMIT
;
2835 l3
= cachep
->nodelists
[numa_node_id()];
2837 BUG_ON(ac
->avail
> 0 || !l3
);
2838 spin_lock(&l3
->list_lock
);
2840 /* See if we can refill from the shared array */
2841 if (l3
->shared
&& transfer_objects(ac
, l3
->shared
, batchcount
))
2844 while (batchcount
> 0) {
2845 struct list_head
*entry
;
2847 /* Get slab alloc is to come from. */
2848 entry
= l3
->slabs_partial
.next
;
2849 if (entry
== &l3
->slabs_partial
) {
2850 l3
->free_touched
= 1;
2851 entry
= l3
->slabs_free
.next
;
2852 if (entry
== &l3
->slabs_free
)
2856 slabp
= list_entry(entry
, struct slab
, list
);
2857 check_slabp(cachep
, slabp
);
2858 check_spinlock_acquired(cachep
);
2859 while (slabp
->inuse
< cachep
->num
&& batchcount
--) {
2860 STATS_INC_ALLOCED(cachep
);
2861 STATS_INC_ACTIVE(cachep
);
2862 STATS_SET_HIGH(cachep
);
2864 ac
->entry
[ac
->avail
++] = slab_get_obj(cachep
, slabp
,
2867 check_slabp(cachep
, slabp
);
2869 /* move slabp to correct slabp list: */
2870 list_del(&slabp
->list
);
2871 if (slabp
->free
== BUFCTL_END
)
2872 list_add(&slabp
->list
, &l3
->slabs_full
);
2874 list_add(&slabp
->list
, &l3
->slabs_partial
);
2878 l3
->free_objects
-= ac
->avail
;
2880 spin_unlock(&l3
->list_lock
);
2882 if (unlikely(!ac
->avail
)) {
2884 x
= cache_grow(cachep
, flags
, numa_node_id());
2886 /* cache_grow can reenable interrupts, then ac could change. */
2887 ac
= cpu_cache_get(cachep
);
2888 if (!x
&& ac
->avail
== 0) /* no objects in sight? abort */
2891 if (!ac
->avail
) /* objects refilled by interrupt? */
2895 return ac
->entry
[--ac
->avail
];
2898 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
2901 might_sleep_if(flags
& __GFP_WAIT
);
2903 kmem_flagcheck(cachep
, flags
);
2908 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
2909 gfp_t flags
, void *objp
, void *caller
)
2913 if (cachep
->flags
& SLAB_POISON
) {
2914 #ifdef CONFIG_DEBUG_PAGEALLOC
2915 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
2916 kernel_map_pages(virt_to_page(objp
),
2917 cachep
->buffer_size
/ PAGE_SIZE
, 1);
2919 check_poison_obj(cachep
, objp
);
2921 check_poison_obj(cachep
, objp
);
2923 poison_obj(cachep
, objp
, POISON_INUSE
);
2925 if (cachep
->flags
& SLAB_STORE_USER
)
2926 *dbg_userword(cachep
, objp
) = caller
;
2928 if (cachep
->flags
& SLAB_RED_ZONE
) {
2929 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
2930 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
2931 slab_error(cachep
, "double free, or memory outside"
2932 " object was overwritten");
2934 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2935 objp
, *dbg_redzone1(cachep
, objp
),
2936 *dbg_redzone2(cachep
, objp
));
2938 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
2939 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
2941 #ifdef CONFIG_DEBUG_SLAB_LEAK
2946 slabp
= page_get_slab(virt_to_page(objp
));
2947 objnr
= (unsigned)(objp
- slabp
->s_mem
) / cachep
->buffer_size
;
2948 slab_bufctl(slabp
)[objnr
] = BUFCTL_ACTIVE
;
2951 objp
+= obj_offset(cachep
);
2952 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
) {
2953 unsigned long ctor_flags
= SLAB_CTOR_CONSTRUCTOR
;
2955 if (!(flags
& __GFP_WAIT
))
2956 ctor_flags
|= SLAB_CTOR_ATOMIC
;
2958 cachep
->ctor(objp
, cachep
, ctor_flags
);
2963 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2966 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
2969 struct array_cache
*ac
;
2972 if (unlikely(current
->flags
& (PF_SPREAD_SLAB
| PF_MEMPOLICY
))) {
2973 objp
= alternate_node_alloc(cachep
, flags
);
2980 ac
= cpu_cache_get(cachep
);
2981 if (likely(ac
->avail
)) {
2982 STATS_INC_ALLOCHIT(cachep
);
2984 objp
= ac
->entry
[--ac
->avail
];
2986 STATS_INC_ALLOCMISS(cachep
);
2987 objp
= cache_alloc_refill(cachep
, flags
);
2992 static __always_inline
void *__cache_alloc(struct kmem_cache
*cachep
,
2993 gfp_t flags
, void *caller
)
2995 unsigned long save_flags
;
2998 cache_alloc_debugcheck_before(cachep
, flags
);
3000 local_irq_save(save_flags
);
3001 objp
= ____cache_alloc(cachep
, flags
);
3002 local_irq_restore(save_flags
);
3003 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
,
3011 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3013 * If we are in_interrupt, then process context, including cpusets and
3014 * mempolicy, may not apply and should not be used for allocation policy.
3016 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3018 int nid_alloc
, nid_here
;
3022 nid_alloc
= nid_here
= numa_node_id();
3023 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
3024 nid_alloc
= cpuset_mem_spread_node();
3025 else if (current
->mempolicy
)
3026 nid_alloc
= slab_node(current
->mempolicy
);
3027 if (nid_alloc
!= nid_here
)
3028 return __cache_alloc_node(cachep
, flags
, nid_alloc
);
3033 * A interface to enable slab creation on nodeid
3035 static void *__cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
3038 struct list_head
*entry
;
3040 struct kmem_list3
*l3
;
3044 l3
= cachep
->nodelists
[nodeid
];
3049 spin_lock(&l3
->list_lock
);
3050 entry
= l3
->slabs_partial
.next
;
3051 if (entry
== &l3
->slabs_partial
) {
3052 l3
->free_touched
= 1;
3053 entry
= l3
->slabs_free
.next
;
3054 if (entry
== &l3
->slabs_free
)
3058 slabp
= list_entry(entry
, struct slab
, list
);
3059 check_spinlock_acquired_node(cachep
, nodeid
);
3060 check_slabp(cachep
, slabp
);
3062 STATS_INC_NODEALLOCS(cachep
);
3063 STATS_INC_ACTIVE(cachep
);
3064 STATS_SET_HIGH(cachep
);
3066 BUG_ON(slabp
->inuse
== cachep
->num
);
3068 obj
= slab_get_obj(cachep
, slabp
, nodeid
);
3069 check_slabp(cachep
, slabp
);
3071 /* move slabp to correct slabp list: */
3072 list_del(&slabp
->list
);
3074 if (slabp
->free
== BUFCTL_END
)
3075 list_add(&slabp
->list
, &l3
->slabs_full
);
3077 list_add(&slabp
->list
, &l3
->slabs_partial
);
3079 spin_unlock(&l3
->list_lock
);
3083 spin_unlock(&l3
->list_lock
);
3084 x
= cache_grow(cachep
, flags
, nodeid
);
3096 * Caller needs to acquire correct kmem_list's list_lock
3098 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int nr_objects
,
3102 struct kmem_list3
*l3
;
3104 for (i
= 0; i
< nr_objects
; i
++) {
3105 void *objp
= objpp
[i
];
3108 slabp
= virt_to_slab(objp
);
3109 l3
= cachep
->nodelists
[node
];
3110 list_del(&slabp
->list
);
3111 check_spinlock_acquired_node(cachep
, node
);
3112 check_slabp(cachep
, slabp
);
3113 slab_put_obj(cachep
, slabp
, objp
, node
);
3114 STATS_DEC_ACTIVE(cachep
);
3116 check_slabp(cachep
, slabp
);
3118 /* fixup slab chains */
3119 if (slabp
->inuse
== 0) {
3120 if (l3
->free_objects
> l3
->free_limit
) {
3121 l3
->free_objects
-= cachep
->num
;
3122 slab_destroy(cachep
, slabp
);
3124 list_add(&slabp
->list
, &l3
->slabs_free
);
3127 /* Unconditionally move a slab to the end of the
3128 * partial list on free - maximum time for the
3129 * other objects to be freed, too.
3131 list_add_tail(&slabp
->list
, &l3
->slabs_partial
);
3136 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3139 struct kmem_list3
*l3
;
3140 int node
= numa_node_id();
3142 batchcount
= ac
->batchcount
;
3144 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
3147 l3
= cachep
->nodelists
[node
];
3148 spin_lock(&l3
->list_lock
);
3150 struct array_cache
*shared_array
= l3
->shared
;
3151 int max
= shared_array
->limit
- shared_array
->avail
;
3153 if (batchcount
> max
)
3155 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3156 ac
->entry
, sizeof(void *) * batchcount
);
3157 shared_array
->avail
+= batchcount
;
3162 free_block(cachep
, ac
->entry
, batchcount
, node
);
3167 struct list_head
*p
;
3169 p
= l3
->slabs_free
.next
;
3170 while (p
!= &(l3
->slabs_free
)) {
3173 slabp
= list_entry(p
, struct slab
, list
);
3174 BUG_ON(slabp
->inuse
);
3179 STATS_SET_FREEABLE(cachep
, i
);
3182 spin_unlock(&l3
->list_lock
);
3183 ac
->avail
-= batchcount
;
3184 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3188 * Release an obj back to its cache. If the obj has a constructed state, it must
3189 * be in this state _before_ it is released. Called with disabled ints.
3191 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
)
3193 struct array_cache
*ac
= cpu_cache_get(cachep
);
3196 objp
= cache_free_debugcheck(cachep
, objp
, __builtin_return_address(0));
3198 if (cache_free_alien(cachep
, objp
))
3201 if (likely(ac
->avail
< ac
->limit
)) {
3202 STATS_INC_FREEHIT(cachep
);
3203 ac
->entry
[ac
->avail
++] = objp
;
3206 STATS_INC_FREEMISS(cachep
);
3207 cache_flusharray(cachep
, ac
);
3208 ac
->entry
[ac
->avail
++] = objp
;
3213 * kmem_cache_alloc - Allocate an object
3214 * @cachep: The cache to allocate from.
3215 * @flags: See kmalloc().
3217 * Allocate an object from this cache. The flags are only relevant
3218 * if the cache has no available objects.
3220 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3222 return __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3224 EXPORT_SYMBOL(kmem_cache_alloc
);
3227 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3228 * @cache: The cache to allocate from.
3229 * @flags: See kmalloc().
3231 * Allocate an object from this cache and set the allocated memory to zero.
3232 * The flags are only relevant if the cache has no available objects.
3234 void *kmem_cache_zalloc(struct kmem_cache
*cache
, gfp_t flags
)
3236 void *ret
= __cache_alloc(cache
, flags
, __builtin_return_address(0));
3238 memset(ret
, 0, obj_size(cache
));
3241 EXPORT_SYMBOL(kmem_cache_zalloc
);
3244 * kmem_ptr_validate - check if an untrusted pointer might
3246 * @cachep: the cache we're checking against
3247 * @ptr: pointer to validate
3249 * This verifies that the untrusted pointer looks sane:
3250 * it is _not_ a guarantee that the pointer is actually
3251 * part of the slab cache in question, but it at least
3252 * validates that the pointer can be dereferenced and
3253 * looks half-way sane.
3255 * Currently only used for dentry validation.
3257 int fastcall
kmem_ptr_validate(struct kmem_cache
*cachep
, void *ptr
)
3259 unsigned long addr
= (unsigned long)ptr
;
3260 unsigned long min_addr
= PAGE_OFFSET
;
3261 unsigned long align_mask
= BYTES_PER_WORD
- 1;
3262 unsigned long size
= cachep
->buffer_size
;
3265 if (unlikely(addr
< min_addr
))
3267 if (unlikely(addr
> (unsigned long)high_memory
- size
))
3269 if (unlikely(addr
& align_mask
))
3271 if (unlikely(!kern_addr_valid(addr
)))
3273 if (unlikely(!kern_addr_valid(addr
+ size
- 1)))
3275 page
= virt_to_page(ptr
);
3276 if (unlikely(!PageSlab(page
)))
3278 if (unlikely(page_get_cache(page
) != cachep
))
3287 * kmem_cache_alloc_node - Allocate an object on the specified node
3288 * @cachep: The cache to allocate from.
3289 * @flags: See kmalloc().
3290 * @nodeid: node number of the target node.
3292 * Identical to kmem_cache_alloc, except that this function is slow
3293 * and can sleep. And it will allocate memory on the given node, which
3294 * can improve the performance for cpu bound structures.
3295 * New and improved: it will now make sure that the object gets
3296 * put on the correct node list so that there is no false sharing.
3298 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3300 unsigned long save_flags
;
3303 cache_alloc_debugcheck_before(cachep
, flags
);
3304 local_irq_save(save_flags
);
3306 if (nodeid
== -1 || nodeid
== numa_node_id() ||
3307 !cachep
->nodelists
[nodeid
])
3308 ptr
= ____cache_alloc(cachep
, flags
);
3310 ptr
= __cache_alloc_node(cachep
, flags
, nodeid
);
3311 local_irq_restore(save_flags
);
3313 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
,
3314 __builtin_return_address(0));
3318 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3320 void *kmalloc_node(size_t size
, gfp_t flags
, int node
)
3322 struct kmem_cache
*cachep
;
3324 cachep
= kmem_find_general_cachep(size
, flags
);
3325 if (unlikely(cachep
== NULL
))
3327 return kmem_cache_alloc_node(cachep
, flags
, node
);
3329 EXPORT_SYMBOL(kmalloc_node
);
3333 * __do_kmalloc - allocate memory
3334 * @size: how many bytes of memory are required.
3335 * @flags: the type of memory to allocate (see kmalloc).
3336 * @caller: function caller for debug tracking of the caller
3338 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3341 struct kmem_cache
*cachep
;
3343 /* If you want to save a few bytes .text space: replace
3345 * Then kmalloc uses the uninlined functions instead of the inline
3348 cachep
= __find_general_cachep(size
, flags
);
3349 if (unlikely(cachep
== NULL
))
3351 return __cache_alloc(cachep
, flags
, caller
);
3355 void *__kmalloc(size_t size
, gfp_t flags
)
3357 #ifndef CONFIG_DEBUG_SLAB
3358 return __do_kmalloc(size
, flags
, NULL
);
3360 return __do_kmalloc(size
, flags
, __builtin_return_address(0));
3363 EXPORT_SYMBOL(__kmalloc
);
3365 #ifdef CONFIG_DEBUG_SLAB
3366 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, void *caller
)
3368 return __do_kmalloc(size
, flags
, caller
);
3370 EXPORT_SYMBOL(__kmalloc_track_caller
);
3375 * __alloc_percpu - allocate one copy of the object for every present
3376 * cpu in the system, zeroing them.
3377 * Objects should be dereferenced using the per_cpu_ptr macro only.
3379 * @size: how many bytes of memory are required.
3381 void *__alloc_percpu(size_t size
)
3384 struct percpu_data
*pdata
= kmalloc(sizeof(*pdata
), GFP_KERNEL
);
3390 * Cannot use for_each_online_cpu since a cpu may come online
3391 * and we have no way of figuring out how to fix the array
3392 * that we have allocated then....
3394 for_each_possible_cpu(i
) {
3395 int node
= cpu_to_node(i
);
3397 if (node_online(node
))
3398 pdata
->ptrs
[i
] = kmalloc_node(size
, GFP_KERNEL
, node
);
3400 pdata
->ptrs
[i
] = kmalloc(size
, GFP_KERNEL
);
3402 if (!pdata
->ptrs
[i
])
3404 memset(pdata
->ptrs
[i
], 0, size
);
3407 /* Catch derefs w/o wrappers */
3408 return (void *)(~(unsigned long)pdata
);
3412 if (!cpu_possible(i
))
3414 kfree(pdata
->ptrs
[i
]);
3419 EXPORT_SYMBOL(__alloc_percpu
);
3423 * kmem_cache_free - Deallocate an object
3424 * @cachep: The cache the allocation was from.
3425 * @objp: The previously allocated object.
3427 * Free an object which was previously allocated from this
3430 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3432 unsigned long flags
;
3434 BUG_ON(virt_to_cache(objp
) != cachep
);
3436 local_irq_save(flags
);
3437 __cache_free(cachep
, objp
);
3438 local_irq_restore(flags
);
3440 EXPORT_SYMBOL(kmem_cache_free
);
3443 * kfree - free previously allocated memory
3444 * @objp: pointer returned by kmalloc.
3446 * If @objp is NULL, no operation is performed.
3448 * Don't free memory not originally allocated by kmalloc()
3449 * or you will run into trouble.
3451 void kfree(const void *objp
)
3453 struct kmem_cache
*c
;
3454 unsigned long flags
;
3456 if (unlikely(!objp
))
3458 local_irq_save(flags
);
3459 kfree_debugcheck(objp
);
3460 c
= virt_to_cache(objp
);
3461 debug_check_no_locks_freed(objp
, obj_size(c
));
3462 __cache_free(c
, (void *)objp
);
3463 local_irq_restore(flags
);
3465 EXPORT_SYMBOL(kfree
);
3469 * free_percpu - free previously allocated percpu memory
3470 * @objp: pointer returned by alloc_percpu.
3472 * Don't free memory not originally allocated by alloc_percpu()
3473 * The complemented objp is to check for that.
3475 void free_percpu(const void *objp
)
3478 struct percpu_data
*p
= (struct percpu_data
*)(~(unsigned long)objp
);
3481 * We allocate for all cpus so we cannot use for online cpu here.
3483 for_each_possible_cpu(i
)
3487 EXPORT_SYMBOL(free_percpu
);
3490 unsigned int kmem_cache_size(struct kmem_cache
*cachep
)
3492 return obj_size(cachep
);
3494 EXPORT_SYMBOL(kmem_cache_size
);
3496 const char *kmem_cache_name(struct kmem_cache
*cachep
)
3498 return cachep
->name
;
3500 EXPORT_SYMBOL_GPL(kmem_cache_name
);
3503 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3505 static int alloc_kmemlist(struct kmem_cache
*cachep
)
3508 struct kmem_list3
*l3
;
3509 struct array_cache
*new_shared
;
3510 struct array_cache
**new_alien
;
3512 for_each_online_node(node
) {
3514 new_alien
= alloc_alien_cache(node
, cachep
->limit
);
3518 new_shared
= alloc_arraycache(node
,
3519 cachep
->shared
*cachep
->batchcount
,
3522 free_alien_cache(new_alien
);
3526 l3
= cachep
->nodelists
[node
];
3528 struct array_cache
*shared
= l3
->shared
;
3530 spin_lock_irq(&l3
->list_lock
);
3533 free_block(cachep
, shared
->entry
,
3534 shared
->avail
, node
);
3536 l3
->shared
= new_shared
;
3538 l3
->alien
= new_alien
;
3541 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3542 cachep
->batchcount
+ cachep
->num
;
3543 spin_unlock_irq(&l3
->list_lock
);
3545 free_alien_cache(new_alien
);
3548 l3
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, node
);
3550 free_alien_cache(new_alien
);
3555 kmem_list3_init(l3
);
3556 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
3557 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
3558 l3
->shared
= new_shared
;
3559 l3
->alien
= new_alien
;
3560 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3561 cachep
->batchcount
+ cachep
->num
;
3562 cachep
->nodelists
[node
] = l3
;
3567 if (!cachep
->next
.next
) {
3568 /* Cache is not active yet. Roll back what we did */
3571 if (cachep
->nodelists
[node
]) {
3572 l3
= cachep
->nodelists
[node
];
3575 free_alien_cache(l3
->alien
);
3577 cachep
->nodelists
[node
] = NULL
;
3585 struct ccupdate_struct
{
3586 struct kmem_cache
*cachep
;
3587 struct array_cache
*new[NR_CPUS
];
3590 static void do_ccupdate_local(void *info
)
3592 struct ccupdate_struct
*new = info
;
3593 struct array_cache
*old
;
3596 old
= cpu_cache_get(new->cachep
);
3598 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
3599 new->new[smp_processor_id()] = old
;
3602 /* Always called with the cache_chain_mutex held */
3603 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3604 int batchcount
, int shared
)
3606 struct ccupdate_struct
new;
3609 memset(&new.new, 0, sizeof(new.new));
3610 for_each_online_cpu(i
) {
3611 new.new[i
] = alloc_arraycache(cpu_to_node(i
), limit
,
3614 for (i
--; i
>= 0; i
--)
3619 new.cachep
= cachep
;
3621 on_each_cpu(do_ccupdate_local
, (void *)&new, 1, 1);
3624 cachep
->batchcount
= batchcount
;
3625 cachep
->limit
= limit
;
3626 cachep
->shared
= shared
;
3628 for_each_online_cpu(i
) {
3629 struct array_cache
*ccold
= new.new[i
];
3632 spin_lock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3633 free_block(cachep
, ccold
->entry
, ccold
->avail
, cpu_to_node(i
));
3634 spin_unlock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3638 err
= alloc_kmemlist(cachep
);
3640 printk(KERN_ERR
"alloc_kmemlist failed for %s, error %d.\n",
3641 cachep
->name
, -err
);
3647 /* Called with cache_chain_mutex held always */
3648 static void enable_cpucache(struct kmem_cache
*cachep
)
3654 * The head array serves three purposes:
3655 * - create a LIFO ordering, i.e. return objects that are cache-warm
3656 * - reduce the number of spinlock operations.
3657 * - reduce the number of linked list operations on the slab and
3658 * bufctl chains: array operations are cheaper.
3659 * The numbers are guessed, we should auto-tune as described by
3662 if (cachep
->buffer_size
> 131072)
3664 else if (cachep
->buffer_size
> PAGE_SIZE
)
3666 else if (cachep
->buffer_size
> 1024)
3668 else if (cachep
->buffer_size
> 256)
3674 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3675 * allocation behaviour: Most allocs on one cpu, most free operations
3676 * on another cpu. For these cases, an efficient object passing between
3677 * cpus is necessary. This is provided by a shared array. The array
3678 * replaces Bonwick's magazine layer.
3679 * On uniprocessor, it's functionally equivalent (but less efficient)
3680 * to a larger limit. Thus disabled by default.
3684 if (cachep
->buffer_size
<= PAGE_SIZE
)
3690 * With debugging enabled, large batchcount lead to excessively long
3691 * periods with disabled local interrupts. Limit the batchcount
3696 err
= do_tune_cpucache(cachep
, limit
, (limit
+ 1) / 2, shared
);
3698 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
3699 cachep
->name
, -err
);
3703 * Drain an array if it contains any elements taking the l3 lock only if
3704 * necessary. Note that the l3 listlock also protects the array_cache
3705 * if drain_array() is used on the shared array.
3707 void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
3708 struct array_cache
*ac
, int force
, int node
)
3712 if (!ac
|| !ac
->avail
)
3714 if (ac
->touched
&& !force
) {
3717 spin_lock_irq(&l3
->list_lock
);
3719 tofree
= force
? ac
->avail
: (ac
->limit
+ 4) / 5;
3720 if (tofree
> ac
->avail
)
3721 tofree
= (ac
->avail
+ 1) / 2;
3722 free_block(cachep
, ac
->entry
, tofree
, node
);
3723 ac
->avail
-= tofree
;
3724 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
3725 sizeof(void *) * ac
->avail
);
3727 spin_unlock_irq(&l3
->list_lock
);
3732 * cache_reap - Reclaim memory from caches.
3733 * @unused: unused parameter
3735 * Called from workqueue/eventd every few seconds.
3737 * - clear the per-cpu caches for this CPU.
3738 * - return freeable pages to the main free memory pool.
3740 * If we cannot acquire the cache chain mutex then just give up - we'll try
3741 * again on the next iteration.
3743 static void cache_reap(void *unused
)
3745 struct kmem_cache
*searchp
;
3746 struct kmem_list3
*l3
;
3747 int node
= numa_node_id();
3749 if (!mutex_trylock(&cache_chain_mutex
)) {
3750 /* Give up. Setup the next iteration. */
3751 schedule_delayed_work(&__get_cpu_var(reap_work
),
3756 list_for_each_entry(searchp
, &cache_chain
, next
) {
3760 * We only take the l3 lock if absolutely necessary and we
3761 * have established with reasonable certainty that
3762 * we can do some work if the lock was obtained.
3764 l3
= searchp
->nodelists
[node
];
3766 reap_alien(searchp
, l3
);
3768 drain_array(searchp
, l3
, cpu_cache_get(searchp
), 0, node
);
3771 * These are racy checks but it does not matter
3772 * if we skip one check or scan twice.
3774 if (time_after(l3
->next_reap
, jiffies
))
3777 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
3779 drain_array(searchp
, l3
, l3
->shared
, 0, node
);
3781 if (l3
->free_touched
)
3782 l3
->free_touched
= 0;
3786 freed
= drain_freelist(searchp
, l3
, (l3
->free_limit
+
3787 5 * searchp
->num
- 1) / (5 * searchp
->num
));
3788 STATS_ADD_REAPED(searchp
, freed
);
3794 mutex_unlock(&cache_chain_mutex
);
3796 refresh_cpu_vm_stats(smp_processor_id());
3797 /* Set up the next iteration */
3798 schedule_delayed_work(&__get_cpu_var(reap_work
), REAPTIMEOUT_CPUC
);
3801 #ifdef CONFIG_PROC_FS
3803 static void print_slabinfo_header(struct seq_file
*m
)
3806 * Output format version, so at least we can change it
3807 * without _too_ many complaints.
3810 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
3812 seq_puts(m
, "slabinfo - version: 2.1\n");
3814 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
3815 "<objperslab> <pagesperslab>");
3816 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
3817 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3819 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3820 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
3821 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3826 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
3829 struct list_head
*p
;
3831 mutex_lock(&cache_chain_mutex
);
3833 print_slabinfo_header(m
);
3834 p
= cache_chain
.next
;
3837 if (p
== &cache_chain
)
3840 return list_entry(p
, struct kmem_cache
, next
);
3843 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
3845 struct kmem_cache
*cachep
= p
;
3847 return cachep
->next
.next
== &cache_chain
?
3848 NULL
: list_entry(cachep
->next
.next
, struct kmem_cache
, next
);
3851 static void s_stop(struct seq_file
*m
, void *p
)
3853 mutex_unlock(&cache_chain_mutex
);
3856 static int s_show(struct seq_file
*m
, void *p
)
3858 struct kmem_cache
*cachep
= p
;
3860 unsigned long active_objs
;
3861 unsigned long num_objs
;
3862 unsigned long active_slabs
= 0;
3863 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
3867 struct kmem_list3
*l3
;
3871 for_each_online_node(node
) {
3872 l3
= cachep
->nodelists
[node
];
3877 spin_lock_irq(&l3
->list_lock
);
3879 list_for_each_entry(slabp
, &l3
->slabs_full
, list
) {
3880 if (slabp
->inuse
!= cachep
->num
&& !error
)
3881 error
= "slabs_full accounting error";
3882 active_objs
+= cachep
->num
;
3885 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
) {
3886 if (slabp
->inuse
== cachep
->num
&& !error
)
3887 error
= "slabs_partial inuse accounting error";
3888 if (!slabp
->inuse
&& !error
)
3889 error
= "slabs_partial/inuse accounting error";
3890 active_objs
+= slabp
->inuse
;
3893 list_for_each_entry(slabp
, &l3
->slabs_free
, list
) {
3894 if (slabp
->inuse
&& !error
)
3895 error
= "slabs_free/inuse accounting error";
3898 free_objects
+= l3
->free_objects
;
3900 shared_avail
+= l3
->shared
->avail
;
3902 spin_unlock_irq(&l3
->list_lock
);
3904 num_slabs
+= active_slabs
;
3905 num_objs
= num_slabs
* cachep
->num
;
3906 if (num_objs
- active_objs
!= free_objects
&& !error
)
3907 error
= "free_objects accounting error";
3909 name
= cachep
->name
;
3911 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
3913 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
3914 name
, active_objs
, num_objs
, cachep
->buffer_size
,
3915 cachep
->num
, (1 << cachep
->gfporder
));
3916 seq_printf(m
, " : tunables %4u %4u %4u",
3917 cachep
->limit
, cachep
->batchcount
, cachep
->shared
);
3918 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
3919 active_slabs
, num_slabs
, shared_avail
);
3922 unsigned long high
= cachep
->high_mark
;
3923 unsigned long allocs
= cachep
->num_allocations
;
3924 unsigned long grown
= cachep
->grown
;
3925 unsigned long reaped
= cachep
->reaped
;
3926 unsigned long errors
= cachep
->errors
;
3927 unsigned long max_freeable
= cachep
->max_freeable
;
3928 unsigned long node_allocs
= cachep
->node_allocs
;
3929 unsigned long node_frees
= cachep
->node_frees
;
3930 unsigned long overflows
= cachep
->node_overflow
;
3932 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu \
3933 %4lu %4lu %4lu %4lu %4lu", allocs
, high
, grown
,
3934 reaped
, errors
, max_freeable
, node_allocs
,
3935 node_frees
, overflows
);
3939 unsigned long allochit
= atomic_read(&cachep
->allochit
);
3940 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
3941 unsigned long freehit
= atomic_read(&cachep
->freehit
);
3942 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
3944 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
3945 allochit
, allocmiss
, freehit
, freemiss
);
3953 * slabinfo_op - iterator that generates /proc/slabinfo
3962 * num-pages-per-slab
3963 * + further values on SMP and with statistics enabled
3966 struct seq_operations slabinfo_op
= {
3973 #define MAX_SLABINFO_WRITE 128
3975 * slabinfo_write - Tuning for the slab allocator
3977 * @buffer: user buffer
3978 * @count: data length
3981 ssize_t
slabinfo_write(struct file
*file
, const char __user
* buffer
,
3982 size_t count
, loff_t
*ppos
)
3984 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
3985 int limit
, batchcount
, shared
, res
;
3986 struct kmem_cache
*cachep
;
3988 if (count
> MAX_SLABINFO_WRITE
)
3990 if (copy_from_user(&kbuf
, buffer
, count
))
3992 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
3994 tmp
= strchr(kbuf
, ' ');
3999 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
4002 /* Find the cache in the chain of caches. */
4003 mutex_lock(&cache_chain_mutex
);
4005 list_for_each_entry(cachep
, &cache_chain
, next
) {
4006 if (!strcmp(cachep
->name
, kbuf
)) {
4007 if (limit
< 1 || batchcount
< 1 ||
4008 batchcount
> limit
|| shared
< 0) {
4011 res
= do_tune_cpucache(cachep
, limit
,
4012 batchcount
, shared
);
4017 mutex_unlock(&cache_chain_mutex
);
4023 #ifdef CONFIG_DEBUG_SLAB_LEAK
4025 static void *leaks_start(struct seq_file
*m
, loff_t
*pos
)
4028 struct list_head
*p
;
4030 mutex_lock(&cache_chain_mutex
);
4031 p
= cache_chain
.next
;
4034 if (p
== &cache_chain
)
4037 return list_entry(p
, struct kmem_cache
, next
);
4040 static inline int add_caller(unsigned long *n
, unsigned long v
)
4050 unsigned long *q
= p
+ 2 * i
;
4064 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4070 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
, struct slab
*s
)
4076 for (i
= 0, p
= s
->s_mem
; i
< c
->num
; i
++, p
+= c
->buffer_size
) {
4077 if (slab_bufctl(s
)[i
] != BUFCTL_ACTIVE
)
4079 if (!add_caller(n
, (unsigned long)*dbg_userword(c
, p
)))
4084 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4086 #ifdef CONFIG_KALLSYMS
4089 unsigned long offset
, size
;
4090 char namebuf
[KSYM_NAME_LEN
+1];
4092 name
= kallsyms_lookup(address
, &size
, &offset
, &modname
, namebuf
);
4095 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4097 seq_printf(m
, " [%s]", modname
);
4101 seq_printf(m
, "%p", (void *)address
);
4104 static int leaks_show(struct seq_file
*m
, void *p
)
4106 struct kmem_cache
*cachep
= p
;
4108 struct kmem_list3
*l3
;
4110 unsigned long *n
= m
->private;
4114 if (!(cachep
->flags
& SLAB_STORE_USER
))
4116 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4119 /* OK, we can do it */
4123 for_each_online_node(node
) {
4124 l3
= cachep
->nodelists
[node
];
4129 spin_lock_irq(&l3
->list_lock
);
4131 list_for_each_entry(slabp
, &l3
->slabs_full
, list
)
4132 handle_slab(n
, cachep
, slabp
);
4133 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
)
4134 handle_slab(n
, cachep
, slabp
);
4135 spin_unlock_irq(&l3
->list_lock
);
4137 name
= cachep
->name
;
4139 /* Increase the buffer size */
4140 mutex_unlock(&cache_chain_mutex
);
4141 m
->private = kzalloc(n
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4143 /* Too bad, we are really out */
4145 mutex_lock(&cache_chain_mutex
);
4148 *(unsigned long *)m
->private = n
[0] * 2;
4150 mutex_lock(&cache_chain_mutex
);
4151 /* Now make sure this entry will be retried */
4155 for (i
= 0; i
< n
[1]; i
++) {
4156 seq_printf(m
, "%s: %lu ", name
, n
[2*i
+3]);
4157 show_symbol(m
, n
[2*i
+2]);
4163 struct seq_operations slabstats_op
= {
4164 .start
= leaks_start
,
4173 * ksize - get the actual amount of memory allocated for a given object
4174 * @objp: Pointer to the object
4176 * kmalloc may internally round up allocations and return more memory
4177 * than requested. ksize() can be used to determine the actual amount of
4178 * memory allocated. The caller may use this additional memory, even though
4179 * a smaller amount of memory was initially specified with the kmalloc call.
4180 * The caller must guarantee that objp points to a valid object previously
4181 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4182 * must not be freed during the duration of the call.
4184 unsigned int ksize(const void *objp
)
4186 if (unlikely(objp
== NULL
))
4189 return obj_size(virt_to_cache(objp
));