ACPI: asus_acpi: misc cleanups
[linux-2.6/mini2440.git] / arch / arm / mach-omap1 / clock.c
blob619db18144ead16b6ecc74d5f8d4aec56090c30e
1 /*
2 * linux/arch/arm/mach-omap1/clock.c
4 * Copyright (C) 2004 - 2005 Nokia corporation
5 * Written by Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com>
7 * Modified to use omap shared clock framework by
8 * Tony Lindgren <tony@atomide.com>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/list.h>
17 #include <linux/errno.h>
18 #include <linux/err.h>
19 #include <linux/clk.h>
21 #include <asm/io.h>
23 #include <asm/arch/usb.h>
24 #include <asm/arch/clock.h>
25 #include <asm/arch/sram.h>
27 #include "clock.h"
29 __u32 arm_idlect1_mask;
31 /*-------------------------------------------------------------------------
32 * Omap1 specific clock functions
33 *-------------------------------------------------------------------------*/
35 static void omap1_watchdog_recalc(struct clk * clk)
37 clk->rate = clk->parent->rate / 14;
40 static void omap1_uart_recalc(struct clk * clk)
42 unsigned int val = omap_readl(clk->enable_reg);
43 if (val & clk->enable_bit)
44 clk->rate = 48000000;
45 else
46 clk->rate = 12000000;
49 static int omap1_clk_enable_dsp_domain(struct clk *clk)
51 int retval;
53 retval = omap1_clk_enable(&api_ck.clk);
54 if (!retval) {
55 retval = omap1_clk_enable_generic(clk);
56 omap1_clk_disable(&api_ck.clk);
59 return retval;
62 static void omap1_clk_disable_dsp_domain(struct clk *clk)
64 if (omap1_clk_enable(&api_ck.clk) == 0) {
65 omap1_clk_disable_generic(clk);
66 omap1_clk_disable(&api_ck.clk);
70 static int omap1_clk_enable_uart_functional(struct clk *clk)
72 int ret;
73 struct uart_clk *uclk;
75 ret = omap1_clk_enable_generic(clk);
76 if (ret == 0) {
77 /* Set smart idle acknowledgement mode */
78 uclk = (struct uart_clk *)clk;
79 omap_writeb((omap_readb(uclk->sysc_addr) & ~0x10) | 8,
80 uclk->sysc_addr);
83 return ret;
86 static void omap1_clk_disable_uart_functional(struct clk *clk)
88 struct uart_clk *uclk;
90 /* Set force idle acknowledgement mode */
91 uclk = (struct uart_clk *)clk;
92 omap_writeb((omap_readb(uclk->sysc_addr) & ~0x18), uclk->sysc_addr);
94 omap1_clk_disable_generic(clk);
97 static void omap1_clk_allow_idle(struct clk *clk)
99 struct arm_idlect1_clk * iclk = (struct arm_idlect1_clk *)clk;
101 if (!(clk->flags & CLOCK_IDLE_CONTROL))
102 return;
104 if (iclk->no_idle_count > 0 && !(--iclk->no_idle_count))
105 arm_idlect1_mask |= 1 << iclk->idlect_shift;
108 static void omap1_clk_deny_idle(struct clk *clk)
110 struct arm_idlect1_clk * iclk = (struct arm_idlect1_clk *)clk;
112 if (!(clk->flags & CLOCK_IDLE_CONTROL))
113 return;
115 if (iclk->no_idle_count++ == 0)
116 arm_idlect1_mask &= ~(1 << iclk->idlect_shift);
119 static __u16 verify_ckctl_value(__u16 newval)
121 /* This function checks for following limitations set
122 * by the hardware (all conditions must be true):
123 * DSPMMU_CK == DSP_CK or DSPMMU_CK == DSP_CK/2
124 * ARM_CK >= TC_CK
125 * DSP_CK >= TC_CK
126 * DSPMMU_CK >= TC_CK
128 * In addition following rules are enforced:
129 * LCD_CK <= TC_CK
130 * ARMPER_CK <= TC_CK
132 * However, maximum frequencies are not checked for!
134 __u8 per_exp;
135 __u8 lcd_exp;
136 __u8 arm_exp;
137 __u8 dsp_exp;
138 __u8 tc_exp;
139 __u8 dspmmu_exp;
141 per_exp = (newval >> CKCTL_PERDIV_OFFSET) & 3;
142 lcd_exp = (newval >> CKCTL_LCDDIV_OFFSET) & 3;
143 arm_exp = (newval >> CKCTL_ARMDIV_OFFSET) & 3;
144 dsp_exp = (newval >> CKCTL_DSPDIV_OFFSET) & 3;
145 tc_exp = (newval >> CKCTL_TCDIV_OFFSET) & 3;
146 dspmmu_exp = (newval >> CKCTL_DSPMMUDIV_OFFSET) & 3;
148 if (dspmmu_exp < dsp_exp)
149 dspmmu_exp = dsp_exp;
150 if (dspmmu_exp > dsp_exp+1)
151 dspmmu_exp = dsp_exp+1;
152 if (tc_exp < arm_exp)
153 tc_exp = arm_exp;
154 if (tc_exp < dspmmu_exp)
155 tc_exp = dspmmu_exp;
156 if (tc_exp > lcd_exp)
157 lcd_exp = tc_exp;
158 if (tc_exp > per_exp)
159 per_exp = tc_exp;
161 newval &= 0xf000;
162 newval |= per_exp << CKCTL_PERDIV_OFFSET;
163 newval |= lcd_exp << CKCTL_LCDDIV_OFFSET;
164 newval |= arm_exp << CKCTL_ARMDIV_OFFSET;
165 newval |= dsp_exp << CKCTL_DSPDIV_OFFSET;
166 newval |= tc_exp << CKCTL_TCDIV_OFFSET;
167 newval |= dspmmu_exp << CKCTL_DSPMMUDIV_OFFSET;
169 return newval;
172 static int calc_dsor_exp(struct clk *clk, unsigned long rate)
174 /* Note: If target frequency is too low, this function will return 4,
175 * which is invalid value. Caller must check for this value and act
176 * accordingly.
178 * Note: This function does not check for following limitations set
179 * by the hardware (all conditions must be true):
180 * DSPMMU_CK == DSP_CK or DSPMMU_CK == DSP_CK/2
181 * ARM_CK >= TC_CK
182 * DSP_CK >= TC_CK
183 * DSPMMU_CK >= TC_CK
185 unsigned long realrate;
186 struct clk * parent;
187 unsigned dsor_exp;
189 if (unlikely(!(clk->flags & RATE_CKCTL)))
190 return -EINVAL;
192 parent = clk->parent;
193 if (unlikely(parent == 0))
194 return -EIO;
196 realrate = parent->rate;
197 for (dsor_exp=0; dsor_exp<4; dsor_exp++) {
198 if (realrate <= rate)
199 break;
201 realrate /= 2;
204 return dsor_exp;
207 static void omap1_ckctl_recalc(struct clk * clk)
209 int dsor;
211 /* Calculate divisor encoded as 2-bit exponent */
212 dsor = 1 << (3 & (omap_readw(ARM_CKCTL) >> clk->rate_offset));
214 if (unlikely(clk->rate == clk->parent->rate / dsor))
215 return; /* No change, quick exit */
216 clk->rate = clk->parent->rate / dsor;
218 if (unlikely(clk->flags & RATE_PROPAGATES))
219 propagate_rate(clk);
222 static void omap1_ckctl_recalc_dsp_domain(struct clk * clk)
224 int dsor;
226 /* Calculate divisor encoded as 2-bit exponent
228 * The clock control bits are in DSP domain,
229 * so api_ck is needed for access.
230 * Note that DSP_CKCTL virt addr = phys addr, so
231 * we must use __raw_readw() instead of omap_readw().
233 omap1_clk_enable(&api_ck.clk);
234 dsor = 1 << (3 & (__raw_readw(DSP_CKCTL) >> clk->rate_offset));
235 omap1_clk_disable(&api_ck.clk);
237 if (unlikely(clk->rate == clk->parent->rate / dsor))
238 return; /* No change, quick exit */
239 clk->rate = clk->parent->rate / dsor;
241 if (unlikely(clk->flags & RATE_PROPAGATES))
242 propagate_rate(clk);
245 /* MPU virtual clock functions */
246 static int omap1_select_table_rate(struct clk * clk, unsigned long rate)
248 /* Find the highest supported frequency <= rate and switch to it */
249 struct mpu_rate * ptr;
251 if (clk != &virtual_ck_mpu)
252 return -EINVAL;
254 for (ptr = rate_table; ptr->rate; ptr++) {
255 if (ptr->xtal != ck_ref.rate)
256 continue;
258 /* DPLL1 cannot be reprogrammed without risking system crash */
259 if (likely(ck_dpll1.rate!=0) && ptr->pll_rate != ck_dpll1.rate)
260 continue;
262 /* Can check only after xtal frequency check */
263 if (ptr->rate <= rate)
264 break;
267 if (!ptr->rate)
268 return -EINVAL;
271 * In most cases we should not need to reprogram DPLL.
272 * Reprogramming the DPLL is tricky, it must be done from SRAM.
274 omap_sram_reprogram_clock(ptr->dpllctl_val, ptr->ckctl_val);
276 ck_dpll1.rate = ptr->pll_rate;
277 propagate_rate(&ck_dpll1);
278 return 0;
281 static int omap1_clk_set_rate_dsp_domain(struct clk *clk, unsigned long rate)
283 int ret = -EINVAL;
284 int dsor_exp;
285 __u16 regval;
287 if (clk->flags & RATE_CKCTL) {
288 dsor_exp = calc_dsor_exp(clk, rate);
289 if (dsor_exp > 3)
290 dsor_exp = -EINVAL;
291 if (dsor_exp < 0)
292 return dsor_exp;
294 regval = __raw_readw(DSP_CKCTL);
295 regval &= ~(3 << clk->rate_offset);
296 regval |= dsor_exp << clk->rate_offset;
297 __raw_writew(regval, DSP_CKCTL);
298 clk->rate = clk->parent->rate / (1 << dsor_exp);
299 ret = 0;
302 if (unlikely(ret == 0 && (clk->flags & RATE_PROPAGATES)))
303 propagate_rate(clk);
305 return ret;
308 static long omap1_round_to_table_rate(struct clk * clk, unsigned long rate)
310 /* Find the highest supported frequency <= rate */
311 struct mpu_rate * ptr;
312 long highest_rate;
314 if (clk != &virtual_ck_mpu)
315 return -EINVAL;
317 highest_rate = -EINVAL;
319 for (ptr = rate_table; ptr->rate; ptr++) {
320 if (ptr->xtal != ck_ref.rate)
321 continue;
323 highest_rate = ptr->rate;
325 /* Can check only after xtal frequency check */
326 if (ptr->rate <= rate)
327 break;
330 return highest_rate;
333 static unsigned calc_ext_dsor(unsigned long rate)
335 unsigned dsor;
337 /* MCLK and BCLK divisor selection is not linear:
338 * freq = 96MHz / dsor
340 * RATIO_SEL range: dsor <-> RATIO_SEL
341 * 0..6: (RATIO_SEL+2) <-> (dsor-2)
342 * 6..48: (8+(RATIO_SEL-6)*2) <-> ((dsor-8)/2+6)
343 * Minimum dsor is 2 and maximum is 96. Odd divisors starting from 9
344 * can not be used.
346 for (dsor = 2; dsor < 96; ++dsor) {
347 if ((dsor & 1) && dsor > 8)
348 continue;
349 if (rate >= 96000000 / dsor)
350 break;
352 return dsor;
355 /* Only needed on 1510 */
356 static int omap1_set_uart_rate(struct clk * clk, unsigned long rate)
358 unsigned int val;
360 val = omap_readl(clk->enable_reg);
361 if (rate == 12000000)
362 val &= ~(1 << clk->enable_bit);
363 else if (rate == 48000000)
364 val |= (1 << clk->enable_bit);
365 else
366 return -EINVAL;
367 omap_writel(val, clk->enable_reg);
368 clk->rate = rate;
370 return 0;
373 /* External clock (MCLK & BCLK) functions */
374 static int omap1_set_ext_clk_rate(struct clk * clk, unsigned long rate)
376 unsigned dsor;
377 __u16 ratio_bits;
379 dsor = calc_ext_dsor(rate);
380 clk->rate = 96000000 / dsor;
381 if (dsor > 8)
382 ratio_bits = ((dsor - 8) / 2 + 6) << 2;
383 else
384 ratio_bits = (dsor - 2) << 2;
386 ratio_bits |= omap_readw(clk->enable_reg) & ~0xfd;
387 omap_writew(ratio_bits, clk->enable_reg);
389 return 0;
392 static long omap1_round_ext_clk_rate(struct clk * clk, unsigned long rate)
394 return 96000000 / calc_ext_dsor(rate);
397 static void omap1_init_ext_clk(struct clk * clk)
399 unsigned dsor;
400 __u16 ratio_bits;
402 /* Determine current rate and ensure clock is based on 96MHz APLL */
403 ratio_bits = omap_readw(clk->enable_reg) & ~1;
404 omap_writew(ratio_bits, clk->enable_reg);
406 ratio_bits = (ratio_bits & 0xfc) >> 2;
407 if (ratio_bits > 6)
408 dsor = (ratio_bits - 6) * 2 + 8;
409 else
410 dsor = ratio_bits + 2;
412 clk-> rate = 96000000 / dsor;
415 static int omap1_clk_enable(struct clk *clk)
417 int ret = 0;
418 if (clk->usecount++ == 0) {
419 if (likely(clk->parent)) {
420 ret = omap1_clk_enable(clk->parent);
422 if (unlikely(ret != 0)) {
423 clk->usecount--;
424 return ret;
427 if (clk->flags & CLOCK_NO_IDLE_PARENT)
428 if (!cpu_is_omap24xx())
429 omap1_clk_deny_idle(clk->parent);
432 ret = clk->enable(clk);
434 if (unlikely(ret != 0) && clk->parent) {
435 omap1_clk_disable(clk->parent);
436 clk->usecount--;
440 return ret;
443 static void omap1_clk_disable(struct clk *clk)
445 if (clk->usecount > 0 && !(--clk->usecount)) {
446 clk->disable(clk);
447 if (likely(clk->parent)) {
448 omap1_clk_disable(clk->parent);
449 if (clk->flags & CLOCK_NO_IDLE_PARENT)
450 if (!cpu_is_omap24xx())
451 omap1_clk_allow_idle(clk->parent);
456 static int omap1_clk_enable_generic(struct clk *clk)
458 __u16 regval16;
459 __u32 regval32;
461 if (clk->flags & ALWAYS_ENABLED)
462 return 0;
464 if (unlikely(clk->enable_reg == 0)) {
465 printk(KERN_ERR "clock.c: Enable for %s without enable code\n",
466 clk->name);
467 return 0;
470 if (clk->flags & ENABLE_REG_32BIT) {
471 if (clk->flags & VIRTUAL_IO_ADDRESS) {
472 regval32 = __raw_readl(clk->enable_reg);
473 regval32 |= (1 << clk->enable_bit);
474 __raw_writel(regval32, clk->enable_reg);
475 } else {
476 regval32 = omap_readl(clk->enable_reg);
477 regval32 |= (1 << clk->enable_bit);
478 omap_writel(regval32, clk->enable_reg);
480 } else {
481 if (clk->flags & VIRTUAL_IO_ADDRESS) {
482 regval16 = __raw_readw(clk->enable_reg);
483 regval16 |= (1 << clk->enable_bit);
484 __raw_writew(regval16, clk->enable_reg);
485 } else {
486 regval16 = omap_readw(clk->enable_reg);
487 regval16 |= (1 << clk->enable_bit);
488 omap_writew(regval16, clk->enable_reg);
492 return 0;
495 static void omap1_clk_disable_generic(struct clk *clk)
497 __u16 regval16;
498 __u32 regval32;
500 if (clk->enable_reg == 0)
501 return;
503 if (clk->flags & ENABLE_REG_32BIT) {
504 if (clk->flags & VIRTUAL_IO_ADDRESS) {
505 regval32 = __raw_readl(clk->enable_reg);
506 regval32 &= ~(1 << clk->enable_bit);
507 __raw_writel(regval32, clk->enable_reg);
508 } else {
509 regval32 = omap_readl(clk->enable_reg);
510 regval32 &= ~(1 << clk->enable_bit);
511 omap_writel(regval32, clk->enable_reg);
513 } else {
514 if (clk->flags & VIRTUAL_IO_ADDRESS) {
515 regval16 = __raw_readw(clk->enable_reg);
516 regval16 &= ~(1 << clk->enable_bit);
517 __raw_writew(regval16, clk->enable_reg);
518 } else {
519 regval16 = omap_readw(clk->enable_reg);
520 regval16 &= ~(1 << clk->enable_bit);
521 omap_writew(regval16, clk->enable_reg);
526 static long omap1_clk_round_rate(struct clk *clk, unsigned long rate)
528 int dsor_exp;
530 if (clk->flags & RATE_FIXED)
531 return clk->rate;
533 if (clk->flags & RATE_CKCTL) {
534 dsor_exp = calc_dsor_exp(clk, rate);
535 if (dsor_exp < 0)
536 return dsor_exp;
537 if (dsor_exp > 3)
538 dsor_exp = 3;
539 return clk->parent->rate / (1 << dsor_exp);
542 if(clk->round_rate != 0)
543 return clk->round_rate(clk, rate);
545 return clk->rate;
548 static int omap1_clk_set_rate(struct clk *clk, unsigned long rate)
550 int ret = -EINVAL;
551 int dsor_exp;
552 __u16 regval;
554 if (clk->set_rate)
555 ret = clk->set_rate(clk, rate);
556 else if (clk->flags & RATE_CKCTL) {
557 dsor_exp = calc_dsor_exp(clk, rate);
558 if (dsor_exp > 3)
559 dsor_exp = -EINVAL;
560 if (dsor_exp < 0)
561 return dsor_exp;
563 regval = omap_readw(ARM_CKCTL);
564 regval &= ~(3 << clk->rate_offset);
565 regval |= dsor_exp << clk->rate_offset;
566 regval = verify_ckctl_value(regval);
567 omap_writew(regval, ARM_CKCTL);
568 clk->rate = clk->parent->rate / (1 << dsor_exp);
569 ret = 0;
572 if (unlikely(ret == 0 && (clk->flags & RATE_PROPAGATES)))
573 propagate_rate(clk);
575 return ret;
578 /*-------------------------------------------------------------------------
579 * Omap1 clock reset and init functions
580 *-------------------------------------------------------------------------*/
582 #ifdef CONFIG_OMAP_RESET_CLOCKS
584 * Resets some clocks that may be left on from bootloader,
585 * but leaves serial clocks on. See also omap_late_clk_reset().
587 static inline void omap1_early_clk_reset(void)
589 //omap_writel(0x3 << 29, MOD_CONF_CTRL_0);
592 static int __init omap1_late_clk_reset(void)
594 /* Turn off all unused clocks */
595 struct clk *p;
596 __u32 regval32;
598 /* USB_REQ_EN will be disabled later if necessary (usb_dc_ck) */
599 regval32 = omap_readw(SOFT_REQ_REG) & (1 << 4);
600 omap_writew(regval32, SOFT_REQ_REG);
601 omap_writew(0, SOFT_REQ_REG2);
603 list_for_each_entry(p, &clocks, node) {
604 if (p->usecount > 0 || (p->flags & ALWAYS_ENABLED) ||
605 p->enable_reg == 0)
606 continue;
608 /* Clocks in the DSP domain need api_ck. Just assume bootloader
609 * has not enabled any DSP clocks */
610 if ((u32)p->enable_reg == DSP_IDLECT2) {
611 printk(KERN_INFO "Skipping reset check for DSP domain "
612 "clock \"%s\"\n", p->name);
613 continue;
616 /* Is the clock already disabled? */
617 if (p->flags & ENABLE_REG_32BIT) {
618 if (p->flags & VIRTUAL_IO_ADDRESS)
619 regval32 = __raw_readl(p->enable_reg);
620 else
621 regval32 = omap_readl(p->enable_reg);
622 } else {
623 if (p->flags & VIRTUAL_IO_ADDRESS)
624 regval32 = __raw_readw(p->enable_reg);
625 else
626 regval32 = omap_readw(p->enable_reg);
629 if ((regval32 & (1 << p->enable_bit)) == 0)
630 continue;
632 /* FIXME: This clock seems to be necessary but no-one
633 * has asked for its activation. */
634 if (p == &tc2_ck // FIX: pm.c (SRAM), CCP, Camera
635 || p == &ck_dpll1out.clk // FIX: SoSSI, SSR
636 || p == &arm_gpio_ck // FIX: GPIO code for 1510
638 printk(KERN_INFO "FIXME: Clock \"%s\" seems unused\n",
639 p->name);
640 continue;
643 printk(KERN_INFO "Disabling unused clock \"%s\"... ", p->name);
644 p->disable(p);
645 printk(" done\n");
648 return 0;
650 late_initcall(omap1_late_clk_reset);
652 #else
653 #define omap1_early_clk_reset() {}
654 #endif
656 static struct clk_functions omap1_clk_functions = {
657 .clk_enable = omap1_clk_enable,
658 .clk_disable = omap1_clk_disable,
659 .clk_round_rate = omap1_clk_round_rate,
660 .clk_set_rate = omap1_clk_set_rate,
663 int __init omap1_clk_init(void)
665 struct clk ** clkp;
666 const struct omap_clock_config *info;
667 int crystal_type = 0; /* Default 12 MHz */
669 omap1_early_clk_reset();
670 clk_init(&omap1_clk_functions);
672 /* By default all idlect1 clocks are allowed to idle */
673 arm_idlect1_mask = ~0;
675 for (clkp = onchip_clks; clkp < onchip_clks+ARRAY_SIZE(onchip_clks); clkp++) {
676 if (((*clkp)->flags &CLOCK_IN_OMAP1510) && cpu_is_omap1510()) {
677 clk_register(*clkp);
678 continue;
681 if (((*clkp)->flags &CLOCK_IN_OMAP16XX) && cpu_is_omap16xx()) {
682 clk_register(*clkp);
683 continue;
686 if (((*clkp)->flags &CLOCK_IN_OMAP730) && cpu_is_omap730()) {
687 clk_register(*clkp);
688 continue;
691 if (((*clkp)->flags &CLOCK_IN_OMAP310) && cpu_is_omap310()) {
692 clk_register(*clkp);
693 continue;
697 info = omap_get_config(OMAP_TAG_CLOCK, struct omap_clock_config);
698 if (info != NULL) {
699 if (!cpu_is_omap1510())
700 crystal_type = info->system_clock_type;
703 #if defined(CONFIG_ARCH_OMAP730)
704 ck_ref.rate = 13000000;
705 #elif defined(CONFIG_ARCH_OMAP16XX)
706 if (crystal_type == 2)
707 ck_ref.rate = 19200000;
708 #endif
710 printk("Clocks: ARM_SYSST: 0x%04x DPLL_CTL: 0x%04x ARM_CKCTL: 0x%04x\n",
711 omap_readw(ARM_SYSST), omap_readw(DPLL_CTL),
712 omap_readw(ARM_CKCTL));
714 /* We want to be in syncronous scalable mode */
715 omap_writew(0x1000, ARM_SYSST);
717 #ifdef CONFIG_OMAP_CLOCKS_SET_BY_BOOTLOADER
718 /* Use values set by bootloader. Determine PLL rate and recalculate
719 * dependent clocks as if kernel had changed PLL or divisors.
722 unsigned pll_ctl_val = omap_readw(DPLL_CTL);
724 ck_dpll1.rate = ck_ref.rate; /* Base xtal rate */
725 if (pll_ctl_val & 0x10) {
726 /* PLL enabled, apply multiplier and divisor */
727 if (pll_ctl_val & 0xf80)
728 ck_dpll1.rate *= (pll_ctl_val & 0xf80) >> 7;
729 ck_dpll1.rate /= ((pll_ctl_val & 0x60) >> 5) + 1;
730 } else {
731 /* PLL disabled, apply bypass divisor */
732 switch (pll_ctl_val & 0xc) {
733 case 0:
734 break;
735 case 0x4:
736 ck_dpll1.rate /= 2;
737 break;
738 default:
739 ck_dpll1.rate /= 4;
740 break;
744 propagate_rate(&ck_dpll1);
745 #else
746 /* Find the highest supported frequency and enable it */
747 if (omap1_select_table_rate(&virtual_ck_mpu, ~0)) {
748 printk(KERN_ERR "System frequencies not set. Check your config.\n");
749 /* Guess sane values (60MHz) */
750 omap_writew(0x2290, DPLL_CTL);
751 omap_writew(0x1005, ARM_CKCTL);
752 ck_dpll1.rate = 60000000;
753 propagate_rate(&ck_dpll1);
755 #endif
756 /* Cache rates for clocks connected to ck_ref (not dpll1) */
757 propagate_rate(&ck_ref);
758 printk(KERN_INFO "Clocking rate (xtal/DPLL1/MPU): "
759 "%ld.%01ld/%ld.%01ld/%ld.%01ld MHz\n",
760 ck_ref.rate / 1000000, (ck_ref.rate / 100000) % 10,
761 ck_dpll1.rate / 1000000, (ck_dpll1.rate / 100000) % 10,
762 arm_ck.rate / 1000000, (arm_ck.rate / 100000) % 10);
764 #ifdef CONFIG_MACH_OMAP_PERSEUS2
765 /* Select slicer output as OMAP input clock */
766 omap_writew(omap_readw(OMAP730_PCC_UPLD_CTRL) & ~0x1, OMAP730_PCC_UPLD_CTRL);
767 #endif
769 /* Turn off DSP and ARM_TIMXO. Make sure ARM_INTHCK is not divided */
770 omap_writew(omap_readw(ARM_CKCTL) & 0x0fff, ARM_CKCTL);
772 /* Put DSP/MPUI into reset until needed */
773 omap_writew(0, ARM_RSTCT1);
774 omap_writew(1, ARM_RSTCT2);
775 omap_writew(0x400, ARM_IDLECT1);
778 * According to OMAP5910 Erratum SYS_DMA_1, bit DMACK_REQ (bit 8)
779 * of the ARM_IDLECT2 register must be set to zero. The power-on
780 * default value of this bit is one.
782 omap_writew(0x0000, ARM_IDLECT2); /* Turn LCD clock off also */
785 * Only enable those clocks we will need, let the drivers
786 * enable other clocks as necessary
788 clk_enable(&armper_ck.clk);
789 clk_enable(&armxor_ck.clk);
790 clk_enable(&armtim_ck.clk); /* This should be done by timer code */
792 if (cpu_is_omap15xx())
793 clk_enable(&arm_gpio_ck);
795 return 0;