2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
30 #define UBIFS_DBG_PRESERVE_UBI
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/debugfs.h>
36 #include <linux/math64.h>
38 #ifdef CONFIG_UBIFS_FS_DEBUG
40 DEFINE_SPINLOCK(dbg_lock
);
42 static char dbg_key_buf0
[128];
43 static char dbg_key_buf1
[128];
45 unsigned int ubifs_msg_flags
= UBIFS_MSG_FLAGS_DEFAULT
;
46 unsigned int ubifs_chk_flags
= UBIFS_CHK_FLAGS_DEFAULT
;
47 unsigned int ubifs_tst_flags
;
49 module_param_named(debug_msgs
, ubifs_msg_flags
, uint
, S_IRUGO
| S_IWUSR
);
50 module_param_named(debug_chks
, ubifs_chk_flags
, uint
, S_IRUGO
| S_IWUSR
);
51 module_param_named(debug_tsts
, ubifs_tst_flags
, uint
, S_IRUGO
| S_IWUSR
);
53 MODULE_PARM_DESC(debug_msgs
, "Debug message type flags");
54 MODULE_PARM_DESC(debug_chks
, "Debug check flags");
55 MODULE_PARM_DESC(debug_tsts
, "Debug special test flags");
57 static const char *get_key_fmt(int fmt
)
60 case UBIFS_SIMPLE_KEY_FMT
:
63 return "unknown/invalid format";
67 static const char *get_key_hash(int hash
)
70 case UBIFS_KEY_HASH_R5
:
72 case UBIFS_KEY_HASH_TEST
:
75 return "unknown/invalid name hash";
79 static const char *get_key_type(int type
)
93 return "unknown/invalid key";
97 static void sprintf_key(const struct ubifs_info
*c
, const union ubifs_key
*key
,
101 int type
= key_type(c
, key
);
103 if (c
->key_fmt
== UBIFS_SIMPLE_KEY_FMT
) {
106 sprintf(p
, "(%lu, %s)", (unsigned long)key_inum(c
, key
),
111 sprintf(p
, "(%lu, %s, %#08x)",
112 (unsigned long)key_inum(c
, key
),
113 get_key_type(type
), key_hash(c
, key
));
116 sprintf(p
, "(%lu, %s, %u)",
117 (unsigned long)key_inum(c
, key
),
118 get_key_type(type
), key_block(c
, key
));
121 sprintf(p
, "(%lu, %s)",
122 (unsigned long)key_inum(c
, key
),
126 sprintf(p
, "(bad key type: %#08x, %#08x)",
127 key
->u32
[0], key
->u32
[1]);
130 sprintf(p
, "bad key format %d", c
->key_fmt
);
133 const char *dbg_key_str0(const struct ubifs_info
*c
, const union ubifs_key
*key
)
135 /* dbg_lock must be held */
136 sprintf_key(c
, key
, dbg_key_buf0
);
140 const char *dbg_key_str1(const struct ubifs_info
*c
, const union ubifs_key
*key
)
142 /* dbg_lock must be held */
143 sprintf_key(c
, key
, dbg_key_buf1
);
147 const char *dbg_ntype(int type
)
151 return "padding node";
153 return "superblock node";
155 return "master node";
157 return "reference node";
160 case UBIFS_DENT_NODE
:
161 return "direntry node";
162 case UBIFS_XENT_NODE
:
163 return "xentry node";
164 case UBIFS_DATA_NODE
:
166 case UBIFS_TRUN_NODE
:
167 return "truncate node";
169 return "indexing node";
171 return "commit start node";
172 case UBIFS_ORPH_NODE
:
173 return "orphan node";
175 return "unknown node";
179 static const char *dbg_gtype(int type
)
182 case UBIFS_NO_NODE_GROUP
:
183 return "no node group";
184 case UBIFS_IN_NODE_GROUP
:
185 return "in node group";
186 case UBIFS_LAST_OF_NODE_GROUP
:
187 return "last of node group";
193 const char *dbg_cstate(int cmt_state
)
197 return "commit resting";
198 case COMMIT_BACKGROUND
:
199 return "background commit requested";
200 case COMMIT_REQUIRED
:
201 return "commit required";
202 case COMMIT_RUNNING_BACKGROUND
:
203 return "BACKGROUND commit running";
204 case COMMIT_RUNNING_REQUIRED
:
205 return "commit running and required";
207 return "broken commit";
209 return "unknown commit state";
213 static void dump_ch(const struct ubifs_ch
*ch
)
215 printk(KERN_DEBUG
"\tmagic %#x\n", le32_to_cpu(ch
->magic
));
216 printk(KERN_DEBUG
"\tcrc %#x\n", le32_to_cpu(ch
->crc
));
217 printk(KERN_DEBUG
"\tnode_type %d (%s)\n", ch
->node_type
,
218 dbg_ntype(ch
->node_type
));
219 printk(KERN_DEBUG
"\tgroup_type %d (%s)\n", ch
->group_type
,
220 dbg_gtype(ch
->group_type
));
221 printk(KERN_DEBUG
"\tsqnum %llu\n",
222 (unsigned long long)le64_to_cpu(ch
->sqnum
));
223 printk(KERN_DEBUG
"\tlen %u\n", le32_to_cpu(ch
->len
));
226 void dbg_dump_inode(const struct ubifs_info
*c
, const struct inode
*inode
)
228 const struct ubifs_inode
*ui
= ubifs_inode(inode
);
230 printk(KERN_DEBUG
"Dump in-memory inode:");
231 printk(KERN_DEBUG
"\tinode %lu\n", inode
->i_ino
);
232 printk(KERN_DEBUG
"\tsize %llu\n",
233 (unsigned long long)i_size_read(inode
));
234 printk(KERN_DEBUG
"\tnlink %u\n", inode
->i_nlink
);
235 printk(KERN_DEBUG
"\tuid %u\n", (unsigned int)inode
->i_uid
);
236 printk(KERN_DEBUG
"\tgid %u\n", (unsigned int)inode
->i_gid
);
237 printk(KERN_DEBUG
"\tatime %u.%u\n",
238 (unsigned int)inode
->i_atime
.tv_sec
,
239 (unsigned int)inode
->i_atime
.tv_nsec
);
240 printk(KERN_DEBUG
"\tmtime %u.%u\n",
241 (unsigned int)inode
->i_mtime
.tv_sec
,
242 (unsigned int)inode
->i_mtime
.tv_nsec
);
243 printk(KERN_DEBUG
"\tctime %u.%u\n",
244 (unsigned int)inode
->i_ctime
.tv_sec
,
245 (unsigned int)inode
->i_ctime
.tv_nsec
);
246 printk(KERN_DEBUG
"\tcreat_sqnum %llu\n", ui
->creat_sqnum
);
247 printk(KERN_DEBUG
"\txattr_size %u\n", ui
->xattr_size
);
248 printk(KERN_DEBUG
"\txattr_cnt %u\n", ui
->xattr_cnt
);
249 printk(KERN_DEBUG
"\txattr_names %u\n", ui
->xattr_names
);
250 printk(KERN_DEBUG
"\tdirty %u\n", ui
->dirty
);
251 printk(KERN_DEBUG
"\txattr %u\n", ui
->xattr
);
252 printk(KERN_DEBUG
"\tbulk_read %u\n", ui
->xattr
);
253 printk(KERN_DEBUG
"\tsynced_i_size %llu\n",
254 (unsigned long long)ui
->synced_i_size
);
255 printk(KERN_DEBUG
"\tui_size %llu\n",
256 (unsigned long long)ui
->ui_size
);
257 printk(KERN_DEBUG
"\tflags %d\n", ui
->flags
);
258 printk(KERN_DEBUG
"\tcompr_type %d\n", ui
->compr_type
);
259 printk(KERN_DEBUG
"\tlast_page_read %lu\n", ui
->last_page_read
);
260 printk(KERN_DEBUG
"\tread_in_a_row %lu\n", ui
->read_in_a_row
);
261 printk(KERN_DEBUG
"\tdata_len %d\n", ui
->data_len
);
264 void dbg_dump_node(const struct ubifs_info
*c
, const void *node
)
268 const struct ubifs_ch
*ch
= node
;
270 if (dbg_failure_mode
)
273 /* If the magic is incorrect, just hexdump the first bytes */
274 if (le32_to_cpu(ch
->magic
) != UBIFS_NODE_MAGIC
) {
275 printk(KERN_DEBUG
"Not a node, first %zu bytes:", UBIFS_CH_SZ
);
276 print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
, 32, 1,
277 (void *)node
, UBIFS_CH_SZ
, 1);
281 spin_lock(&dbg_lock
);
284 switch (ch
->node_type
) {
287 const struct ubifs_pad_node
*pad
= node
;
289 printk(KERN_DEBUG
"\tpad_len %u\n",
290 le32_to_cpu(pad
->pad_len
));
295 const struct ubifs_sb_node
*sup
= node
;
296 unsigned int sup_flags
= le32_to_cpu(sup
->flags
);
298 printk(KERN_DEBUG
"\tkey_hash %d (%s)\n",
299 (int)sup
->key_hash
, get_key_hash(sup
->key_hash
));
300 printk(KERN_DEBUG
"\tkey_fmt %d (%s)\n",
301 (int)sup
->key_fmt
, get_key_fmt(sup
->key_fmt
));
302 printk(KERN_DEBUG
"\tflags %#x\n", sup_flags
);
303 printk(KERN_DEBUG
"\t big_lpt %u\n",
304 !!(sup_flags
& UBIFS_FLG_BIGLPT
));
305 printk(KERN_DEBUG
"\tmin_io_size %u\n",
306 le32_to_cpu(sup
->min_io_size
));
307 printk(KERN_DEBUG
"\tleb_size %u\n",
308 le32_to_cpu(sup
->leb_size
));
309 printk(KERN_DEBUG
"\tleb_cnt %u\n",
310 le32_to_cpu(sup
->leb_cnt
));
311 printk(KERN_DEBUG
"\tmax_leb_cnt %u\n",
312 le32_to_cpu(sup
->max_leb_cnt
));
313 printk(KERN_DEBUG
"\tmax_bud_bytes %llu\n",
314 (unsigned long long)le64_to_cpu(sup
->max_bud_bytes
));
315 printk(KERN_DEBUG
"\tlog_lebs %u\n",
316 le32_to_cpu(sup
->log_lebs
));
317 printk(KERN_DEBUG
"\tlpt_lebs %u\n",
318 le32_to_cpu(sup
->lpt_lebs
));
319 printk(KERN_DEBUG
"\torph_lebs %u\n",
320 le32_to_cpu(sup
->orph_lebs
));
321 printk(KERN_DEBUG
"\tjhead_cnt %u\n",
322 le32_to_cpu(sup
->jhead_cnt
));
323 printk(KERN_DEBUG
"\tfanout %u\n",
324 le32_to_cpu(sup
->fanout
));
325 printk(KERN_DEBUG
"\tlsave_cnt %u\n",
326 le32_to_cpu(sup
->lsave_cnt
));
327 printk(KERN_DEBUG
"\tdefault_compr %u\n",
328 (int)le16_to_cpu(sup
->default_compr
));
329 printk(KERN_DEBUG
"\trp_size %llu\n",
330 (unsigned long long)le64_to_cpu(sup
->rp_size
));
331 printk(KERN_DEBUG
"\trp_uid %u\n",
332 le32_to_cpu(sup
->rp_uid
));
333 printk(KERN_DEBUG
"\trp_gid %u\n",
334 le32_to_cpu(sup
->rp_gid
));
335 printk(KERN_DEBUG
"\tfmt_version %u\n",
336 le32_to_cpu(sup
->fmt_version
));
337 printk(KERN_DEBUG
"\ttime_gran %u\n",
338 le32_to_cpu(sup
->time_gran
));
339 printk(KERN_DEBUG
"\tUUID %02X%02X%02X%02X-%02X%02X"
340 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X\n",
341 sup
->uuid
[0], sup
->uuid
[1], sup
->uuid
[2], sup
->uuid
[3],
342 sup
->uuid
[4], sup
->uuid
[5], sup
->uuid
[6], sup
->uuid
[7],
343 sup
->uuid
[8], sup
->uuid
[9], sup
->uuid
[10], sup
->uuid
[11],
344 sup
->uuid
[12], sup
->uuid
[13], sup
->uuid
[14],
350 const struct ubifs_mst_node
*mst
= node
;
352 printk(KERN_DEBUG
"\thighest_inum %llu\n",
353 (unsigned long long)le64_to_cpu(mst
->highest_inum
));
354 printk(KERN_DEBUG
"\tcommit number %llu\n",
355 (unsigned long long)le64_to_cpu(mst
->cmt_no
));
356 printk(KERN_DEBUG
"\tflags %#x\n",
357 le32_to_cpu(mst
->flags
));
358 printk(KERN_DEBUG
"\tlog_lnum %u\n",
359 le32_to_cpu(mst
->log_lnum
));
360 printk(KERN_DEBUG
"\troot_lnum %u\n",
361 le32_to_cpu(mst
->root_lnum
));
362 printk(KERN_DEBUG
"\troot_offs %u\n",
363 le32_to_cpu(mst
->root_offs
));
364 printk(KERN_DEBUG
"\troot_len %u\n",
365 le32_to_cpu(mst
->root_len
));
366 printk(KERN_DEBUG
"\tgc_lnum %u\n",
367 le32_to_cpu(mst
->gc_lnum
));
368 printk(KERN_DEBUG
"\tihead_lnum %u\n",
369 le32_to_cpu(mst
->ihead_lnum
));
370 printk(KERN_DEBUG
"\tihead_offs %u\n",
371 le32_to_cpu(mst
->ihead_offs
));
372 printk(KERN_DEBUG
"\tindex_size %llu\n",
373 (unsigned long long)le64_to_cpu(mst
->index_size
));
374 printk(KERN_DEBUG
"\tlpt_lnum %u\n",
375 le32_to_cpu(mst
->lpt_lnum
));
376 printk(KERN_DEBUG
"\tlpt_offs %u\n",
377 le32_to_cpu(mst
->lpt_offs
));
378 printk(KERN_DEBUG
"\tnhead_lnum %u\n",
379 le32_to_cpu(mst
->nhead_lnum
));
380 printk(KERN_DEBUG
"\tnhead_offs %u\n",
381 le32_to_cpu(mst
->nhead_offs
));
382 printk(KERN_DEBUG
"\tltab_lnum %u\n",
383 le32_to_cpu(mst
->ltab_lnum
));
384 printk(KERN_DEBUG
"\tltab_offs %u\n",
385 le32_to_cpu(mst
->ltab_offs
));
386 printk(KERN_DEBUG
"\tlsave_lnum %u\n",
387 le32_to_cpu(mst
->lsave_lnum
));
388 printk(KERN_DEBUG
"\tlsave_offs %u\n",
389 le32_to_cpu(mst
->lsave_offs
));
390 printk(KERN_DEBUG
"\tlscan_lnum %u\n",
391 le32_to_cpu(mst
->lscan_lnum
));
392 printk(KERN_DEBUG
"\tleb_cnt %u\n",
393 le32_to_cpu(mst
->leb_cnt
));
394 printk(KERN_DEBUG
"\tempty_lebs %u\n",
395 le32_to_cpu(mst
->empty_lebs
));
396 printk(KERN_DEBUG
"\tidx_lebs %u\n",
397 le32_to_cpu(mst
->idx_lebs
));
398 printk(KERN_DEBUG
"\ttotal_free %llu\n",
399 (unsigned long long)le64_to_cpu(mst
->total_free
));
400 printk(KERN_DEBUG
"\ttotal_dirty %llu\n",
401 (unsigned long long)le64_to_cpu(mst
->total_dirty
));
402 printk(KERN_DEBUG
"\ttotal_used %llu\n",
403 (unsigned long long)le64_to_cpu(mst
->total_used
));
404 printk(KERN_DEBUG
"\ttotal_dead %llu\n",
405 (unsigned long long)le64_to_cpu(mst
->total_dead
));
406 printk(KERN_DEBUG
"\ttotal_dark %llu\n",
407 (unsigned long long)le64_to_cpu(mst
->total_dark
));
412 const struct ubifs_ref_node
*ref
= node
;
414 printk(KERN_DEBUG
"\tlnum %u\n",
415 le32_to_cpu(ref
->lnum
));
416 printk(KERN_DEBUG
"\toffs %u\n",
417 le32_to_cpu(ref
->offs
));
418 printk(KERN_DEBUG
"\tjhead %u\n",
419 le32_to_cpu(ref
->jhead
));
424 const struct ubifs_ino_node
*ino
= node
;
426 key_read(c
, &ino
->key
, &key
);
427 printk(KERN_DEBUG
"\tkey %s\n", DBGKEY(&key
));
428 printk(KERN_DEBUG
"\tcreat_sqnum %llu\n",
429 (unsigned long long)le64_to_cpu(ino
->creat_sqnum
));
430 printk(KERN_DEBUG
"\tsize %llu\n",
431 (unsigned long long)le64_to_cpu(ino
->size
));
432 printk(KERN_DEBUG
"\tnlink %u\n",
433 le32_to_cpu(ino
->nlink
));
434 printk(KERN_DEBUG
"\tatime %lld.%u\n",
435 (long long)le64_to_cpu(ino
->atime_sec
),
436 le32_to_cpu(ino
->atime_nsec
));
437 printk(KERN_DEBUG
"\tmtime %lld.%u\n",
438 (long long)le64_to_cpu(ino
->mtime_sec
),
439 le32_to_cpu(ino
->mtime_nsec
));
440 printk(KERN_DEBUG
"\tctime %lld.%u\n",
441 (long long)le64_to_cpu(ino
->ctime_sec
),
442 le32_to_cpu(ino
->ctime_nsec
));
443 printk(KERN_DEBUG
"\tuid %u\n",
444 le32_to_cpu(ino
->uid
));
445 printk(KERN_DEBUG
"\tgid %u\n",
446 le32_to_cpu(ino
->gid
));
447 printk(KERN_DEBUG
"\tmode %u\n",
448 le32_to_cpu(ino
->mode
));
449 printk(KERN_DEBUG
"\tflags %#x\n",
450 le32_to_cpu(ino
->flags
));
451 printk(KERN_DEBUG
"\txattr_cnt %u\n",
452 le32_to_cpu(ino
->xattr_cnt
));
453 printk(KERN_DEBUG
"\txattr_size %u\n",
454 le32_to_cpu(ino
->xattr_size
));
455 printk(KERN_DEBUG
"\txattr_names %u\n",
456 le32_to_cpu(ino
->xattr_names
));
457 printk(KERN_DEBUG
"\tcompr_type %#x\n",
458 (int)le16_to_cpu(ino
->compr_type
));
459 printk(KERN_DEBUG
"\tdata len %u\n",
460 le32_to_cpu(ino
->data_len
));
463 case UBIFS_DENT_NODE
:
464 case UBIFS_XENT_NODE
:
466 const struct ubifs_dent_node
*dent
= node
;
467 int nlen
= le16_to_cpu(dent
->nlen
);
469 key_read(c
, &dent
->key
, &key
);
470 printk(KERN_DEBUG
"\tkey %s\n", DBGKEY(&key
));
471 printk(KERN_DEBUG
"\tinum %llu\n",
472 (unsigned long long)le64_to_cpu(dent
->inum
));
473 printk(KERN_DEBUG
"\ttype %d\n", (int)dent
->type
);
474 printk(KERN_DEBUG
"\tnlen %d\n", nlen
);
475 printk(KERN_DEBUG
"\tname ");
477 if (nlen
> UBIFS_MAX_NLEN
)
478 printk(KERN_DEBUG
"(bad name length, not printing, "
479 "bad or corrupted node)");
481 for (i
= 0; i
< nlen
&& dent
->name
[i
]; i
++)
482 printk("%c", dent
->name
[i
]);
488 case UBIFS_DATA_NODE
:
490 const struct ubifs_data_node
*dn
= node
;
491 int dlen
= le32_to_cpu(ch
->len
) - UBIFS_DATA_NODE_SZ
;
493 key_read(c
, &dn
->key
, &key
);
494 printk(KERN_DEBUG
"\tkey %s\n", DBGKEY(&key
));
495 printk(KERN_DEBUG
"\tsize %u\n",
496 le32_to_cpu(dn
->size
));
497 printk(KERN_DEBUG
"\tcompr_typ %d\n",
498 (int)le16_to_cpu(dn
->compr_type
));
499 printk(KERN_DEBUG
"\tdata size %d\n",
501 printk(KERN_DEBUG
"\tdata:\n");
502 print_hex_dump(KERN_DEBUG
, "\t", DUMP_PREFIX_OFFSET
, 32, 1,
503 (void *)&dn
->data
, dlen
, 0);
506 case UBIFS_TRUN_NODE
:
508 const struct ubifs_trun_node
*trun
= node
;
510 printk(KERN_DEBUG
"\tinum %u\n",
511 le32_to_cpu(trun
->inum
));
512 printk(KERN_DEBUG
"\told_size %llu\n",
513 (unsigned long long)le64_to_cpu(trun
->old_size
));
514 printk(KERN_DEBUG
"\tnew_size %llu\n",
515 (unsigned long long)le64_to_cpu(trun
->new_size
));
520 const struct ubifs_idx_node
*idx
= node
;
522 n
= le16_to_cpu(idx
->child_cnt
);
523 printk(KERN_DEBUG
"\tchild_cnt %d\n", n
);
524 printk(KERN_DEBUG
"\tlevel %d\n",
525 (int)le16_to_cpu(idx
->level
));
526 printk(KERN_DEBUG
"\tBranches:\n");
528 for (i
= 0; i
< n
&& i
< c
->fanout
- 1; i
++) {
529 const struct ubifs_branch
*br
;
531 br
= ubifs_idx_branch(c
, idx
, i
);
532 key_read(c
, &br
->key
, &key
);
533 printk(KERN_DEBUG
"\t%d: LEB %d:%d len %d key %s\n",
534 i
, le32_to_cpu(br
->lnum
), le32_to_cpu(br
->offs
),
535 le32_to_cpu(br
->len
), DBGKEY(&key
));
541 case UBIFS_ORPH_NODE
:
543 const struct ubifs_orph_node
*orph
= node
;
545 printk(KERN_DEBUG
"\tcommit number %llu\n",
547 le64_to_cpu(orph
->cmt_no
) & LLONG_MAX
);
548 printk(KERN_DEBUG
"\tlast node flag %llu\n",
549 (unsigned long long)(le64_to_cpu(orph
->cmt_no
)) >> 63);
550 n
= (le32_to_cpu(ch
->len
) - UBIFS_ORPH_NODE_SZ
) >> 3;
551 printk(KERN_DEBUG
"\t%d orphan inode numbers:\n", n
);
552 for (i
= 0; i
< n
; i
++)
553 printk(KERN_DEBUG
"\t ino %llu\n",
554 (unsigned long long)le64_to_cpu(orph
->inos
[i
]));
558 printk(KERN_DEBUG
"node type %d was not recognized\n",
561 spin_unlock(&dbg_lock
);
564 void dbg_dump_budget_req(const struct ubifs_budget_req
*req
)
566 spin_lock(&dbg_lock
);
567 printk(KERN_DEBUG
"Budgeting request: new_ino %d, dirtied_ino %d\n",
568 req
->new_ino
, req
->dirtied_ino
);
569 printk(KERN_DEBUG
"\tnew_ino_d %d, dirtied_ino_d %d\n",
570 req
->new_ino_d
, req
->dirtied_ino_d
);
571 printk(KERN_DEBUG
"\tnew_page %d, dirtied_page %d\n",
572 req
->new_page
, req
->dirtied_page
);
573 printk(KERN_DEBUG
"\tnew_dent %d, mod_dent %d\n",
574 req
->new_dent
, req
->mod_dent
);
575 printk(KERN_DEBUG
"\tidx_growth %d\n", req
->idx_growth
);
576 printk(KERN_DEBUG
"\tdata_growth %d dd_growth %d\n",
577 req
->data_growth
, req
->dd_growth
);
578 spin_unlock(&dbg_lock
);
581 void dbg_dump_lstats(const struct ubifs_lp_stats
*lst
)
583 spin_lock(&dbg_lock
);
584 printk(KERN_DEBUG
"(pid %d) Lprops statistics: empty_lebs %d, "
585 "idx_lebs %d\n", current
->pid
, lst
->empty_lebs
, lst
->idx_lebs
);
586 printk(KERN_DEBUG
"\ttaken_empty_lebs %d, total_free %lld, "
587 "total_dirty %lld\n", lst
->taken_empty_lebs
, lst
->total_free
,
589 printk(KERN_DEBUG
"\ttotal_used %lld, total_dark %lld, "
590 "total_dead %lld\n", lst
->total_used
, lst
->total_dark
,
592 spin_unlock(&dbg_lock
);
595 void dbg_dump_budg(struct ubifs_info
*c
)
599 struct ubifs_bud
*bud
;
600 struct ubifs_gced_idx_leb
*idx_gc
;
601 long long available
, outstanding
, free
;
603 ubifs_assert(spin_is_locked(&c
->space_lock
));
604 spin_lock(&dbg_lock
);
605 printk(KERN_DEBUG
"(pid %d) Budgeting info: budg_data_growth %lld, "
606 "budg_dd_growth %lld, budg_idx_growth %lld\n", current
->pid
,
607 c
->budg_data_growth
, c
->budg_dd_growth
, c
->budg_idx_growth
);
608 printk(KERN_DEBUG
"\tdata budget sum %lld, total budget sum %lld, "
609 "freeable_cnt %d\n", c
->budg_data_growth
+ c
->budg_dd_growth
,
610 c
->budg_data_growth
+ c
->budg_dd_growth
+ c
->budg_idx_growth
,
612 printk(KERN_DEBUG
"\tmin_idx_lebs %d, old_idx_sz %lld, "
613 "calc_idx_sz %lld, idx_gc_cnt %d\n", c
->min_idx_lebs
,
614 c
->old_idx_sz
, c
->calc_idx_sz
, c
->idx_gc_cnt
);
615 printk(KERN_DEBUG
"\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
616 "clean_zn_cnt %ld\n", atomic_long_read(&c
->dirty_pg_cnt
),
617 atomic_long_read(&c
->dirty_zn_cnt
),
618 atomic_long_read(&c
->clean_zn_cnt
));
619 printk(KERN_DEBUG
"\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
620 c
->dark_wm
, c
->dead_wm
, c
->max_idx_node_sz
);
621 printk(KERN_DEBUG
"\tgc_lnum %d, ihead_lnum %d\n",
622 c
->gc_lnum
, c
->ihead_lnum
);
623 /* If we are in R/O mode, journal heads do not exist */
625 for (i
= 0; i
< c
->jhead_cnt
; i
++)
626 printk(KERN_DEBUG
"\tjhead %d\t LEB %d\n",
627 c
->jheads
[i
].wbuf
.jhead
, c
->jheads
[i
].wbuf
.lnum
);
628 for (rb
= rb_first(&c
->buds
); rb
; rb
= rb_next(rb
)) {
629 bud
= rb_entry(rb
, struct ubifs_bud
, rb
);
630 printk(KERN_DEBUG
"\tbud LEB %d\n", bud
->lnum
);
632 list_for_each_entry(bud
, &c
->old_buds
, list
)
633 printk(KERN_DEBUG
"\told bud LEB %d\n", bud
->lnum
);
634 list_for_each_entry(idx_gc
, &c
->idx_gc
, list
)
635 printk(KERN_DEBUG
"\tGC'ed idx LEB %d unmap %d\n",
636 idx_gc
->lnum
, idx_gc
->unmap
);
637 printk(KERN_DEBUG
"\tcommit state %d\n", c
->cmt_state
);
639 /* Print budgeting predictions */
640 available
= ubifs_calc_available(c
, c
->min_idx_lebs
);
641 outstanding
= c
->budg_data_growth
+ c
->budg_dd_growth
;
642 free
= ubifs_get_free_space_nolock(c
);
643 printk(KERN_DEBUG
"Budgeting predictions:\n");
644 printk(KERN_DEBUG
"\tavailable: %lld, outstanding %lld, free %lld\n",
645 available
, outstanding
, free
);
646 spin_unlock(&dbg_lock
);
649 void dbg_dump_lprop(const struct ubifs_info
*c
, const struct ubifs_lprops
*lp
)
651 printk(KERN_DEBUG
"LEB %d lprops: free %d, dirty %d (used %d), "
652 "flags %#x\n", lp
->lnum
, lp
->free
, lp
->dirty
,
653 c
->leb_size
- lp
->free
- lp
->dirty
, lp
->flags
);
656 void dbg_dump_lprops(struct ubifs_info
*c
)
659 struct ubifs_lprops lp
;
660 struct ubifs_lp_stats lst
;
662 printk(KERN_DEBUG
"(pid %d) start dumping LEB properties\n",
664 ubifs_get_lp_stats(c
, &lst
);
665 dbg_dump_lstats(&lst
);
667 for (lnum
= c
->main_first
; lnum
< c
->leb_cnt
; lnum
++) {
668 err
= ubifs_read_one_lp(c
, lnum
, &lp
);
670 ubifs_err("cannot read lprops for LEB %d", lnum
);
672 dbg_dump_lprop(c
, &lp
);
674 printk(KERN_DEBUG
"(pid %d) finish dumping LEB properties\n",
678 void dbg_dump_lpt_info(struct ubifs_info
*c
)
682 spin_lock(&dbg_lock
);
683 printk(KERN_DEBUG
"(pid %d) dumping LPT information\n", current
->pid
);
684 printk(KERN_DEBUG
"\tlpt_sz: %lld\n", c
->lpt_sz
);
685 printk(KERN_DEBUG
"\tpnode_sz: %d\n", c
->pnode_sz
);
686 printk(KERN_DEBUG
"\tnnode_sz: %d\n", c
->nnode_sz
);
687 printk(KERN_DEBUG
"\tltab_sz: %d\n", c
->ltab_sz
);
688 printk(KERN_DEBUG
"\tlsave_sz: %d\n", c
->lsave_sz
);
689 printk(KERN_DEBUG
"\tbig_lpt: %d\n", c
->big_lpt
);
690 printk(KERN_DEBUG
"\tlpt_hght: %d\n", c
->lpt_hght
);
691 printk(KERN_DEBUG
"\tpnode_cnt: %d\n", c
->pnode_cnt
);
692 printk(KERN_DEBUG
"\tnnode_cnt: %d\n", c
->nnode_cnt
);
693 printk(KERN_DEBUG
"\tdirty_pn_cnt: %d\n", c
->dirty_pn_cnt
);
694 printk(KERN_DEBUG
"\tdirty_nn_cnt: %d\n", c
->dirty_nn_cnt
);
695 printk(KERN_DEBUG
"\tlsave_cnt: %d\n", c
->lsave_cnt
);
696 printk(KERN_DEBUG
"\tspace_bits: %d\n", c
->space_bits
);
697 printk(KERN_DEBUG
"\tlpt_lnum_bits: %d\n", c
->lpt_lnum_bits
);
698 printk(KERN_DEBUG
"\tlpt_offs_bits: %d\n", c
->lpt_offs_bits
);
699 printk(KERN_DEBUG
"\tlpt_spc_bits: %d\n", c
->lpt_spc_bits
);
700 printk(KERN_DEBUG
"\tpcnt_bits: %d\n", c
->pcnt_bits
);
701 printk(KERN_DEBUG
"\tlnum_bits: %d\n", c
->lnum_bits
);
702 printk(KERN_DEBUG
"\tLPT root is at %d:%d\n", c
->lpt_lnum
, c
->lpt_offs
);
703 printk(KERN_DEBUG
"\tLPT head is at %d:%d\n",
704 c
->nhead_lnum
, c
->nhead_offs
);
705 printk(KERN_DEBUG
"\tLPT ltab is at %d:%d\n",
706 c
->ltab_lnum
, c
->ltab_offs
);
708 printk(KERN_DEBUG
"\tLPT lsave is at %d:%d\n",
709 c
->lsave_lnum
, c
->lsave_offs
);
710 for (i
= 0; i
< c
->lpt_lebs
; i
++)
711 printk(KERN_DEBUG
"\tLPT LEB %d free %d dirty %d tgc %d "
712 "cmt %d\n", i
+ c
->lpt_first
, c
->ltab
[i
].free
,
713 c
->ltab
[i
].dirty
, c
->ltab
[i
].tgc
, c
->ltab
[i
].cmt
);
714 spin_unlock(&dbg_lock
);
717 void dbg_dump_leb(const struct ubifs_info
*c
, int lnum
)
719 struct ubifs_scan_leb
*sleb
;
720 struct ubifs_scan_node
*snod
;
722 if (dbg_failure_mode
)
725 printk(KERN_DEBUG
"(pid %d) start dumping LEB %d\n",
727 sleb
= ubifs_scan(c
, lnum
, 0, c
->dbg
->buf
);
729 ubifs_err("scan error %d", (int)PTR_ERR(sleb
));
733 printk(KERN_DEBUG
"LEB %d has %d nodes ending at %d\n", lnum
,
734 sleb
->nodes_cnt
, sleb
->endpt
);
736 list_for_each_entry(snod
, &sleb
->nodes
, list
) {
738 printk(KERN_DEBUG
"Dumping node at LEB %d:%d len %d\n", lnum
,
739 snod
->offs
, snod
->len
);
740 dbg_dump_node(c
, snod
->node
);
743 printk(KERN_DEBUG
"(pid %d) finish dumping LEB %d\n",
745 ubifs_scan_destroy(sleb
);
749 void dbg_dump_znode(const struct ubifs_info
*c
,
750 const struct ubifs_znode
*znode
)
753 const struct ubifs_zbranch
*zbr
;
755 spin_lock(&dbg_lock
);
757 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
761 printk(KERN_DEBUG
"znode %p, LEB %d:%d len %d parent %p iip %d level %d"
762 " child_cnt %d flags %lx\n", znode
, zbr
->lnum
, zbr
->offs
,
763 zbr
->len
, znode
->parent
, znode
->iip
, znode
->level
,
764 znode
->child_cnt
, znode
->flags
);
766 if (znode
->child_cnt
<= 0 || znode
->child_cnt
> c
->fanout
) {
767 spin_unlock(&dbg_lock
);
771 printk(KERN_DEBUG
"zbranches:\n");
772 for (n
= 0; n
< znode
->child_cnt
; n
++) {
773 zbr
= &znode
->zbranch
[n
];
774 if (znode
->level
> 0)
775 printk(KERN_DEBUG
"\t%d: znode %p LEB %d:%d len %d key "
776 "%s\n", n
, zbr
->znode
, zbr
->lnum
,
780 printk(KERN_DEBUG
"\t%d: LNC %p LEB %d:%d len %d key "
781 "%s\n", n
, zbr
->znode
, zbr
->lnum
,
785 spin_unlock(&dbg_lock
);
788 void dbg_dump_heap(struct ubifs_info
*c
, struct ubifs_lpt_heap
*heap
, int cat
)
792 printk(KERN_DEBUG
"(pid %d) start dumping heap cat %d (%d elements)\n",
793 current
->pid
, cat
, heap
->cnt
);
794 for (i
= 0; i
< heap
->cnt
; i
++) {
795 struct ubifs_lprops
*lprops
= heap
->arr
[i
];
797 printk(KERN_DEBUG
"\t%d. LEB %d hpos %d free %d dirty %d "
798 "flags %d\n", i
, lprops
->lnum
, lprops
->hpos
,
799 lprops
->free
, lprops
->dirty
, lprops
->flags
);
801 printk(KERN_DEBUG
"(pid %d) finish dumping heap\n", current
->pid
);
804 void dbg_dump_pnode(struct ubifs_info
*c
, struct ubifs_pnode
*pnode
,
805 struct ubifs_nnode
*parent
, int iip
)
809 printk(KERN_DEBUG
"(pid %d) dumping pnode:\n", current
->pid
);
810 printk(KERN_DEBUG
"\taddress %zx parent %zx cnext %zx\n",
811 (size_t)pnode
, (size_t)parent
, (size_t)pnode
->cnext
);
812 printk(KERN_DEBUG
"\tflags %lu iip %d level %d num %d\n",
813 pnode
->flags
, iip
, pnode
->level
, pnode
->num
);
814 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
815 struct ubifs_lprops
*lp
= &pnode
->lprops
[i
];
817 printk(KERN_DEBUG
"\t%d: free %d dirty %d flags %d lnum %d\n",
818 i
, lp
->free
, lp
->dirty
, lp
->flags
, lp
->lnum
);
822 void dbg_dump_tnc(struct ubifs_info
*c
)
824 struct ubifs_znode
*znode
;
827 printk(KERN_DEBUG
"\n");
828 printk(KERN_DEBUG
"(pid %d) start dumping TNC tree\n", current
->pid
);
829 znode
= ubifs_tnc_levelorder_next(c
->zroot
.znode
, NULL
);
830 level
= znode
->level
;
831 printk(KERN_DEBUG
"== Level %d ==\n", level
);
833 if (level
!= znode
->level
) {
834 level
= znode
->level
;
835 printk(KERN_DEBUG
"== Level %d ==\n", level
);
837 dbg_dump_znode(c
, znode
);
838 znode
= ubifs_tnc_levelorder_next(c
->zroot
.znode
, znode
);
840 printk(KERN_DEBUG
"(pid %d) finish dumping TNC tree\n", current
->pid
);
843 static int dump_znode(struct ubifs_info
*c
, struct ubifs_znode
*znode
,
846 dbg_dump_znode(c
, znode
);
851 * dbg_dump_index - dump the on-flash index.
852 * @c: UBIFS file-system description object
854 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
855 * which dumps only in-memory znodes and does not read znodes which from flash.
857 void dbg_dump_index(struct ubifs_info
*c
)
859 dbg_walk_index(c
, NULL
, dump_znode
, NULL
);
863 * dbg_save_space_info - save information about flash space.
864 * @c: UBIFS file-system description object
866 * This function saves information about UBIFS free space, dirty space, etc, in
867 * order to check it later.
869 void dbg_save_space_info(struct ubifs_info
*c
)
871 struct ubifs_debug_info
*d
= c
->dbg
;
873 ubifs_get_lp_stats(c
, &d
->saved_lst
);
875 spin_lock(&c
->space_lock
);
876 d
->saved_free
= ubifs_get_free_space_nolock(c
);
877 spin_unlock(&c
->space_lock
);
881 * dbg_check_space_info - check flash space information.
882 * @c: UBIFS file-system description object
884 * This function compares current flash space information with the information
885 * which was saved when the 'dbg_save_space_info()' function was called.
886 * Returns zero if the information has not changed, and %-EINVAL it it has
889 int dbg_check_space_info(struct ubifs_info
*c
)
891 struct ubifs_debug_info
*d
= c
->dbg
;
892 struct ubifs_lp_stats lst
;
893 long long avail
, free
;
895 spin_lock(&c
->space_lock
);
896 avail
= ubifs_calc_available(c
, c
->min_idx_lebs
);
897 spin_unlock(&c
->space_lock
);
898 free
= ubifs_get_free_space(c
);
900 if (free
!= d
->saved_free
) {
901 ubifs_err("free space changed from %lld to %lld",
902 d
->saved_free
, free
);
909 ubifs_msg("saved lprops statistics dump");
910 dbg_dump_lstats(&d
->saved_lst
);
911 ubifs_get_lp_stats(c
, &lst
);
912 ubifs_msg("current lprops statistics dump");
913 dbg_dump_lstats(&d
->saved_lst
);
914 spin_lock(&c
->space_lock
);
916 spin_unlock(&c
->space_lock
);
922 * dbg_check_synced_i_size - check synchronized inode size.
923 * @inode: inode to check
925 * If inode is clean, synchronized inode size has to be equivalent to current
926 * inode size. This function has to be called only for locked inodes (@i_mutex
927 * has to be locked). Returns %0 if synchronized inode size if correct, and
930 int dbg_check_synced_i_size(struct inode
*inode
)
933 struct ubifs_inode
*ui
= ubifs_inode(inode
);
935 if (!(ubifs_chk_flags
& UBIFS_CHK_GEN
))
937 if (!S_ISREG(inode
->i_mode
))
940 mutex_lock(&ui
->ui_mutex
);
941 spin_lock(&ui
->ui_lock
);
942 if (ui
->ui_size
!= ui
->synced_i_size
&& !ui
->dirty
) {
943 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
944 "is clean", ui
->ui_size
, ui
->synced_i_size
);
945 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode
->i_ino
,
946 inode
->i_mode
, i_size_read(inode
));
950 spin_unlock(&ui
->ui_lock
);
951 mutex_unlock(&ui
->ui_mutex
);
956 * dbg_check_dir - check directory inode size and link count.
957 * @c: UBIFS file-system description object
958 * @dir: the directory to calculate size for
959 * @size: the result is returned here
961 * This function makes sure that directory size and link count are correct.
962 * Returns zero in case of success and a negative error code in case of
965 * Note, it is good idea to make sure the @dir->i_mutex is locked before
966 * calling this function.
968 int dbg_check_dir_size(struct ubifs_info
*c
, const struct inode
*dir
)
970 unsigned int nlink
= 2;
972 struct ubifs_dent_node
*dent
, *pdent
= NULL
;
973 struct qstr nm
= { .name
= NULL
};
974 loff_t size
= UBIFS_INO_NODE_SZ
;
976 if (!(ubifs_chk_flags
& UBIFS_CHK_GEN
))
979 if (!S_ISDIR(dir
->i_mode
))
982 lowest_dent_key(c
, &key
, dir
->i_ino
);
986 dent
= ubifs_tnc_next_ent(c
, &key
, &nm
);
994 nm
.name
= dent
->name
;
995 nm
.len
= le16_to_cpu(dent
->nlen
);
996 size
+= CALC_DENT_SIZE(nm
.len
);
997 if (dent
->type
== UBIFS_ITYPE_DIR
)
1001 key_read(c
, &dent
->key
, &key
);
1005 if (i_size_read(dir
) != size
) {
1006 ubifs_err("directory inode %lu has size %llu, "
1007 "but calculated size is %llu", dir
->i_ino
,
1008 (unsigned long long)i_size_read(dir
),
1009 (unsigned long long)size
);
1013 if (dir
->i_nlink
!= nlink
) {
1014 ubifs_err("directory inode %lu has nlink %u, but calculated "
1015 "nlink is %u", dir
->i_ino
, dir
->i_nlink
, nlink
);
1024 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1025 * @c: UBIFS file-system description object
1026 * @zbr1: first zbranch
1027 * @zbr2: following zbranch
1029 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1030 * names of the direntries/xentries which are referred by the keys. This
1031 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1032 * sure the name of direntry/xentry referred by @zbr1 is less than
1033 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1034 * and a negative error code in case of failure.
1036 static int dbg_check_key_order(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr1
,
1037 struct ubifs_zbranch
*zbr2
)
1039 int err
, nlen1
, nlen2
, cmp
;
1040 struct ubifs_dent_node
*dent1
, *dent2
;
1041 union ubifs_key key
;
1043 ubifs_assert(!keys_cmp(c
, &zbr1
->key
, &zbr2
->key
));
1044 dent1
= kmalloc(UBIFS_MAX_DENT_NODE_SZ
, GFP_NOFS
);
1047 dent2
= kmalloc(UBIFS_MAX_DENT_NODE_SZ
, GFP_NOFS
);
1053 err
= ubifs_tnc_read_node(c
, zbr1
, dent1
);
1056 err
= ubifs_validate_entry(c
, dent1
);
1060 err
= ubifs_tnc_read_node(c
, zbr2
, dent2
);
1063 err
= ubifs_validate_entry(c
, dent2
);
1067 /* Make sure node keys are the same as in zbranch */
1069 key_read(c
, &dent1
->key
, &key
);
1070 if (keys_cmp(c
, &zbr1
->key
, &key
)) {
1071 dbg_err("1st entry at %d:%d has key %s", zbr1
->lnum
,
1072 zbr1
->offs
, DBGKEY(&key
));
1073 dbg_err("but it should have key %s according to tnc",
1074 DBGKEY(&zbr1
->key
));
1075 dbg_dump_node(c
, dent1
);
1079 key_read(c
, &dent2
->key
, &key
);
1080 if (keys_cmp(c
, &zbr2
->key
, &key
)) {
1081 dbg_err("2nd entry at %d:%d has key %s", zbr1
->lnum
,
1082 zbr1
->offs
, DBGKEY(&key
));
1083 dbg_err("but it should have key %s according to tnc",
1084 DBGKEY(&zbr2
->key
));
1085 dbg_dump_node(c
, dent2
);
1089 nlen1
= le16_to_cpu(dent1
->nlen
);
1090 nlen2
= le16_to_cpu(dent2
->nlen
);
1092 cmp
= memcmp(dent1
->name
, dent2
->name
, min_t(int, nlen1
, nlen2
));
1093 if (cmp
< 0 || (cmp
== 0 && nlen1
< nlen2
)) {
1097 if (cmp
== 0 && nlen1
== nlen2
)
1098 dbg_err("2 xent/dent nodes with the same name");
1100 dbg_err("bad order of colliding key %s",
1103 ubifs_msg("first node at %d:%d\n", zbr1
->lnum
, zbr1
->offs
);
1104 dbg_dump_node(c
, dent1
);
1105 ubifs_msg("second node at %d:%d\n", zbr2
->lnum
, zbr2
->offs
);
1106 dbg_dump_node(c
, dent2
);
1115 * dbg_check_znode - check if znode is all right.
1116 * @c: UBIFS file-system description object
1117 * @zbr: zbranch which points to this znode
1119 * This function makes sure that znode referred to by @zbr is all right.
1120 * Returns zero if it is, and %-EINVAL if it is not.
1122 static int dbg_check_znode(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
)
1124 struct ubifs_znode
*znode
= zbr
->znode
;
1125 struct ubifs_znode
*zp
= znode
->parent
;
1128 if (znode
->child_cnt
<= 0 || znode
->child_cnt
> c
->fanout
) {
1132 if (znode
->level
< 0) {
1136 if (znode
->iip
< 0 || znode
->iip
>= c
->fanout
) {
1142 /* Only dirty zbranch may have no on-flash nodes */
1143 if (!ubifs_zn_dirty(znode
)) {
1148 if (ubifs_zn_dirty(znode
)) {
1150 * If znode is dirty, its parent has to be dirty as well. The
1151 * order of the operation is important, so we have to have
1155 if (zp
&& !ubifs_zn_dirty(zp
)) {
1157 * The dirty flag is atomic and is cleared outside the
1158 * TNC mutex, so znode's dirty flag may now have
1159 * been cleared. The child is always cleared before the
1160 * parent, so we just need to check again.
1163 if (ubifs_zn_dirty(znode
)) {
1171 const union ubifs_key
*min
, *max
;
1173 if (znode
->level
!= zp
->level
- 1) {
1178 /* Make sure the 'parent' pointer in our znode is correct */
1179 err
= ubifs_search_zbranch(c
, zp
, &zbr
->key
, &n
);
1181 /* This zbranch does not exist in the parent */
1186 if (znode
->iip
>= zp
->child_cnt
) {
1191 if (znode
->iip
!= n
) {
1192 /* This may happen only in case of collisions */
1193 if (keys_cmp(c
, &zp
->zbranch
[n
].key
,
1194 &zp
->zbranch
[znode
->iip
].key
)) {
1202 * Make sure that the first key in our znode is greater than or
1203 * equal to the key in the pointing zbranch.
1206 cmp
= keys_cmp(c
, min
, &znode
->zbranch
[0].key
);
1212 if (n
+ 1 < zp
->child_cnt
) {
1213 max
= &zp
->zbranch
[n
+ 1].key
;
1216 * Make sure the last key in our znode is less or
1217 * equivalent than the the key in zbranch which goes
1218 * after our pointing zbranch.
1220 cmp
= keys_cmp(c
, max
,
1221 &znode
->zbranch
[znode
->child_cnt
- 1].key
);
1228 /* This may only be root znode */
1229 if (zbr
!= &c
->zroot
) {
1236 * Make sure that next key is greater or equivalent then the previous
1239 for (n
= 1; n
< znode
->child_cnt
; n
++) {
1240 cmp
= keys_cmp(c
, &znode
->zbranch
[n
- 1].key
,
1241 &znode
->zbranch
[n
].key
);
1247 /* This can only be keys with colliding hash */
1248 if (!is_hash_key(c
, &znode
->zbranch
[n
].key
)) {
1253 if (znode
->level
!= 0 || c
->replaying
)
1257 * Colliding keys should follow binary order of
1258 * corresponding xentry/dentry names.
1260 err
= dbg_check_key_order(c
, &znode
->zbranch
[n
- 1],
1261 &znode
->zbranch
[n
]);
1271 for (n
= 0; n
< znode
->child_cnt
; n
++) {
1272 if (!znode
->zbranch
[n
].znode
&&
1273 (znode
->zbranch
[n
].lnum
== 0 ||
1274 znode
->zbranch
[n
].len
== 0)) {
1279 if (znode
->zbranch
[n
].lnum
!= 0 &&
1280 znode
->zbranch
[n
].len
== 0) {
1285 if (znode
->zbranch
[n
].lnum
== 0 &&
1286 znode
->zbranch
[n
].len
!= 0) {
1291 if (znode
->zbranch
[n
].lnum
== 0 &&
1292 znode
->zbranch
[n
].offs
!= 0) {
1297 if (znode
->level
!= 0 && znode
->zbranch
[n
].znode
)
1298 if (znode
->zbranch
[n
].znode
->parent
!= znode
) {
1307 ubifs_err("failed, error %d", err
);
1308 ubifs_msg("dump of the znode");
1309 dbg_dump_znode(c
, znode
);
1311 ubifs_msg("dump of the parent znode");
1312 dbg_dump_znode(c
, zp
);
1319 * dbg_check_tnc - check TNC tree.
1320 * @c: UBIFS file-system description object
1321 * @extra: do extra checks that are possible at start commit
1323 * This function traverses whole TNC tree and checks every znode. Returns zero
1324 * if everything is all right and %-EINVAL if something is wrong with TNC.
1326 int dbg_check_tnc(struct ubifs_info
*c
, int extra
)
1328 struct ubifs_znode
*znode
;
1329 long clean_cnt
= 0, dirty_cnt
= 0;
1332 if (!(ubifs_chk_flags
& UBIFS_CHK_TNC
))
1335 ubifs_assert(mutex_is_locked(&c
->tnc_mutex
));
1336 if (!c
->zroot
.znode
)
1339 znode
= ubifs_tnc_postorder_first(c
->zroot
.znode
);
1341 struct ubifs_znode
*prev
;
1342 struct ubifs_zbranch
*zbr
;
1347 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
1349 err
= dbg_check_znode(c
, zbr
);
1354 if (ubifs_zn_dirty(znode
))
1361 znode
= ubifs_tnc_postorder_next(znode
);
1366 * If the last key of this znode is equivalent to the first key
1367 * of the next znode (collision), then check order of the keys.
1369 last
= prev
->child_cnt
- 1;
1370 if (prev
->level
== 0 && znode
->level
== 0 && !c
->replaying
&&
1371 !keys_cmp(c
, &prev
->zbranch
[last
].key
,
1372 &znode
->zbranch
[0].key
)) {
1373 err
= dbg_check_key_order(c
, &prev
->zbranch
[last
],
1374 &znode
->zbranch
[0]);
1378 ubifs_msg("first znode");
1379 dbg_dump_znode(c
, prev
);
1380 ubifs_msg("second znode");
1381 dbg_dump_znode(c
, znode
);
1388 if (clean_cnt
!= atomic_long_read(&c
->clean_zn_cnt
)) {
1389 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1390 atomic_long_read(&c
->clean_zn_cnt
),
1394 if (dirty_cnt
!= atomic_long_read(&c
->dirty_zn_cnt
)) {
1395 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1396 atomic_long_read(&c
->dirty_zn_cnt
),
1406 * dbg_walk_index - walk the on-flash index.
1407 * @c: UBIFS file-system description object
1408 * @leaf_cb: called for each leaf node
1409 * @znode_cb: called for each indexing node
1410 * @priv: private data which is passed to callbacks
1412 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1413 * node and @znode_cb for each indexing node. Returns zero in case of success
1414 * and a negative error code in case of failure.
1416 * It would be better if this function removed every znode it pulled to into
1417 * the TNC, so that the behavior more closely matched the non-debugging
1420 int dbg_walk_index(struct ubifs_info
*c
, dbg_leaf_callback leaf_cb
,
1421 dbg_znode_callback znode_cb
, void *priv
)
1424 struct ubifs_zbranch
*zbr
;
1425 struct ubifs_znode
*znode
, *child
;
1427 mutex_lock(&c
->tnc_mutex
);
1428 /* If the root indexing node is not in TNC - pull it */
1429 if (!c
->zroot
.znode
) {
1430 c
->zroot
.znode
= ubifs_load_znode(c
, &c
->zroot
, NULL
, 0);
1431 if (IS_ERR(c
->zroot
.znode
)) {
1432 err
= PTR_ERR(c
->zroot
.znode
);
1433 c
->zroot
.znode
= NULL
;
1439 * We are going to traverse the indexing tree in the postorder manner.
1440 * Go down and find the leftmost indexing node where we are going to
1443 znode
= c
->zroot
.znode
;
1444 while (znode
->level
> 0) {
1445 zbr
= &znode
->zbranch
[0];
1448 child
= ubifs_load_znode(c
, zbr
, znode
, 0);
1449 if (IS_ERR(child
)) {
1450 err
= PTR_ERR(child
);
1459 /* Iterate over all indexing nodes */
1466 err
= znode_cb(c
, znode
, priv
);
1468 ubifs_err("znode checking function returned "
1470 dbg_dump_znode(c
, znode
);
1474 if (leaf_cb
&& znode
->level
== 0) {
1475 for (idx
= 0; idx
< znode
->child_cnt
; idx
++) {
1476 zbr
= &znode
->zbranch
[idx
];
1477 err
= leaf_cb(c
, zbr
, priv
);
1479 ubifs_err("leaf checking function "
1480 "returned error %d, for leaf "
1482 err
, zbr
->lnum
, zbr
->offs
);
1491 idx
= znode
->iip
+ 1;
1492 znode
= znode
->parent
;
1493 if (idx
< znode
->child_cnt
) {
1494 /* Switch to the next index in the parent */
1495 zbr
= &znode
->zbranch
[idx
];
1498 child
= ubifs_load_znode(c
, zbr
, znode
, idx
);
1499 if (IS_ERR(child
)) {
1500 err
= PTR_ERR(child
);
1508 * This is the last child, switch to the parent and
1513 /* Go to the lowest leftmost znode in the new sub-tree */
1514 while (znode
->level
> 0) {
1515 zbr
= &znode
->zbranch
[0];
1518 child
= ubifs_load_znode(c
, zbr
, znode
, 0);
1519 if (IS_ERR(child
)) {
1520 err
= PTR_ERR(child
);
1529 mutex_unlock(&c
->tnc_mutex
);
1534 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
1537 ubifs_msg("dump of znode at LEB %d:%d", zbr
->lnum
, zbr
->offs
);
1538 dbg_dump_znode(c
, znode
);
1540 mutex_unlock(&c
->tnc_mutex
);
1545 * add_size - add znode size to partially calculated index size.
1546 * @c: UBIFS file-system description object
1547 * @znode: znode to add size for
1548 * @priv: partially calculated index size
1550 * This is a helper function for 'dbg_check_idx_size()' which is called for
1551 * every indexing node and adds its size to the 'long long' variable pointed to
1554 static int add_size(struct ubifs_info
*c
, struct ubifs_znode
*znode
, void *priv
)
1556 long long *idx_size
= priv
;
1559 add
= ubifs_idx_node_sz(c
, znode
->child_cnt
);
1560 add
= ALIGN(add
, 8);
1566 * dbg_check_idx_size - check index size.
1567 * @c: UBIFS file-system description object
1568 * @idx_size: size to check
1570 * This function walks the UBIFS index, calculates its size and checks that the
1571 * size is equivalent to @idx_size. Returns zero in case of success and a
1572 * negative error code in case of failure.
1574 int dbg_check_idx_size(struct ubifs_info
*c
, long long idx_size
)
1579 if (!(ubifs_chk_flags
& UBIFS_CHK_IDX_SZ
))
1582 err
= dbg_walk_index(c
, NULL
, add_size
, &calc
);
1584 ubifs_err("error %d while walking the index", err
);
1588 if (calc
!= idx_size
) {
1589 ubifs_err("index size check failed: calculated size is %lld, "
1590 "should be %lld", calc
, idx_size
);
1599 * struct fsck_inode - information about an inode used when checking the file-system.
1600 * @rb: link in the RB-tree of inodes
1601 * @inum: inode number
1602 * @mode: inode type, permissions, etc
1603 * @nlink: inode link count
1604 * @xattr_cnt: count of extended attributes
1605 * @references: how many directory/xattr entries refer this inode (calculated
1606 * while walking the index)
1607 * @calc_cnt: for directory inode count of child directories
1608 * @size: inode size (read from on-flash inode)
1609 * @xattr_sz: summary size of all extended attributes (read from on-flash
1611 * @calc_sz: for directories calculated directory size
1612 * @calc_xcnt: count of extended attributes
1613 * @calc_xsz: calculated summary size of all extended attributes
1614 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1615 * inode (read from on-flash inode)
1616 * @calc_xnms: calculated sum of lengths of all extended attribute names
1623 unsigned int xattr_cnt
;
1627 unsigned int xattr_sz
;
1629 long long calc_xcnt
;
1631 unsigned int xattr_nms
;
1632 long long calc_xnms
;
1636 * struct fsck_data - private FS checking information.
1637 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1640 struct rb_root inodes
;
1644 * add_inode - add inode information to RB-tree of inodes.
1645 * @c: UBIFS file-system description object
1646 * @fsckd: FS checking information
1647 * @ino: raw UBIFS inode to add
1649 * This is a helper function for 'check_leaf()' which adds information about
1650 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1651 * case of success and a negative error code in case of failure.
1653 static struct fsck_inode
*add_inode(struct ubifs_info
*c
,
1654 struct fsck_data
*fsckd
,
1655 struct ubifs_ino_node
*ino
)
1657 struct rb_node
**p
, *parent
= NULL
;
1658 struct fsck_inode
*fscki
;
1659 ino_t inum
= key_inum_flash(c
, &ino
->key
);
1661 p
= &fsckd
->inodes
.rb_node
;
1664 fscki
= rb_entry(parent
, struct fsck_inode
, rb
);
1665 if (inum
< fscki
->inum
)
1667 else if (inum
> fscki
->inum
)
1668 p
= &(*p
)->rb_right
;
1673 if (inum
> c
->highest_inum
) {
1674 ubifs_err("too high inode number, max. is %lu",
1675 (unsigned long)c
->highest_inum
);
1676 return ERR_PTR(-EINVAL
);
1679 fscki
= kzalloc(sizeof(struct fsck_inode
), GFP_NOFS
);
1681 return ERR_PTR(-ENOMEM
);
1684 fscki
->nlink
= le32_to_cpu(ino
->nlink
);
1685 fscki
->size
= le64_to_cpu(ino
->size
);
1686 fscki
->xattr_cnt
= le32_to_cpu(ino
->xattr_cnt
);
1687 fscki
->xattr_sz
= le32_to_cpu(ino
->xattr_size
);
1688 fscki
->xattr_nms
= le32_to_cpu(ino
->xattr_names
);
1689 fscki
->mode
= le32_to_cpu(ino
->mode
);
1690 if (S_ISDIR(fscki
->mode
)) {
1691 fscki
->calc_sz
= UBIFS_INO_NODE_SZ
;
1692 fscki
->calc_cnt
= 2;
1694 rb_link_node(&fscki
->rb
, parent
, p
);
1695 rb_insert_color(&fscki
->rb
, &fsckd
->inodes
);
1700 * search_inode - search inode in the RB-tree of inodes.
1701 * @fsckd: FS checking information
1702 * @inum: inode number to search
1704 * This is a helper function for 'check_leaf()' which searches inode @inum in
1705 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1706 * the inode was not found.
1708 static struct fsck_inode
*search_inode(struct fsck_data
*fsckd
, ino_t inum
)
1711 struct fsck_inode
*fscki
;
1713 p
= fsckd
->inodes
.rb_node
;
1715 fscki
= rb_entry(p
, struct fsck_inode
, rb
);
1716 if (inum
< fscki
->inum
)
1718 else if (inum
> fscki
->inum
)
1727 * read_add_inode - read inode node and add it to RB-tree of inodes.
1728 * @c: UBIFS file-system description object
1729 * @fsckd: FS checking information
1730 * @inum: inode number to read
1732 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1733 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1734 * information pointer in case of success and a negative error code in case of
1737 static struct fsck_inode
*read_add_inode(struct ubifs_info
*c
,
1738 struct fsck_data
*fsckd
, ino_t inum
)
1741 union ubifs_key key
;
1742 struct ubifs_znode
*znode
;
1743 struct ubifs_zbranch
*zbr
;
1744 struct ubifs_ino_node
*ino
;
1745 struct fsck_inode
*fscki
;
1747 fscki
= search_inode(fsckd
, inum
);
1751 ino_key_init(c
, &key
, inum
);
1752 err
= ubifs_lookup_level0(c
, &key
, &znode
, &n
);
1754 ubifs_err("inode %lu not found in index", (unsigned long)inum
);
1755 return ERR_PTR(-ENOENT
);
1756 } else if (err
< 0) {
1757 ubifs_err("error %d while looking up inode %lu",
1758 err
, (unsigned long)inum
);
1759 return ERR_PTR(err
);
1762 zbr
= &znode
->zbranch
[n
];
1763 if (zbr
->len
< UBIFS_INO_NODE_SZ
) {
1764 ubifs_err("bad node %lu node length %d",
1765 (unsigned long)inum
, zbr
->len
);
1766 return ERR_PTR(-EINVAL
);
1769 ino
= kmalloc(zbr
->len
, GFP_NOFS
);
1771 return ERR_PTR(-ENOMEM
);
1773 err
= ubifs_tnc_read_node(c
, zbr
, ino
);
1775 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1776 zbr
->lnum
, zbr
->offs
, err
);
1778 return ERR_PTR(err
);
1781 fscki
= add_inode(c
, fsckd
, ino
);
1783 if (IS_ERR(fscki
)) {
1784 ubifs_err("error %ld while adding inode %lu node",
1785 PTR_ERR(fscki
), (unsigned long)inum
);
1793 * check_leaf - check leaf node.
1794 * @c: UBIFS file-system description object
1795 * @zbr: zbranch of the leaf node to check
1796 * @priv: FS checking information
1798 * This is a helper function for 'dbg_check_filesystem()' which is called for
1799 * every single leaf node while walking the indexing tree. It checks that the
1800 * leaf node referred from the indexing tree exists, has correct CRC, and does
1801 * some other basic validation. This function is also responsible for building
1802 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1803 * calculates reference count, size, etc for each inode in order to later
1804 * compare them to the information stored inside the inodes and detect possible
1805 * inconsistencies. Returns zero in case of success and a negative error code
1806 * in case of failure.
1808 static int check_leaf(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
,
1813 struct ubifs_ch
*ch
;
1814 int err
, type
= key_type(c
, &zbr
->key
);
1815 struct fsck_inode
*fscki
;
1817 if (zbr
->len
< UBIFS_CH_SZ
) {
1818 ubifs_err("bad leaf length %d (LEB %d:%d)",
1819 zbr
->len
, zbr
->lnum
, zbr
->offs
);
1823 node
= kmalloc(zbr
->len
, GFP_NOFS
);
1827 err
= ubifs_tnc_read_node(c
, zbr
, node
);
1829 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1830 zbr
->lnum
, zbr
->offs
, err
);
1834 /* If this is an inode node, add it to RB-tree of inodes */
1835 if (type
== UBIFS_INO_KEY
) {
1836 fscki
= add_inode(c
, priv
, node
);
1837 if (IS_ERR(fscki
)) {
1838 err
= PTR_ERR(fscki
);
1839 ubifs_err("error %d while adding inode node", err
);
1845 if (type
!= UBIFS_DENT_KEY
&& type
!= UBIFS_XENT_KEY
&&
1846 type
!= UBIFS_DATA_KEY
) {
1847 ubifs_err("unexpected node type %d at LEB %d:%d",
1848 type
, zbr
->lnum
, zbr
->offs
);
1854 if (le64_to_cpu(ch
->sqnum
) > c
->max_sqnum
) {
1855 ubifs_err("too high sequence number, max. is %llu",
1861 if (type
== UBIFS_DATA_KEY
) {
1863 struct ubifs_data_node
*dn
= node
;
1866 * Search the inode node this data node belongs to and insert
1867 * it to the RB-tree of inodes.
1869 inum
= key_inum_flash(c
, &dn
->key
);
1870 fscki
= read_add_inode(c
, priv
, inum
);
1871 if (IS_ERR(fscki
)) {
1872 err
= PTR_ERR(fscki
);
1873 ubifs_err("error %d while processing data node and "
1874 "trying to find inode node %lu",
1875 err
, (unsigned long)inum
);
1879 /* Make sure the data node is within inode size */
1880 blk_offs
= key_block_flash(c
, &dn
->key
);
1881 blk_offs
<<= UBIFS_BLOCK_SHIFT
;
1882 blk_offs
+= le32_to_cpu(dn
->size
);
1883 if (blk_offs
> fscki
->size
) {
1884 ubifs_err("data node at LEB %d:%d is not within inode "
1885 "size %lld", zbr
->lnum
, zbr
->offs
,
1892 struct ubifs_dent_node
*dent
= node
;
1893 struct fsck_inode
*fscki1
;
1895 err
= ubifs_validate_entry(c
, dent
);
1900 * Search the inode node this entry refers to and the parent
1901 * inode node and insert them to the RB-tree of inodes.
1903 inum
= le64_to_cpu(dent
->inum
);
1904 fscki
= read_add_inode(c
, priv
, inum
);
1905 if (IS_ERR(fscki
)) {
1906 err
= PTR_ERR(fscki
);
1907 ubifs_err("error %d while processing entry node and "
1908 "trying to find inode node %lu",
1909 err
, (unsigned long)inum
);
1913 /* Count how many direntries or xentries refers this inode */
1914 fscki
->references
+= 1;
1916 inum
= key_inum_flash(c
, &dent
->key
);
1917 fscki1
= read_add_inode(c
, priv
, inum
);
1918 if (IS_ERR(fscki1
)) {
1919 err
= PTR_ERR(fscki
);
1920 ubifs_err("error %d while processing entry node and "
1921 "trying to find parent inode node %lu",
1922 err
, (unsigned long)inum
);
1926 nlen
= le16_to_cpu(dent
->nlen
);
1927 if (type
== UBIFS_XENT_KEY
) {
1928 fscki1
->calc_xcnt
+= 1;
1929 fscki1
->calc_xsz
+= CALC_DENT_SIZE(nlen
);
1930 fscki1
->calc_xsz
+= CALC_XATTR_BYTES(fscki
->size
);
1931 fscki1
->calc_xnms
+= nlen
;
1933 fscki1
->calc_sz
+= CALC_DENT_SIZE(nlen
);
1934 if (dent
->type
== UBIFS_ITYPE_DIR
)
1935 fscki1
->calc_cnt
+= 1;
1944 ubifs_msg("dump of node at LEB %d:%d", zbr
->lnum
, zbr
->offs
);
1945 dbg_dump_node(c
, node
);
1952 * free_inodes - free RB-tree of inodes.
1953 * @fsckd: FS checking information
1955 static void free_inodes(struct fsck_data
*fsckd
)
1957 struct rb_node
*this = fsckd
->inodes
.rb_node
;
1958 struct fsck_inode
*fscki
;
1962 this = this->rb_left
;
1963 else if (this->rb_right
)
1964 this = this->rb_right
;
1966 fscki
= rb_entry(this, struct fsck_inode
, rb
);
1967 this = rb_parent(this);
1969 if (this->rb_left
== &fscki
->rb
)
1970 this->rb_left
= NULL
;
1972 this->rb_right
= NULL
;
1980 * check_inodes - checks all inodes.
1981 * @c: UBIFS file-system description object
1982 * @fsckd: FS checking information
1984 * This is a helper function for 'dbg_check_filesystem()' which walks the
1985 * RB-tree of inodes after the index scan has been finished, and checks that
1986 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
1987 * %-EINVAL if not, and a negative error code in case of failure.
1989 static int check_inodes(struct ubifs_info
*c
, struct fsck_data
*fsckd
)
1992 union ubifs_key key
;
1993 struct ubifs_znode
*znode
;
1994 struct ubifs_zbranch
*zbr
;
1995 struct ubifs_ino_node
*ino
;
1996 struct fsck_inode
*fscki
;
1997 struct rb_node
*this = rb_first(&fsckd
->inodes
);
2000 fscki
= rb_entry(this, struct fsck_inode
, rb
);
2001 this = rb_next(this);
2003 if (S_ISDIR(fscki
->mode
)) {
2005 * Directories have to have exactly one reference (they
2006 * cannot have hardlinks), although root inode is an
2009 if (fscki
->inum
!= UBIFS_ROOT_INO
&&
2010 fscki
->references
!= 1) {
2011 ubifs_err("directory inode %lu has %d "
2012 "direntries which refer it, but "
2014 (unsigned long)fscki
->inum
,
2018 if (fscki
->inum
== UBIFS_ROOT_INO
&&
2019 fscki
->references
!= 0) {
2020 ubifs_err("root inode %lu has non-zero (%d) "
2021 "direntries which refer it",
2022 (unsigned long)fscki
->inum
,
2026 if (fscki
->calc_sz
!= fscki
->size
) {
2027 ubifs_err("directory inode %lu size is %lld, "
2028 "but calculated size is %lld",
2029 (unsigned long)fscki
->inum
,
2030 fscki
->size
, fscki
->calc_sz
);
2033 if (fscki
->calc_cnt
!= fscki
->nlink
) {
2034 ubifs_err("directory inode %lu nlink is %d, "
2035 "but calculated nlink is %d",
2036 (unsigned long)fscki
->inum
,
2037 fscki
->nlink
, fscki
->calc_cnt
);
2041 if (fscki
->references
!= fscki
->nlink
) {
2042 ubifs_err("inode %lu nlink is %d, but "
2043 "calculated nlink is %d",
2044 (unsigned long)fscki
->inum
,
2045 fscki
->nlink
, fscki
->references
);
2049 if (fscki
->xattr_sz
!= fscki
->calc_xsz
) {
2050 ubifs_err("inode %lu has xattr size %u, but "
2051 "calculated size is %lld",
2052 (unsigned long)fscki
->inum
, fscki
->xattr_sz
,
2056 if (fscki
->xattr_cnt
!= fscki
->calc_xcnt
) {
2057 ubifs_err("inode %lu has %u xattrs, but "
2058 "calculated count is %lld",
2059 (unsigned long)fscki
->inum
,
2060 fscki
->xattr_cnt
, fscki
->calc_xcnt
);
2063 if (fscki
->xattr_nms
!= fscki
->calc_xnms
) {
2064 ubifs_err("inode %lu has xattr names' size %u, but "
2065 "calculated names' size is %lld",
2066 (unsigned long)fscki
->inum
, fscki
->xattr_nms
,
2075 /* Read the bad inode and dump it */
2076 ino_key_init(c
, &key
, fscki
->inum
);
2077 err
= ubifs_lookup_level0(c
, &key
, &znode
, &n
);
2079 ubifs_err("inode %lu not found in index",
2080 (unsigned long)fscki
->inum
);
2082 } else if (err
< 0) {
2083 ubifs_err("error %d while looking up inode %lu",
2084 err
, (unsigned long)fscki
->inum
);
2088 zbr
= &znode
->zbranch
[n
];
2089 ino
= kmalloc(zbr
->len
, GFP_NOFS
);
2093 err
= ubifs_tnc_read_node(c
, zbr
, ino
);
2095 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2096 zbr
->lnum
, zbr
->offs
, err
);
2101 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2102 (unsigned long)fscki
->inum
, zbr
->lnum
, zbr
->offs
);
2103 dbg_dump_node(c
, ino
);
2109 * dbg_check_filesystem - check the file-system.
2110 * @c: UBIFS file-system description object
2112 * This function checks the file system, namely:
2113 * o makes sure that all leaf nodes exist and their CRCs are correct;
2114 * o makes sure inode nlink, size, xattr size/count are correct (for all
2117 * The function reads whole indexing tree and all nodes, so it is pretty
2118 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2119 * not, and a negative error code in case of failure.
2121 int dbg_check_filesystem(struct ubifs_info
*c
)
2124 struct fsck_data fsckd
;
2126 if (!(ubifs_chk_flags
& UBIFS_CHK_FS
))
2129 fsckd
.inodes
= RB_ROOT
;
2130 err
= dbg_walk_index(c
, check_leaf
, NULL
, &fsckd
);
2134 err
= check_inodes(c
, &fsckd
);
2138 free_inodes(&fsckd
);
2142 ubifs_err("file-system check failed with error %d", err
);
2144 free_inodes(&fsckd
);
2148 static int invocation_cnt
;
2150 int dbg_force_in_the_gaps(void)
2152 if (!dbg_force_in_the_gaps_enabled
)
2154 /* Force in-the-gaps every 8th commit */
2155 return !((invocation_cnt
++) & 0x7);
2158 /* Failure mode for recovery testing */
2160 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2162 struct failure_mode_info
{
2163 struct list_head list
;
2164 struct ubifs_info
*c
;
2167 static LIST_HEAD(fmi_list
);
2168 static DEFINE_SPINLOCK(fmi_lock
);
2170 static unsigned int next
;
2172 static int simple_rand(void)
2175 next
= current
->pid
;
2176 next
= next
* 1103515245 + 12345;
2177 return (next
>> 16) & 32767;
2180 static void failure_mode_init(struct ubifs_info
*c
)
2182 struct failure_mode_info
*fmi
;
2184 fmi
= kmalloc(sizeof(struct failure_mode_info
), GFP_NOFS
);
2186 ubifs_err("Failed to register failure mode - no memory");
2190 spin_lock(&fmi_lock
);
2191 list_add_tail(&fmi
->list
, &fmi_list
);
2192 spin_unlock(&fmi_lock
);
2195 static void failure_mode_exit(struct ubifs_info
*c
)
2197 struct failure_mode_info
*fmi
, *tmp
;
2199 spin_lock(&fmi_lock
);
2200 list_for_each_entry_safe(fmi
, tmp
, &fmi_list
, list
)
2202 list_del(&fmi
->list
);
2205 spin_unlock(&fmi_lock
);
2208 static struct ubifs_info
*dbg_find_info(struct ubi_volume_desc
*desc
)
2210 struct failure_mode_info
*fmi
;
2212 spin_lock(&fmi_lock
);
2213 list_for_each_entry(fmi
, &fmi_list
, list
)
2214 if (fmi
->c
->ubi
== desc
) {
2215 struct ubifs_info
*c
= fmi
->c
;
2217 spin_unlock(&fmi_lock
);
2220 spin_unlock(&fmi_lock
);
2224 static int in_failure_mode(struct ubi_volume_desc
*desc
)
2226 struct ubifs_info
*c
= dbg_find_info(desc
);
2228 if (c
&& dbg_failure_mode
)
2229 return c
->dbg
->failure_mode
;
2233 static int do_fail(struct ubi_volume_desc
*desc
, int lnum
, int write
)
2235 struct ubifs_info
*c
= dbg_find_info(desc
);
2236 struct ubifs_debug_info
*d
;
2238 if (!c
|| !dbg_failure_mode
)
2241 if (d
->failure_mode
)
2244 /* First call - decide delay to failure */
2246 unsigned int delay
= 1 << (simple_rand() >> 11);
2250 d
->fail_timeout
= jiffies
+
2251 msecs_to_jiffies(delay
);
2252 dbg_rcvry("failing after %ums", delay
);
2255 d
->fail_cnt_max
= delay
;
2256 dbg_rcvry("failing after %u calls", delay
);
2261 /* Determine if failure delay has expired */
2262 if (d
->fail_delay
== 1) {
2263 if (time_before(jiffies
, d
->fail_timeout
))
2265 } else if (d
->fail_delay
== 2)
2266 if (d
->fail_cnt
++ < d
->fail_cnt_max
)
2268 if (lnum
== UBIFS_SB_LNUM
) {
2272 } else if (chance(19, 20))
2274 dbg_rcvry("failing in super block LEB %d", lnum
);
2275 } else if (lnum
== UBIFS_MST_LNUM
|| lnum
== UBIFS_MST_LNUM
+ 1) {
2278 dbg_rcvry("failing in master LEB %d", lnum
);
2279 } else if (lnum
>= UBIFS_LOG_LNUM
&& lnum
<= c
->log_last
) {
2281 if (chance(99, 100))
2283 } else if (chance(399, 400))
2285 dbg_rcvry("failing in log LEB %d", lnum
);
2286 } else if (lnum
>= c
->lpt_first
&& lnum
<= c
->lpt_last
) {
2290 } else if (chance(19, 20))
2292 dbg_rcvry("failing in LPT LEB %d", lnum
);
2293 } else if (lnum
>= c
->orph_first
&& lnum
<= c
->orph_last
) {
2297 } else if (chance(9, 10))
2299 dbg_rcvry("failing in orphan LEB %d", lnum
);
2300 } else if (lnum
== c
->ihead_lnum
) {
2301 if (chance(99, 100))
2303 dbg_rcvry("failing in index head LEB %d", lnum
);
2304 } else if (c
->jheads
&& lnum
== c
->jheads
[GCHD
].wbuf
.lnum
) {
2307 dbg_rcvry("failing in GC head LEB %d", lnum
);
2308 } else if (write
&& !RB_EMPTY_ROOT(&c
->buds
) &&
2309 !ubifs_search_bud(c
, lnum
)) {
2312 dbg_rcvry("failing in non-bud LEB %d", lnum
);
2313 } else if (c
->cmt_state
== COMMIT_RUNNING_BACKGROUND
||
2314 c
->cmt_state
== COMMIT_RUNNING_REQUIRED
) {
2315 if (chance(999, 1000))
2317 dbg_rcvry("failing in bud LEB %d commit running", lnum
);
2319 if (chance(9999, 10000))
2321 dbg_rcvry("failing in bud LEB %d commit not running", lnum
);
2323 ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum
);
2324 d
->failure_mode
= 1;
2329 static void cut_data(const void *buf
, int len
)
2332 unsigned char *p
= (void *)buf
;
2334 flen
= (len
* (long long)simple_rand()) >> 15;
2335 for (i
= flen
; i
< len
; i
++)
2339 int dbg_leb_read(struct ubi_volume_desc
*desc
, int lnum
, char *buf
, int offset
,
2342 if (in_failure_mode(desc
))
2344 return ubi_leb_read(desc
, lnum
, buf
, offset
, len
, check
);
2347 int dbg_leb_write(struct ubi_volume_desc
*desc
, int lnum
, const void *buf
,
2348 int offset
, int len
, int dtype
)
2352 if (in_failure_mode(desc
))
2354 failing
= do_fail(desc
, lnum
, 1);
2357 err
= ubi_leb_write(desc
, lnum
, buf
, offset
, len
, dtype
);
2365 int dbg_leb_change(struct ubi_volume_desc
*desc
, int lnum
, const void *buf
,
2370 if (do_fail(desc
, lnum
, 1))
2372 err
= ubi_leb_change(desc
, lnum
, buf
, len
, dtype
);
2375 if (do_fail(desc
, lnum
, 1))
2380 int dbg_leb_erase(struct ubi_volume_desc
*desc
, int lnum
)
2384 if (do_fail(desc
, lnum
, 0))
2386 err
= ubi_leb_erase(desc
, lnum
);
2389 if (do_fail(desc
, lnum
, 0))
2394 int dbg_leb_unmap(struct ubi_volume_desc
*desc
, int lnum
)
2398 if (do_fail(desc
, lnum
, 0))
2400 err
= ubi_leb_unmap(desc
, lnum
);
2403 if (do_fail(desc
, lnum
, 0))
2408 int dbg_is_mapped(struct ubi_volume_desc
*desc
, int lnum
)
2410 if (in_failure_mode(desc
))
2412 return ubi_is_mapped(desc
, lnum
);
2415 int dbg_leb_map(struct ubi_volume_desc
*desc
, int lnum
, int dtype
)
2419 if (do_fail(desc
, lnum
, 0))
2421 err
= ubi_leb_map(desc
, lnum
, dtype
);
2424 if (do_fail(desc
, lnum
, 0))
2430 * ubifs_debugging_init - initialize UBIFS debugging.
2431 * @c: UBIFS file-system description object
2433 * This function initializes debugging-related data for the file system.
2434 * Returns zero in case of success and a negative error code in case of
2437 int ubifs_debugging_init(struct ubifs_info
*c
)
2439 c
->dbg
= kzalloc(sizeof(struct ubifs_debug_info
), GFP_KERNEL
);
2443 c
->dbg
->buf
= vmalloc(c
->leb_size
);
2447 failure_mode_init(c
);
2456 * ubifs_debugging_exit - free debugging data.
2457 * @c: UBIFS file-system description object
2459 void ubifs_debugging_exit(struct ubifs_info
*c
)
2461 failure_mode_exit(c
);
2467 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2468 * contain the stuff specific to particular file-system mounts.
2470 static struct dentry
*dfs_rootdir
;
2473 * dbg_debugfs_init - initialize debugfs file-system.
2475 * UBIFS uses debugfs file-system to expose various debugging knobs to
2476 * user-space. This function creates "ubifs" directory in the debugfs
2477 * file-system. Returns zero in case of success and a negative error code in
2480 int dbg_debugfs_init(void)
2482 dfs_rootdir
= debugfs_create_dir("ubifs", NULL
);
2483 if (IS_ERR(dfs_rootdir
)) {
2484 int err
= PTR_ERR(dfs_rootdir
);
2485 ubifs_err("cannot create \"ubifs\" debugfs directory, "
2494 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2496 void dbg_debugfs_exit(void)
2498 debugfs_remove(dfs_rootdir
);
2501 static int open_debugfs_file(struct inode
*inode
, struct file
*file
)
2503 file
->private_data
= inode
->i_private
;
2507 static ssize_t
write_debugfs_file(struct file
*file
, const char __user
*buf
,
2508 size_t count
, loff_t
*ppos
)
2510 struct ubifs_info
*c
= file
->private_data
;
2511 struct ubifs_debug_info
*d
= c
->dbg
;
2513 if (file
->f_path
.dentry
== d
->dfs_dump_lprops
)
2515 else if (file
->f_path
.dentry
== d
->dfs_dump_budg
) {
2516 spin_lock(&c
->space_lock
);
2518 spin_unlock(&c
->space_lock
);
2519 } else if (file
->f_path
.dentry
== d
->dfs_dump_tnc
) {
2520 mutex_lock(&c
->tnc_mutex
);
2522 mutex_unlock(&c
->tnc_mutex
);
2530 static const struct file_operations dfs_fops
= {
2531 .open
= open_debugfs_file
,
2532 .write
= write_debugfs_file
,
2533 .owner
= THIS_MODULE
,
2537 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2538 * @c: UBIFS file-system description object
2540 * This function creates all debugfs files for this instance of UBIFS. Returns
2541 * zero in case of success and a negative error code in case of failure.
2543 * Note, the only reason we have not merged this function with the
2544 * 'ubifs_debugging_init()' function is because it is better to initialize
2545 * debugfs interfaces at the very end of the mount process, and remove them at
2546 * the very beginning of the mount process.
2548 int dbg_debugfs_init_fs(struct ubifs_info
*c
)
2552 struct dentry
*dent
;
2553 struct ubifs_debug_info
*d
= c
->dbg
;
2555 sprintf(d
->dfs_dir_name
, "ubi%d_%d", c
->vi
.ubi_num
, c
->vi
.vol_id
);
2556 d
->dfs_dir
= debugfs_create_dir(d
->dfs_dir_name
, dfs_rootdir
);
2557 if (IS_ERR(d
->dfs_dir
)) {
2558 err
= PTR_ERR(d
->dfs_dir
);
2559 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2560 d
->dfs_dir_name
, err
);
2564 fname
= "dump_lprops";
2565 dent
= debugfs_create_file(fname
, S_IWUGO
, d
->dfs_dir
, c
, &dfs_fops
);
2568 d
->dfs_dump_lprops
= dent
;
2570 fname
= "dump_budg";
2571 dent
= debugfs_create_file(fname
, S_IWUGO
, d
->dfs_dir
, c
, &dfs_fops
);
2574 d
->dfs_dump_budg
= dent
;
2577 dent
= debugfs_create_file(fname
, S_IWUGO
, d
->dfs_dir
, c
, &dfs_fops
);
2580 d
->dfs_dump_tnc
= dent
;
2585 err
= PTR_ERR(dent
);
2586 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2588 debugfs_remove_recursive(d
->dfs_dir
);
2594 * dbg_debugfs_exit_fs - remove all debugfs files.
2595 * @c: UBIFS file-system description object
2597 void dbg_debugfs_exit_fs(struct ubifs_info
*c
)
2599 debugfs_remove_recursive(c
->dbg
->dfs_dir
);
2602 #endif /* CONFIG_UBIFS_FS_DEBUG */