Merge branch 'mini2440-dev-unlikely' into mini2440-dev
[linux-2.6/mini2440.git] / drivers / usb / host / ehci-sched.c
blobb25cdea93a1f7101da89b0e85f7183366e7468a6
1 /*
2 * Copyright (c) 2001-2004 by David Brownell
3 * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License as published by the
7 * Free Software Foundation; either version 2 of the License, or (at your
8 * option) any later version.
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software Foundation,
17 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 /* this file is part of ehci-hcd.c */
22 /*-------------------------------------------------------------------------*/
25 * EHCI scheduled transaction support: interrupt, iso, split iso
26 * These are called "periodic" transactions in the EHCI spec.
28 * Note that for interrupt transfers, the QH/QTD manipulation is shared
29 * with the "asynchronous" transaction support (control/bulk transfers).
30 * The only real difference is in how interrupt transfers are scheduled.
32 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
33 * It keeps track of every ITD (or SITD) that's linked, and holds enough
34 * pre-calculated schedule data to make appending to the queue be quick.
37 static int ehci_get_frame (struct usb_hcd *hcd);
39 /*-------------------------------------------------------------------------*/
42 * periodic_next_shadow - return "next" pointer on shadow list
43 * @periodic: host pointer to qh/itd/sitd
44 * @tag: hardware tag for type of this record
46 static union ehci_shadow *
47 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
48 __hc32 tag)
50 switch (hc32_to_cpu(ehci, tag)) {
51 case Q_TYPE_QH:
52 return &periodic->qh->qh_next;
53 case Q_TYPE_FSTN:
54 return &periodic->fstn->fstn_next;
55 case Q_TYPE_ITD:
56 return &periodic->itd->itd_next;
57 // case Q_TYPE_SITD:
58 default:
59 return &periodic->sitd->sitd_next;
63 static __hc32 *
64 shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic,
65 __hc32 tag)
67 switch (hc32_to_cpu(ehci, tag)) {
68 /* our ehci_shadow.qh is actually software part */
69 case Q_TYPE_QH:
70 return &periodic->qh->hw->hw_next;
71 /* others are hw parts */
72 default:
73 return periodic->hw_next;
77 /* caller must hold ehci->lock */
78 static void periodic_unlink (struct ehci_hcd *ehci, unsigned frame, void *ptr)
80 union ehci_shadow *prev_p = &ehci->pshadow[frame];
81 __hc32 *hw_p = &ehci->periodic[frame];
82 union ehci_shadow here = *prev_p;
84 /* find predecessor of "ptr"; hw and shadow lists are in sync */
85 while (here.ptr && here.ptr != ptr) {
86 prev_p = periodic_next_shadow(ehci, prev_p,
87 Q_NEXT_TYPE(ehci, *hw_p));
88 hw_p = shadow_next_periodic(ehci, &here,
89 Q_NEXT_TYPE(ehci, *hw_p));
90 here = *prev_p;
92 /* an interrupt entry (at list end) could have been shared */
93 if (!here.ptr)
94 return;
96 /* update shadow and hardware lists ... the old "next" pointers
97 * from ptr may still be in use, the caller updates them.
99 *prev_p = *periodic_next_shadow(ehci, &here,
100 Q_NEXT_TYPE(ehci, *hw_p));
101 *hw_p = *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p));
104 /* how many of the uframe's 125 usecs are allocated? */
105 static unsigned short
106 periodic_usecs (struct ehci_hcd *ehci, unsigned frame, unsigned uframe)
108 __hc32 *hw_p = &ehci->periodic [frame];
109 union ehci_shadow *q = &ehci->pshadow [frame];
110 unsigned usecs = 0;
111 struct ehci_qh_hw *hw;
113 while (q->ptr) {
114 switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
115 case Q_TYPE_QH:
116 hw = q->qh->hw;
117 /* is it in the S-mask? */
118 if (hw->hw_info2 & cpu_to_hc32(ehci, 1 << uframe))
119 usecs += q->qh->usecs;
120 /* ... or C-mask? */
121 if (hw->hw_info2 & cpu_to_hc32(ehci,
122 1 << (8 + uframe)))
123 usecs += q->qh->c_usecs;
124 hw_p = &hw->hw_next;
125 q = &q->qh->qh_next;
126 break;
127 // case Q_TYPE_FSTN:
128 default:
129 /* for "save place" FSTNs, count the relevant INTR
130 * bandwidth from the previous frame
132 if (q->fstn->hw_prev != EHCI_LIST_END(ehci)) {
133 ehci_dbg (ehci, "ignoring FSTN cost ...\n");
135 hw_p = &q->fstn->hw_next;
136 q = &q->fstn->fstn_next;
137 break;
138 case Q_TYPE_ITD:
139 if (q->itd->hw_transaction[uframe])
140 usecs += q->itd->stream->usecs;
141 hw_p = &q->itd->hw_next;
142 q = &q->itd->itd_next;
143 break;
144 case Q_TYPE_SITD:
145 /* is it in the S-mask? (count SPLIT, DATA) */
146 if (q->sitd->hw_uframe & cpu_to_hc32(ehci,
147 1 << uframe)) {
148 if (q->sitd->hw_fullspeed_ep &
149 cpu_to_hc32(ehci, 1<<31))
150 usecs += q->sitd->stream->usecs;
151 else /* worst case for OUT start-split */
152 usecs += HS_USECS_ISO (188);
155 /* ... C-mask? (count CSPLIT, DATA) */
156 if (q->sitd->hw_uframe &
157 cpu_to_hc32(ehci, 1 << (8 + uframe))) {
158 /* worst case for IN complete-split */
159 usecs += q->sitd->stream->c_usecs;
162 hw_p = &q->sitd->hw_next;
163 q = &q->sitd->sitd_next;
164 break;
167 #ifdef DEBUG
168 if (usecs > 100)
169 ehci_err (ehci, "uframe %d sched overrun: %d usecs\n",
170 frame * 8 + uframe, usecs);
171 #endif
172 return usecs;
175 /*-------------------------------------------------------------------------*/
177 static int same_tt (struct usb_device *dev1, struct usb_device *dev2)
179 if (!dev1->tt || !dev2->tt)
180 return 0;
181 if (dev1->tt != dev2->tt)
182 return 0;
183 if (dev1->tt->multi)
184 return dev1->ttport == dev2->ttport;
185 else
186 return 1;
189 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
191 /* Which uframe does the low/fullspeed transfer start in?
193 * The parameter is the mask of ssplits in "H-frame" terms
194 * and this returns the transfer start uframe in "B-frame" terms,
195 * which allows both to match, e.g. a ssplit in "H-frame" uframe 0
196 * will cause a transfer in "B-frame" uframe 0. "B-frames" lag
197 * "H-frames" by 1 uframe. See the EHCI spec sec 4.5 and figure 4.7.
199 static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask)
201 unsigned char smask = QH_SMASK & hc32_to_cpu(ehci, mask);
202 if (!smask) {
203 ehci_err(ehci, "invalid empty smask!\n");
204 /* uframe 7 can't have bw so this will indicate failure */
205 return 7;
207 return ffs(smask) - 1;
210 static const unsigned char
211 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
213 /* carryover low/fullspeed bandwidth that crosses uframe boundries */
214 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
216 int i;
217 for (i=0; i<7; i++) {
218 if (max_tt_usecs[i] < tt_usecs[i]) {
219 tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
220 tt_usecs[i] = max_tt_usecs[i];
225 /* How many of the tt's periodic downstream 1000 usecs are allocated?
227 * While this measures the bandwidth in terms of usecs/uframe,
228 * the low/fullspeed bus has no notion of uframes, so any particular
229 * low/fullspeed transfer can "carry over" from one uframe to the next,
230 * since the TT just performs downstream transfers in sequence.
232 * For example two separate 100 usec transfers can start in the same uframe,
233 * and the second one would "carry over" 75 usecs into the next uframe.
235 static void
236 periodic_tt_usecs (
237 struct ehci_hcd *ehci,
238 struct usb_device *dev,
239 unsigned frame,
240 unsigned short tt_usecs[8]
243 __hc32 *hw_p = &ehci->periodic [frame];
244 union ehci_shadow *q = &ehci->pshadow [frame];
245 unsigned char uf;
247 memset(tt_usecs, 0, 16);
249 while (q->ptr) {
250 switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
251 case Q_TYPE_ITD:
252 hw_p = &q->itd->hw_next;
253 q = &q->itd->itd_next;
254 continue;
255 case Q_TYPE_QH:
256 if (same_tt(dev, q->qh->dev)) {
257 uf = tt_start_uframe(ehci, q->qh->hw->hw_info2);
258 tt_usecs[uf] += q->qh->tt_usecs;
260 hw_p = &q->qh->hw->hw_next;
261 q = &q->qh->qh_next;
262 continue;
263 case Q_TYPE_SITD:
264 if (same_tt(dev, q->sitd->urb->dev)) {
265 uf = tt_start_uframe(ehci, q->sitd->hw_uframe);
266 tt_usecs[uf] += q->sitd->stream->tt_usecs;
268 hw_p = &q->sitd->hw_next;
269 q = &q->sitd->sitd_next;
270 continue;
271 // case Q_TYPE_FSTN:
272 default:
273 ehci_dbg(ehci, "ignoring periodic frame %d FSTN\n",
274 frame);
275 hw_p = &q->fstn->hw_next;
276 q = &q->fstn->fstn_next;
280 carryover_tt_bandwidth(tt_usecs);
282 if (max_tt_usecs[7] < tt_usecs[7])
283 ehci_err(ehci, "frame %d tt sched overrun: %d usecs\n",
284 frame, tt_usecs[7] - max_tt_usecs[7]);
288 * Return true if the device's tt's downstream bus is available for a
289 * periodic transfer of the specified length (usecs), starting at the
290 * specified frame/uframe. Note that (as summarized in section 11.19
291 * of the usb 2.0 spec) TTs can buffer multiple transactions for each
292 * uframe.
294 * The uframe parameter is when the fullspeed/lowspeed transfer
295 * should be executed in "B-frame" terms, which is the same as the
296 * highspeed ssplit's uframe (which is in "H-frame" terms). For example
297 * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
298 * See the EHCI spec sec 4.5 and fig 4.7.
300 * This checks if the full/lowspeed bus, at the specified starting uframe,
301 * has the specified bandwidth available, according to rules listed
302 * in USB 2.0 spec section 11.18.1 fig 11-60.
304 * This does not check if the transfer would exceed the max ssplit
305 * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
306 * since proper scheduling limits ssplits to less than 16 per uframe.
308 static int tt_available (
309 struct ehci_hcd *ehci,
310 unsigned period,
311 struct usb_device *dev,
312 unsigned frame,
313 unsigned uframe,
314 u16 usecs
317 if ((period == 0) || (uframe >= 7)) /* error */
318 return 0;
320 for (; frame < ehci->periodic_size; frame += period) {
321 unsigned short tt_usecs[8];
323 periodic_tt_usecs (ehci, dev, frame, tt_usecs);
325 ehci_vdbg(ehci, "tt frame %d check %d usecs start uframe %d in"
326 " schedule %d/%d/%d/%d/%d/%d/%d/%d\n",
327 frame, usecs, uframe,
328 tt_usecs[0], tt_usecs[1], tt_usecs[2], tt_usecs[3],
329 tt_usecs[4], tt_usecs[5], tt_usecs[6], tt_usecs[7]);
331 if (max_tt_usecs[uframe] <= tt_usecs[uframe]) {
332 ehci_vdbg(ehci, "frame %d uframe %d fully scheduled\n",
333 frame, uframe);
334 return 0;
337 /* special case for isoc transfers larger than 125us:
338 * the first and each subsequent fully used uframe
339 * must be empty, so as to not illegally delay
340 * already scheduled transactions
342 if (125 < usecs) {
343 int ufs = (usecs / 125);
344 int i;
345 for (i = uframe; i < (uframe + ufs) && i < 8; i++)
346 if (0 < tt_usecs[i]) {
347 ehci_vdbg(ehci,
348 "multi-uframe xfer can't fit "
349 "in frame %d uframe %d\n",
350 frame, i);
351 return 0;
355 tt_usecs[uframe] += usecs;
357 carryover_tt_bandwidth(tt_usecs);
359 /* fail if the carryover pushed bw past the last uframe's limit */
360 if (max_tt_usecs[7] < tt_usecs[7]) {
361 ehci_vdbg(ehci,
362 "tt unavailable usecs %d frame %d uframe %d\n",
363 usecs, frame, uframe);
364 return 0;
368 return 1;
371 #else
373 /* return true iff the device's transaction translator is available
374 * for a periodic transfer starting at the specified frame, using
375 * all the uframes in the mask.
377 static int tt_no_collision (
378 struct ehci_hcd *ehci,
379 unsigned period,
380 struct usb_device *dev,
381 unsigned frame,
382 u32 uf_mask
385 if (period == 0) /* error */
386 return 0;
388 /* note bandwidth wastage: split never follows csplit
389 * (different dev or endpoint) until the next uframe.
390 * calling convention doesn't make that distinction.
392 for (; frame < ehci->periodic_size; frame += period) {
393 union ehci_shadow here;
394 __hc32 type;
395 struct ehci_qh_hw *hw;
397 here = ehci->pshadow [frame];
398 type = Q_NEXT_TYPE(ehci, ehci->periodic [frame]);
399 while (here.ptr) {
400 switch (hc32_to_cpu(ehci, type)) {
401 case Q_TYPE_ITD:
402 type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
403 here = here.itd->itd_next;
404 continue;
405 case Q_TYPE_QH:
406 hw = here.qh->hw;
407 if (same_tt (dev, here.qh->dev)) {
408 u32 mask;
410 mask = hc32_to_cpu(ehci,
411 hw->hw_info2);
412 /* "knows" no gap is needed */
413 mask |= mask >> 8;
414 if (mask & uf_mask)
415 break;
417 type = Q_NEXT_TYPE(ehci, hw->hw_next);
418 here = here.qh->qh_next;
419 continue;
420 case Q_TYPE_SITD:
421 if (same_tt (dev, here.sitd->urb->dev)) {
422 u16 mask;
424 mask = hc32_to_cpu(ehci, here.sitd
425 ->hw_uframe);
426 /* FIXME assumes no gap for IN! */
427 mask |= mask >> 8;
428 if (mask & uf_mask)
429 break;
431 type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
432 here = here.sitd->sitd_next;
433 continue;
434 // case Q_TYPE_FSTN:
435 default:
436 ehci_dbg (ehci,
437 "periodic frame %d bogus type %d\n",
438 frame, type);
441 /* collision or error */
442 return 0;
446 /* no collision */
447 return 1;
450 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
452 /*-------------------------------------------------------------------------*/
454 static int enable_periodic (struct ehci_hcd *ehci)
456 u32 cmd;
457 int status;
459 if (ehci->periodic_sched++)
460 return 0;
462 /* did clearing PSE did take effect yet?
463 * takes effect only at frame boundaries...
465 status = handshake_on_error_set_halt(ehci, &ehci->regs->status,
466 STS_PSS, 0, 9 * 125);
467 if (status)
468 return status;
470 cmd = ehci_readl(ehci, &ehci->regs->command) | CMD_PSE;
471 ehci_writel(ehci, cmd, &ehci->regs->command);
472 /* posted write ... PSS happens later */
473 ehci_to_hcd(ehci)->state = HC_STATE_RUNNING;
475 /* make sure ehci_work scans these */
476 ehci->next_uframe = ehci_readl(ehci, &ehci->regs->frame_index)
477 % (ehci->periodic_size << 3);
478 return 0;
481 static int disable_periodic (struct ehci_hcd *ehci)
483 u32 cmd;
484 int status;
486 if (--ehci->periodic_sched)
487 return 0;
489 /* did setting PSE not take effect yet?
490 * takes effect only at frame boundaries...
492 status = handshake_on_error_set_halt(ehci, &ehci->regs->status,
493 STS_PSS, STS_PSS, 9 * 125);
494 if (status)
495 return status;
497 cmd = ehci_readl(ehci, &ehci->regs->command) & ~CMD_PSE;
498 ehci_writel(ehci, cmd, &ehci->regs->command);
499 /* posted write ... */
501 ehci->next_uframe = -1;
502 return 0;
505 /*-------------------------------------------------------------------------*/
507 /* periodic schedule slots have iso tds (normal or split) first, then a
508 * sparse tree for active interrupt transfers.
510 * this just links in a qh; caller guarantees uframe masks are set right.
511 * no FSTN support (yet; ehci 0.96+)
513 static int qh_link_periodic (struct ehci_hcd *ehci, struct ehci_qh *qh)
515 unsigned i;
516 unsigned period = qh->period;
518 dev_dbg (&qh->dev->dev,
519 "link qh%d-%04x/%p start %d [%d/%d us]\n",
520 period, hc32_to_cpup(ehci, &qh->hw->hw_info2)
521 & (QH_CMASK | QH_SMASK),
522 qh, qh->start, qh->usecs, qh->c_usecs);
524 /* high bandwidth, or otherwise every microframe */
525 if (period == 0)
526 period = 1;
528 for (i = qh->start; i < ehci->periodic_size; i += period) {
529 union ehci_shadow *prev = &ehci->pshadow[i];
530 __hc32 *hw_p = &ehci->periodic[i];
531 union ehci_shadow here = *prev;
532 __hc32 type = 0;
534 /* skip the iso nodes at list head */
535 while (here.ptr) {
536 type = Q_NEXT_TYPE(ehci, *hw_p);
537 if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
538 break;
539 prev = periodic_next_shadow(ehci, prev, type);
540 hw_p = shadow_next_periodic(ehci, &here, type);
541 here = *prev;
544 /* sorting each branch by period (slow-->fast)
545 * enables sharing interior tree nodes
547 while (here.ptr && qh != here.qh) {
548 if (qh->period > here.qh->period)
549 break;
550 prev = &here.qh->qh_next;
551 hw_p = &here.qh->hw->hw_next;
552 here = *prev;
554 /* link in this qh, unless some earlier pass did that */
555 if (qh != here.qh) {
556 qh->qh_next = here;
557 if (here.qh)
558 qh->hw->hw_next = *hw_p;
559 wmb ();
560 prev->qh = qh;
561 *hw_p = QH_NEXT (ehci, qh->qh_dma);
564 qh->qh_state = QH_STATE_LINKED;
565 qh->xacterrs = 0;
566 qh_get (qh);
568 /* update per-qh bandwidth for usbfs */
569 ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->period
570 ? ((qh->usecs + qh->c_usecs) / qh->period)
571 : (qh->usecs * 8);
573 /* maybe enable periodic schedule processing */
574 return enable_periodic(ehci);
577 static int qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
579 unsigned i;
580 unsigned period;
582 // FIXME:
583 // IF this isn't high speed
584 // and this qh is active in the current uframe
585 // (and overlay token SplitXstate is false?)
586 // THEN
587 // qh->hw_info1 |= cpu_to_hc32(1 << 7 /* "ignore" */);
589 /* high bandwidth, or otherwise part of every microframe */
590 if ((period = qh->period) == 0)
591 period = 1;
593 for (i = qh->start; i < ehci->periodic_size; i += period)
594 periodic_unlink (ehci, i, qh);
596 /* update per-qh bandwidth for usbfs */
597 ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->period
598 ? ((qh->usecs + qh->c_usecs) / qh->period)
599 : (qh->usecs * 8);
601 dev_dbg (&qh->dev->dev,
602 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
603 qh->period,
604 hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK),
605 qh, qh->start, qh->usecs, qh->c_usecs);
607 /* qh->qh_next still "live" to HC */
608 qh->qh_state = QH_STATE_UNLINK;
609 qh->qh_next.ptr = NULL;
610 qh_put (qh);
612 /* maybe turn off periodic schedule */
613 return disable_periodic(ehci);
616 static void intr_deschedule (struct ehci_hcd *ehci, struct ehci_qh *qh)
618 unsigned wait;
619 struct ehci_qh_hw *hw = qh->hw;
620 int rc;
622 /* If the QH isn't linked then there's nothing we can do
623 * unless we were called during a giveback, in which case
624 * qh_completions() has to deal with it.
626 if (qh->qh_state != QH_STATE_LINKED) {
627 if (qh->qh_state == QH_STATE_COMPLETING)
628 qh->needs_rescan = 1;
629 return;
632 qh_unlink_periodic (ehci, qh);
634 /* simple/paranoid: always delay, expecting the HC needs to read
635 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
636 * expect khubd to clean up after any CSPLITs we won't issue.
637 * active high speed queues may need bigger delays...
639 if (list_empty (&qh->qtd_list)
640 || (cpu_to_hc32(ehci, QH_CMASK)
641 & hw->hw_info2) != 0)
642 wait = 2;
643 else
644 wait = 55; /* worst case: 3 * 1024 */
646 udelay (wait);
647 qh->qh_state = QH_STATE_IDLE;
648 hw->hw_next = EHCI_LIST_END(ehci);
649 wmb ();
651 qh_completions(ehci, qh);
653 /* reschedule QH iff another request is queued */
654 if (!list_empty(&qh->qtd_list) &&
655 HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) {
656 rc = qh_schedule(ehci, qh);
658 /* An error here likely indicates handshake failure
659 * or no space left in the schedule. Neither fault
660 * should happen often ...
662 * FIXME kill the now-dysfunctional queued urbs
664 if (rc != 0)
665 ehci_err(ehci, "can't reschedule qh %p, err %d\n",
666 qh, rc);
670 /*-------------------------------------------------------------------------*/
672 static int check_period (
673 struct ehci_hcd *ehci,
674 unsigned frame,
675 unsigned uframe,
676 unsigned period,
677 unsigned usecs
679 int claimed;
681 /* complete split running into next frame?
682 * given FSTN support, we could sometimes check...
684 if (uframe >= 8)
685 return 0;
688 * 80% periodic == 100 usec/uframe available
689 * convert "usecs we need" to "max already claimed"
691 usecs = 100 - usecs;
693 /* we "know" 2 and 4 uframe intervals were rejected; so
694 * for period 0, check _every_ microframe in the schedule.
696 if (unlikely (period == 0)) {
697 do {
698 for (uframe = 0; uframe < 7; uframe++) {
699 claimed = periodic_usecs (ehci, frame, uframe);
700 if (claimed > usecs)
701 return 0;
703 } while ((frame += 1) < ehci->periodic_size);
705 /* just check the specified uframe, at that period */
706 } else {
707 do {
708 claimed = periodic_usecs (ehci, frame, uframe);
709 if (claimed > usecs)
710 return 0;
711 } while ((frame += period) < ehci->periodic_size);
714 // success!
715 return 1;
718 static int check_intr_schedule (
719 struct ehci_hcd *ehci,
720 unsigned frame,
721 unsigned uframe,
722 const struct ehci_qh *qh,
723 __hc32 *c_maskp
726 int retval = -ENOSPC;
727 u8 mask = 0;
729 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
730 goto done;
732 if (!check_period (ehci, frame, uframe, qh->period, qh->usecs))
733 goto done;
734 if (!qh->c_usecs) {
735 retval = 0;
736 *c_maskp = 0;
737 goto done;
740 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
741 if (tt_available (ehci, qh->period, qh->dev, frame, uframe,
742 qh->tt_usecs)) {
743 unsigned i;
745 /* TODO : this may need FSTN for SSPLIT in uframe 5. */
746 for (i=uframe+1; i<8 && i<uframe+4; i++)
747 if (!check_period (ehci, frame, i,
748 qh->period, qh->c_usecs))
749 goto done;
750 else
751 mask |= 1 << i;
753 retval = 0;
755 *c_maskp = cpu_to_hc32(ehci, mask << 8);
757 #else
758 /* Make sure this tt's buffer is also available for CSPLITs.
759 * We pessimize a bit; probably the typical full speed case
760 * doesn't need the second CSPLIT.
762 * NOTE: both SPLIT and CSPLIT could be checked in just
763 * one smart pass...
765 mask = 0x03 << (uframe + qh->gap_uf);
766 *c_maskp = cpu_to_hc32(ehci, mask << 8);
768 mask |= 1 << uframe;
769 if (tt_no_collision (ehci, qh->period, qh->dev, frame, mask)) {
770 if (!check_period (ehci, frame, uframe + qh->gap_uf + 1,
771 qh->period, qh->c_usecs))
772 goto done;
773 if (!check_period (ehci, frame, uframe + qh->gap_uf,
774 qh->period, qh->c_usecs))
775 goto done;
776 retval = 0;
778 #endif
779 done:
780 return retval;
783 /* "first fit" scheduling policy used the first time through,
784 * or when the previous schedule slot can't be re-used.
786 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
788 int status;
789 unsigned uframe;
790 __hc32 c_mask;
791 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
792 struct ehci_qh_hw *hw = qh->hw;
794 qh_refresh(ehci, qh);
795 hw->hw_next = EHCI_LIST_END(ehci);
796 frame = qh->start;
798 /* reuse the previous schedule slots, if we can */
799 if (frame < qh->period) {
800 uframe = ffs(hc32_to_cpup(ehci, &hw->hw_info2) & QH_SMASK);
801 status = check_intr_schedule (ehci, frame, --uframe,
802 qh, &c_mask);
803 } else {
804 uframe = 0;
805 c_mask = 0;
806 status = -ENOSPC;
809 /* else scan the schedule to find a group of slots such that all
810 * uframes have enough periodic bandwidth available.
812 if (status) {
813 /* "normal" case, uframing flexible except with splits */
814 if (qh->period) {
815 int i;
817 for (i = qh->period; status && i > 0; --i) {
818 frame = ++ehci->random_frame % qh->period;
819 for (uframe = 0; uframe < 8; uframe++) {
820 status = check_intr_schedule (ehci,
821 frame, uframe, qh,
822 &c_mask);
823 if (status == 0)
824 break;
828 /* qh->period == 0 means every uframe */
829 } else {
830 frame = 0;
831 status = check_intr_schedule (ehci, 0, 0, qh, &c_mask);
833 if (status)
834 goto done;
835 qh->start = frame;
837 /* reset S-frame and (maybe) C-frame masks */
838 hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
839 hw->hw_info2 |= qh->period
840 ? cpu_to_hc32(ehci, 1 << uframe)
841 : cpu_to_hc32(ehci, QH_SMASK);
842 hw->hw_info2 |= c_mask;
843 } else
844 ehci_dbg (ehci, "reused qh %p schedule\n", qh);
846 /* stuff into the periodic schedule */
847 status = qh_link_periodic (ehci, qh);
848 done:
849 return status;
852 static int intr_submit (
853 struct ehci_hcd *ehci,
854 struct urb *urb,
855 struct list_head *qtd_list,
856 gfp_t mem_flags
858 unsigned epnum;
859 unsigned long flags;
860 struct ehci_qh *qh;
861 int status;
862 struct list_head empty;
864 /* get endpoint and transfer/schedule data */
865 epnum = urb->ep->desc.bEndpointAddress;
867 spin_lock_irqsave (&ehci->lock, flags);
869 if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
870 &ehci_to_hcd(ehci)->flags))) {
871 status = -ESHUTDOWN;
872 goto done_not_linked;
874 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
875 if (unlikely(status))
876 goto done_not_linked;
878 /* get qh and force any scheduling errors */
879 INIT_LIST_HEAD (&empty);
880 qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
881 if (qh == NULL) {
882 status = -ENOMEM;
883 goto done;
885 if (qh->qh_state == QH_STATE_IDLE) {
886 if ((status = qh_schedule (ehci, qh)) != 0)
887 goto done;
890 /* then queue the urb's tds to the qh */
891 qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
892 BUG_ON (qh == NULL);
894 /* ... update usbfs periodic stats */
895 ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
897 done:
898 if (unlikely(status))
899 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
900 done_not_linked:
901 spin_unlock_irqrestore (&ehci->lock, flags);
902 if (status)
903 qtd_list_free (ehci, urb, qtd_list);
905 return status;
908 /*-------------------------------------------------------------------------*/
910 /* ehci_iso_stream ops work with both ITD and SITD */
912 static struct ehci_iso_stream *
913 iso_stream_alloc (gfp_t mem_flags)
915 struct ehci_iso_stream *stream;
917 stream = kzalloc(sizeof *stream, mem_flags);
918 if (likely (stream != NULL)) {
919 INIT_LIST_HEAD(&stream->td_list);
920 INIT_LIST_HEAD(&stream->free_list);
921 stream->next_uframe = -1;
922 stream->refcount = 1;
924 return stream;
927 static void
928 iso_stream_init (
929 struct ehci_hcd *ehci,
930 struct ehci_iso_stream *stream,
931 struct usb_device *dev,
932 int pipe,
933 unsigned interval
936 static const u8 smask_out [] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
938 u32 buf1;
939 unsigned epnum, maxp;
940 int is_input;
941 long bandwidth;
944 * this might be a "high bandwidth" highspeed endpoint,
945 * as encoded in the ep descriptor's wMaxPacket field
947 epnum = usb_pipeendpoint (pipe);
948 is_input = usb_pipein (pipe) ? USB_DIR_IN : 0;
949 maxp = usb_maxpacket(dev, pipe, !is_input);
950 if (is_input) {
951 buf1 = (1 << 11);
952 } else {
953 buf1 = 0;
956 /* knows about ITD vs SITD */
957 if (dev->speed == USB_SPEED_HIGH) {
958 unsigned multi = hb_mult(maxp);
960 stream->highspeed = 1;
962 maxp = max_packet(maxp);
963 buf1 |= maxp;
964 maxp *= multi;
966 stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
967 stream->buf1 = cpu_to_hc32(ehci, buf1);
968 stream->buf2 = cpu_to_hc32(ehci, multi);
970 /* usbfs wants to report the average usecs per frame tied up
971 * when transfers on this endpoint are scheduled ...
973 stream->usecs = HS_USECS_ISO (maxp);
974 bandwidth = stream->usecs * 8;
975 bandwidth /= interval;
977 } else {
978 u32 addr;
979 int think_time;
980 int hs_transfers;
982 addr = dev->ttport << 24;
983 if (!ehci_is_TDI(ehci)
984 || (dev->tt->hub !=
985 ehci_to_hcd(ehci)->self.root_hub))
986 addr |= dev->tt->hub->devnum << 16;
987 addr |= epnum << 8;
988 addr |= dev->devnum;
989 stream->usecs = HS_USECS_ISO (maxp);
990 think_time = dev->tt ? dev->tt->think_time : 0;
991 stream->tt_usecs = NS_TO_US (think_time + usb_calc_bus_time (
992 dev->speed, is_input, 1, maxp));
993 hs_transfers = max (1u, (maxp + 187) / 188);
994 if (is_input) {
995 u32 tmp;
997 addr |= 1 << 31;
998 stream->c_usecs = stream->usecs;
999 stream->usecs = HS_USECS_ISO (1);
1000 stream->raw_mask = 1;
1002 /* c-mask as specified in USB 2.0 11.18.4 3.c */
1003 tmp = (1 << (hs_transfers + 2)) - 1;
1004 stream->raw_mask |= tmp << (8 + 2);
1005 } else
1006 stream->raw_mask = smask_out [hs_transfers - 1];
1007 bandwidth = stream->usecs + stream->c_usecs;
1008 bandwidth /= interval << 3;
1010 /* stream->splits gets created from raw_mask later */
1011 stream->address = cpu_to_hc32(ehci, addr);
1013 stream->bandwidth = bandwidth;
1015 stream->udev = dev;
1017 stream->bEndpointAddress = is_input | epnum;
1018 stream->interval = interval;
1019 stream->maxp = maxp;
1022 static void
1023 iso_stream_put(struct ehci_hcd *ehci, struct ehci_iso_stream *stream)
1025 stream->refcount--;
1027 /* free whenever just a dev->ep reference remains.
1028 * not like a QH -- no persistent state (toggle, halt)
1030 if (stream->refcount == 1) {
1031 int is_in;
1033 // BUG_ON (!list_empty(&stream->td_list));
1035 while (!list_empty (&stream->free_list)) {
1036 struct list_head *entry;
1038 entry = stream->free_list.next;
1039 list_del (entry);
1041 /* knows about ITD vs SITD */
1042 if (stream->highspeed) {
1043 struct ehci_itd *itd;
1045 itd = list_entry (entry, struct ehci_itd,
1046 itd_list);
1047 dma_pool_free (ehci->itd_pool, itd,
1048 itd->itd_dma);
1049 } else {
1050 struct ehci_sitd *sitd;
1052 sitd = list_entry (entry, struct ehci_sitd,
1053 sitd_list);
1054 dma_pool_free (ehci->sitd_pool, sitd,
1055 sitd->sitd_dma);
1059 is_in = (stream->bEndpointAddress & USB_DIR_IN) ? 0x10 : 0;
1060 stream->bEndpointAddress &= 0x0f;
1061 if (stream->ep)
1062 stream->ep->hcpriv = NULL;
1064 if (stream->rescheduled) {
1065 ehci_info (ehci, "ep%d%s-iso rescheduled "
1066 "%lu times in %lu seconds\n",
1067 stream->bEndpointAddress, is_in ? "in" : "out",
1068 stream->rescheduled,
1069 ((jiffies - stream->start)/HZ)
1073 kfree(stream);
1077 static inline struct ehci_iso_stream *
1078 iso_stream_get (struct ehci_iso_stream *stream)
1080 if (likely (stream != NULL))
1081 stream->refcount++;
1082 return stream;
1085 static struct ehci_iso_stream *
1086 iso_stream_find (struct ehci_hcd *ehci, struct urb *urb)
1088 unsigned epnum;
1089 struct ehci_iso_stream *stream;
1090 struct usb_host_endpoint *ep;
1091 unsigned long flags;
1093 epnum = usb_pipeendpoint (urb->pipe);
1094 if (usb_pipein(urb->pipe))
1095 ep = urb->dev->ep_in[epnum];
1096 else
1097 ep = urb->dev->ep_out[epnum];
1099 spin_lock_irqsave (&ehci->lock, flags);
1100 stream = ep->hcpriv;
1102 if (unlikely (stream == NULL)) {
1103 stream = iso_stream_alloc(GFP_ATOMIC);
1104 if (likely (stream != NULL)) {
1105 /* dev->ep owns the initial refcount */
1106 ep->hcpriv = stream;
1107 stream->ep = ep;
1108 iso_stream_init(ehci, stream, urb->dev, urb->pipe,
1109 urb->interval);
1112 /* if dev->ep [epnum] is a QH, info1.maxpacket is nonzero */
1113 } else if (unlikely (stream->hw_info1 != 0)) {
1114 ehci_dbg (ehci, "dev %s ep%d%s, not iso??\n",
1115 urb->dev->devpath, epnum,
1116 usb_pipein(urb->pipe) ? "in" : "out");
1117 stream = NULL;
1120 /* caller guarantees an eventual matching iso_stream_put */
1121 stream = iso_stream_get (stream);
1123 spin_unlock_irqrestore (&ehci->lock, flags);
1124 return stream;
1127 /*-------------------------------------------------------------------------*/
1129 /* ehci_iso_sched ops can be ITD-only or SITD-only */
1131 static struct ehci_iso_sched *
1132 iso_sched_alloc (unsigned packets, gfp_t mem_flags)
1134 struct ehci_iso_sched *iso_sched;
1135 int size = sizeof *iso_sched;
1137 size += packets * sizeof (struct ehci_iso_packet);
1138 iso_sched = kzalloc(size, mem_flags);
1139 if (likely (iso_sched != NULL)) {
1140 INIT_LIST_HEAD (&iso_sched->td_list);
1142 return iso_sched;
1145 static inline void
1146 itd_sched_init(
1147 struct ehci_hcd *ehci,
1148 struct ehci_iso_sched *iso_sched,
1149 struct ehci_iso_stream *stream,
1150 struct urb *urb
1153 unsigned i;
1154 dma_addr_t dma = urb->transfer_dma;
1156 /* how many uframes are needed for these transfers */
1157 iso_sched->span = urb->number_of_packets * stream->interval;
1159 /* figure out per-uframe itd fields that we'll need later
1160 * when we fit new itds into the schedule.
1162 for (i = 0; i < urb->number_of_packets; i++) {
1163 struct ehci_iso_packet *uframe = &iso_sched->packet [i];
1164 unsigned length;
1165 dma_addr_t buf;
1166 u32 trans;
1168 length = urb->iso_frame_desc [i].length;
1169 buf = dma + urb->iso_frame_desc [i].offset;
1171 trans = EHCI_ISOC_ACTIVE;
1172 trans |= buf & 0x0fff;
1173 if (unlikely (((i + 1) == urb->number_of_packets))
1174 && !(urb->transfer_flags & URB_NO_INTERRUPT))
1175 trans |= EHCI_ITD_IOC;
1176 trans |= length << 16;
1177 uframe->transaction = cpu_to_hc32(ehci, trans);
1179 /* might need to cross a buffer page within a uframe */
1180 uframe->bufp = (buf & ~(u64)0x0fff);
1181 buf += length;
1182 if (unlikely ((uframe->bufp != (buf & ~(u64)0x0fff))))
1183 uframe->cross = 1;
1187 static void
1188 iso_sched_free (
1189 struct ehci_iso_stream *stream,
1190 struct ehci_iso_sched *iso_sched
1193 if (!iso_sched)
1194 return;
1195 // caller must hold ehci->lock!
1196 list_splice (&iso_sched->td_list, &stream->free_list);
1197 kfree (iso_sched);
1200 static int
1201 itd_urb_transaction (
1202 struct ehci_iso_stream *stream,
1203 struct ehci_hcd *ehci,
1204 struct urb *urb,
1205 gfp_t mem_flags
1208 struct ehci_itd *itd;
1209 dma_addr_t itd_dma;
1210 int i;
1211 unsigned num_itds;
1212 struct ehci_iso_sched *sched;
1213 unsigned long flags;
1215 sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1216 if (unlikely (sched == NULL))
1217 return -ENOMEM;
1219 itd_sched_init(ehci, sched, stream, urb);
1221 if (urb->interval < 8)
1222 num_itds = 1 + (sched->span + 7) / 8;
1223 else
1224 num_itds = urb->number_of_packets;
1226 /* allocate/init ITDs */
1227 spin_lock_irqsave (&ehci->lock, flags);
1228 for (i = 0; i < num_itds; i++) {
1230 /* free_list.next might be cache-hot ... but maybe
1231 * the HC caches it too. avoid that issue for now.
1234 /* prefer previously-allocated itds */
1235 if (likely (!list_empty(&stream->free_list))) {
1236 itd = list_entry (stream->free_list.prev,
1237 struct ehci_itd, itd_list);
1238 list_del (&itd->itd_list);
1239 itd_dma = itd->itd_dma;
1240 } else {
1241 spin_unlock_irqrestore (&ehci->lock, flags);
1242 itd = dma_pool_alloc (ehci->itd_pool, mem_flags,
1243 &itd_dma);
1244 spin_lock_irqsave (&ehci->lock, flags);
1245 if (!itd) {
1246 iso_sched_free(stream, sched);
1247 spin_unlock_irqrestore(&ehci->lock, flags);
1248 return -ENOMEM;
1252 memset (itd, 0, sizeof *itd);
1253 itd->itd_dma = itd_dma;
1254 list_add (&itd->itd_list, &sched->td_list);
1256 spin_unlock_irqrestore (&ehci->lock, flags);
1258 /* temporarily store schedule info in hcpriv */
1259 urb->hcpriv = sched;
1260 urb->error_count = 0;
1261 return 0;
1264 /*-------------------------------------------------------------------------*/
1266 static inline int
1267 itd_slot_ok (
1268 struct ehci_hcd *ehci,
1269 u32 mod,
1270 u32 uframe,
1271 u8 usecs,
1272 u32 period
1275 uframe %= period;
1276 do {
1277 /* can't commit more than 80% periodic == 100 usec */
1278 if (periodic_usecs (ehci, uframe >> 3, uframe & 0x7)
1279 > (100 - usecs))
1280 return 0;
1282 /* we know urb->interval is 2^N uframes */
1283 uframe += period;
1284 } while (uframe < mod);
1285 return 1;
1288 static inline int
1289 sitd_slot_ok (
1290 struct ehci_hcd *ehci,
1291 u32 mod,
1292 struct ehci_iso_stream *stream,
1293 u32 uframe,
1294 struct ehci_iso_sched *sched,
1295 u32 period_uframes
1298 u32 mask, tmp;
1299 u32 frame, uf;
1301 mask = stream->raw_mask << (uframe & 7);
1303 /* for IN, don't wrap CSPLIT into the next frame */
1304 if (mask & ~0xffff)
1305 return 0;
1307 /* this multi-pass logic is simple, but performance may
1308 * suffer when the schedule data isn't cached.
1311 /* check bandwidth */
1312 uframe %= period_uframes;
1313 do {
1314 u32 max_used;
1316 frame = uframe >> 3;
1317 uf = uframe & 7;
1319 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1320 /* The tt's fullspeed bus bandwidth must be available.
1321 * tt_available scheduling guarantees 10+% for control/bulk.
1323 if (!tt_available (ehci, period_uframes << 3,
1324 stream->udev, frame, uf, stream->tt_usecs))
1325 return 0;
1326 #else
1327 /* tt must be idle for start(s), any gap, and csplit.
1328 * assume scheduling slop leaves 10+% for control/bulk.
1330 if (!tt_no_collision (ehci, period_uframes << 3,
1331 stream->udev, frame, mask))
1332 return 0;
1333 #endif
1335 /* check starts (OUT uses more than one) */
1336 max_used = 100 - stream->usecs;
1337 for (tmp = stream->raw_mask & 0xff; tmp; tmp >>= 1, uf++) {
1338 if (periodic_usecs (ehci, frame, uf) > max_used)
1339 return 0;
1342 /* for IN, check CSPLIT */
1343 if (stream->c_usecs) {
1344 uf = uframe & 7;
1345 max_used = 100 - stream->c_usecs;
1346 do {
1347 tmp = 1 << uf;
1348 tmp <<= 8;
1349 if ((stream->raw_mask & tmp) == 0)
1350 continue;
1351 if (periodic_usecs (ehci, frame, uf)
1352 > max_used)
1353 return 0;
1354 } while (++uf < 8);
1357 /* we know urb->interval is 2^N uframes */
1358 uframe += period_uframes;
1359 } while (uframe < mod);
1361 stream->splits = cpu_to_hc32(ehci, stream->raw_mask << (uframe & 7));
1362 return 1;
1366 * This scheduler plans almost as far into the future as it has actual
1367 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
1368 * "as small as possible" to be cache-friendlier.) That limits the size
1369 * transfers you can stream reliably; avoid more than 64 msec per urb.
1370 * Also avoid queue depths of less than ehci's worst irq latency (affected
1371 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1372 * and other factors); or more than about 230 msec total (for portability,
1373 * given EHCI_TUNE_FLS and the slop). Or, write a smarter scheduler!
1376 #define SCHEDULE_SLOP 10 /* frames */
1378 static int
1379 iso_stream_schedule (
1380 struct ehci_hcd *ehci,
1381 struct urb *urb,
1382 struct ehci_iso_stream *stream
1385 u32 now, start, max, period;
1386 int status;
1387 unsigned mod = ehci->periodic_size << 3;
1388 struct ehci_iso_sched *sched = urb->hcpriv;
1390 if (sched->span > (mod - 8 * SCHEDULE_SLOP)) {
1391 ehci_dbg (ehci, "iso request %p too long\n", urb);
1392 status = -EFBIG;
1393 goto fail;
1396 if ((stream->depth + sched->span) > mod) {
1397 ehci_dbg (ehci, "request %p would overflow (%d+%d>%d)\n",
1398 urb, stream->depth, sched->span, mod);
1399 status = -EFBIG;
1400 goto fail;
1403 period = urb->interval;
1404 if (!stream->highspeed)
1405 period <<= 3;
1407 now = ehci_readl(ehci, &ehci->regs->frame_index) % mod;
1409 /* when's the last uframe this urb could start? */
1410 max = now + mod;
1412 /* Typical case: reuse current schedule, stream is still active.
1413 * Hopefully there are no gaps from the host falling behind
1414 * (irq delays etc), but if there are we'll take the next
1415 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
1417 if (likely (!list_empty (&stream->td_list))) {
1418 start = stream->next_uframe;
1419 if (start < now)
1420 start += mod;
1422 /* Fell behind (by up to twice the slop amount)? */
1423 if (start >= max - 2 * 8 * SCHEDULE_SLOP)
1424 start += period * DIV_ROUND_UP(
1425 max - start, period) - mod;
1427 /* Tried to schedule too far into the future? */
1428 if (unlikely((start + sched->span) >= max)) {
1429 status = -EFBIG;
1430 goto fail;
1432 stream->next_uframe = start;
1433 goto ready;
1436 /* need to schedule; when's the next (u)frame we could start?
1437 * this is bigger than ehci->i_thresh allows; scheduling itself
1438 * isn't free, the slop should handle reasonably slow cpus. it
1439 * can also help high bandwidth if the dma and irq loads don't
1440 * jump until after the queue is primed.
1442 start = SCHEDULE_SLOP * 8 + (now & ~0x07);
1443 start %= mod;
1444 stream->next_uframe = start;
1446 /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */
1448 /* find a uframe slot with enough bandwidth */
1449 for (; start < (stream->next_uframe + period); start++) {
1450 int enough_space;
1452 /* check schedule: enough space? */
1453 if (stream->highspeed)
1454 enough_space = itd_slot_ok (ehci, mod, start,
1455 stream->usecs, period);
1456 else {
1457 if ((start % 8) >= 6)
1458 continue;
1459 enough_space = sitd_slot_ok (ehci, mod, stream,
1460 start, sched, period);
1463 /* schedule it here if there's enough bandwidth */
1464 if (enough_space) {
1465 stream->next_uframe = start % mod;
1466 goto ready;
1470 /* no room in the schedule */
1471 ehci_dbg (ehci, "iso %ssched full %p (now %d max %d)\n",
1472 list_empty (&stream->td_list) ? "" : "re",
1473 urb, now, max);
1474 status = -ENOSPC;
1476 fail:
1477 iso_sched_free (stream, sched);
1478 urb->hcpriv = NULL;
1479 return status;
1481 ready:
1482 /* report high speed start in uframes; full speed, in frames */
1483 urb->start_frame = stream->next_uframe;
1484 if (!stream->highspeed)
1485 urb->start_frame >>= 3;
1486 return 0;
1489 /*-------------------------------------------------------------------------*/
1491 static inline void
1492 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1493 struct ehci_itd *itd)
1495 int i;
1497 /* it's been recently zeroed */
1498 itd->hw_next = EHCI_LIST_END(ehci);
1499 itd->hw_bufp [0] = stream->buf0;
1500 itd->hw_bufp [1] = stream->buf1;
1501 itd->hw_bufp [2] = stream->buf2;
1503 for (i = 0; i < 8; i++)
1504 itd->index[i] = -1;
1506 /* All other fields are filled when scheduling */
1509 static inline void
1510 itd_patch(
1511 struct ehci_hcd *ehci,
1512 struct ehci_itd *itd,
1513 struct ehci_iso_sched *iso_sched,
1514 unsigned index,
1515 u16 uframe
1518 struct ehci_iso_packet *uf = &iso_sched->packet [index];
1519 unsigned pg = itd->pg;
1521 // BUG_ON (pg == 6 && uf->cross);
1523 uframe &= 0x07;
1524 itd->index [uframe] = index;
1526 itd->hw_transaction[uframe] = uf->transaction;
1527 itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
1528 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
1529 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
1531 /* iso_frame_desc[].offset must be strictly increasing */
1532 if (unlikely (uf->cross)) {
1533 u64 bufp = uf->bufp + 4096;
1535 itd->pg = ++pg;
1536 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
1537 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
1541 static inline void
1542 itd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1544 /* always prepend ITD/SITD ... only QH tree is order-sensitive */
1545 itd->itd_next = ehci->pshadow [frame];
1546 itd->hw_next = ehci->periodic [frame];
1547 ehci->pshadow [frame].itd = itd;
1548 itd->frame = frame;
1549 wmb ();
1550 ehci->periodic[frame] = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
1553 /* fit urb's itds into the selected schedule slot; activate as needed */
1554 static int
1555 itd_link_urb (
1556 struct ehci_hcd *ehci,
1557 struct urb *urb,
1558 unsigned mod,
1559 struct ehci_iso_stream *stream
1562 int packet;
1563 unsigned next_uframe, uframe, frame;
1564 struct ehci_iso_sched *iso_sched = urb->hcpriv;
1565 struct ehci_itd *itd;
1567 next_uframe = stream->next_uframe % mod;
1569 if (unlikely (list_empty(&stream->td_list))) {
1570 ehci_to_hcd(ehci)->self.bandwidth_allocated
1571 += stream->bandwidth;
1572 ehci_vdbg (ehci,
1573 "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
1574 urb->dev->devpath, stream->bEndpointAddress & 0x0f,
1575 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
1576 urb->interval,
1577 next_uframe >> 3, next_uframe & 0x7);
1578 stream->start = jiffies;
1580 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1582 /* fill iTDs uframe by uframe */
1583 for (packet = 0, itd = NULL; packet < urb->number_of_packets; ) {
1584 if (itd == NULL) {
1585 /* ASSERT: we have all necessary itds */
1586 // BUG_ON (list_empty (&iso_sched->td_list));
1588 /* ASSERT: no itds for this endpoint in this uframe */
1590 itd = list_entry (iso_sched->td_list.next,
1591 struct ehci_itd, itd_list);
1592 list_move_tail (&itd->itd_list, &stream->td_list);
1593 itd->stream = iso_stream_get (stream);
1594 itd->urb = urb;
1595 itd_init (ehci, stream, itd);
1598 uframe = next_uframe & 0x07;
1599 frame = next_uframe >> 3;
1601 itd_patch(ehci, itd, iso_sched, packet, uframe);
1603 next_uframe += stream->interval;
1604 stream->depth += stream->interval;
1605 next_uframe %= mod;
1606 packet++;
1608 /* link completed itds into the schedule */
1609 if (((next_uframe >> 3) != frame)
1610 || packet == urb->number_of_packets) {
1611 itd_link (ehci, frame % ehci->periodic_size, itd);
1612 itd = NULL;
1615 stream->next_uframe = next_uframe;
1617 /* don't need that schedule data any more */
1618 iso_sched_free (stream, iso_sched);
1619 urb->hcpriv = NULL;
1621 timer_action (ehci, TIMER_IO_WATCHDOG);
1622 return enable_periodic(ehci);
1625 #define ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1627 /* Process and recycle a completed ITD. Return true iff its urb completed,
1628 * and hence its completion callback probably added things to the hardware
1629 * schedule.
1631 * Note that we carefully avoid recycling this descriptor until after any
1632 * completion callback runs, so that it won't be reused quickly. That is,
1633 * assuming (a) no more than two urbs per frame on this endpoint, and also
1634 * (b) only this endpoint's completions submit URBs. It seems some silicon
1635 * corrupts things if you reuse completed descriptors very quickly...
1637 static unsigned
1638 itd_complete (
1639 struct ehci_hcd *ehci,
1640 struct ehci_itd *itd
1642 struct urb *urb = itd->urb;
1643 struct usb_iso_packet_descriptor *desc;
1644 u32 t;
1645 unsigned uframe;
1646 int urb_index = -1;
1647 struct ehci_iso_stream *stream = itd->stream;
1648 struct usb_device *dev;
1649 unsigned retval = false;
1651 /* for each uframe with a packet */
1652 for (uframe = 0; uframe < 8; uframe++) {
1653 if (likely (itd->index[uframe] == -1))
1654 continue;
1655 urb_index = itd->index[uframe];
1656 desc = &urb->iso_frame_desc [urb_index];
1658 t = hc32_to_cpup(ehci, &itd->hw_transaction [uframe]);
1659 itd->hw_transaction [uframe] = 0;
1660 stream->depth -= stream->interval;
1662 /* report transfer status */
1663 if (unlikely (t & ISO_ERRS)) {
1664 urb->error_count++;
1665 if (t & EHCI_ISOC_BUF_ERR)
1666 desc->status = usb_pipein (urb->pipe)
1667 ? -ENOSR /* hc couldn't read */
1668 : -ECOMM; /* hc couldn't write */
1669 else if (t & EHCI_ISOC_BABBLE)
1670 desc->status = -EOVERFLOW;
1671 else /* (t & EHCI_ISOC_XACTERR) */
1672 desc->status = -EPROTO;
1674 /* HC need not update length with this error */
1675 if (!(t & EHCI_ISOC_BABBLE)) {
1676 desc->actual_length = EHCI_ITD_LENGTH(t);
1677 urb->actual_length += desc->actual_length;
1679 } else if (likely ((t & EHCI_ISOC_ACTIVE) == 0)) {
1680 desc->status = 0;
1681 desc->actual_length = EHCI_ITD_LENGTH(t);
1682 urb->actual_length += desc->actual_length;
1683 } else {
1684 /* URB was too late */
1685 desc->status = -EXDEV;
1689 /* handle completion now? */
1690 if (likely ((urb_index + 1) != urb->number_of_packets))
1691 goto done;
1693 /* ASSERT: it's really the last itd for this urb
1694 list_for_each_entry (itd, &stream->td_list, itd_list)
1695 BUG_ON (itd->urb == urb);
1698 /* give urb back to the driver; completion often (re)submits */
1699 dev = urb->dev;
1700 ehci_urb_done(ehci, urb, 0);
1701 retval = true;
1702 urb = NULL;
1703 (void) disable_periodic(ehci);
1704 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1706 if (unlikely(list_is_singular(&stream->td_list))) {
1707 ehci_to_hcd(ehci)->self.bandwidth_allocated
1708 -= stream->bandwidth;
1709 ehci_vdbg (ehci,
1710 "deschedule devp %s ep%d%s-iso\n",
1711 dev->devpath, stream->bEndpointAddress & 0x0f,
1712 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
1714 iso_stream_put (ehci, stream);
1716 done:
1717 itd->urb = NULL;
1718 if (ehci->clock_frame != itd->frame || itd->index[7] != -1) {
1719 /* OK to recycle this ITD now. */
1720 itd->stream = NULL;
1721 list_move(&itd->itd_list, &stream->free_list);
1722 iso_stream_put(ehci, stream);
1723 } else {
1724 /* HW might remember this ITD, so we can't recycle it yet.
1725 * Move it to a safe place until a new frame starts.
1727 list_move(&itd->itd_list, &ehci->cached_itd_list);
1728 if (stream->refcount == 2) {
1729 /* If iso_stream_put() were called here, stream
1730 * would be freed. Instead, just prevent reuse.
1732 stream->ep->hcpriv = NULL;
1733 stream->ep = NULL;
1736 return retval;
1739 /*-------------------------------------------------------------------------*/
1741 static int itd_submit (struct ehci_hcd *ehci, struct urb *urb,
1742 gfp_t mem_flags)
1744 int status = -EINVAL;
1745 unsigned long flags;
1746 struct ehci_iso_stream *stream;
1748 /* Get iso_stream head */
1749 stream = iso_stream_find (ehci, urb);
1750 if (unlikely (stream == NULL)) {
1751 ehci_dbg (ehci, "can't get iso stream\n");
1752 return -ENOMEM;
1754 if (unlikely (urb->interval != stream->interval)) {
1755 ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
1756 stream->interval, urb->interval);
1757 goto done;
1760 #ifdef EHCI_URB_TRACE
1761 ehci_dbg (ehci,
1762 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1763 __func__, urb->dev->devpath, urb,
1764 usb_pipeendpoint (urb->pipe),
1765 usb_pipein (urb->pipe) ? "in" : "out",
1766 urb->transfer_buffer_length,
1767 urb->number_of_packets, urb->interval,
1768 stream);
1769 #endif
1771 /* allocate ITDs w/o locking anything */
1772 status = itd_urb_transaction (stream, ehci, urb, mem_flags);
1773 if (unlikely (status < 0)) {
1774 ehci_dbg (ehci, "can't init itds\n");
1775 goto done;
1778 /* schedule ... need to lock */
1779 spin_lock_irqsave (&ehci->lock, flags);
1780 if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
1781 &ehci_to_hcd(ehci)->flags))) {
1782 status = -ESHUTDOWN;
1783 goto done_not_linked;
1785 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1786 if (unlikely(status))
1787 goto done_not_linked;
1788 status = iso_stream_schedule(ehci, urb, stream);
1789 if (likely (status == 0))
1790 itd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
1791 else
1792 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1793 done_not_linked:
1794 spin_unlock_irqrestore (&ehci->lock, flags);
1796 done:
1797 if (unlikely (status < 0))
1798 iso_stream_put (ehci, stream);
1799 return status;
1802 /*-------------------------------------------------------------------------*/
1805 * "Split ISO TDs" ... used for USB 1.1 devices going through the
1806 * TTs in USB 2.0 hubs. These need microframe scheduling.
1809 static inline void
1810 sitd_sched_init(
1811 struct ehci_hcd *ehci,
1812 struct ehci_iso_sched *iso_sched,
1813 struct ehci_iso_stream *stream,
1814 struct urb *urb
1817 unsigned i;
1818 dma_addr_t dma = urb->transfer_dma;
1820 /* how many frames are needed for these transfers */
1821 iso_sched->span = urb->number_of_packets * stream->interval;
1823 /* figure out per-frame sitd fields that we'll need later
1824 * when we fit new sitds into the schedule.
1826 for (i = 0; i < urb->number_of_packets; i++) {
1827 struct ehci_iso_packet *packet = &iso_sched->packet [i];
1828 unsigned length;
1829 dma_addr_t buf;
1830 u32 trans;
1832 length = urb->iso_frame_desc [i].length & 0x03ff;
1833 buf = dma + urb->iso_frame_desc [i].offset;
1835 trans = SITD_STS_ACTIVE;
1836 if (((i + 1) == urb->number_of_packets)
1837 && !(urb->transfer_flags & URB_NO_INTERRUPT))
1838 trans |= SITD_IOC;
1839 trans |= length << 16;
1840 packet->transaction = cpu_to_hc32(ehci, trans);
1842 /* might need to cross a buffer page within a td */
1843 packet->bufp = buf;
1844 packet->buf1 = (buf + length) & ~0x0fff;
1845 if (packet->buf1 != (buf & ~(u64)0x0fff))
1846 packet->cross = 1;
1848 /* OUT uses multiple start-splits */
1849 if (stream->bEndpointAddress & USB_DIR_IN)
1850 continue;
1851 length = (length + 187) / 188;
1852 if (length > 1) /* BEGIN vs ALL */
1853 length |= 1 << 3;
1854 packet->buf1 |= length;
1858 static int
1859 sitd_urb_transaction (
1860 struct ehci_iso_stream *stream,
1861 struct ehci_hcd *ehci,
1862 struct urb *urb,
1863 gfp_t mem_flags
1866 struct ehci_sitd *sitd;
1867 dma_addr_t sitd_dma;
1868 int i;
1869 struct ehci_iso_sched *iso_sched;
1870 unsigned long flags;
1872 iso_sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1873 if (iso_sched == NULL)
1874 return -ENOMEM;
1876 sitd_sched_init(ehci, iso_sched, stream, urb);
1878 /* allocate/init sITDs */
1879 spin_lock_irqsave (&ehci->lock, flags);
1880 for (i = 0; i < urb->number_of_packets; i++) {
1882 /* NOTE: for now, we don't try to handle wraparound cases
1883 * for IN (using sitd->hw_backpointer, like a FSTN), which
1884 * means we never need two sitds for full speed packets.
1887 /* free_list.next might be cache-hot ... but maybe
1888 * the HC caches it too. avoid that issue for now.
1891 /* prefer previously-allocated sitds */
1892 if (!list_empty(&stream->free_list)) {
1893 sitd = list_entry (stream->free_list.prev,
1894 struct ehci_sitd, sitd_list);
1895 list_del (&sitd->sitd_list);
1896 sitd_dma = sitd->sitd_dma;
1897 } else {
1898 spin_unlock_irqrestore (&ehci->lock, flags);
1899 sitd = dma_pool_alloc (ehci->sitd_pool, mem_flags,
1900 &sitd_dma);
1901 spin_lock_irqsave (&ehci->lock, flags);
1902 if (!sitd) {
1903 iso_sched_free(stream, iso_sched);
1904 spin_unlock_irqrestore(&ehci->lock, flags);
1905 return -ENOMEM;
1909 memset (sitd, 0, sizeof *sitd);
1910 sitd->sitd_dma = sitd_dma;
1911 list_add (&sitd->sitd_list, &iso_sched->td_list);
1914 /* temporarily store schedule info in hcpriv */
1915 urb->hcpriv = iso_sched;
1916 urb->error_count = 0;
1918 spin_unlock_irqrestore (&ehci->lock, flags);
1919 return 0;
1922 /*-------------------------------------------------------------------------*/
1924 static inline void
1925 sitd_patch(
1926 struct ehci_hcd *ehci,
1927 struct ehci_iso_stream *stream,
1928 struct ehci_sitd *sitd,
1929 struct ehci_iso_sched *iso_sched,
1930 unsigned index
1933 struct ehci_iso_packet *uf = &iso_sched->packet [index];
1934 u64 bufp = uf->bufp;
1936 sitd->hw_next = EHCI_LIST_END(ehci);
1937 sitd->hw_fullspeed_ep = stream->address;
1938 sitd->hw_uframe = stream->splits;
1939 sitd->hw_results = uf->transaction;
1940 sitd->hw_backpointer = EHCI_LIST_END(ehci);
1942 bufp = uf->bufp;
1943 sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
1944 sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
1946 sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
1947 if (uf->cross)
1948 bufp += 4096;
1949 sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
1950 sitd->index = index;
1953 static inline void
1954 sitd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
1956 /* note: sitd ordering could matter (CSPLIT then SSPLIT) */
1957 sitd->sitd_next = ehci->pshadow [frame];
1958 sitd->hw_next = ehci->periodic [frame];
1959 ehci->pshadow [frame].sitd = sitd;
1960 sitd->frame = frame;
1961 wmb ();
1962 ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
1965 /* fit urb's sitds into the selected schedule slot; activate as needed */
1966 static int
1967 sitd_link_urb (
1968 struct ehci_hcd *ehci,
1969 struct urb *urb,
1970 unsigned mod,
1971 struct ehci_iso_stream *stream
1974 int packet;
1975 unsigned next_uframe;
1976 struct ehci_iso_sched *sched = urb->hcpriv;
1977 struct ehci_sitd *sitd;
1979 next_uframe = stream->next_uframe;
1981 if (list_empty(&stream->td_list)) {
1982 /* usbfs ignores TT bandwidth */
1983 ehci_to_hcd(ehci)->self.bandwidth_allocated
1984 += stream->bandwidth;
1985 ehci_vdbg (ehci,
1986 "sched devp %s ep%d%s-iso [%d] %dms/%04x\n",
1987 urb->dev->devpath, stream->bEndpointAddress & 0x0f,
1988 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
1989 (next_uframe >> 3) % ehci->periodic_size,
1990 stream->interval, hc32_to_cpu(ehci, stream->splits));
1991 stream->start = jiffies;
1993 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1995 /* fill sITDs frame by frame */
1996 for (packet = 0, sitd = NULL;
1997 packet < urb->number_of_packets;
1998 packet++) {
2000 /* ASSERT: we have all necessary sitds */
2001 BUG_ON (list_empty (&sched->td_list));
2003 /* ASSERT: no itds for this endpoint in this frame */
2005 sitd = list_entry (sched->td_list.next,
2006 struct ehci_sitd, sitd_list);
2007 list_move_tail (&sitd->sitd_list, &stream->td_list);
2008 sitd->stream = iso_stream_get (stream);
2009 sitd->urb = urb;
2011 sitd_patch(ehci, stream, sitd, sched, packet);
2012 sitd_link (ehci, (next_uframe >> 3) % ehci->periodic_size,
2013 sitd);
2015 next_uframe += stream->interval << 3;
2016 stream->depth += stream->interval << 3;
2018 stream->next_uframe = next_uframe % mod;
2020 /* don't need that schedule data any more */
2021 iso_sched_free (stream, sched);
2022 urb->hcpriv = NULL;
2024 timer_action (ehci, TIMER_IO_WATCHDOG);
2025 return enable_periodic(ehci);
2028 /*-------------------------------------------------------------------------*/
2030 #define SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
2031 | SITD_STS_XACT | SITD_STS_MMF)
2033 /* Process and recycle a completed SITD. Return true iff its urb completed,
2034 * and hence its completion callback probably added things to the hardware
2035 * schedule.
2037 * Note that we carefully avoid recycling this descriptor until after any
2038 * completion callback runs, so that it won't be reused quickly. That is,
2039 * assuming (a) no more than two urbs per frame on this endpoint, and also
2040 * (b) only this endpoint's completions submit URBs. It seems some silicon
2041 * corrupts things if you reuse completed descriptors very quickly...
2043 static unsigned
2044 sitd_complete (
2045 struct ehci_hcd *ehci,
2046 struct ehci_sitd *sitd
2048 struct urb *urb = sitd->urb;
2049 struct usb_iso_packet_descriptor *desc;
2050 u32 t;
2051 int urb_index = -1;
2052 struct ehci_iso_stream *stream = sitd->stream;
2053 struct usb_device *dev;
2054 unsigned retval = false;
2056 urb_index = sitd->index;
2057 desc = &urb->iso_frame_desc [urb_index];
2058 t = hc32_to_cpup(ehci, &sitd->hw_results);
2060 /* report transfer status */
2061 if (t & SITD_ERRS) {
2062 urb->error_count++;
2063 if (t & SITD_STS_DBE)
2064 desc->status = usb_pipein (urb->pipe)
2065 ? -ENOSR /* hc couldn't read */
2066 : -ECOMM; /* hc couldn't write */
2067 else if (t & SITD_STS_BABBLE)
2068 desc->status = -EOVERFLOW;
2069 else /* XACT, MMF, etc */
2070 desc->status = -EPROTO;
2071 } else {
2072 desc->status = 0;
2073 desc->actual_length = desc->length - SITD_LENGTH(t);
2074 urb->actual_length += desc->actual_length;
2076 stream->depth -= stream->interval << 3;
2078 /* handle completion now? */
2079 if ((urb_index + 1) != urb->number_of_packets)
2080 goto done;
2082 /* ASSERT: it's really the last sitd for this urb
2083 list_for_each_entry (sitd, &stream->td_list, sitd_list)
2084 BUG_ON (sitd->urb == urb);
2087 /* give urb back to the driver; completion often (re)submits */
2088 dev = urb->dev;
2089 ehci_urb_done(ehci, urb, 0);
2090 retval = true;
2091 urb = NULL;
2092 (void) disable_periodic(ehci);
2093 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2095 if (list_is_singular(&stream->td_list)) {
2096 ehci_to_hcd(ehci)->self.bandwidth_allocated
2097 -= stream->bandwidth;
2098 ehci_vdbg (ehci,
2099 "deschedule devp %s ep%d%s-iso\n",
2100 dev->devpath, stream->bEndpointAddress & 0x0f,
2101 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
2103 iso_stream_put (ehci, stream);
2104 /* OK to recycle this SITD now that its completion callback ran. */
2105 done:
2106 sitd->urb = NULL;
2107 sitd->stream = NULL;
2108 list_move(&sitd->sitd_list, &stream->free_list);
2109 iso_stream_put(ehci, stream);
2111 return retval;
2115 static int sitd_submit (struct ehci_hcd *ehci, struct urb *urb,
2116 gfp_t mem_flags)
2118 int status = -EINVAL;
2119 unsigned long flags;
2120 struct ehci_iso_stream *stream;
2122 /* Get iso_stream head */
2123 stream = iso_stream_find (ehci, urb);
2124 if (stream == NULL) {
2125 ehci_dbg (ehci, "can't get iso stream\n");
2126 return -ENOMEM;
2128 if (urb->interval != stream->interval) {
2129 ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
2130 stream->interval, urb->interval);
2131 goto done;
2134 #ifdef EHCI_URB_TRACE
2135 ehci_dbg (ehci,
2136 "submit %p dev%s ep%d%s-iso len %d\n",
2137 urb, urb->dev->devpath,
2138 usb_pipeendpoint (urb->pipe),
2139 usb_pipein (urb->pipe) ? "in" : "out",
2140 urb->transfer_buffer_length);
2141 #endif
2143 /* allocate SITDs */
2144 status = sitd_urb_transaction (stream, ehci, urb, mem_flags);
2145 if (status < 0) {
2146 ehci_dbg (ehci, "can't init sitds\n");
2147 goto done;
2150 /* schedule ... need to lock */
2151 spin_lock_irqsave (&ehci->lock, flags);
2152 if (unlikely(!test_bit(HCD_FLAG_HW_ACCESSIBLE,
2153 &ehci_to_hcd(ehci)->flags))) {
2154 status = -ESHUTDOWN;
2155 goto done_not_linked;
2157 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
2158 if (unlikely(status))
2159 goto done_not_linked;
2160 status = iso_stream_schedule(ehci, urb, stream);
2161 if (status == 0)
2162 sitd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
2163 else
2164 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
2165 done_not_linked:
2166 spin_unlock_irqrestore (&ehci->lock, flags);
2168 done:
2169 if (status < 0)
2170 iso_stream_put (ehci, stream);
2171 return status;
2174 /*-------------------------------------------------------------------------*/
2176 static void free_cached_itd_list(struct ehci_hcd *ehci)
2178 struct ehci_itd *itd, *n;
2180 list_for_each_entry_safe(itd, n, &ehci->cached_itd_list, itd_list) {
2181 struct ehci_iso_stream *stream = itd->stream;
2182 itd->stream = NULL;
2183 list_move(&itd->itd_list, &stream->free_list);
2184 iso_stream_put(ehci, stream);
2188 /*-------------------------------------------------------------------------*/
2190 static void
2191 scan_periodic (struct ehci_hcd *ehci)
2193 unsigned now_uframe, frame, clock, clock_frame, mod;
2194 unsigned modified;
2196 mod = ehci->periodic_size << 3;
2199 * When running, scan from last scan point up to "now"
2200 * else clean up by scanning everything that's left.
2201 * Touches as few pages as possible: cache-friendly.
2203 now_uframe = ehci->next_uframe;
2204 if (HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) {
2205 clock = ehci_readl(ehci, &ehci->regs->frame_index);
2206 clock_frame = (clock >> 3) % ehci->periodic_size;
2207 } else {
2208 clock = now_uframe + mod - 1;
2209 clock_frame = -1;
2211 if (ehci->clock_frame != clock_frame) {
2212 free_cached_itd_list(ehci);
2213 ehci->clock_frame = clock_frame;
2215 clock %= mod;
2216 clock_frame = clock >> 3;
2218 for (;;) {
2219 union ehci_shadow q, *q_p;
2220 __hc32 type, *hw_p;
2221 unsigned incomplete = false;
2223 frame = now_uframe >> 3;
2225 restart:
2226 /* scan each element in frame's queue for completions */
2227 q_p = &ehci->pshadow [frame];
2228 hw_p = &ehci->periodic [frame];
2229 q.ptr = q_p->ptr;
2230 type = Q_NEXT_TYPE(ehci, *hw_p);
2231 modified = 0;
2233 while (q.ptr != NULL) {
2234 unsigned uf;
2235 union ehci_shadow temp;
2236 int live;
2238 live = HC_IS_RUNNING (ehci_to_hcd(ehci)->state);
2239 switch (hc32_to_cpu(ehci, type)) {
2240 case Q_TYPE_QH:
2241 /* handle any completions */
2242 temp.qh = qh_get (q.qh);
2243 type = Q_NEXT_TYPE(ehci, q.qh->hw->hw_next);
2244 q = q.qh->qh_next;
2245 modified = qh_completions (ehci, temp.qh);
2246 if (unlikely(list_empty(&temp.qh->qtd_list) ||
2247 temp.qh->needs_rescan))
2248 intr_deschedule (ehci, temp.qh);
2249 qh_put (temp.qh);
2250 break;
2251 case Q_TYPE_FSTN:
2252 /* for "save place" FSTNs, look at QH entries
2253 * in the previous frame for completions.
2255 if (q.fstn->hw_prev != EHCI_LIST_END(ehci)) {
2256 dbg ("ignoring completions from FSTNs");
2258 type = Q_NEXT_TYPE(ehci, q.fstn->hw_next);
2259 q = q.fstn->fstn_next;
2260 break;
2261 case Q_TYPE_ITD:
2262 /* If this ITD is still active, leave it for
2263 * later processing ... check the next entry.
2264 * No need to check for activity unless the
2265 * frame is current.
2267 if (frame == clock_frame && live) {
2268 rmb();
2269 for (uf = 0; uf < 8; uf++) {
2270 if (q.itd->hw_transaction[uf] &
2271 ITD_ACTIVE(ehci))
2272 break;
2274 if (uf < 8) {
2275 incomplete = true;
2276 q_p = &q.itd->itd_next;
2277 hw_p = &q.itd->hw_next;
2278 type = Q_NEXT_TYPE(ehci,
2279 q.itd->hw_next);
2280 q = *q_p;
2281 break;
2285 /* Take finished ITDs out of the schedule
2286 * and process them: recycle, maybe report
2287 * URB completion. HC won't cache the
2288 * pointer for much longer, if at all.
2290 *q_p = q.itd->itd_next;
2291 *hw_p = q.itd->hw_next;
2292 type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2293 wmb();
2294 modified = itd_complete (ehci, q.itd);
2295 q = *q_p;
2296 break;
2297 case Q_TYPE_SITD:
2298 /* If this SITD is still active, leave it for
2299 * later processing ... check the next entry.
2300 * No need to check for activity unless the
2301 * frame is current.
2303 if (frame == clock_frame && live &&
2304 (q.sitd->hw_results &
2305 SITD_ACTIVE(ehci))) {
2306 incomplete = true;
2307 q_p = &q.sitd->sitd_next;
2308 hw_p = &q.sitd->hw_next;
2309 type = Q_NEXT_TYPE(ehci,
2310 q.sitd->hw_next);
2311 q = *q_p;
2312 break;
2315 /* Take finished SITDs out of the schedule
2316 * and process them: recycle, maybe report
2317 * URB completion.
2319 *q_p = q.sitd->sitd_next;
2320 *hw_p = q.sitd->hw_next;
2321 type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2322 wmb();
2323 modified = sitd_complete (ehci, q.sitd);
2324 q = *q_p;
2325 break;
2326 default:
2327 dbg ("corrupt type %d frame %d shadow %p",
2328 type, frame, q.ptr);
2329 // BUG ();
2330 q.ptr = NULL;
2333 /* assume completion callbacks modify the queue */
2334 if (unlikely (modified)) {
2335 if (likely(ehci->periodic_sched > 0))
2336 goto restart;
2337 /* short-circuit this scan */
2338 now_uframe = clock;
2339 break;
2343 /* If we can tell we caught up to the hardware, stop now.
2344 * We can't advance our scan without collecting the ISO
2345 * transfers that are still pending in this frame.
2347 if (incomplete && HC_IS_RUNNING(ehci_to_hcd(ehci)->state)) {
2348 ehci->next_uframe = now_uframe;
2349 break;
2352 // FIXME: this assumes we won't get lapped when
2353 // latencies climb; that should be rare, but...
2354 // detect it, and just go all the way around.
2355 // FLR might help detect this case, so long as latencies
2356 // don't exceed periodic_size msec (default 1.024 sec).
2358 // FIXME: likewise assumes HC doesn't halt mid-scan
2360 if (now_uframe == clock) {
2361 unsigned now;
2363 if (!HC_IS_RUNNING (ehci_to_hcd(ehci)->state)
2364 || ehci->periodic_sched == 0)
2365 break;
2366 ehci->next_uframe = now_uframe;
2367 now = ehci_readl(ehci, &ehci->regs->frame_index) % mod;
2368 if (now_uframe == now)
2369 break;
2371 /* rescan the rest of this frame, then ... */
2372 clock = now;
2373 clock_frame = clock >> 3;
2374 if (ehci->clock_frame != clock_frame) {
2375 free_cached_itd_list(ehci);
2376 ehci->clock_frame = clock_frame;
2378 } else {
2379 now_uframe++;
2380 now_uframe %= mod;