[NET]: Remove obsolete comment
[linux-2.6/mini2440.git] / net / ipv4 / ip_output.c
blob8950d18001f16401a0723626b488f405613104ba
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
8 * Version: $Id: ip_output.c,v 1.100 2002/02/01 22:01:03 davem Exp $
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Donald Becker, <becker@super.org>
13 * Alan Cox, <Alan.Cox@linux.org>
14 * Richard Underwood
15 * Stefan Becker, <stefanb@yello.ping.de>
16 * Jorge Cwik, <jorge@laser.satlink.net>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Hirokazu Takahashi, <taka@valinux.co.jp>
20 * See ip_input.c for original log
22 * Fixes:
23 * Alan Cox : Missing nonblock feature in ip_build_xmit.
24 * Mike Kilburn : htons() missing in ip_build_xmit.
25 * Bradford Johnson: Fix faulty handling of some frames when
26 * no route is found.
27 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
28 * (in case if packet not accepted by
29 * output firewall rules)
30 * Mike McLagan : Routing by source
31 * Alexey Kuznetsov: use new route cache
32 * Andi Kleen: Fix broken PMTU recovery and remove
33 * some redundant tests.
34 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
35 * Andi Kleen : Replace ip_reply with ip_send_reply.
36 * Andi Kleen : Split fast and slow ip_build_xmit path
37 * for decreased register pressure on x86
38 * and more readibility.
39 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
40 * silently drop skb instead of failing with -EPERM.
41 * Detlev Wengorz : Copy protocol for fragments.
42 * Hirokazu Takahashi: HW checksumming for outgoing UDP
43 * datagrams.
44 * Hirokazu Takahashi: sendfile() on UDP works now.
47 #include <asm/uaccess.h>
48 #include <asm/system.h>
49 #include <linux/module.h>
50 #include <linux/types.h>
51 #include <linux/kernel.h>
52 #include <linux/mm.h>
53 #include <linux/string.h>
54 #include <linux/errno.h>
55 #include <linux/highmem.h>
57 #include <linux/socket.h>
58 #include <linux/sockios.h>
59 #include <linux/in.h>
60 #include <linux/inet.h>
61 #include <linux/netdevice.h>
62 #include <linux/etherdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/stat.h>
65 #include <linux/init.h>
67 #include <net/snmp.h>
68 #include <net/ip.h>
69 #include <net/protocol.h>
70 #include <net/route.h>
71 #include <net/xfrm.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <net/arp.h>
75 #include <net/icmp.h>
76 #include <net/checksum.h>
77 #include <net/inetpeer.h>
78 #include <linux/igmp.h>
79 #include <linux/netfilter_ipv4.h>
80 #include <linux/netfilter_bridge.h>
81 #include <linux/mroute.h>
82 #include <linux/netlink.h>
83 #include <linux/tcp.h>
85 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
87 /* Generate a checksum for an outgoing IP datagram. */
88 __inline__ void ip_send_check(struct iphdr *iph)
90 iph->check = 0;
91 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
94 int __ip_local_out(struct sk_buff *skb)
96 struct iphdr *iph = ip_hdr(skb);
98 iph->tot_len = htons(skb->len);
99 ip_send_check(iph);
100 return nf_hook(PF_INET, NF_INET_LOCAL_OUT, skb, NULL, skb->dst->dev,
101 dst_output);
104 int ip_local_out(struct sk_buff *skb)
106 int err;
108 err = __ip_local_out(skb);
109 if (likely(err == 1))
110 err = dst_output(skb);
112 return err;
114 EXPORT_SYMBOL_GPL(ip_local_out);
116 /* dev_loopback_xmit for use with netfilter. */
117 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
119 skb_reset_mac_header(newskb);
120 __skb_pull(newskb, skb_network_offset(newskb));
121 newskb->pkt_type = PACKET_LOOPBACK;
122 newskb->ip_summed = CHECKSUM_UNNECESSARY;
123 BUG_TRAP(newskb->dst);
124 netif_rx(newskb);
125 return 0;
128 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
130 int ttl = inet->uc_ttl;
132 if (ttl < 0)
133 ttl = dst_metric(dst, RTAX_HOPLIMIT);
134 return ttl;
138 * Add an ip header to a skbuff and send it out.
141 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
142 __be32 saddr, __be32 daddr, struct ip_options *opt)
144 struct inet_sock *inet = inet_sk(sk);
145 struct rtable *rt = (struct rtable *)skb->dst;
146 struct iphdr *iph;
148 /* Build the IP header. */
149 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
150 skb_reset_network_header(skb);
151 iph = ip_hdr(skb);
152 iph->version = 4;
153 iph->ihl = 5;
154 iph->tos = inet->tos;
155 if (ip_dont_fragment(sk, &rt->u.dst))
156 iph->frag_off = htons(IP_DF);
157 else
158 iph->frag_off = 0;
159 iph->ttl = ip_select_ttl(inet, &rt->u.dst);
160 iph->daddr = rt->rt_dst;
161 iph->saddr = rt->rt_src;
162 iph->protocol = sk->sk_protocol;
163 ip_select_ident(iph, &rt->u.dst, sk);
165 if (opt && opt->optlen) {
166 iph->ihl += opt->optlen>>2;
167 ip_options_build(skb, opt, daddr, rt, 0);
170 skb->priority = sk->sk_priority;
172 /* Send it out. */
173 return ip_local_out(skb);
176 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
178 static inline int ip_finish_output2(struct sk_buff *skb)
180 struct dst_entry *dst = skb->dst;
181 struct rtable *rt = (struct rtable *)dst;
182 struct net_device *dev = dst->dev;
183 unsigned int hh_len = LL_RESERVED_SPACE(dev);
185 if (rt->rt_type == RTN_MULTICAST)
186 IP_INC_STATS(IPSTATS_MIB_OUTMCASTPKTS);
187 else if (rt->rt_type == RTN_BROADCAST)
188 IP_INC_STATS(IPSTATS_MIB_OUTBCASTPKTS);
190 /* Be paranoid, rather than too clever. */
191 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
192 struct sk_buff *skb2;
194 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
195 if (skb2 == NULL) {
196 kfree_skb(skb);
197 return -ENOMEM;
199 if (skb->sk)
200 skb_set_owner_w(skb2, skb->sk);
201 kfree_skb(skb);
202 skb = skb2;
205 if (dst->hh)
206 return neigh_hh_output(dst->hh, skb);
207 else if (dst->neighbour)
208 return dst->neighbour->output(skb);
210 if (net_ratelimit())
211 printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
212 kfree_skb(skb);
213 return -EINVAL;
216 static inline int ip_skb_dst_mtu(struct sk_buff *skb)
218 struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
220 return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
221 skb->dst->dev->mtu : dst_mtu(skb->dst);
224 static int ip_finish_output(struct sk_buff *skb)
226 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
227 /* Policy lookup after SNAT yielded a new policy */
228 if (skb->dst->xfrm != NULL) {
229 IPCB(skb)->flags |= IPSKB_REROUTED;
230 return dst_output(skb);
232 #endif
233 if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
234 return ip_fragment(skb, ip_finish_output2);
235 else
236 return ip_finish_output2(skb);
239 int ip_mc_output(struct sk_buff *skb)
241 struct sock *sk = skb->sk;
242 struct rtable *rt = (struct rtable*)skb->dst;
243 struct net_device *dev = rt->u.dst.dev;
246 * If the indicated interface is up and running, send the packet.
248 IP_INC_STATS(IPSTATS_MIB_OUTREQUESTS);
250 skb->dev = dev;
251 skb->protocol = htons(ETH_P_IP);
254 * Multicasts are looped back for other local users
257 if (rt->rt_flags&RTCF_MULTICAST) {
258 if ((!sk || inet_sk(sk)->mc_loop)
259 #ifdef CONFIG_IP_MROUTE
260 /* Small optimization: do not loopback not local frames,
261 which returned after forwarding; they will be dropped
262 by ip_mr_input in any case.
263 Note, that local frames are looped back to be delivered
264 to local recipients.
266 This check is duplicated in ip_mr_input at the moment.
268 && ((rt->rt_flags&RTCF_LOCAL) || !(IPCB(skb)->flags&IPSKB_FORWARDED))
269 #endif
271 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
272 if (newskb)
273 NF_HOOK(PF_INET, NF_INET_POST_ROUTING, newskb,
274 NULL, newskb->dev,
275 ip_dev_loopback_xmit);
278 /* Multicasts with ttl 0 must not go beyond the host */
280 if (ip_hdr(skb)->ttl == 0) {
281 kfree_skb(skb);
282 return 0;
286 if (rt->rt_flags&RTCF_BROADCAST) {
287 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
288 if (newskb)
289 NF_HOOK(PF_INET, NF_INET_POST_ROUTING, newskb, NULL,
290 newskb->dev, ip_dev_loopback_xmit);
293 return NF_HOOK_COND(PF_INET, NF_INET_POST_ROUTING, skb, NULL, skb->dev,
294 ip_finish_output,
295 !(IPCB(skb)->flags & IPSKB_REROUTED));
298 int ip_output(struct sk_buff *skb)
300 struct net_device *dev = skb->dst->dev;
302 IP_INC_STATS(IPSTATS_MIB_OUTREQUESTS);
304 skb->dev = dev;
305 skb->protocol = htons(ETH_P_IP);
307 return NF_HOOK_COND(PF_INET, NF_INET_POST_ROUTING, skb, NULL, dev,
308 ip_finish_output,
309 !(IPCB(skb)->flags & IPSKB_REROUTED));
312 int ip_queue_xmit(struct sk_buff *skb, int ipfragok)
314 struct sock *sk = skb->sk;
315 struct inet_sock *inet = inet_sk(sk);
316 struct ip_options *opt = inet->opt;
317 struct rtable *rt;
318 struct iphdr *iph;
320 /* Skip all of this if the packet is already routed,
321 * f.e. by something like SCTP.
323 rt = (struct rtable *) skb->dst;
324 if (rt != NULL)
325 goto packet_routed;
327 /* Make sure we can route this packet. */
328 rt = (struct rtable *)__sk_dst_check(sk, 0);
329 if (rt == NULL) {
330 __be32 daddr;
332 /* Use correct destination address if we have options. */
333 daddr = inet->daddr;
334 if(opt && opt->srr)
335 daddr = opt->faddr;
338 struct flowi fl = { .oif = sk->sk_bound_dev_if,
339 .nl_u = { .ip4_u =
340 { .daddr = daddr,
341 .saddr = inet->saddr,
342 .tos = RT_CONN_FLAGS(sk) } },
343 .proto = sk->sk_protocol,
344 .uli_u = { .ports =
345 { .sport = inet->sport,
346 .dport = inet->dport } } };
348 /* If this fails, retransmit mechanism of transport layer will
349 * keep trying until route appears or the connection times
350 * itself out.
352 security_sk_classify_flow(sk, &fl);
353 if (ip_route_output_flow(&rt, &fl, sk, 0))
354 goto no_route;
356 sk_setup_caps(sk, &rt->u.dst);
358 skb->dst = dst_clone(&rt->u.dst);
360 packet_routed:
361 if (opt && opt->is_strictroute && rt->rt_dst != rt->rt_gateway)
362 goto no_route;
364 /* OK, we know where to send it, allocate and build IP header. */
365 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
366 skb_reset_network_header(skb);
367 iph = ip_hdr(skb);
368 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
369 if (ip_dont_fragment(sk, &rt->u.dst) && !ipfragok)
370 iph->frag_off = htons(IP_DF);
371 else
372 iph->frag_off = 0;
373 iph->ttl = ip_select_ttl(inet, &rt->u.dst);
374 iph->protocol = sk->sk_protocol;
375 iph->saddr = rt->rt_src;
376 iph->daddr = rt->rt_dst;
377 /* Transport layer set skb->h.foo itself. */
379 if (opt && opt->optlen) {
380 iph->ihl += opt->optlen >> 2;
381 ip_options_build(skb, opt, inet->daddr, rt, 0);
384 ip_select_ident_more(iph, &rt->u.dst, sk,
385 (skb_shinfo(skb)->gso_segs ?: 1) - 1);
387 skb->priority = sk->sk_priority;
389 return ip_local_out(skb);
391 no_route:
392 IP_INC_STATS(IPSTATS_MIB_OUTNOROUTES);
393 kfree_skb(skb);
394 return -EHOSTUNREACH;
398 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
400 to->pkt_type = from->pkt_type;
401 to->priority = from->priority;
402 to->protocol = from->protocol;
403 dst_release(to->dst);
404 to->dst = dst_clone(from->dst);
405 to->dev = from->dev;
406 to->mark = from->mark;
408 /* Copy the flags to each fragment. */
409 IPCB(to)->flags = IPCB(from)->flags;
411 #ifdef CONFIG_NET_SCHED
412 to->tc_index = from->tc_index;
413 #endif
414 nf_copy(to, from);
415 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
416 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
417 to->nf_trace = from->nf_trace;
418 #endif
419 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
420 to->ipvs_property = from->ipvs_property;
421 #endif
422 skb_copy_secmark(to, from);
426 * This IP datagram is too large to be sent in one piece. Break it up into
427 * smaller pieces (each of size equal to IP header plus
428 * a block of the data of the original IP data part) that will yet fit in a
429 * single device frame, and queue such a frame for sending.
432 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff*))
434 struct iphdr *iph;
435 int raw = 0;
436 int ptr;
437 struct net_device *dev;
438 struct sk_buff *skb2;
439 unsigned int mtu, hlen, left, len, ll_rs, pad;
440 int offset;
441 __be16 not_last_frag;
442 struct rtable *rt = (struct rtable*)skb->dst;
443 int err = 0;
445 dev = rt->u.dst.dev;
448 * Point into the IP datagram header.
451 iph = ip_hdr(skb);
453 if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
454 IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
455 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
456 htonl(ip_skb_dst_mtu(skb)));
457 kfree_skb(skb);
458 return -EMSGSIZE;
462 * Setup starting values.
465 hlen = iph->ihl * 4;
466 mtu = dst_mtu(&rt->u.dst) - hlen; /* Size of data space */
467 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
469 /* When frag_list is given, use it. First, check its validity:
470 * some transformers could create wrong frag_list or break existing
471 * one, it is not prohibited. In this case fall back to copying.
473 * LATER: this step can be merged to real generation of fragments,
474 * we can switch to copy when see the first bad fragment.
476 if (skb_shinfo(skb)->frag_list) {
477 struct sk_buff *frag;
478 int first_len = skb_pagelen(skb);
480 if (first_len - hlen > mtu ||
481 ((first_len - hlen) & 7) ||
482 (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
483 skb_cloned(skb))
484 goto slow_path;
486 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) {
487 /* Correct geometry. */
488 if (frag->len > mtu ||
489 ((frag->len & 7) && frag->next) ||
490 skb_headroom(frag) < hlen)
491 goto slow_path;
493 /* Partially cloned skb? */
494 if (skb_shared(frag))
495 goto slow_path;
497 BUG_ON(frag->sk);
498 if (skb->sk) {
499 sock_hold(skb->sk);
500 frag->sk = skb->sk;
501 frag->destructor = sock_wfree;
502 skb->truesize -= frag->truesize;
506 /* Everything is OK. Generate! */
508 err = 0;
509 offset = 0;
510 frag = skb_shinfo(skb)->frag_list;
511 skb_shinfo(skb)->frag_list = NULL;
512 skb->data_len = first_len - skb_headlen(skb);
513 skb->len = first_len;
514 iph->tot_len = htons(first_len);
515 iph->frag_off = htons(IP_MF);
516 ip_send_check(iph);
518 for (;;) {
519 /* Prepare header of the next frame,
520 * before previous one went down. */
521 if (frag) {
522 frag->ip_summed = CHECKSUM_NONE;
523 skb_reset_transport_header(frag);
524 __skb_push(frag, hlen);
525 skb_reset_network_header(frag);
526 memcpy(skb_network_header(frag), iph, hlen);
527 iph = ip_hdr(frag);
528 iph->tot_len = htons(frag->len);
529 ip_copy_metadata(frag, skb);
530 if (offset == 0)
531 ip_options_fragment(frag);
532 offset += skb->len - hlen;
533 iph->frag_off = htons(offset>>3);
534 if (frag->next != NULL)
535 iph->frag_off |= htons(IP_MF);
536 /* Ready, complete checksum */
537 ip_send_check(iph);
540 err = output(skb);
542 if (!err)
543 IP_INC_STATS(IPSTATS_MIB_FRAGCREATES);
544 if (err || !frag)
545 break;
547 skb = frag;
548 frag = skb->next;
549 skb->next = NULL;
552 if (err == 0) {
553 IP_INC_STATS(IPSTATS_MIB_FRAGOKS);
554 return 0;
557 while (frag) {
558 skb = frag->next;
559 kfree_skb(frag);
560 frag = skb;
562 IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
563 return err;
566 slow_path:
567 left = skb->len - hlen; /* Space per frame */
568 ptr = raw + hlen; /* Where to start from */
570 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
571 * we need to make room for the encapsulating header
573 pad = nf_bridge_pad(skb);
574 ll_rs = LL_RESERVED_SPACE_EXTRA(rt->u.dst.dev, pad);
575 mtu -= pad;
578 * Fragment the datagram.
581 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
582 not_last_frag = iph->frag_off & htons(IP_MF);
585 * Keep copying data until we run out.
588 while (left > 0) {
589 len = left;
590 /* IF: it doesn't fit, use 'mtu' - the data space left */
591 if (len > mtu)
592 len = mtu;
593 /* IF: we are not sending upto and including the packet end
594 then align the next start on an eight byte boundary */
595 if (len < left) {
596 len &= ~7;
599 * Allocate buffer.
602 if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
603 NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
604 err = -ENOMEM;
605 goto fail;
609 * Set up data on packet
612 ip_copy_metadata(skb2, skb);
613 skb_reserve(skb2, ll_rs);
614 skb_put(skb2, len + hlen);
615 skb_reset_network_header(skb2);
616 skb2->transport_header = skb2->network_header + hlen;
619 * Charge the memory for the fragment to any owner
620 * it might possess
623 if (skb->sk)
624 skb_set_owner_w(skb2, skb->sk);
627 * Copy the packet header into the new buffer.
630 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
633 * Copy a block of the IP datagram.
635 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
636 BUG();
637 left -= len;
640 * Fill in the new header fields.
642 iph = ip_hdr(skb2);
643 iph->frag_off = htons((offset >> 3));
645 /* ANK: dirty, but effective trick. Upgrade options only if
646 * the segment to be fragmented was THE FIRST (otherwise,
647 * options are already fixed) and make it ONCE
648 * on the initial skb, so that all the following fragments
649 * will inherit fixed options.
651 if (offset == 0)
652 ip_options_fragment(skb);
655 * Added AC : If we are fragmenting a fragment that's not the
656 * last fragment then keep MF on each bit
658 if (left > 0 || not_last_frag)
659 iph->frag_off |= htons(IP_MF);
660 ptr += len;
661 offset += len;
664 * Put this fragment into the sending queue.
666 iph->tot_len = htons(len + hlen);
668 ip_send_check(iph);
670 err = output(skb2);
671 if (err)
672 goto fail;
674 IP_INC_STATS(IPSTATS_MIB_FRAGCREATES);
676 kfree_skb(skb);
677 IP_INC_STATS(IPSTATS_MIB_FRAGOKS);
678 return err;
680 fail:
681 kfree_skb(skb);
682 IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
683 return err;
686 EXPORT_SYMBOL(ip_fragment);
689 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
691 struct iovec *iov = from;
693 if (skb->ip_summed == CHECKSUM_PARTIAL) {
694 if (memcpy_fromiovecend(to, iov, offset, len) < 0)
695 return -EFAULT;
696 } else {
697 __wsum csum = 0;
698 if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
699 return -EFAULT;
700 skb->csum = csum_block_add(skb->csum, csum, odd);
702 return 0;
705 static inline __wsum
706 csum_page(struct page *page, int offset, int copy)
708 char *kaddr;
709 __wsum csum;
710 kaddr = kmap(page);
711 csum = csum_partial(kaddr + offset, copy, 0);
712 kunmap(page);
713 return csum;
716 static inline int ip_ufo_append_data(struct sock *sk,
717 int getfrag(void *from, char *to, int offset, int len,
718 int odd, struct sk_buff *skb),
719 void *from, int length, int hh_len, int fragheaderlen,
720 int transhdrlen, int mtu,unsigned int flags)
722 struct sk_buff *skb;
723 int err;
725 /* There is support for UDP fragmentation offload by network
726 * device, so create one single skb packet containing complete
727 * udp datagram
729 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL) {
730 skb = sock_alloc_send_skb(sk,
731 hh_len + fragheaderlen + transhdrlen + 20,
732 (flags & MSG_DONTWAIT), &err);
734 if (skb == NULL)
735 return err;
737 /* reserve space for Hardware header */
738 skb_reserve(skb, hh_len);
740 /* create space for UDP/IP header */
741 skb_put(skb,fragheaderlen + transhdrlen);
743 /* initialize network header pointer */
744 skb_reset_network_header(skb);
746 /* initialize protocol header pointer */
747 skb->transport_header = skb->network_header + fragheaderlen;
749 skb->ip_summed = CHECKSUM_PARTIAL;
750 skb->csum = 0;
751 sk->sk_sndmsg_off = 0;
754 err = skb_append_datato_frags(sk,skb, getfrag, from,
755 (length - transhdrlen));
756 if (!err) {
757 /* specify the length of each IP datagram fragment*/
758 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
759 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
760 __skb_queue_tail(&sk->sk_write_queue, skb);
762 return 0;
764 /* There is not enough support do UFO ,
765 * so follow normal path
767 kfree_skb(skb);
768 return err;
772 * ip_append_data() and ip_append_page() can make one large IP datagram
773 * from many pieces of data. Each pieces will be holded on the socket
774 * until ip_push_pending_frames() is called. Each piece can be a page
775 * or non-page data.
777 * Not only UDP, other transport protocols - e.g. raw sockets - can use
778 * this interface potentially.
780 * LATER: length must be adjusted by pad at tail, when it is required.
782 int ip_append_data(struct sock *sk,
783 int getfrag(void *from, char *to, int offset, int len,
784 int odd, struct sk_buff *skb),
785 void *from, int length, int transhdrlen,
786 struct ipcm_cookie *ipc, struct rtable *rt,
787 unsigned int flags)
789 struct inet_sock *inet = inet_sk(sk);
790 struct sk_buff *skb;
792 struct ip_options *opt = NULL;
793 int hh_len;
794 int exthdrlen;
795 int mtu;
796 int copy;
797 int err;
798 int offset = 0;
799 unsigned int maxfraglen, fragheaderlen;
800 int csummode = CHECKSUM_NONE;
802 if (flags&MSG_PROBE)
803 return 0;
805 if (skb_queue_empty(&sk->sk_write_queue)) {
807 * setup for corking.
809 opt = ipc->opt;
810 if (opt) {
811 if (inet->cork.opt == NULL) {
812 inet->cork.opt = kmalloc(sizeof(struct ip_options) + 40, sk->sk_allocation);
813 if (unlikely(inet->cork.opt == NULL))
814 return -ENOBUFS;
816 memcpy(inet->cork.opt, opt, sizeof(struct ip_options)+opt->optlen);
817 inet->cork.flags |= IPCORK_OPT;
818 inet->cork.addr = ipc->addr;
820 dst_hold(&rt->u.dst);
821 inet->cork.fragsize = mtu = inet->pmtudisc == IP_PMTUDISC_PROBE ?
822 rt->u.dst.dev->mtu :
823 dst_mtu(rt->u.dst.path);
824 inet->cork.rt = rt;
825 inet->cork.length = 0;
826 sk->sk_sndmsg_page = NULL;
827 sk->sk_sndmsg_off = 0;
828 if ((exthdrlen = rt->u.dst.header_len) != 0) {
829 length += exthdrlen;
830 transhdrlen += exthdrlen;
832 } else {
833 rt = inet->cork.rt;
834 if (inet->cork.flags & IPCORK_OPT)
835 opt = inet->cork.opt;
837 transhdrlen = 0;
838 exthdrlen = 0;
839 mtu = inet->cork.fragsize;
841 hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
843 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
844 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
846 if (inet->cork.length + length > 0xFFFF - fragheaderlen) {
847 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu-exthdrlen);
848 return -EMSGSIZE;
852 * transhdrlen > 0 means that this is the first fragment and we wish
853 * it won't be fragmented in the future.
855 if (transhdrlen &&
856 length + fragheaderlen <= mtu &&
857 rt->u.dst.dev->features & NETIF_F_V4_CSUM &&
858 !exthdrlen)
859 csummode = CHECKSUM_PARTIAL;
861 inet->cork.length += length;
862 if (((length > mtu) && (sk->sk_protocol == IPPROTO_UDP)) &&
863 (rt->u.dst.dev->features & NETIF_F_UFO)) {
865 err = ip_ufo_append_data(sk, getfrag, from, length, hh_len,
866 fragheaderlen, transhdrlen, mtu,
867 flags);
868 if (err)
869 goto error;
870 return 0;
873 /* So, what's going on in the loop below?
875 * We use calculated fragment length to generate chained skb,
876 * each of segments is IP fragment ready for sending to network after
877 * adding appropriate IP header.
880 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
881 goto alloc_new_skb;
883 while (length > 0) {
884 /* Check if the remaining data fits into current packet. */
885 copy = mtu - skb->len;
886 if (copy < length)
887 copy = maxfraglen - skb->len;
888 if (copy <= 0) {
889 char *data;
890 unsigned int datalen;
891 unsigned int fraglen;
892 unsigned int fraggap;
893 unsigned int alloclen;
894 struct sk_buff *skb_prev;
895 alloc_new_skb:
896 skb_prev = skb;
897 if (skb_prev)
898 fraggap = skb_prev->len - maxfraglen;
899 else
900 fraggap = 0;
903 * If remaining data exceeds the mtu,
904 * we know we need more fragment(s).
906 datalen = length + fraggap;
907 if (datalen > mtu - fragheaderlen)
908 datalen = maxfraglen - fragheaderlen;
909 fraglen = datalen + fragheaderlen;
911 if ((flags & MSG_MORE) &&
912 !(rt->u.dst.dev->features&NETIF_F_SG))
913 alloclen = mtu;
914 else
915 alloclen = datalen + fragheaderlen;
917 /* The last fragment gets additional space at tail.
918 * Note, with MSG_MORE we overallocate on fragments,
919 * because we have no idea what fragment will be
920 * the last.
922 if (datalen == length + fraggap)
923 alloclen += rt->u.dst.trailer_len;
925 if (transhdrlen) {
926 skb = sock_alloc_send_skb(sk,
927 alloclen + hh_len + 15,
928 (flags & MSG_DONTWAIT), &err);
929 } else {
930 skb = NULL;
931 if (atomic_read(&sk->sk_wmem_alloc) <=
932 2 * sk->sk_sndbuf)
933 skb = sock_wmalloc(sk,
934 alloclen + hh_len + 15, 1,
935 sk->sk_allocation);
936 if (unlikely(skb == NULL))
937 err = -ENOBUFS;
939 if (skb == NULL)
940 goto error;
943 * Fill in the control structures
945 skb->ip_summed = csummode;
946 skb->csum = 0;
947 skb_reserve(skb, hh_len);
950 * Find where to start putting bytes.
952 data = skb_put(skb, fraglen);
953 skb_set_network_header(skb, exthdrlen);
954 skb->transport_header = (skb->network_header +
955 fragheaderlen);
956 data += fragheaderlen;
958 if (fraggap) {
959 skb->csum = skb_copy_and_csum_bits(
960 skb_prev, maxfraglen,
961 data + transhdrlen, fraggap, 0);
962 skb_prev->csum = csum_sub(skb_prev->csum,
963 skb->csum);
964 data += fraggap;
965 pskb_trim_unique(skb_prev, maxfraglen);
968 copy = datalen - transhdrlen - fraggap;
969 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
970 err = -EFAULT;
971 kfree_skb(skb);
972 goto error;
975 offset += copy;
976 length -= datalen - fraggap;
977 transhdrlen = 0;
978 exthdrlen = 0;
979 csummode = CHECKSUM_NONE;
982 * Put the packet on the pending queue.
984 __skb_queue_tail(&sk->sk_write_queue, skb);
985 continue;
988 if (copy > length)
989 copy = length;
991 if (!(rt->u.dst.dev->features&NETIF_F_SG)) {
992 unsigned int off;
994 off = skb->len;
995 if (getfrag(from, skb_put(skb, copy),
996 offset, copy, off, skb) < 0) {
997 __skb_trim(skb, off);
998 err = -EFAULT;
999 goto error;
1001 } else {
1002 int i = skb_shinfo(skb)->nr_frags;
1003 skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
1004 struct page *page = sk->sk_sndmsg_page;
1005 int off = sk->sk_sndmsg_off;
1006 unsigned int left;
1008 if (page && (left = PAGE_SIZE - off) > 0) {
1009 if (copy >= left)
1010 copy = left;
1011 if (page != frag->page) {
1012 if (i == MAX_SKB_FRAGS) {
1013 err = -EMSGSIZE;
1014 goto error;
1016 get_page(page);
1017 skb_fill_page_desc(skb, i, page, sk->sk_sndmsg_off, 0);
1018 frag = &skb_shinfo(skb)->frags[i];
1020 } else if (i < MAX_SKB_FRAGS) {
1021 if (copy > PAGE_SIZE)
1022 copy = PAGE_SIZE;
1023 page = alloc_pages(sk->sk_allocation, 0);
1024 if (page == NULL) {
1025 err = -ENOMEM;
1026 goto error;
1028 sk->sk_sndmsg_page = page;
1029 sk->sk_sndmsg_off = 0;
1031 skb_fill_page_desc(skb, i, page, 0, 0);
1032 frag = &skb_shinfo(skb)->frags[i];
1033 } else {
1034 err = -EMSGSIZE;
1035 goto error;
1037 if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
1038 err = -EFAULT;
1039 goto error;
1041 sk->sk_sndmsg_off += copy;
1042 frag->size += copy;
1043 skb->len += copy;
1044 skb->data_len += copy;
1045 skb->truesize += copy;
1046 atomic_add(copy, &sk->sk_wmem_alloc);
1048 offset += copy;
1049 length -= copy;
1052 return 0;
1054 error:
1055 inet->cork.length -= length;
1056 IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1057 return err;
1060 ssize_t ip_append_page(struct sock *sk, struct page *page,
1061 int offset, size_t size, int flags)
1063 struct inet_sock *inet = inet_sk(sk);
1064 struct sk_buff *skb;
1065 struct rtable *rt;
1066 struct ip_options *opt = NULL;
1067 int hh_len;
1068 int mtu;
1069 int len;
1070 int err;
1071 unsigned int maxfraglen, fragheaderlen, fraggap;
1073 if (inet->hdrincl)
1074 return -EPERM;
1076 if (flags&MSG_PROBE)
1077 return 0;
1079 if (skb_queue_empty(&sk->sk_write_queue))
1080 return -EINVAL;
1082 rt = inet->cork.rt;
1083 if (inet->cork.flags & IPCORK_OPT)
1084 opt = inet->cork.opt;
1086 if (!(rt->u.dst.dev->features&NETIF_F_SG))
1087 return -EOPNOTSUPP;
1089 hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
1090 mtu = inet->cork.fragsize;
1092 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1093 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1095 if (inet->cork.length + size > 0xFFFF - fragheaderlen) {
1096 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu);
1097 return -EMSGSIZE;
1100 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1101 return -EINVAL;
1103 inet->cork.length += size;
1104 if ((sk->sk_protocol == IPPROTO_UDP) &&
1105 (rt->u.dst.dev->features & NETIF_F_UFO)) {
1106 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1107 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1111 while (size > 0) {
1112 int i;
1114 if (skb_is_gso(skb))
1115 len = size;
1116 else {
1118 /* Check if the remaining data fits into current packet. */
1119 len = mtu - skb->len;
1120 if (len < size)
1121 len = maxfraglen - skb->len;
1123 if (len <= 0) {
1124 struct sk_buff *skb_prev;
1125 int alloclen;
1127 skb_prev = skb;
1128 fraggap = skb_prev->len - maxfraglen;
1130 alloclen = fragheaderlen + hh_len + fraggap + 15;
1131 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1132 if (unlikely(!skb)) {
1133 err = -ENOBUFS;
1134 goto error;
1138 * Fill in the control structures
1140 skb->ip_summed = CHECKSUM_NONE;
1141 skb->csum = 0;
1142 skb_reserve(skb, hh_len);
1145 * Find where to start putting bytes.
1147 skb_put(skb, fragheaderlen + fraggap);
1148 skb_reset_network_header(skb);
1149 skb->transport_header = (skb->network_header +
1150 fragheaderlen);
1151 if (fraggap) {
1152 skb->csum = skb_copy_and_csum_bits(skb_prev,
1153 maxfraglen,
1154 skb_transport_header(skb),
1155 fraggap, 0);
1156 skb_prev->csum = csum_sub(skb_prev->csum,
1157 skb->csum);
1158 pskb_trim_unique(skb_prev, maxfraglen);
1162 * Put the packet on the pending queue.
1164 __skb_queue_tail(&sk->sk_write_queue, skb);
1165 continue;
1168 i = skb_shinfo(skb)->nr_frags;
1169 if (len > size)
1170 len = size;
1171 if (skb_can_coalesce(skb, i, page, offset)) {
1172 skb_shinfo(skb)->frags[i-1].size += len;
1173 } else if (i < MAX_SKB_FRAGS) {
1174 get_page(page);
1175 skb_fill_page_desc(skb, i, page, offset, len);
1176 } else {
1177 err = -EMSGSIZE;
1178 goto error;
1181 if (skb->ip_summed == CHECKSUM_NONE) {
1182 __wsum csum;
1183 csum = csum_page(page, offset, len);
1184 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1187 skb->len += len;
1188 skb->data_len += len;
1189 skb->truesize += len;
1190 atomic_add(len, &sk->sk_wmem_alloc);
1191 offset += len;
1192 size -= len;
1194 return 0;
1196 error:
1197 inet->cork.length -= size;
1198 IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1199 return err;
1202 static void ip_cork_release(struct inet_sock *inet)
1204 inet->cork.flags &= ~IPCORK_OPT;
1205 kfree(inet->cork.opt);
1206 inet->cork.opt = NULL;
1207 if (inet->cork.rt) {
1208 ip_rt_put(inet->cork.rt);
1209 inet->cork.rt = NULL;
1214 * Combined all pending IP fragments on the socket as one IP datagram
1215 * and push them out.
1217 int ip_push_pending_frames(struct sock *sk)
1219 struct sk_buff *skb, *tmp_skb;
1220 struct sk_buff **tail_skb;
1221 struct inet_sock *inet = inet_sk(sk);
1222 struct ip_options *opt = NULL;
1223 struct rtable *rt = inet->cork.rt;
1224 struct iphdr *iph;
1225 __be16 df = 0;
1226 __u8 ttl;
1227 int err = 0;
1229 if ((skb = __skb_dequeue(&sk->sk_write_queue)) == NULL)
1230 goto out;
1231 tail_skb = &(skb_shinfo(skb)->frag_list);
1233 /* move skb->data to ip header from ext header */
1234 if (skb->data < skb_network_header(skb))
1235 __skb_pull(skb, skb_network_offset(skb));
1236 while ((tmp_skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
1237 __skb_pull(tmp_skb, skb_network_header_len(skb));
1238 *tail_skb = tmp_skb;
1239 tail_skb = &(tmp_skb->next);
1240 skb->len += tmp_skb->len;
1241 skb->data_len += tmp_skb->len;
1242 skb->truesize += tmp_skb->truesize;
1243 __sock_put(tmp_skb->sk);
1244 tmp_skb->destructor = NULL;
1245 tmp_skb->sk = NULL;
1248 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1249 * to fragment the frame generated here. No matter, what transforms
1250 * how transforms change size of the packet, it will come out.
1252 if (inet->pmtudisc < IP_PMTUDISC_DO)
1253 skb->local_df = 1;
1255 /* DF bit is set when we want to see DF on outgoing frames.
1256 * If local_df is set too, we still allow to fragment this frame
1257 * locally. */
1258 if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1259 (skb->len <= dst_mtu(&rt->u.dst) &&
1260 ip_dont_fragment(sk, &rt->u.dst)))
1261 df = htons(IP_DF);
1263 if (inet->cork.flags & IPCORK_OPT)
1264 opt = inet->cork.opt;
1266 if (rt->rt_type == RTN_MULTICAST)
1267 ttl = inet->mc_ttl;
1268 else
1269 ttl = ip_select_ttl(inet, &rt->u.dst);
1271 iph = (struct iphdr *)skb->data;
1272 iph->version = 4;
1273 iph->ihl = 5;
1274 if (opt) {
1275 iph->ihl += opt->optlen>>2;
1276 ip_options_build(skb, opt, inet->cork.addr, rt, 0);
1278 iph->tos = inet->tos;
1279 iph->frag_off = df;
1280 ip_select_ident(iph, &rt->u.dst, sk);
1281 iph->ttl = ttl;
1282 iph->protocol = sk->sk_protocol;
1283 iph->saddr = rt->rt_src;
1284 iph->daddr = rt->rt_dst;
1286 skb->priority = sk->sk_priority;
1287 skb->dst = dst_clone(&rt->u.dst);
1289 if (iph->protocol == IPPROTO_ICMP)
1290 icmp_out_count(((struct icmphdr *)
1291 skb_transport_header(skb))->type);
1293 /* Netfilter gets whole the not fragmented skb. */
1294 err = ip_local_out(skb);
1295 if (err) {
1296 if (err > 0)
1297 err = inet->recverr ? net_xmit_errno(err) : 0;
1298 if (err)
1299 goto error;
1302 out:
1303 ip_cork_release(inet);
1304 return err;
1306 error:
1307 IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1308 goto out;
1312 * Throw away all pending data on the socket.
1314 void ip_flush_pending_frames(struct sock *sk)
1316 struct sk_buff *skb;
1318 while ((skb = __skb_dequeue_tail(&sk->sk_write_queue)) != NULL)
1319 kfree_skb(skb);
1321 ip_cork_release(inet_sk(sk));
1326 * Fetch data from kernel space and fill in checksum if needed.
1328 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1329 int len, int odd, struct sk_buff *skb)
1331 __wsum csum;
1333 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1334 skb->csum = csum_block_add(skb->csum, csum, odd);
1335 return 0;
1339 * Generic function to send a packet as reply to another packet.
1340 * Used to send TCP resets so far. ICMP should use this function too.
1342 * Should run single threaded per socket because it uses the sock
1343 * structure to pass arguments.
1345 void ip_send_reply(struct sock *sk, struct sk_buff *skb, struct ip_reply_arg *arg,
1346 unsigned int len)
1348 struct inet_sock *inet = inet_sk(sk);
1349 struct {
1350 struct ip_options opt;
1351 char data[40];
1352 } replyopts;
1353 struct ipcm_cookie ipc;
1354 __be32 daddr;
1355 struct rtable *rt = (struct rtable*)skb->dst;
1357 if (ip_options_echo(&replyopts.opt, skb))
1358 return;
1360 daddr = ipc.addr = rt->rt_src;
1361 ipc.opt = NULL;
1363 if (replyopts.opt.optlen) {
1364 ipc.opt = &replyopts.opt;
1366 if (ipc.opt->srr)
1367 daddr = replyopts.opt.faddr;
1371 struct flowi fl = { .oif = arg->bound_dev_if,
1372 .nl_u = { .ip4_u =
1373 { .daddr = daddr,
1374 .saddr = rt->rt_spec_dst,
1375 .tos = RT_TOS(ip_hdr(skb)->tos) } },
1376 /* Not quite clean, but right. */
1377 .uli_u = { .ports =
1378 { .sport = tcp_hdr(skb)->dest,
1379 .dport = tcp_hdr(skb)->source } },
1380 .proto = sk->sk_protocol };
1381 security_skb_classify_flow(skb, &fl);
1382 if (ip_route_output_key(&rt, &fl))
1383 return;
1386 /* And let IP do all the hard work.
1388 This chunk is not reenterable, hence spinlock.
1389 Note that it uses the fact, that this function is called
1390 with locally disabled BH and that sk cannot be already spinlocked.
1392 bh_lock_sock(sk);
1393 inet->tos = ip_hdr(skb)->tos;
1394 sk->sk_priority = skb->priority;
1395 sk->sk_protocol = ip_hdr(skb)->protocol;
1396 sk->sk_bound_dev_if = arg->bound_dev_if;
1397 ip_append_data(sk, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1398 &ipc, rt, MSG_DONTWAIT);
1399 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1400 if (arg->csumoffset >= 0)
1401 *((__sum16 *)skb_transport_header(skb) +
1402 arg->csumoffset) = csum_fold(csum_add(skb->csum,
1403 arg->csum));
1404 skb->ip_summed = CHECKSUM_NONE;
1405 ip_push_pending_frames(sk);
1408 bh_unlock_sock(sk);
1410 ip_rt_put(rt);
1413 void __init ip_init(void)
1415 ip_rt_init();
1416 inet_initpeers();
1418 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1419 igmp_mc_proc_init();
1420 #endif
1423 EXPORT_SYMBOL(ip_generic_getfrag);
1424 EXPORT_SYMBOL(ip_queue_xmit);
1425 EXPORT_SYMBOL(ip_send_check);