USB: xhci: Deal with stalled endpoints.
[linux-2.6/mini2440.git] / drivers / usb / host / xhci-hcd.c
blob1c5901ad6eb8446f2adac830dc930589af839be9
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/irq.h>
24 #include <linux/module.h>
26 #include "xhci.h"
28 #define DRIVER_AUTHOR "Sarah Sharp"
29 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
31 /* TODO: copied from ehci-hcd.c - can this be refactored? */
33 * handshake - spin reading hc until handshake completes or fails
34 * @ptr: address of hc register to be read
35 * @mask: bits to look at in result of read
36 * @done: value of those bits when handshake succeeds
37 * @usec: timeout in microseconds
39 * Returns negative errno, or zero on success
41 * Success happens when the "mask" bits have the specified value (hardware
42 * handshake done). There are two failure modes: "usec" have passed (major
43 * hardware flakeout), or the register reads as all-ones (hardware removed).
45 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
46 u32 mask, u32 done, int usec)
48 u32 result;
50 do {
51 result = xhci_readl(xhci, ptr);
52 if (result == ~(u32)0) /* card removed */
53 return -ENODEV;
54 result &= mask;
55 if (result == done)
56 return 0;
57 udelay(1);
58 usec--;
59 } while (usec > 0);
60 return -ETIMEDOUT;
64 * Force HC into halt state.
66 * Disable any IRQs and clear the run/stop bit.
67 * HC will complete any current and actively pipelined transactions, and
68 * should halt within 16 microframes of the run/stop bit being cleared.
69 * Read HC Halted bit in the status register to see when the HC is finished.
70 * XXX: shouldn't we set HC_STATE_HALT here somewhere?
72 int xhci_halt(struct xhci_hcd *xhci)
74 u32 halted;
75 u32 cmd;
76 u32 mask;
78 xhci_dbg(xhci, "// Halt the HC\n");
79 /* Disable all interrupts from the host controller */
80 mask = ~(XHCI_IRQS);
81 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
82 if (!halted)
83 mask &= ~CMD_RUN;
85 cmd = xhci_readl(xhci, &xhci->op_regs->command);
86 cmd &= mask;
87 xhci_writel(xhci, cmd, &xhci->op_regs->command);
89 return handshake(xhci, &xhci->op_regs->status,
90 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
94 * Reset a halted HC, and set the internal HC state to HC_STATE_HALT.
96 * This resets pipelines, timers, counters, state machines, etc.
97 * Transactions will be terminated immediately, and operational registers
98 * will be set to their defaults.
100 int xhci_reset(struct xhci_hcd *xhci)
102 u32 command;
103 u32 state;
105 state = xhci_readl(xhci, &xhci->op_regs->status);
106 BUG_ON((state & STS_HALT) == 0);
108 xhci_dbg(xhci, "// Reset the HC\n");
109 command = xhci_readl(xhci, &xhci->op_regs->command);
110 command |= CMD_RESET;
111 xhci_writel(xhci, command, &xhci->op_regs->command);
112 /* XXX: Why does EHCI set this here? Shouldn't other code do this? */
113 xhci_to_hcd(xhci)->state = HC_STATE_HALT;
115 return handshake(xhci, &xhci->op_regs->command, CMD_RESET, 0, 250 * 1000);
119 * Stop the HC from processing the endpoint queues.
121 static void xhci_quiesce(struct xhci_hcd *xhci)
124 * Queues are per endpoint, so we need to disable an endpoint or slot.
126 * To disable a slot, we need to insert a disable slot command on the
127 * command ring and ring the doorbell. This will also free any internal
128 * resources associated with the slot (which might not be what we want).
130 * A Release Endpoint command sounds better - doesn't free internal HC
131 * memory, but removes the endpoints from the schedule and releases the
132 * bandwidth, disables the doorbells, and clears the endpoint enable
133 * flag. Usually used prior to a set interface command.
135 * TODO: Implement after command ring code is done.
137 BUG_ON(!HC_IS_RUNNING(xhci_to_hcd(xhci)->state));
138 xhci_dbg(xhci, "Finished quiescing -- code not written yet\n");
141 #if 0
142 /* Set up MSI-X table for entry 0 (may claim other entries later) */
143 static int xhci_setup_msix(struct xhci_hcd *xhci)
145 int ret;
146 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
148 xhci->msix_count = 0;
149 /* XXX: did I do this right? ixgbe does kcalloc for more than one */
150 xhci->msix_entries = kmalloc(sizeof(struct msix_entry), GFP_KERNEL);
151 if (!xhci->msix_entries) {
152 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
153 return -ENOMEM;
155 xhci->msix_entries[0].entry = 0;
157 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
158 if (ret) {
159 xhci_err(xhci, "Failed to enable MSI-X\n");
160 goto free_entries;
164 * Pass the xhci pointer value as the request_irq "cookie".
165 * If more irqs are added, this will need to be unique for each one.
167 ret = request_irq(xhci->msix_entries[0].vector, &xhci_irq, 0,
168 "xHCI", xhci_to_hcd(xhci));
169 if (ret) {
170 xhci_err(xhci, "Failed to allocate MSI-X interrupt\n");
171 goto disable_msix;
173 xhci_dbg(xhci, "Finished setting up MSI-X\n");
174 return 0;
176 disable_msix:
177 pci_disable_msix(pdev);
178 free_entries:
179 kfree(xhci->msix_entries);
180 xhci->msix_entries = NULL;
181 return ret;
184 /* XXX: code duplication; can xhci_setup_msix call this? */
185 /* Free any IRQs and disable MSI-X */
186 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
188 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
189 if (!xhci->msix_entries)
190 return;
192 free_irq(xhci->msix_entries[0].vector, xhci);
193 pci_disable_msix(pdev);
194 kfree(xhci->msix_entries);
195 xhci->msix_entries = NULL;
196 xhci_dbg(xhci, "Finished cleaning up MSI-X\n");
198 #endif
201 * Initialize memory for HCD and xHC (one-time init).
203 * Program the PAGESIZE register, initialize the device context array, create
204 * device contexts (?), set up a command ring segment (or two?), create event
205 * ring (one for now).
207 int xhci_init(struct usb_hcd *hcd)
209 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
210 int retval = 0;
212 xhci_dbg(xhci, "xhci_init\n");
213 spin_lock_init(&xhci->lock);
214 retval = xhci_mem_init(xhci, GFP_KERNEL);
215 xhci_dbg(xhci, "Finished xhci_init\n");
217 return retval;
221 * Called in interrupt context when there might be work
222 * queued on the event ring
224 * xhci->lock must be held by caller.
226 static void xhci_work(struct xhci_hcd *xhci)
228 u32 temp;
231 * Clear the op reg interrupt status first,
232 * so we can receive interrupts from other MSI-X interrupters.
233 * Write 1 to clear the interrupt status.
235 temp = xhci_readl(xhci, &xhci->op_regs->status);
236 temp |= STS_EINT;
237 xhci_writel(xhci, temp, &xhci->op_regs->status);
238 /* FIXME when MSI-X is supported and there are multiple vectors */
239 /* Clear the MSI-X event interrupt status */
241 /* Acknowledge the interrupt */
242 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
243 temp |= 0x3;
244 xhci_writel(xhci, temp, &xhci->ir_set->irq_pending);
245 /* Flush posted writes */
246 xhci_readl(xhci, &xhci->ir_set->irq_pending);
248 /* FIXME this should be a delayed service routine that clears the EHB */
249 xhci_handle_event(xhci);
251 /* Clear the event handler busy flag; the event ring should be empty. */
252 temp = xhci_readl(xhci, &xhci->ir_set->erst_dequeue[0]);
253 xhci_writel(xhci, temp & ~ERST_EHB, &xhci->ir_set->erst_dequeue[0]);
254 /* Flush posted writes -- FIXME is this necessary? */
255 xhci_readl(xhci, &xhci->ir_set->irq_pending);
258 /*-------------------------------------------------------------------------*/
261 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
262 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
263 * indicators of an event TRB error, but we check the status *first* to be safe.
265 irqreturn_t xhci_irq(struct usb_hcd *hcd)
267 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
268 u32 temp, temp2;
270 spin_lock(&xhci->lock);
271 /* Check if the xHC generated the interrupt, or the irq is shared */
272 temp = xhci_readl(xhci, &xhci->op_regs->status);
273 temp2 = xhci_readl(xhci, &xhci->ir_set->irq_pending);
274 if (!(temp & STS_EINT) && !ER_IRQ_PENDING(temp2)) {
275 spin_unlock(&xhci->lock);
276 return IRQ_NONE;
279 if (temp & STS_FATAL) {
280 xhci_warn(xhci, "WARNING: Host System Error\n");
281 xhci_halt(xhci);
282 xhci_to_hcd(xhci)->state = HC_STATE_HALT;
283 spin_unlock(&xhci->lock);
284 return -ESHUTDOWN;
287 xhci_work(xhci);
288 spin_unlock(&xhci->lock);
290 return IRQ_HANDLED;
293 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
294 void xhci_event_ring_work(unsigned long arg)
296 unsigned long flags;
297 int temp;
298 struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
299 int i, j;
301 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
303 spin_lock_irqsave(&xhci->lock, flags);
304 temp = xhci_readl(xhci, &xhci->op_regs->status);
305 xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
306 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
307 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
308 xhci_dbg(xhci, "No-op commands handled = %d\n", xhci->noops_handled);
309 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
310 xhci->error_bitmask = 0;
311 xhci_dbg(xhci, "Event ring:\n");
312 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
313 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
314 temp = xhci_readl(xhci, &xhci->ir_set->erst_dequeue[0]);
315 temp &= ERST_PTR_MASK;
316 xhci_dbg(xhci, "ERST deq = 0x%x\n", temp);
317 xhci_dbg(xhci, "Command ring:\n");
318 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
319 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
320 xhci_dbg_cmd_ptrs(xhci);
321 for (i = 0; i < MAX_HC_SLOTS; ++i) {
322 if (xhci->devs[i]) {
323 for (j = 0; j < 31; ++j) {
324 if (xhci->devs[i]->ep_rings[j]) {
325 xhci_dbg(xhci, "Dev %d endpoint ring %d:\n", i, j);
326 xhci_debug_segment(xhci, xhci->devs[i]->ep_rings[j]->deq_seg);
332 if (xhci->noops_submitted != NUM_TEST_NOOPS)
333 if (xhci_setup_one_noop(xhci))
334 xhci_ring_cmd_db(xhci);
335 spin_unlock_irqrestore(&xhci->lock, flags);
337 if (!xhci->zombie)
338 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
339 else
340 xhci_dbg(xhci, "Quit polling the event ring.\n");
342 #endif
345 * Start the HC after it was halted.
347 * This function is called by the USB core when the HC driver is added.
348 * Its opposite is xhci_stop().
350 * xhci_init() must be called once before this function can be called.
351 * Reset the HC, enable device slot contexts, program DCBAAP, and
352 * set command ring pointer and event ring pointer.
354 * Setup MSI-X vectors and enable interrupts.
356 int xhci_run(struct usb_hcd *hcd)
358 u32 temp;
359 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
360 void (*doorbell)(struct xhci_hcd *) = NULL;
362 hcd->uses_new_polling = 1;
363 hcd->poll_rh = 0;
365 xhci_dbg(xhci, "xhci_run\n");
366 #if 0 /* FIXME: MSI not setup yet */
367 /* Do this at the very last minute */
368 ret = xhci_setup_msix(xhci);
369 if (!ret)
370 return ret;
372 return -ENOSYS;
373 #endif
374 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
375 init_timer(&xhci->event_ring_timer);
376 xhci->event_ring_timer.data = (unsigned long) xhci;
377 xhci->event_ring_timer.function = xhci_event_ring_work;
378 /* Poll the event ring */
379 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
380 xhci->zombie = 0;
381 xhci_dbg(xhci, "Setting event ring polling timer\n");
382 add_timer(&xhci->event_ring_timer);
383 #endif
385 xhci_dbg(xhci, "// Set the interrupt modulation register\n");
386 temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
387 temp &= ~ER_IRQ_INTERVAL_MASK;
388 temp |= (u32) 160;
389 xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
391 /* Set the HCD state before we enable the irqs */
392 hcd->state = HC_STATE_RUNNING;
393 temp = xhci_readl(xhci, &xhci->op_regs->command);
394 temp |= (CMD_EIE);
395 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
396 temp);
397 xhci_writel(xhci, temp, &xhci->op_regs->command);
399 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
400 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
401 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
402 xhci_writel(xhci, ER_IRQ_ENABLE(temp),
403 &xhci->ir_set->irq_pending);
404 xhci_print_ir_set(xhci, xhci->ir_set, 0);
406 if (NUM_TEST_NOOPS > 0)
407 doorbell = xhci_setup_one_noop(xhci);
409 xhci_dbg(xhci, "Command ring memory map follows:\n");
410 xhci_debug_ring(xhci, xhci->cmd_ring);
411 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
412 xhci_dbg_cmd_ptrs(xhci);
414 xhci_dbg(xhci, "ERST memory map follows:\n");
415 xhci_dbg_erst(xhci, &xhci->erst);
416 xhci_dbg(xhci, "Event ring:\n");
417 xhci_debug_ring(xhci, xhci->event_ring);
418 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
419 temp = xhci_readl(xhci, &xhci->ir_set->erst_dequeue[0]);
420 temp &= ERST_PTR_MASK;
421 xhci_dbg(xhci, "ERST deq = 0x%x\n", temp);
422 temp = xhci_readl(xhci, &xhci->ir_set->erst_dequeue[1]);
423 xhci_dbg(xhci, "ERST deq upper = 0x%x\n", temp);
425 temp = xhci_readl(xhci, &xhci->op_regs->command);
426 temp |= (CMD_RUN);
427 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
428 temp);
429 xhci_writel(xhci, temp, &xhci->op_regs->command);
430 /* Flush PCI posted writes */
431 temp = xhci_readl(xhci, &xhci->op_regs->command);
432 xhci_dbg(xhci, "// @%p = 0x%x\n", &xhci->op_regs->command, temp);
433 if (doorbell)
434 (*doorbell)(xhci);
436 xhci_dbg(xhci, "Finished xhci_run\n");
437 return 0;
441 * Stop xHCI driver.
443 * This function is called by the USB core when the HC driver is removed.
444 * Its opposite is xhci_run().
446 * Disable device contexts, disable IRQs, and quiesce the HC.
447 * Reset the HC, finish any completed transactions, and cleanup memory.
449 void xhci_stop(struct usb_hcd *hcd)
451 u32 temp;
452 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
454 spin_lock_irq(&xhci->lock);
455 if (HC_IS_RUNNING(hcd->state))
456 xhci_quiesce(xhci);
457 xhci_halt(xhci);
458 xhci_reset(xhci);
459 spin_unlock_irq(&xhci->lock);
461 #if 0 /* No MSI yet */
462 xhci_cleanup_msix(xhci);
463 #endif
464 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
465 /* Tell the event ring poll function not to reschedule */
466 xhci->zombie = 1;
467 del_timer_sync(&xhci->event_ring_timer);
468 #endif
470 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
471 temp = xhci_readl(xhci, &xhci->op_regs->status);
472 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
473 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
474 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
475 &xhci->ir_set->irq_pending);
476 xhci_print_ir_set(xhci, xhci->ir_set, 0);
478 xhci_dbg(xhci, "cleaning up memory\n");
479 xhci_mem_cleanup(xhci);
480 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
481 xhci_readl(xhci, &xhci->op_regs->status));
485 * Shutdown HC (not bus-specific)
487 * This is called when the machine is rebooting or halting. We assume that the
488 * machine will be powered off, and the HC's internal state will be reset.
489 * Don't bother to free memory.
491 void xhci_shutdown(struct usb_hcd *hcd)
493 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
495 spin_lock_irq(&xhci->lock);
496 xhci_halt(xhci);
497 spin_unlock_irq(&xhci->lock);
499 #if 0
500 xhci_cleanup_msix(xhci);
501 #endif
503 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
504 xhci_readl(xhci, &xhci->op_regs->status));
507 /*-------------------------------------------------------------------------*/
510 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
511 * HCDs. Find the index for an endpoint given its descriptor. Use the return
512 * value to right shift 1 for the bitmask.
514 * Index = (epnum * 2) + direction - 1,
515 * where direction = 0 for OUT, 1 for IN.
516 * For control endpoints, the IN index is used (OUT index is unused), so
517 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
519 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
521 unsigned int index;
522 if (usb_endpoint_xfer_control(desc))
523 index = (unsigned int) (usb_endpoint_num(desc)*2);
524 else
525 index = (unsigned int) (usb_endpoint_num(desc)*2) +
526 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
527 return index;
530 /* Find the flag for this endpoint (for use in the control context). Use the
531 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
532 * bit 1, etc.
534 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
536 return 1 << (xhci_get_endpoint_index(desc) + 1);
539 /* Compute the last valid endpoint context index. Basically, this is the
540 * endpoint index plus one. For slot contexts with more than valid endpoint,
541 * we find the most significant bit set in the added contexts flags.
542 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
543 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
545 static inline unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
547 return fls(added_ctxs) - 1;
550 /* Returns 1 if the arguments are OK;
551 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
553 int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
554 struct usb_host_endpoint *ep, int check_ep, const char *func) {
555 if (!hcd || (check_ep && !ep) || !udev) {
556 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
557 func);
558 return -EINVAL;
560 if (!udev->parent) {
561 printk(KERN_DEBUG "xHCI %s called for root hub\n",
562 func);
563 return 0;
565 if (!udev->slot_id) {
566 printk(KERN_DEBUG "xHCI %s called with unaddressed device\n",
567 func);
568 return -EINVAL;
570 return 1;
574 * non-error returns are a promise to giveback() the urb later
575 * we drop ownership so next owner (or urb unlink) can get it
577 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
579 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
580 unsigned long flags;
581 int ret = 0;
582 unsigned int slot_id, ep_index;
584 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, true, __func__) <= 0)
585 return -EINVAL;
587 slot_id = urb->dev->slot_id;
588 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
590 spin_lock_irqsave(&xhci->lock, flags);
591 if (!xhci->devs || !xhci->devs[slot_id]) {
592 if (!in_interrupt())
593 dev_warn(&urb->dev->dev, "WARN: urb submitted for dev with no Slot ID\n");
594 ret = -EINVAL;
595 goto exit;
597 if (!test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags)) {
598 if (!in_interrupt())
599 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
600 ret = -ESHUTDOWN;
601 goto exit;
603 if (usb_endpoint_xfer_control(&urb->ep->desc))
604 ret = xhci_queue_ctrl_tx(xhci, mem_flags, urb,
605 slot_id, ep_index);
606 else if (usb_endpoint_xfer_bulk(&urb->ep->desc))
607 ret = xhci_queue_bulk_tx(xhci, mem_flags, urb,
608 slot_id, ep_index);
609 else
610 ret = -EINVAL;
611 exit:
612 spin_unlock_irqrestore(&xhci->lock, flags);
613 return ret;
617 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
618 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
619 * should pick up where it left off in the TD, unless a Set Transfer Ring
620 * Dequeue Pointer is issued.
622 * The TRBs that make up the buffers for the canceled URB will be "removed" from
623 * the ring. Since the ring is a contiguous structure, they can't be physically
624 * removed. Instead, there are two options:
626 * 1) If the HC is in the middle of processing the URB to be canceled, we
627 * simply move the ring's dequeue pointer past those TRBs using the Set
628 * Transfer Ring Dequeue Pointer command. This will be the common case,
629 * when drivers timeout on the last submitted URB and attempt to cancel.
631 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
632 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
633 * HC will need to invalidate the any TRBs it has cached after the stop
634 * endpoint command, as noted in the xHCI 0.95 errata.
636 * 3) The TD may have completed by the time the Stop Endpoint Command
637 * completes, so software needs to handle that case too.
639 * This function should protect against the TD enqueueing code ringing the
640 * doorbell while this code is waiting for a Stop Endpoint command to complete.
641 * It also needs to account for multiple cancellations on happening at the same
642 * time for the same endpoint.
644 * Note that this function can be called in any context, or so says
645 * usb_hcd_unlink_urb()
647 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
649 unsigned long flags;
650 int ret;
651 struct xhci_hcd *xhci;
652 struct xhci_td *td;
653 unsigned int ep_index;
654 struct xhci_ring *ep_ring;
656 xhci = hcd_to_xhci(hcd);
657 spin_lock_irqsave(&xhci->lock, flags);
658 /* Make sure the URB hasn't completed or been unlinked already */
659 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
660 if (ret || !urb->hcpriv)
661 goto done;
663 xhci_dbg(xhci, "Cancel URB %p\n", urb);
664 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
665 ep_ring = xhci->devs[urb->dev->slot_id]->ep_rings[ep_index];
666 td = (struct xhci_td *) urb->hcpriv;
668 ep_ring->cancels_pending++;
669 list_add_tail(&td->cancelled_td_list, &ep_ring->cancelled_td_list);
670 /* Queue a stop endpoint command, but only if this is
671 * the first cancellation to be handled.
673 if (ep_ring->cancels_pending == 1) {
674 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index);
675 xhci_ring_cmd_db(xhci);
677 done:
678 spin_unlock_irqrestore(&xhci->lock, flags);
679 return ret;
682 /* Drop an endpoint from a new bandwidth configuration for this device.
683 * Only one call to this function is allowed per endpoint before
684 * check_bandwidth() or reset_bandwidth() must be called.
685 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
686 * add the endpoint to the schedule with possibly new parameters denoted by a
687 * different endpoint descriptor in usb_host_endpoint.
688 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
689 * not allowed.
691 * The USB core will not allow URBs to be queued to an endpoint that is being
692 * disabled, so there's no need for mutual exclusion to protect
693 * the xhci->devs[slot_id] structure.
695 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
696 struct usb_host_endpoint *ep)
698 struct xhci_hcd *xhci;
699 struct xhci_device_control *in_ctx;
700 unsigned int last_ctx;
701 unsigned int ep_index;
702 struct xhci_ep_ctx *ep_ctx;
703 u32 drop_flag;
704 u32 new_add_flags, new_drop_flags, new_slot_info;
705 int ret;
707 ret = xhci_check_args(hcd, udev, ep, 1, __func__);
708 if (ret <= 0)
709 return ret;
710 xhci = hcd_to_xhci(hcd);
711 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
713 drop_flag = xhci_get_endpoint_flag(&ep->desc);
714 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
715 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
716 __func__, drop_flag);
717 return 0;
720 if (!xhci->devs || !xhci->devs[udev->slot_id]) {
721 xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
722 __func__);
723 return -EINVAL;
726 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
727 ep_index = xhci_get_endpoint_index(&ep->desc);
728 ep_ctx = &xhci->devs[udev->slot_id]->out_ctx->ep[ep_index];
729 /* If the HC already knows the endpoint is disabled,
730 * or the HCD has noted it is disabled, ignore this request
732 if ((ep_ctx->ep_info & EP_STATE_MASK) == EP_STATE_DISABLED ||
733 in_ctx->drop_flags & xhci_get_endpoint_flag(&ep->desc)) {
734 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
735 __func__, ep);
736 return 0;
739 in_ctx->drop_flags |= drop_flag;
740 new_drop_flags = in_ctx->drop_flags;
742 in_ctx->add_flags = ~drop_flag;
743 new_add_flags = in_ctx->add_flags;
745 last_ctx = xhci_last_valid_endpoint(in_ctx->add_flags);
746 /* Update the last valid endpoint context, if we deleted the last one */
747 if ((in_ctx->slot.dev_info & LAST_CTX_MASK) > LAST_CTX(last_ctx)) {
748 in_ctx->slot.dev_info &= ~LAST_CTX_MASK;
749 in_ctx->slot.dev_info |= LAST_CTX(last_ctx);
751 new_slot_info = in_ctx->slot.dev_info;
753 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
755 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
756 (unsigned int) ep->desc.bEndpointAddress,
757 udev->slot_id,
758 (unsigned int) new_drop_flags,
759 (unsigned int) new_add_flags,
760 (unsigned int) new_slot_info);
761 return 0;
764 /* Add an endpoint to a new possible bandwidth configuration for this device.
765 * Only one call to this function is allowed per endpoint before
766 * check_bandwidth() or reset_bandwidth() must be called.
767 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
768 * add the endpoint to the schedule with possibly new parameters denoted by a
769 * different endpoint descriptor in usb_host_endpoint.
770 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
771 * not allowed.
773 * The USB core will not allow URBs to be queued to an endpoint until the
774 * configuration or alt setting is installed in the device, so there's no need
775 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
777 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
778 struct usb_host_endpoint *ep)
780 struct xhci_hcd *xhci;
781 struct xhci_device_control *in_ctx;
782 unsigned int ep_index;
783 struct xhci_ep_ctx *ep_ctx;
784 u32 added_ctxs;
785 unsigned int last_ctx;
786 u32 new_add_flags, new_drop_flags, new_slot_info;
787 int ret = 0;
789 ret = xhci_check_args(hcd, udev, ep, 1, __func__);
790 if (ret <= 0) {
791 /* So we won't queue a reset ep command for a root hub */
792 ep->hcpriv = NULL;
793 return ret;
795 xhci = hcd_to_xhci(hcd);
797 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
798 last_ctx = xhci_last_valid_endpoint(added_ctxs);
799 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
800 /* FIXME when we have to issue an evaluate endpoint command to
801 * deal with ep0 max packet size changing once we get the
802 * descriptors
804 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
805 __func__, added_ctxs);
806 return 0;
809 if (!xhci->devs || !xhci->devs[udev->slot_id]) {
810 xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
811 __func__);
812 return -EINVAL;
815 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
816 ep_index = xhci_get_endpoint_index(&ep->desc);
817 ep_ctx = &xhci->devs[udev->slot_id]->out_ctx->ep[ep_index];
818 /* If the HCD has already noted the endpoint is enabled,
819 * ignore this request.
821 if (in_ctx->add_flags & xhci_get_endpoint_flag(&ep->desc)) {
822 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
823 __func__, ep);
824 return 0;
828 * Configuration and alternate setting changes must be done in
829 * process context, not interrupt context (or so documenation
830 * for usb_set_interface() and usb_set_configuration() claim).
832 if (xhci_endpoint_init(xhci, xhci->devs[udev->slot_id],
833 udev, ep, GFP_KERNEL) < 0) {
834 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
835 __func__, ep->desc.bEndpointAddress);
836 return -ENOMEM;
839 in_ctx->add_flags |= added_ctxs;
840 new_add_flags = in_ctx->add_flags;
842 /* If xhci_endpoint_disable() was called for this endpoint, but the
843 * xHC hasn't been notified yet through the check_bandwidth() call,
844 * this re-adds a new state for the endpoint from the new endpoint
845 * descriptors. We must drop and re-add this endpoint, so we leave the
846 * drop flags alone.
848 new_drop_flags = in_ctx->drop_flags;
850 /* Update the last valid endpoint context, if we just added one past */
851 if ((in_ctx->slot.dev_info & LAST_CTX_MASK) < LAST_CTX(last_ctx)) {
852 in_ctx->slot.dev_info &= ~LAST_CTX_MASK;
853 in_ctx->slot.dev_info |= LAST_CTX(last_ctx);
855 new_slot_info = in_ctx->slot.dev_info;
857 /* Store the usb_device pointer for later use */
858 ep->hcpriv = udev;
860 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
861 (unsigned int) ep->desc.bEndpointAddress,
862 udev->slot_id,
863 (unsigned int) new_drop_flags,
864 (unsigned int) new_add_flags,
865 (unsigned int) new_slot_info);
866 return 0;
869 static void xhci_zero_in_ctx(struct xhci_virt_device *virt_dev)
871 struct xhci_ep_ctx *ep_ctx;
872 int i;
874 /* When a device's add flag and drop flag are zero, any subsequent
875 * configure endpoint command will leave that endpoint's state
876 * untouched. Make sure we don't leave any old state in the input
877 * endpoint contexts.
879 virt_dev->in_ctx->drop_flags = 0;
880 virt_dev->in_ctx->add_flags = 0;
881 virt_dev->in_ctx->slot.dev_info &= ~LAST_CTX_MASK;
882 /* Endpoint 0 is always valid */
883 virt_dev->in_ctx->slot.dev_info |= LAST_CTX(1);
884 for (i = 1; i < 31; ++i) {
885 ep_ctx = &virt_dev->in_ctx->ep[i];
886 ep_ctx->ep_info = 0;
887 ep_ctx->ep_info2 = 0;
888 ep_ctx->deq[0] = 0;
889 ep_ctx->deq[1] = 0;
890 ep_ctx->tx_info = 0;
894 /* Called after one or more calls to xhci_add_endpoint() or
895 * xhci_drop_endpoint(). If this call fails, the USB core is expected
896 * to call xhci_reset_bandwidth().
898 * Since we are in the middle of changing either configuration or
899 * installing a new alt setting, the USB core won't allow URBs to be
900 * enqueued for any endpoint on the old config or interface. Nothing
901 * else should be touching the xhci->devs[slot_id] structure, so we
902 * don't need to take the xhci->lock for manipulating that.
904 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
906 int i;
907 int ret = 0;
908 int timeleft;
909 unsigned long flags;
910 struct xhci_hcd *xhci;
911 struct xhci_virt_device *virt_dev;
913 ret = xhci_check_args(hcd, udev, NULL, 0, __func__);
914 if (ret <= 0)
915 return ret;
916 xhci = hcd_to_xhci(hcd);
918 if (!udev->slot_id || !xhci->devs || !xhci->devs[udev->slot_id]) {
919 xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
920 __func__);
921 return -EINVAL;
923 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
924 virt_dev = xhci->devs[udev->slot_id];
926 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
927 virt_dev->in_ctx->add_flags |= SLOT_FLAG;
928 virt_dev->in_ctx->add_flags &= ~EP0_FLAG;
929 virt_dev->in_ctx->drop_flags &= ~SLOT_FLAG;
930 virt_dev->in_ctx->drop_flags &= ~EP0_FLAG;
931 xhci_dbg(xhci, "New Input Control Context:\n");
932 xhci_dbg_ctx(xhci, virt_dev->in_ctx, virt_dev->in_ctx_dma,
933 LAST_CTX_TO_EP_NUM(virt_dev->in_ctx->slot.dev_info));
935 spin_lock_irqsave(&xhci->lock, flags);
936 ret = xhci_queue_configure_endpoint(xhci, virt_dev->in_ctx_dma,
937 udev->slot_id);
938 if (ret < 0) {
939 spin_unlock_irqrestore(&xhci->lock, flags);
940 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
941 return -ENOMEM;
943 xhci_ring_cmd_db(xhci);
944 spin_unlock_irqrestore(&xhci->lock, flags);
946 /* Wait for the configure endpoint command to complete */
947 timeleft = wait_for_completion_interruptible_timeout(
948 &virt_dev->cmd_completion,
949 USB_CTRL_SET_TIMEOUT);
950 if (timeleft <= 0) {
951 xhci_warn(xhci, "%s while waiting for configure endpoint command\n",
952 timeleft == 0 ? "Timeout" : "Signal");
953 /* FIXME cancel the configure endpoint command */
954 return -ETIME;
957 switch (virt_dev->cmd_status) {
958 case COMP_ENOMEM:
959 dev_warn(&udev->dev, "Not enough host controller resources "
960 "for new device state.\n");
961 ret = -ENOMEM;
962 /* FIXME: can we allocate more resources for the HC? */
963 break;
964 case COMP_BW_ERR:
965 dev_warn(&udev->dev, "Not enough bandwidth "
966 "for new device state.\n");
967 ret = -ENOSPC;
968 /* FIXME: can we go back to the old state? */
969 break;
970 case COMP_TRB_ERR:
971 /* the HCD set up something wrong */
972 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, add flag = 1, "
973 "and endpoint is not disabled.\n");
974 ret = -EINVAL;
975 break;
976 case COMP_SUCCESS:
977 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
978 break;
979 default:
980 xhci_err(xhci, "ERROR: unexpected command completion "
981 "code 0x%x.\n", virt_dev->cmd_status);
982 ret = -EINVAL;
983 break;
985 if (ret) {
986 /* Callee should call reset_bandwidth() */
987 return ret;
990 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
991 xhci_dbg_ctx(xhci, virt_dev->out_ctx, virt_dev->out_ctx_dma,
992 LAST_CTX_TO_EP_NUM(virt_dev->in_ctx->slot.dev_info));
994 xhci_zero_in_ctx(virt_dev);
995 /* Free any old rings */
996 for (i = 1; i < 31; ++i) {
997 if (virt_dev->new_ep_rings[i]) {
998 xhci_ring_free(xhci, virt_dev->ep_rings[i]);
999 virt_dev->ep_rings[i] = virt_dev->new_ep_rings[i];
1000 virt_dev->new_ep_rings[i] = NULL;
1004 return ret;
1007 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1009 struct xhci_hcd *xhci;
1010 struct xhci_virt_device *virt_dev;
1011 int i, ret;
1013 ret = xhci_check_args(hcd, udev, NULL, 0, __func__);
1014 if (ret <= 0)
1015 return;
1016 xhci = hcd_to_xhci(hcd);
1018 if (!xhci->devs || !xhci->devs[udev->slot_id]) {
1019 xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
1020 __func__);
1021 return;
1023 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1024 virt_dev = xhci->devs[udev->slot_id];
1025 /* Free any rings allocated for added endpoints */
1026 for (i = 0; i < 31; ++i) {
1027 if (virt_dev->new_ep_rings[i]) {
1028 xhci_ring_free(xhci, virt_dev->new_ep_rings[i]);
1029 virt_dev->new_ep_rings[i] = NULL;
1032 xhci_zero_in_ctx(virt_dev);
1035 /* Deal with stalled endpoints. The core should have sent the control message
1036 * to clear the halt condition. However, we need to make the xHCI hardware
1037 * reset its sequence number, since a device will expect a sequence number of
1038 * zero after the halt condition is cleared.
1039 * Context: in_interrupt
1041 void xhci_endpoint_reset(struct usb_hcd *hcd,
1042 struct usb_host_endpoint *ep)
1044 struct xhci_hcd *xhci;
1045 struct usb_device *udev;
1046 unsigned int ep_index;
1047 unsigned long flags;
1048 int ret;
1050 xhci = hcd_to_xhci(hcd);
1051 udev = (struct usb_device *) ep->hcpriv;
1052 /* Called with a root hub endpoint (or an endpoint that wasn't added
1053 * with xhci_add_endpoint()
1055 if (!ep->hcpriv)
1056 return;
1057 ep_index = xhci_get_endpoint_index(&ep->desc);
1059 xhci_dbg(xhci, "Queueing reset endpoint command\n");
1060 spin_lock_irqsave(&xhci->lock, flags);
1061 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
1062 if (!ret) {
1063 xhci_ring_cmd_db(xhci);
1065 spin_unlock_irqrestore(&xhci->lock, flags);
1067 if (ret)
1068 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
1072 * At this point, the struct usb_device is about to go away, the device has
1073 * disconnected, and all traffic has been stopped and the endpoints have been
1074 * disabled. Free any HC data structures associated with that device.
1076 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
1078 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1079 unsigned long flags;
1081 if (udev->slot_id == 0)
1082 return;
1084 spin_lock_irqsave(&xhci->lock, flags);
1085 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
1086 spin_unlock_irqrestore(&xhci->lock, flags);
1087 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
1088 return;
1090 xhci_ring_cmd_db(xhci);
1091 spin_unlock_irqrestore(&xhci->lock, flags);
1093 * Event command completion handler will free any data structures
1094 * associated with the slot. XXX Can free sleep?
1099 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
1100 * timed out, or allocating memory failed. Returns 1 on success.
1102 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
1104 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1105 unsigned long flags;
1106 int timeleft;
1107 int ret;
1109 spin_lock_irqsave(&xhci->lock, flags);
1110 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
1111 if (ret) {
1112 spin_unlock_irqrestore(&xhci->lock, flags);
1113 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
1114 return 0;
1116 xhci_ring_cmd_db(xhci);
1117 spin_unlock_irqrestore(&xhci->lock, flags);
1119 /* XXX: how much time for xHC slot assignment? */
1120 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
1121 USB_CTRL_SET_TIMEOUT);
1122 if (timeleft <= 0) {
1123 xhci_warn(xhci, "%s while waiting for a slot\n",
1124 timeleft == 0 ? "Timeout" : "Signal");
1125 /* FIXME cancel the enable slot request */
1126 return 0;
1129 if (!xhci->slot_id) {
1130 xhci_err(xhci, "Error while assigning device slot ID\n");
1131 return 0;
1133 /* xhci_alloc_virt_device() does not touch rings; no need to lock */
1134 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_KERNEL)) {
1135 /* Disable slot, if we can do it without mem alloc */
1136 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
1137 spin_lock_irqsave(&xhci->lock, flags);
1138 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
1139 xhci_ring_cmd_db(xhci);
1140 spin_unlock_irqrestore(&xhci->lock, flags);
1141 return 0;
1143 udev->slot_id = xhci->slot_id;
1144 /* Is this a LS or FS device under a HS hub? */
1145 /* Hub or peripherial? */
1146 return 1;
1150 * Issue an Address Device command (which will issue a SetAddress request to
1151 * the device).
1152 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
1153 * we should only issue and wait on one address command at the same time.
1155 * We add one to the device address issued by the hardware because the USB core
1156 * uses address 1 for the root hubs (even though they're not really devices).
1158 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
1160 unsigned long flags;
1161 int timeleft;
1162 struct xhci_virt_device *virt_dev;
1163 int ret = 0;
1164 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1165 u32 temp;
1167 if (!udev->slot_id) {
1168 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
1169 return -EINVAL;
1172 virt_dev = xhci->devs[udev->slot_id];
1174 /* If this is a Set Address to an unconfigured device, setup ep 0 */
1175 if (!udev->config)
1176 xhci_setup_addressable_virt_dev(xhci, udev);
1177 /* Otherwise, assume the core has the device configured how it wants */
1179 spin_lock_irqsave(&xhci->lock, flags);
1180 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx_dma,
1181 udev->slot_id);
1182 if (ret) {
1183 spin_unlock_irqrestore(&xhci->lock, flags);
1184 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
1185 return ret;
1187 xhci_ring_cmd_db(xhci);
1188 spin_unlock_irqrestore(&xhci->lock, flags);
1190 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
1191 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
1192 USB_CTRL_SET_TIMEOUT);
1193 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
1194 * the SetAddress() "recovery interval" required by USB and aborting the
1195 * command on a timeout.
1197 if (timeleft <= 0) {
1198 xhci_warn(xhci, "%s while waiting for a slot\n",
1199 timeleft == 0 ? "Timeout" : "Signal");
1200 /* FIXME cancel the address device command */
1201 return -ETIME;
1204 switch (virt_dev->cmd_status) {
1205 case COMP_CTX_STATE:
1206 case COMP_EBADSLT:
1207 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
1208 udev->slot_id);
1209 ret = -EINVAL;
1210 break;
1211 case COMP_TX_ERR:
1212 dev_warn(&udev->dev, "Device not responding to set address.\n");
1213 ret = -EPROTO;
1214 break;
1215 case COMP_SUCCESS:
1216 xhci_dbg(xhci, "Successful Address Device command\n");
1217 break;
1218 default:
1219 xhci_err(xhci, "ERROR: unexpected command completion "
1220 "code 0x%x.\n", virt_dev->cmd_status);
1221 ret = -EINVAL;
1222 break;
1224 if (ret) {
1225 return ret;
1227 temp = xhci_readl(xhci, &xhci->op_regs->dcbaa_ptr[0]);
1228 xhci_dbg(xhci, "Op regs DCBAA ptr[0] = %#08x\n", temp);
1229 temp = xhci_readl(xhci, &xhci->op_regs->dcbaa_ptr[1]);
1230 xhci_dbg(xhci, "Op regs DCBAA ptr[1] = %#08x\n", temp);
1231 xhci_dbg(xhci, "Slot ID %d dcbaa entry[0] @%p = %#08x\n",
1232 udev->slot_id,
1233 &xhci->dcbaa->dev_context_ptrs[2*udev->slot_id],
1234 xhci->dcbaa->dev_context_ptrs[2*udev->slot_id]);
1235 xhci_dbg(xhci, "Slot ID %d dcbaa entry[1] @%p = %#08x\n",
1236 udev->slot_id,
1237 &xhci->dcbaa->dev_context_ptrs[2*udev->slot_id+1],
1238 xhci->dcbaa->dev_context_ptrs[2*udev->slot_id+1]);
1239 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
1240 (unsigned long long)virt_dev->out_ctx_dma);
1241 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
1242 xhci_dbg_ctx(xhci, virt_dev->in_ctx, virt_dev->in_ctx_dma, 2);
1243 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
1244 xhci_dbg_ctx(xhci, virt_dev->out_ctx, virt_dev->out_ctx_dma, 2);
1246 * USB core uses address 1 for the roothubs, so we add one to the
1247 * address given back to us by the HC.
1249 udev->devnum = (virt_dev->out_ctx->slot.dev_state & DEV_ADDR_MASK) + 1;
1250 /* Zero the input context control for later use */
1251 virt_dev->in_ctx->add_flags = 0;
1252 virt_dev->in_ctx->drop_flags = 0;
1253 /* Mirror flags in the output context for future ep enable/disable */
1254 virt_dev->out_ctx->add_flags = SLOT_FLAG | EP0_FLAG;
1255 virt_dev->out_ctx->drop_flags = 0;
1257 xhci_dbg(xhci, "Device address = %d\n", udev->devnum);
1258 /* XXX Meh, not sure if anyone else but choose_address uses this. */
1259 set_bit(udev->devnum, udev->bus->devmap.devicemap);
1261 return 0;
1264 int xhci_get_frame(struct usb_hcd *hcd)
1266 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1267 /* EHCI mods by the periodic size. Why? */
1268 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
1271 MODULE_DESCRIPTION(DRIVER_DESC);
1272 MODULE_AUTHOR(DRIVER_AUTHOR);
1273 MODULE_LICENSE("GPL");
1275 static int __init xhci_hcd_init(void)
1277 #ifdef CONFIG_PCI
1278 int retval = 0;
1280 retval = xhci_register_pci();
1282 if (retval < 0) {
1283 printk(KERN_DEBUG "Problem registering PCI driver.");
1284 return retval;
1286 #endif
1288 * Check the compiler generated sizes of structures that must be laid
1289 * out in specific ways for hardware access.
1291 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
1292 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
1293 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
1294 /* xhci_device_control has eight fields, and also
1295 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
1297 BUILD_BUG_ON(sizeof(struct xhci_device_control) != (8+8+8*31)*32/8);
1298 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
1299 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
1300 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
1301 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
1302 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
1303 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
1304 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
1305 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
1306 return 0;
1308 module_init(xhci_hcd_init);
1310 static void __exit xhci_hcd_cleanup(void)
1312 #ifdef CONFIG_PCI
1313 xhci_unregister_pci();
1314 #endif
1316 module_exit(xhci_hcd_cleanup);