Merge branch 'mini2440-dev-unlikely' into mini2440-dev
[linux-2.6/mini2440.git] / drivers / usb / core / message.c
blobda718e84d58d17fc0bc66d6f44472bea11484ea8
1 /*
2 * message.c - synchronous message handling
3 */
5 #include <linux/pci.h> /* for scatterlist macros */
6 #include <linux/usb.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/timer.h>
12 #include <linux/ctype.h>
13 #include <linux/nls.h>
14 #include <linux/device.h>
15 #include <linux/scatterlist.h>
16 #include <linux/usb/quirks.h>
17 #include <asm/byteorder.h>
19 #include "hcd.h" /* for usbcore internals */
20 #include "usb.h"
22 static void cancel_async_set_config(struct usb_device *udev);
24 struct api_context {
25 struct completion done;
26 int status;
29 static void usb_api_blocking_completion(struct urb *urb)
31 struct api_context *ctx = urb->context;
33 ctx->status = urb->status;
34 complete(&ctx->done);
39 * Starts urb and waits for completion or timeout. Note that this call
40 * is NOT interruptible. Many device driver i/o requests should be
41 * interruptible and therefore these drivers should implement their
42 * own interruptible routines.
44 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
46 struct api_context ctx;
47 unsigned long expire;
48 int retval;
50 init_completion(&ctx.done);
51 urb->context = &ctx;
52 urb->actual_length = 0;
53 retval = usb_submit_urb(urb, GFP_NOIO);
54 if (unlikely(retval))
55 goto out;
57 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
58 if (!wait_for_completion_timeout(&ctx.done, expire)) {
59 usb_kill_urb(urb);
60 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
62 dev_dbg(&urb->dev->dev,
63 "%s timed out on ep%d%s len=%u/%u\n",
64 current->comm,
65 usb_endpoint_num(&urb->ep->desc),
66 usb_urb_dir_in(urb) ? "in" : "out",
67 urb->actual_length,
68 urb->transfer_buffer_length);
69 } else
70 retval = ctx.status;
71 out:
72 if (actual_length)
73 *actual_length = urb->actual_length;
75 usb_free_urb(urb);
76 return retval;
79 /*-------------------------------------------------------------------*/
80 /* returns status (negative) or length (positive) */
81 static int usb_internal_control_msg(struct usb_device *usb_dev,
82 unsigned int pipe,
83 struct usb_ctrlrequest *cmd,
84 void *data, int len, int timeout)
86 struct urb *urb;
87 int retv;
88 int length;
90 urb = usb_alloc_urb(0, GFP_NOIO);
91 if (!urb)
92 return -ENOMEM;
94 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
95 len, usb_api_blocking_completion, NULL);
97 retv = usb_start_wait_urb(urb, timeout, &length);
98 if (retv < 0)
99 return retv;
100 else
101 return length;
105 * usb_control_msg - Builds a control urb, sends it off and waits for completion
106 * @dev: pointer to the usb device to send the message to
107 * @pipe: endpoint "pipe" to send the message to
108 * @request: USB message request value
109 * @requesttype: USB message request type value
110 * @value: USB message value
111 * @index: USB message index value
112 * @data: pointer to the data to send
113 * @size: length in bytes of the data to send
114 * @timeout: time in msecs to wait for the message to complete before timing
115 * out (if 0 the wait is forever)
117 * Context: !in_interrupt ()
119 * This function sends a simple control message to a specified endpoint and
120 * waits for the message to complete, or timeout.
122 * If successful, it returns the number of bytes transferred, otherwise a
123 * negative error number.
125 * Don't use this function from within an interrupt context, like a bottom half
126 * handler. If you need an asynchronous message, or need to send a message
127 * from within interrupt context, use usb_submit_urb().
128 * If a thread in your driver uses this call, make sure your disconnect()
129 * method can wait for it to complete. Since you don't have a handle on the
130 * URB used, you can't cancel the request.
132 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
133 __u8 requesttype, __u16 value, __u16 index, void *data,
134 __u16 size, int timeout)
136 struct usb_ctrlrequest *dr;
137 int ret;
139 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
140 if (!dr)
141 return -ENOMEM;
143 dr->bRequestType = requesttype;
144 dr->bRequest = request;
145 dr->wValue = cpu_to_le16(value);
146 dr->wIndex = cpu_to_le16(index);
147 dr->wLength = cpu_to_le16(size);
149 /* dbg("usb_control_msg"); */
151 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
153 kfree(dr);
155 return ret;
157 EXPORT_SYMBOL_GPL(usb_control_msg);
160 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
161 * @usb_dev: pointer to the usb device to send the message to
162 * @pipe: endpoint "pipe" to send the message to
163 * @data: pointer to the data to send
164 * @len: length in bytes of the data to send
165 * @actual_length: pointer to a location to put the actual length transferred
166 * in bytes
167 * @timeout: time in msecs to wait for the message to complete before
168 * timing out (if 0 the wait is forever)
170 * Context: !in_interrupt ()
172 * This function sends a simple interrupt message to a specified endpoint and
173 * waits for the message to complete, or timeout.
175 * If successful, it returns 0, otherwise a negative error number. The number
176 * of actual bytes transferred will be stored in the actual_length paramater.
178 * Don't use this function from within an interrupt context, like a bottom half
179 * handler. If you need an asynchronous message, or need to send a message
180 * from within interrupt context, use usb_submit_urb() If a thread in your
181 * driver uses this call, make sure your disconnect() method can wait for it to
182 * complete. Since you don't have a handle on the URB used, you can't cancel
183 * the request.
185 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
186 void *data, int len, int *actual_length, int timeout)
188 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
190 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
193 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
194 * @usb_dev: pointer to the usb device to send the message to
195 * @pipe: endpoint "pipe" to send the message to
196 * @data: pointer to the data to send
197 * @len: length in bytes of the data to send
198 * @actual_length: pointer to a location to put the actual length transferred
199 * in bytes
200 * @timeout: time in msecs to wait for the message to complete before
201 * timing out (if 0 the wait is forever)
203 * Context: !in_interrupt ()
205 * This function sends a simple bulk message to a specified endpoint
206 * and waits for the message to complete, or timeout.
208 * If successful, it returns 0, otherwise a negative error number. The number
209 * of actual bytes transferred will be stored in the actual_length paramater.
211 * Don't use this function from within an interrupt context, like a bottom half
212 * handler. If you need an asynchronous message, or need to send a message
213 * from within interrupt context, use usb_submit_urb() If a thread in your
214 * driver uses this call, make sure your disconnect() method can wait for it to
215 * complete. Since you don't have a handle on the URB used, you can't cancel
216 * the request.
218 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
219 * users are forced to abuse this routine by using it to submit URBs for
220 * interrupt endpoints. We will take the liberty of creating an interrupt URB
221 * (with the default interval) if the target is an interrupt endpoint.
223 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
224 void *data, int len, int *actual_length, int timeout)
226 struct urb *urb;
227 struct usb_host_endpoint *ep;
229 ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out)
230 [usb_pipeendpoint(pipe)];
231 if (!ep || len < 0)
232 return -EINVAL;
234 urb = usb_alloc_urb(0, GFP_KERNEL);
235 if (!urb)
236 return -ENOMEM;
238 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
239 USB_ENDPOINT_XFER_INT) {
240 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
241 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
242 usb_api_blocking_completion, NULL,
243 ep->desc.bInterval);
244 } else
245 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
246 usb_api_blocking_completion, NULL);
248 return usb_start_wait_urb(urb, timeout, actual_length);
250 EXPORT_SYMBOL_GPL(usb_bulk_msg);
252 /*-------------------------------------------------------------------*/
254 static void sg_clean(struct usb_sg_request *io)
256 if (io->urbs) {
257 while (io->entries--)
258 usb_free_urb(io->urbs [io->entries]);
259 kfree(io->urbs);
260 io->urbs = NULL;
262 if (io->dev->dev.dma_mask != NULL)
263 usb_buffer_unmap_sg(io->dev, usb_pipein(io->pipe),
264 io->sg, io->nents);
265 io->dev = NULL;
268 static void sg_complete(struct urb *urb)
270 struct usb_sg_request *io = urb->context;
271 int status = urb->status;
273 spin_lock(&io->lock);
275 /* In 2.5 we require hcds' endpoint queues not to progress after fault
276 * reports, until the completion callback (this!) returns. That lets
277 * device driver code (like this routine) unlink queued urbs first,
278 * if it needs to, since the HC won't work on them at all. So it's
279 * not possible for page N+1 to overwrite page N, and so on.
281 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
282 * complete before the HCD can get requests away from hardware,
283 * though never during cleanup after a hard fault.
285 if (io->status
286 && (io->status != -ECONNRESET
287 || status != -ECONNRESET)
288 && urb->actual_length) {
289 dev_err(io->dev->bus->controller,
290 "dev %s ep%d%s scatterlist error %d/%d\n",
291 io->dev->devpath,
292 usb_endpoint_num(&urb->ep->desc),
293 usb_urb_dir_in(urb) ? "in" : "out",
294 status, io->status);
295 /* BUG (); */
298 if (io->status == 0 && status && status != -ECONNRESET) {
299 int i, found, retval;
301 io->status = status;
303 /* the previous urbs, and this one, completed already.
304 * unlink pending urbs so they won't rx/tx bad data.
305 * careful: unlink can sometimes be synchronous...
307 spin_unlock(&io->lock);
308 for (i = 0, found = 0; i < io->entries; i++) {
309 if (!io->urbs [i] || !io->urbs [i]->dev)
310 continue;
311 if (found) {
312 retval = usb_unlink_urb(io->urbs [i]);
313 if (retval != -EINPROGRESS &&
314 retval != -ENODEV &&
315 retval != -EBUSY)
316 dev_err(&io->dev->dev,
317 "%s, unlink --> %d\n",
318 __func__, retval);
319 } else if (urb == io->urbs [i])
320 found = 1;
322 spin_lock(&io->lock);
324 urb->dev = NULL;
326 /* on the last completion, signal usb_sg_wait() */
327 io->bytes += urb->actual_length;
328 io->count--;
329 if (!io->count)
330 complete(&io->complete);
332 spin_unlock(&io->lock);
337 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
338 * @io: request block being initialized. until usb_sg_wait() returns,
339 * treat this as a pointer to an opaque block of memory,
340 * @dev: the usb device that will send or receive the data
341 * @pipe: endpoint "pipe" used to transfer the data
342 * @period: polling rate for interrupt endpoints, in frames or
343 * (for high speed endpoints) microframes; ignored for bulk
344 * @sg: scatterlist entries
345 * @nents: how many entries in the scatterlist
346 * @length: how many bytes to send from the scatterlist, or zero to
347 * send every byte identified in the list.
348 * @mem_flags: SLAB_* flags affecting memory allocations in this call
350 * Returns zero for success, else a negative errno value. This initializes a
351 * scatter/gather request, allocating resources such as I/O mappings and urb
352 * memory (except maybe memory used by USB controller drivers).
354 * The request must be issued using usb_sg_wait(), which waits for the I/O to
355 * complete (or to be canceled) and then cleans up all resources allocated by
356 * usb_sg_init().
358 * The request may be canceled with usb_sg_cancel(), either before or after
359 * usb_sg_wait() is called.
361 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
362 unsigned pipe, unsigned period, struct scatterlist *sg,
363 int nents, size_t length, gfp_t mem_flags)
365 int i;
366 int urb_flags;
367 int dma;
368 int use_sg;
370 if (!io || !dev || !sg
371 || usb_pipecontrol(pipe)
372 || usb_pipeisoc(pipe)
373 || nents <= 0)
374 return -EINVAL;
376 spin_lock_init(&io->lock);
377 io->dev = dev;
378 io->pipe = pipe;
379 io->sg = sg;
380 io->nents = nents;
382 /* not all host controllers use DMA (like the mainstream pci ones);
383 * they can use PIO (sl811) or be software over another transport.
385 dma = (dev->dev.dma_mask != NULL);
386 if (dma)
387 io->entries = usb_buffer_map_sg(dev, usb_pipein(pipe),
388 sg, nents);
389 else
390 io->entries = nents;
392 /* initialize all the urbs we'll use */
393 if (io->entries <= 0)
394 return io->entries;
396 /* If we're running on an xHCI host controller, queue the whole scatter
397 * gather list with one call to urb_enqueue(). This is only for bulk,
398 * as that endpoint type does not care how the data gets broken up
399 * across frames.
401 if (usb_pipebulk(pipe) &&
402 bus_to_hcd(dev->bus)->driver->flags & HCD_USB3) {
403 io->urbs = kmalloc(sizeof *io->urbs, mem_flags);
404 use_sg = true;
405 } else {
406 io->urbs = kmalloc(io->entries * sizeof *io->urbs, mem_flags);
407 use_sg = false;
409 if (!io->urbs)
410 goto nomem;
412 urb_flags = URB_NO_INTERRUPT;
413 if (dma)
414 urb_flags |= URB_NO_TRANSFER_DMA_MAP;
415 if (usb_pipein(pipe))
416 urb_flags |= URB_SHORT_NOT_OK;
418 if (use_sg) {
419 io->urbs[0] = usb_alloc_urb(0, mem_flags);
420 if (!io->urbs[0]) {
421 io->entries = 0;
422 goto nomem;
425 io->urbs[0]->dev = NULL;
426 io->urbs[0]->pipe = pipe;
427 io->urbs[0]->interval = period;
428 io->urbs[0]->transfer_flags = urb_flags;
430 io->urbs[0]->complete = sg_complete;
431 io->urbs[0]->context = io;
432 /* A length of zero means transfer the whole sg list */
433 io->urbs[0]->transfer_buffer_length = length;
434 if (length == 0) {
435 for_each_sg(sg, sg, io->entries, i) {
436 io->urbs[0]->transfer_buffer_length +=
437 sg_dma_len(sg);
440 io->urbs[0]->sg = io;
441 io->urbs[0]->num_sgs = io->entries;
442 io->entries = 1;
443 } else {
444 for_each_sg(sg, sg, io->entries, i) {
445 unsigned len;
447 io->urbs[i] = usb_alloc_urb(0, mem_flags);
448 if (!io->urbs[i]) {
449 io->entries = i;
450 goto nomem;
453 io->urbs[i]->dev = NULL;
454 io->urbs[i]->pipe = pipe;
455 io->urbs[i]->interval = period;
456 io->urbs[i]->transfer_flags = urb_flags;
458 io->urbs[i]->complete = sg_complete;
459 io->urbs[i]->context = io;
462 * Some systems need to revert to PIO when DMA is temporarily
463 * unavailable. For their sakes, both transfer_buffer and
464 * transfer_dma are set when possible.
466 * Note that if IOMMU coalescing occurred, we cannot
467 * trust sg_page anymore, so check if S/G list shrunk.
469 if (io->nents == io->entries && !PageHighMem(sg_page(sg)))
470 io->urbs[i]->transfer_buffer = sg_virt(sg);
471 else
472 io->urbs[i]->transfer_buffer = NULL;
474 if (dma) {
475 io->urbs[i]->transfer_dma = sg_dma_address(sg);
476 len = sg_dma_len(sg);
477 } else {
478 /* hc may use _only_ transfer_buffer */
479 len = sg->length;
482 if (length) {
483 len = min_t(unsigned, len, length);
484 length -= len;
485 if (length == 0)
486 io->entries = i + 1;
488 io->urbs[i]->transfer_buffer_length = len;
490 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
493 /* transaction state */
494 io->count = io->entries;
495 io->status = 0;
496 io->bytes = 0;
497 init_completion(&io->complete);
498 return 0;
500 nomem:
501 sg_clean(io);
502 return -ENOMEM;
504 EXPORT_SYMBOL_GPL(usb_sg_init);
507 * usb_sg_wait - synchronously execute scatter/gather request
508 * @io: request block handle, as initialized with usb_sg_init().
509 * some fields become accessible when this call returns.
510 * Context: !in_interrupt ()
512 * This function blocks until the specified I/O operation completes. It
513 * leverages the grouping of the related I/O requests to get good transfer
514 * rates, by queueing the requests. At higher speeds, such queuing can
515 * significantly improve USB throughput.
517 * There are three kinds of completion for this function.
518 * (1) success, where io->status is zero. The number of io->bytes
519 * transferred is as requested.
520 * (2) error, where io->status is a negative errno value. The number
521 * of io->bytes transferred before the error is usually less
522 * than requested, and can be nonzero.
523 * (3) cancellation, a type of error with status -ECONNRESET that
524 * is initiated by usb_sg_cancel().
526 * When this function returns, all memory allocated through usb_sg_init() or
527 * this call will have been freed. The request block parameter may still be
528 * passed to usb_sg_cancel(), or it may be freed. It could also be
529 * reinitialized and then reused.
531 * Data Transfer Rates:
533 * Bulk transfers are valid for full or high speed endpoints.
534 * The best full speed data rate is 19 packets of 64 bytes each
535 * per frame, or 1216 bytes per millisecond.
536 * The best high speed data rate is 13 packets of 512 bytes each
537 * per microframe, or 52 KBytes per millisecond.
539 * The reason to use interrupt transfers through this API would most likely
540 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
541 * could be transferred. That capability is less useful for low or full
542 * speed interrupt endpoints, which allow at most one packet per millisecond,
543 * of at most 8 or 64 bytes (respectively).
545 * It is not necessary to call this function to reserve bandwidth for devices
546 * under an xHCI host controller, as the bandwidth is reserved when the
547 * configuration or interface alt setting is selected.
549 void usb_sg_wait(struct usb_sg_request *io)
551 int i;
552 int entries = io->entries;
554 /* queue the urbs. */
555 spin_lock_irq(&io->lock);
556 i = 0;
557 while (i < entries && !io->status) {
558 int retval;
560 io->urbs[i]->dev = io->dev;
561 retval = usb_submit_urb(io->urbs [i], GFP_ATOMIC);
563 /* after we submit, let completions or cancelations fire;
564 * we handshake using io->status.
566 spin_unlock_irq(&io->lock);
567 switch (retval) {
568 /* maybe we retrying will recover */
569 case -ENXIO: /* hc didn't queue this one */
570 case -EAGAIN:
571 case -ENOMEM:
572 io->urbs[i]->dev = NULL;
573 retval = 0;
574 yield();
575 break;
577 /* no error? continue immediately.
579 * NOTE: to work better with UHCI (4K I/O buffer may
580 * need 3K of TDs) it may be good to limit how many
581 * URBs are queued at once; N milliseconds?
583 case 0:
584 ++i;
585 cpu_relax();
586 break;
588 /* fail any uncompleted urbs */
589 default:
590 io->urbs[i]->dev = NULL;
591 io->urbs[i]->status = retval;
592 dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
593 __func__, retval);
594 usb_sg_cancel(io);
596 spin_lock_irq(&io->lock);
597 if (retval && (io->status == 0 || io->status == -ECONNRESET))
598 io->status = retval;
600 io->count -= entries - i;
601 if (io->count == 0)
602 complete(&io->complete);
603 spin_unlock_irq(&io->lock);
605 /* OK, yes, this could be packaged as non-blocking.
606 * So could the submit loop above ... but it's easier to
607 * solve neither problem than to solve both!
609 wait_for_completion(&io->complete);
611 sg_clean(io);
613 EXPORT_SYMBOL_GPL(usb_sg_wait);
616 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
617 * @io: request block, initialized with usb_sg_init()
619 * This stops a request after it has been started by usb_sg_wait().
620 * It can also prevents one initialized by usb_sg_init() from starting,
621 * so that call just frees resources allocated to the request.
623 void usb_sg_cancel(struct usb_sg_request *io)
625 unsigned long flags;
627 spin_lock_irqsave(&io->lock, flags);
629 /* shut everything down, if it didn't already */
630 if (!io->status) {
631 int i;
633 io->status = -ECONNRESET;
634 spin_unlock(&io->lock);
635 for (i = 0; i < io->entries; i++) {
636 int retval;
638 if (!io->urbs [i]->dev)
639 continue;
640 retval = usb_unlink_urb(io->urbs [i]);
641 if (retval != -EINPROGRESS && retval != -EBUSY)
642 dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
643 __func__, retval);
645 spin_lock(&io->lock);
647 spin_unlock_irqrestore(&io->lock, flags);
649 EXPORT_SYMBOL_GPL(usb_sg_cancel);
651 /*-------------------------------------------------------------------*/
654 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
655 * @dev: the device whose descriptor is being retrieved
656 * @type: the descriptor type (USB_DT_*)
657 * @index: the number of the descriptor
658 * @buf: where to put the descriptor
659 * @size: how big is "buf"?
660 * Context: !in_interrupt ()
662 * Gets a USB descriptor. Convenience functions exist to simplify
663 * getting some types of descriptors. Use
664 * usb_get_string() or usb_string() for USB_DT_STRING.
665 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
666 * are part of the device structure.
667 * In addition to a number of USB-standard descriptors, some
668 * devices also use class-specific or vendor-specific descriptors.
670 * This call is synchronous, and may not be used in an interrupt context.
672 * Returns the number of bytes received on success, or else the status code
673 * returned by the underlying usb_control_msg() call.
675 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
676 unsigned char index, void *buf, int size)
678 int i;
679 int result;
681 memset(buf, 0, size); /* Make sure we parse really received data */
683 for (i = 0; i < 3; ++i) {
684 /* retry on length 0 or error; some devices are flakey */
685 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
686 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
687 (type << 8) + index, 0, buf, size,
688 USB_CTRL_GET_TIMEOUT);
689 if (result <= 0 && result != -ETIMEDOUT)
690 continue;
691 if (result > 1 && ((u8 *)buf)[1] != type) {
692 result = -ENODATA;
693 continue;
695 break;
697 return result;
699 EXPORT_SYMBOL_GPL(usb_get_descriptor);
702 * usb_get_string - gets a string descriptor
703 * @dev: the device whose string descriptor is being retrieved
704 * @langid: code for language chosen (from string descriptor zero)
705 * @index: the number of the descriptor
706 * @buf: where to put the string
707 * @size: how big is "buf"?
708 * Context: !in_interrupt ()
710 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
711 * in little-endian byte order).
712 * The usb_string() function will often be a convenient way to turn
713 * these strings into kernel-printable form.
715 * Strings may be referenced in device, configuration, interface, or other
716 * descriptors, and could also be used in vendor-specific ways.
718 * This call is synchronous, and may not be used in an interrupt context.
720 * Returns the number of bytes received on success, or else the status code
721 * returned by the underlying usb_control_msg() call.
723 static int usb_get_string(struct usb_device *dev, unsigned short langid,
724 unsigned char index, void *buf, int size)
726 int i;
727 int result;
729 for (i = 0; i < 3; ++i) {
730 /* retry on length 0 or stall; some devices are flakey */
731 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
732 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
733 (USB_DT_STRING << 8) + index, langid, buf, size,
734 USB_CTRL_GET_TIMEOUT);
735 if (result == 0 || result == -EPIPE)
736 continue;
737 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
738 result = -ENODATA;
739 continue;
741 break;
743 return result;
746 static void usb_try_string_workarounds(unsigned char *buf, int *length)
748 int newlength, oldlength = *length;
750 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
751 if (!isprint(buf[newlength]) || buf[newlength + 1])
752 break;
754 if (newlength > 2) {
755 buf[0] = newlength;
756 *length = newlength;
760 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
761 unsigned int index, unsigned char *buf)
763 int rc;
765 /* Try to read the string descriptor by asking for the maximum
766 * possible number of bytes */
767 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
768 rc = -EIO;
769 else
770 rc = usb_get_string(dev, langid, index, buf, 255);
772 /* If that failed try to read the descriptor length, then
773 * ask for just that many bytes */
774 if (rc < 2) {
775 rc = usb_get_string(dev, langid, index, buf, 2);
776 if (rc == 2)
777 rc = usb_get_string(dev, langid, index, buf, buf[0]);
780 if (rc >= 2) {
781 if (!buf[0] && !buf[1])
782 usb_try_string_workarounds(buf, &rc);
784 /* There might be extra junk at the end of the descriptor */
785 if (buf[0] < rc)
786 rc = buf[0];
788 rc = rc - (rc & 1); /* force a multiple of two */
791 if (rc < 2)
792 rc = (rc < 0 ? rc : -EINVAL);
794 return rc;
797 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
799 int err;
801 if (dev->have_langid)
802 return 0;
804 if (dev->string_langid < 0)
805 return -EPIPE;
807 err = usb_string_sub(dev, 0, 0, tbuf);
809 /* If the string was reported but is malformed, default to english
810 * (0x0409) */
811 if (err == -ENODATA || (err > 0 && err < 4)) {
812 dev->string_langid = 0x0409;
813 dev->have_langid = 1;
814 dev_err(&dev->dev,
815 "string descriptor 0 malformed (err = %d), "
816 "defaulting to 0x%04x\n",
817 err, dev->string_langid);
818 return 0;
821 /* In case of all other errors, we assume the device is not able to
822 * deal with strings at all. Set string_langid to -1 in order to
823 * prevent any string to be retrieved from the device */
824 if (err < 0) {
825 dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
826 err);
827 dev->string_langid = -1;
828 return -EPIPE;
831 /* always use the first langid listed */
832 dev->string_langid = tbuf[2] | (tbuf[3] << 8);
833 dev->have_langid = 1;
834 dev_dbg(&dev->dev, "default language 0x%04x\n",
835 dev->string_langid);
836 return 0;
840 * usb_string - returns UTF-8 version of a string descriptor
841 * @dev: the device whose string descriptor is being retrieved
842 * @index: the number of the descriptor
843 * @buf: where to put the string
844 * @size: how big is "buf"?
845 * Context: !in_interrupt ()
847 * This converts the UTF-16LE encoded strings returned by devices, from
848 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
849 * that are more usable in most kernel contexts. Note that this function
850 * chooses strings in the first language supported by the device.
852 * This call is synchronous, and may not be used in an interrupt context.
854 * Returns length of the string (>= 0) or usb_control_msg status (< 0).
856 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
858 unsigned char *tbuf;
859 int err;
861 if (dev->state == USB_STATE_SUSPENDED)
862 return -EHOSTUNREACH;
863 if (size <= 0 || !buf || !index)
864 return -EINVAL;
865 buf[0] = 0;
866 tbuf = kmalloc(256, GFP_NOIO);
867 if (!tbuf)
868 return -ENOMEM;
870 err = usb_get_langid(dev, tbuf);
871 if (err < 0)
872 goto errout;
874 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
875 if (err < 0)
876 goto errout;
878 size--; /* leave room for trailing NULL char in output buffer */
879 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
880 UTF16_LITTLE_ENDIAN, buf, size);
881 buf[err] = 0;
883 if (tbuf[1] != USB_DT_STRING)
884 dev_dbg(&dev->dev,
885 "wrong descriptor type %02x for string %d (\"%s\")\n",
886 tbuf[1], index, buf);
888 errout:
889 kfree(tbuf);
890 return err;
892 EXPORT_SYMBOL_GPL(usb_string);
894 /* one UTF-8-encoded 16-bit character has at most three bytes */
895 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
898 * usb_cache_string - read a string descriptor and cache it for later use
899 * @udev: the device whose string descriptor is being read
900 * @index: the descriptor index
902 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
903 * or NULL if the index is 0 or the string could not be read.
905 char *usb_cache_string(struct usb_device *udev, int index)
907 char *buf;
908 char *smallbuf = NULL;
909 int len;
911 if (index <= 0)
912 return NULL;
914 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_KERNEL);
915 if (buf) {
916 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
917 if (len > 0) {
918 smallbuf = kmalloc(++len, GFP_KERNEL);
919 if (!smallbuf)
920 return buf;
921 memcpy(smallbuf, buf, len);
923 kfree(buf);
925 return smallbuf;
929 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
930 * @dev: the device whose device descriptor is being updated
931 * @size: how much of the descriptor to read
932 * Context: !in_interrupt ()
934 * Updates the copy of the device descriptor stored in the device structure,
935 * which dedicates space for this purpose.
937 * Not exported, only for use by the core. If drivers really want to read
938 * the device descriptor directly, they can call usb_get_descriptor() with
939 * type = USB_DT_DEVICE and index = 0.
941 * This call is synchronous, and may not be used in an interrupt context.
943 * Returns the number of bytes received on success, or else the status code
944 * returned by the underlying usb_control_msg() call.
946 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
948 struct usb_device_descriptor *desc;
949 int ret;
951 if (size > sizeof(*desc))
952 return -EINVAL;
953 desc = kmalloc(sizeof(*desc), GFP_NOIO);
954 if (!desc)
955 return -ENOMEM;
957 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
958 if (ret >= 0)
959 memcpy(&dev->descriptor, desc, size);
960 kfree(desc);
961 return ret;
965 * usb_get_status - issues a GET_STATUS call
966 * @dev: the device whose status is being checked
967 * @type: USB_RECIP_*; for device, interface, or endpoint
968 * @target: zero (for device), else interface or endpoint number
969 * @data: pointer to two bytes of bitmap data
970 * Context: !in_interrupt ()
972 * Returns device, interface, or endpoint status. Normally only of
973 * interest to see if the device is self powered, or has enabled the
974 * remote wakeup facility; or whether a bulk or interrupt endpoint
975 * is halted ("stalled").
977 * Bits in these status bitmaps are set using the SET_FEATURE request,
978 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
979 * function should be used to clear halt ("stall") status.
981 * This call is synchronous, and may not be used in an interrupt context.
983 * Returns the number of bytes received on success, or else the status code
984 * returned by the underlying usb_control_msg() call.
986 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
988 int ret;
989 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
991 if (!status)
992 return -ENOMEM;
994 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
995 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
996 sizeof(*status), USB_CTRL_GET_TIMEOUT);
998 *(u16 *)data = *status;
999 kfree(status);
1000 return ret;
1002 EXPORT_SYMBOL_GPL(usb_get_status);
1005 * usb_clear_halt - tells device to clear endpoint halt/stall condition
1006 * @dev: device whose endpoint is halted
1007 * @pipe: endpoint "pipe" being cleared
1008 * Context: !in_interrupt ()
1010 * This is used to clear halt conditions for bulk and interrupt endpoints,
1011 * as reported by URB completion status. Endpoints that are halted are
1012 * sometimes referred to as being "stalled". Such endpoints are unable
1013 * to transmit or receive data until the halt status is cleared. Any URBs
1014 * queued for such an endpoint should normally be unlinked by the driver
1015 * before clearing the halt condition, as described in sections 5.7.5
1016 * and 5.8.5 of the USB 2.0 spec.
1018 * Note that control and isochronous endpoints don't halt, although control
1019 * endpoints report "protocol stall" (for unsupported requests) using the
1020 * same status code used to report a true stall.
1022 * This call is synchronous, and may not be used in an interrupt context.
1024 * Returns zero on success, or else the status code returned by the
1025 * underlying usb_control_msg() call.
1027 int usb_clear_halt(struct usb_device *dev, int pipe)
1029 int result;
1030 int endp = usb_pipeendpoint(pipe);
1032 if (usb_pipein(pipe))
1033 endp |= USB_DIR_IN;
1035 /* we don't care if it wasn't halted first. in fact some devices
1036 * (like some ibmcam model 1 units) seem to expect hosts to make
1037 * this request for iso endpoints, which can't halt!
1039 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1040 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1041 USB_ENDPOINT_HALT, endp, NULL, 0,
1042 USB_CTRL_SET_TIMEOUT);
1044 /* don't un-halt or force to DATA0 except on success */
1045 if (result < 0)
1046 return result;
1048 /* NOTE: seems like Microsoft and Apple don't bother verifying
1049 * the clear "took", so some devices could lock up if you check...
1050 * such as the Hagiwara FlashGate DUAL. So we won't bother.
1052 * NOTE: make sure the logic here doesn't diverge much from
1053 * the copy in usb-storage, for as long as we need two copies.
1056 usb_reset_endpoint(dev, endp);
1058 return 0;
1060 EXPORT_SYMBOL_GPL(usb_clear_halt);
1062 static int create_intf_ep_devs(struct usb_interface *intf)
1064 struct usb_device *udev = interface_to_usbdev(intf);
1065 struct usb_host_interface *alt = intf->cur_altsetting;
1066 int i;
1068 if (intf->ep_devs_created || intf->unregistering)
1069 return 0;
1071 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1072 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1073 intf->ep_devs_created = 1;
1074 return 0;
1077 static void remove_intf_ep_devs(struct usb_interface *intf)
1079 struct usb_host_interface *alt = intf->cur_altsetting;
1080 int i;
1082 if (!intf->ep_devs_created)
1083 return;
1085 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1086 usb_remove_ep_devs(&alt->endpoint[i]);
1087 intf->ep_devs_created = 0;
1091 * usb_disable_endpoint -- Disable an endpoint by address
1092 * @dev: the device whose endpoint is being disabled
1093 * @epaddr: the endpoint's address. Endpoint number for output,
1094 * endpoint number + USB_DIR_IN for input
1095 * @reset_hardware: flag to erase any endpoint state stored in the
1096 * controller hardware
1098 * Disables the endpoint for URB submission and nukes all pending URBs.
1099 * If @reset_hardware is set then also deallocates hcd/hardware state
1100 * for the endpoint.
1102 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1103 bool reset_hardware)
1105 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1106 struct usb_host_endpoint *ep;
1108 if (!dev)
1109 return;
1111 if (usb_endpoint_out(epaddr)) {
1112 ep = dev->ep_out[epnum];
1113 if (reset_hardware)
1114 dev->ep_out[epnum] = NULL;
1115 } else {
1116 ep = dev->ep_in[epnum];
1117 if (reset_hardware)
1118 dev->ep_in[epnum] = NULL;
1120 if (ep) {
1121 ep->enabled = 0;
1122 usb_hcd_flush_endpoint(dev, ep);
1123 if (reset_hardware)
1124 usb_hcd_disable_endpoint(dev, ep);
1129 * usb_reset_endpoint - Reset an endpoint's state.
1130 * @dev: the device whose endpoint is to be reset
1131 * @epaddr: the endpoint's address. Endpoint number for output,
1132 * endpoint number + USB_DIR_IN for input
1134 * Resets any host-side endpoint state such as the toggle bit,
1135 * sequence number or current window.
1137 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1139 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1140 struct usb_host_endpoint *ep;
1142 if (usb_endpoint_out(epaddr))
1143 ep = dev->ep_out[epnum];
1144 else
1145 ep = dev->ep_in[epnum];
1146 if (ep)
1147 usb_hcd_reset_endpoint(dev, ep);
1149 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1153 * usb_disable_interface -- Disable all endpoints for an interface
1154 * @dev: the device whose interface is being disabled
1155 * @intf: pointer to the interface descriptor
1156 * @reset_hardware: flag to erase any endpoint state stored in the
1157 * controller hardware
1159 * Disables all the endpoints for the interface's current altsetting.
1161 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1162 bool reset_hardware)
1164 struct usb_host_interface *alt = intf->cur_altsetting;
1165 int i;
1167 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1168 usb_disable_endpoint(dev,
1169 alt->endpoint[i].desc.bEndpointAddress,
1170 reset_hardware);
1175 * usb_disable_device - Disable all the endpoints for a USB device
1176 * @dev: the device whose endpoints are being disabled
1177 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1179 * Disables all the device's endpoints, potentially including endpoint 0.
1180 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1181 * pending urbs) and usbcore state for the interfaces, so that usbcore
1182 * must usb_set_configuration() before any interfaces could be used.
1184 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1186 int i;
1188 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1189 skip_ep0 ? "non-ep0" : "all");
1190 for (i = skip_ep0; i < 16; ++i) {
1191 usb_disable_endpoint(dev, i, true);
1192 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1195 /* getting rid of interfaces will disconnect
1196 * any drivers bound to them (a key side effect)
1198 if (dev->actconfig) {
1199 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1200 struct usb_interface *interface;
1202 /* remove this interface if it has been registered */
1203 interface = dev->actconfig->interface[i];
1204 if (!device_is_registered(&interface->dev))
1205 continue;
1206 dev_dbg(&dev->dev, "unregistering interface %s\n",
1207 dev_name(&interface->dev));
1208 interface->unregistering = 1;
1209 remove_intf_ep_devs(interface);
1210 device_del(&interface->dev);
1213 /* Now that the interfaces are unbound, nobody should
1214 * try to access them.
1216 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1217 put_device(&dev->actconfig->interface[i]->dev);
1218 dev->actconfig->interface[i] = NULL;
1220 dev->actconfig = NULL;
1221 if (dev->state == USB_STATE_CONFIGURED)
1222 usb_set_device_state(dev, USB_STATE_ADDRESS);
1227 * usb_enable_endpoint - Enable an endpoint for USB communications
1228 * @dev: the device whose interface is being enabled
1229 * @ep: the endpoint
1230 * @reset_ep: flag to reset the endpoint state
1232 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1233 * For control endpoints, both the input and output sides are handled.
1235 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1236 bool reset_ep)
1238 int epnum = usb_endpoint_num(&ep->desc);
1239 int is_out = usb_endpoint_dir_out(&ep->desc);
1240 int is_control = usb_endpoint_xfer_control(&ep->desc);
1242 if (reset_ep)
1243 usb_hcd_reset_endpoint(dev, ep);
1244 if (is_out || is_control)
1245 dev->ep_out[epnum] = ep;
1246 if (!is_out || is_control)
1247 dev->ep_in[epnum] = ep;
1248 ep->enabled = 1;
1252 * usb_enable_interface - Enable all the endpoints for an interface
1253 * @dev: the device whose interface is being enabled
1254 * @intf: pointer to the interface descriptor
1255 * @reset_eps: flag to reset the endpoints' state
1257 * Enables all the endpoints for the interface's current altsetting.
1259 void usb_enable_interface(struct usb_device *dev,
1260 struct usb_interface *intf, bool reset_eps)
1262 struct usb_host_interface *alt = intf->cur_altsetting;
1263 int i;
1265 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1266 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1270 * usb_set_interface - Makes a particular alternate setting be current
1271 * @dev: the device whose interface is being updated
1272 * @interface: the interface being updated
1273 * @alternate: the setting being chosen.
1274 * Context: !in_interrupt ()
1276 * This is used to enable data transfers on interfaces that may not
1277 * be enabled by default. Not all devices support such configurability.
1278 * Only the driver bound to an interface may change its setting.
1280 * Within any given configuration, each interface may have several
1281 * alternative settings. These are often used to control levels of
1282 * bandwidth consumption. For example, the default setting for a high
1283 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1284 * while interrupt transfers of up to 3KBytes per microframe are legal.
1285 * Also, isochronous endpoints may never be part of an
1286 * interface's default setting. To access such bandwidth, alternate
1287 * interface settings must be made current.
1289 * Note that in the Linux USB subsystem, bandwidth associated with
1290 * an endpoint in a given alternate setting is not reserved until an URB
1291 * is submitted that needs that bandwidth. Some other operating systems
1292 * allocate bandwidth early, when a configuration is chosen.
1294 * This call is synchronous, and may not be used in an interrupt context.
1295 * Also, drivers must not change altsettings while urbs are scheduled for
1296 * endpoints in that interface; all such urbs must first be completed
1297 * (perhaps forced by unlinking).
1299 * Returns zero on success, or else the status code returned by the
1300 * underlying usb_control_msg() call.
1302 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1304 struct usb_interface *iface;
1305 struct usb_host_interface *alt;
1306 int ret;
1307 int manual = 0;
1308 unsigned int epaddr;
1309 unsigned int pipe;
1311 if (dev->state == USB_STATE_SUSPENDED)
1312 return -EHOSTUNREACH;
1314 iface = usb_ifnum_to_if(dev, interface);
1315 if (!iface) {
1316 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1317 interface);
1318 return -EINVAL;
1321 alt = usb_altnum_to_altsetting(iface, alternate);
1322 if (!alt) {
1323 dev_warn(&dev->dev, "selecting invalid altsetting %d",
1324 alternate);
1325 return -EINVAL;
1328 if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1329 ret = -EPIPE;
1330 else
1331 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1332 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1333 alternate, interface, NULL, 0, 5000);
1335 /* 9.4.10 says devices don't need this and are free to STALL the
1336 * request if the interface only has one alternate setting.
1338 if (ret == -EPIPE && iface->num_altsetting == 1) {
1339 dev_dbg(&dev->dev,
1340 "manual set_interface for iface %d, alt %d\n",
1341 interface, alternate);
1342 manual = 1;
1343 } else if (ret < 0)
1344 return ret;
1346 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1347 * when they implement async or easily-killable versions of this or
1348 * other "should-be-internal" functions (like clear_halt).
1349 * should hcd+usbcore postprocess control requests?
1352 /* prevent submissions using previous endpoint settings */
1353 if (iface->cur_altsetting != alt) {
1354 remove_intf_ep_devs(iface);
1355 usb_remove_sysfs_intf_files(iface);
1357 usb_disable_interface(dev, iface, true);
1359 iface->cur_altsetting = alt;
1361 /* If the interface only has one altsetting and the device didn't
1362 * accept the request, we attempt to carry out the equivalent action
1363 * by manually clearing the HALT feature for each endpoint in the
1364 * new altsetting.
1366 if (manual) {
1367 int i;
1369 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1370 epaddr = alt->endpoint[i].desc.bEndpointAddress;
1371 pipe = __create_pipe(dev,
1372 USB_ENDPOINT_NUMBER_MASK & epaddr) |
1373 (usb_endpoint_out(epaddr) ?
1374 USB_DIR_OUT : USB_DIR_IN);
1376 usb_clear_halt(dev, pipe);
1380 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1382 * Note:
1383 * Despite EP0 is always present in all interfaces/AS, the list of
1384 * endpoints from the descriptor does not contain EP0. Due to its
1385 * omnipresence one might expect EP0 being considered "affected" by
1386 * any SetInterface request and hence assume toggles need to be reset.
1387 * However, EP0 toggles are re-synced for every individual transfer
1388 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1389 * (Likewise, EP0 never "halts" on well designed devices.)
1391 usb_enable_interface(dev, iface, true);
1392 if (device_is_registered(&iface->dev)) {
1393 usb_create_sysfs_intf_files(iface);
1394 create_intf_ep_devs(iface);
1396 return 0;
1398 EXPORT_SYMBOL_GPL(usb_set_interface);
1401 * usb_reset_configuration - lightweight device reset
1402 * @dev: the device whose configuration is being reset
1404 * This issues a standard SET_CONFIGURATION request to the device using
1405 * the current configuration. The effect is to reset most USB-related
1406 * state in the device, including interface altsettings (reset to zero),
1407 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1408 * endpoints). Other usbcore state is unchanged, including bindings of
1409 * usb device drivers to interfaces.
1411 * Because this affects multiple interfaces, avoid using this with composite
1412 * (multi-interface) devices. Instead, the driver for each interface may
1413 * use usb_set_interface() on the interfaces it claims. Be careful though;
1414 * some devices don't support the SET_INTERFACE request, and others won't
1415 * reset all the interface state (notably endpoint state). Resetting the whole
1416 * configuration would affect other drivers' interfaces.
1418 * The caller must own the device lock.
1420 * Returns zero on success, else a negative error code.
1422 int usb_reset_configuration(struct usb_device *dev)
1424 int i, retval;
1425 struct usb_host_config *config;
1427 if (dev->state == USB_STATE_SUSPENDED)
1428 return -EHOSTUNREACH;
1430 /* caller must have locked the device and must own
1431 * the usb bus readlock (so driver bindings are stable);
1432 * calls during probe() are fine
1435 for (i = 1; i < 16; ++i) {
1436 usb_disable_endpoint(dev, i, true);
1437 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1440 config = dev->actconfig;
1441 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1442 USB_REQ_SET_CONFIGURATION, 0,
1443 config->desc.bConfigurationValue, 0,
1444 NULL, 0, USB_CTRL_SET_TIMEOUT);
1445 if (retval < 0)
1446 return retval;
1448 /* re-init hc/hcd interface/endpoint state */
1449 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1450 struct usb_interface *intf = config->interface[i];
1451 struct usb_host_interface *alt;
1453 alt = usb_altnum_to_altsetting(intf, 0);
1455 /* No altsetting 0? We'll assume the first altsetting.
1456 * We could use a GetInterface call, but if a device is
1457 * so non-compliant that it doesn't have altsetting 0
1458 * then I wouldn't trust its reply anyway.
1460 if (!alt)
1461 alt = &intf->altsetting[0];
1463 if (alt != intf->cur_altsetting) {
1464 remove_intf_ep_devs(intf);
1465 usb_remove_sysfs_intf_files(intf);
1467 intf->cur_altsetting = alt;
1468 usb_enable_interface(dev, intf, true);
1469 if (device_is_registered(&intf->dev)) {
1470 usb_create_sysfs_intf_files(intf);
1471 create_intf_ep_devs(intf);
1474 return 0;
1476 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1478 static void usb_release_interface(struct device *dev)
1480 struct usb_interface *intf = to_usb_interface(dev);
1481 struct usb_interface_cache *intfc =
1482 altsetting_to_usb_interface_cache(intf->altsetting);
1484 kref_put(&intfc->ref, usb_release_interface_cache);
1485 kfree(intf);
1488 #ifdef CONFIG_HOTPLUG
1489 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1491 struct usb_device *usb_dev;
1492 struct usb_interface *intf;
1493 struct usb_host_interface *alt;
1495 intf = to_usb_interface(dev);
1496 usb_dev = interface_to_usbdev(intf);
1497 alt = intf->cur_altsetting;
1499 if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1500 alt->desc.bInterfaceClass,
1501 alt->desc.bInterfaceSubClass,
1502 alt->desc.bInterfaceProtocol))
1503 return -ENOMEM;
1505 if (add_uevent_var(env,
1506 "MODALIAS=usb:"
1507 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
1508 le16_to_cpu(usb_dev->descriptor.idVendor),
1509 le16_to_cpu(usb_dev->descriptor.idProduct),
1510 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1511 usb_dev->descriptor.bDeviceClass,
1512 usb_dev->descriptor.bDeviceSubClass,
1513 usb_dev->descriptor.bDeviceProtocol,
1514 alt->desc.bInterfaceClass,
1515 alt->desc.bInterfaceSubClass,
1516 alt->desc.bInterfaceProtocol))
1517 return -ENOMEM;
1519 return 0;
1522 #else
1524 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1526 return -ENODEV;
1528 #endif /* CONFIG_HOTPLUG */
1530 struct device_type usb_if_device_type = {
1531 .name = "usb_interface",
1532 .release = usb_release_interface,
1533 .uevent = usb_if_uevent,
1536 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1537 struct usb_host_config *config,
1538 u8 inum)
1540 struct usb_interface_assoc_descriptor *retval = NULL;
1541 struct usb_interface_assoc_descriptor *intf_assoc;
1542 int first_intf;
1543 int last_intf;
1544 int i;
1546 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1547 intf_assoc = config->intf_assoc[i];
1548 if (intf_assoc->bInterfaceCount == 0)
1549 continue;
1551 first_intf = intf_assoc->bFirstInterface;
1552 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1553 if (inum >= first_intf && inum <= last_intf) {
1554 if (!retval)
1555 retval = intf_assoc;
1556 else
1557 dev_err(&dev->dev, "Interface #%d referenced"
1558 " by multiple IADs\n", inum);
1562 return retval;
1567 * Internal function to queue a device reset
1569 * This is initialized into the workstruct in 'struct
1570 * usb_device->reset_ws' that is launched by
1571 * message.c:usb_set_configuration() when initializing each 'struct
1572 * usb_interface'.
1574 * It is safe to get the USB device without reference counts because
1575 * the life cycle of @iface is bound to the life cycle of @udev. Then,
1576 * this function will be ran only if @iface is alive (and before
1577 * freeing it any scheduled instances of it will have been cancelled).
1579 * We need to set a flag (usb_dev->reset_running) because when we call
1580 * the reset, the interfaces might be unbound. The current interface
1581 * cannot try to remove the queued work as it would cause a deadlock
1582 * (you cannot remove your work from within your executing
1583 * workqueue). This flag lets it know, so that
1584 * usb_cancel_queued_reset() doesn't try to do it.
1586 * See usb_queue_reset_device() for more details
1588 void __usb_queue_reset_device(struct work_struct *ws)
1590 int rc;
1591 struct usb_interface *iface =
1592 container_of(ws, struct usb_interface, reset_ws);
1593 struct usb_device *udev = interface_to_usbdev(iface);
1595 rc = usb_lock_device_for_reset(udev, iface);
1596 if (rc >= 0) {
1597 iface->reset_running = 1;
1598 usb_reset_device(udev);
1599 iface->reset_running = 0;
1600 usb_unlock_device(udev);
1606 * usb_set_configuration - Makes a particular device setting be current
1607 * @dev: the device whose configuration is being updated
1608 * @configuration: the configuration being chosen.
1609 * Context: !in_interrupt(), caller owns the device lock
1611 * This is used to enable non-default device modes. Not all devices
1612 * use this kind of configurability; many devices only have one
1613 * configuration.
1615 * @configuration is the value of the configuration to be installed.
1616 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1617 * must be non-zero; a value of zero indicates that the device in
1618 * unconfigured. However some devices erroneously use 0 as one of their
1619 * configuration values. To help manage such devices, this routine will
1620 * accept @configuration = -1 as indicating the device should be put in
1621 * an unconfigured state.
1623 * USB device configurations may affect Linux interoperability,
1624 * power consumption and the functionality available. For example,
1625 * the default configuration is limited to using 100mA of bus power,
1626 * so that when certain device functionality requires more power,
1627 * and the device is bus powered, that functionality should be in some
1628 * non-default device configuration. Other device modes may also be
1629 * reflected as configuration options, such as whether two ISDN
1630 * channels are available independently; and choosing between open
1631 * standard device protocols (like CDC) or proprietary ones.
1633 * Note that a non-authorized device (dev->authorized == 0) will only
1634 * be put in unconfigured mode.
1636 * Note that USB has an additional level of device configurability,
1637 * associated with interfaces. That configurability is accessed using
1638 * usb_set_interface().
1640 * This call is synchronous. The calling context must be able to sleep,
1641 * must own the device lock, and must not hold the driver model's USB
1642 * bus mutex; usb interface driver probe() methods cannot use this routine.
1644 * Returns zero on success, or else the status code returned by the
1645 * underlying call that failed. On successful completion, each interface
1646 * in the original device configuration has been destroyed, and each one
1647 * in the new configuration has been probed by all relevant usb device
1648 * drivers currently known to the kernel.
1650 int usb_set_configuration(struct usb_device *dev, int configuration)
1652 int i, ret;
1653 struct usb_host_config *cp = NULL;
1654 struct usb_interface **new_interfaces = NULL;
1655 int n, nintf;
1657 if (dev->authorized == 0 || configuration == -1)
1658 configuration = 0;
1659 else {
1660 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1661 if (dev->config[i].desc.bConfigurationValue ==
1662 configuration) {
1663 cp = &dev->config[i];
1664 break;
1668 if ((!cp && configuration != 0))
1669 return -EINVAL;
1671 /* The USB spec says configuration 0 means unconfigured.
1672 * But if a device includes a configuration numbered 0,
1673 * we will accept it as a correctly configured state.
1674 * Use -1 if you really want to unconfigure the device.
1676 if (cp && configuration == 0)
1677 dev_warn(&dev->dev, "config 0 descriptor??\n");
1679 /* Allocate memory for new interfaces before doing anything else,
1680 * so that if we run out then nothing will have changed. */
1681 n = nintf = 0;
1682 if (cp) {
1683 nintf = cp->desc.bNumInterfaces;
1684 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1685 GFP_KERNEL);
1686 if (!new_interfaces) {
1687 dev_err(&dev->dev, "Out of memory\n");
1688 return -ENOMEM;
1691 for (; n < nintf; ++n) {
1692 new_interfaces[n] = kzalloc(
1693 sizeof(struct usb_interface),
1694 GFP_KERNEL);
1695 if (!new_interfaces[n]) {
1696 dev_err(&dev->dev, "Out of memory\n");
1697 ret = -ENOMEM;
1698 free_interfaces:
1699 while (--n >= 0)
1700 kfree(new_interfaces[n]);
1701 kfree(new_interfaces);
1702 return ret;
1706 i = dev->bus_mA - cp->desc.bMaxPower * 2;
1707 if (i < 0)
1708 dev_warn(&dev->dev, "new config #%d exceeds power "
1709 "limit by %dmA\n",
1710 configuration, -i);
1713 /* Wake up the device so we can send it the Set-Config request */
1714 ret = usb_autoresume_device(dev);
1715 if (ret)
1716 goto free_interfaces;
1718 /* Make sure we have bandwidth (and available HCD resources) for this
1719 * configuration. Remove endpoints from the schedule if we're dropping
1720 * this configuration to set configuration 0. After this point, the
1721 * host controller will not allow submissions to dropped endpoints. If
1722 * this call fails, the device state is unchanged.
1724 if (cp)
1725 ret = usb_hcd_check_bandwidth(dev, cp, NULL);
1726 else
1727 ret = usb_hcd_check_bandwidth(dev, NULL, NULL);
1728 if (ret < 0) {
1729 usb_autosuspend_device(dev);
1730 goto free_interfaces;
1733 /* if it's already configured, clear out old state first.
1734 * getting rid of old interfaces means unbinding their drivers.
1736 if (dev->state != USB_STATE_ADDRESS)
1737 usb_disable_device(dev, 1); /* Skip ep0 */
1739 /* Get rid of pending async Set-Config requests for this device */
1740 cancel_async_set_config(dev);
1742 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1743 USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1744 NULL, 0, USB_CTRL_SET_TIMEOUT);
1745 if (ret < 0) {
1746 /* All the old state is gone, so what else can we do?
1747 * The device is probably useless now anyway.
1749 cp = NULL;
1752 dev->actconfig = cp;
1753 if (!cp) {
1754 usb_set_device_state(dev, USB_STATE_ADDRESS);
1755 usb_hcd_check_bandwidth(dev, NULL, NULL);
1756 usb_autosuspend_device(dev);
1757 goto free_interfaces;
1759 usb_set_device_state(dev, USB_STATE_CONFIGURED);
1761 /* Initialize the new interface structures and the
1762 * hc/hcd/usbcore interface/endpoint state.
1764 for (i = 0; i < nintf; ++i) {
1765 struct usb_interface_cache *intfc;
1766 struct usb_interface *intf;
1767 struct usb_host_interface *alt;
1769 cp->interface[i] = intf = new_interfaces[i];
1770 intfc = cp->intf_cache[i];
1771 intf->altsetting = intfc->altsetting;
1772 intf->num_altsetting = intfc->num_altsetting;
1773 intf->intf_assoc = find_iad(dev, cp, i);
1774 kref_get(&intfc->ref);
1776 alt = usb_altnum_to_altsetting(intf, 0);
1778 /* No altsetting 0? We'll assume the first altsetting.
1779 * We could use a GetInterface call, but if a device is
1780 * so non-compliant that it doesn't have altsetting 0
1781 * then I wouldn't trust its reply anyway.
1783 if (!alt)
1784 alt = &intf->altsetting[0];
1786 intf->cur_altsetting = alt;
1787 usb_enable_interface(dev, intf, true);
1788 intf->dev.parent = &dev->dev;
1789 intf->dev.driver = NULL;
1790 intf->dev.bus = &usb_bus_type;
1791 intf->dev.type = &usb_if_device_type;
1792 intf->dev.groups = usb_interface_groups;
1793 intf->dev.dma_mask = dev->dev.dma_mask;
1794 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1795 device_initialize(&intf->dev);
1796 mark_quiesced(intf);
1797 dev_set_name(&intf->dev, "%d-%s:%d.%d",
1798 dev->bus->busnum, dev->devpath,
1799 configuration, alt->desc.bInterfaceNumber);
1801 kfree(new_interfaces);
1803 if (cp->string == NULL &&
1804 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1805 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1807 /* Now that all the interfaces are set up, register them
1808 * to trigger binding of drivers to interfaces. probe()
1809 * routines may install different altsettings and may
1810 * claim() any interfaces not yet bound. Many class drivers
1811 * need that: CDC, audio, video, etc.
1813 for (i = 0; i < nintf; ++i) {
1814 struct usb_interface *intf = cp->interface[i];
1816 dev_dbg(&dev->dev,
1817 "adding %s (config #%d, interface %d)\n",
1818 dev_name(&intf->dev), configuration,
1819 intf->cur_altsetting->desc.bInterfaceNumber);
1820 ret = device_add(&intf->dev);
1821 if (ret != 0) {
1822 dev_err(&dev->dev, "device_add(%s) --> %d\n",
1823 dev_name(&intf->dev), ret);
1824 continue;
1826 create_intf_ep_devs(intf);
1829 usb_autosuspend_device(dev);
1830 return 0;
1833 static LIST_HEAD(set_config_list);
1834 static DEFINE_SPINLOCK(set_config_lock);
1836 struct set_config_request {
1837 struct usb_device *udev;
1838 int config;
1839 struct work_struct work;
1840 struct list_head node;
1843 /* Worker routine for usb_driver_set_configuration() */
1844 static void driver_set_config_work(struct work_struct *work)
1846 struct set_config_request *req =
1847 container_of(work, struct set_config_request, work);
1848 struct usb_device *udev = req->udev;
1850 usb_lock_device(udev);
1851 spin_lock(&set_config_lock);
1852 list_del(&req->node);
1853 spin_unlock(&set_config_lock);
1855 if (req->config >= -1) /* Is req still valid? */
1856 usb_set_configuration(udev, req->config);
1857 usb_unlock_device(udev);
1858 usb_put_dev(udev);
1859 kfree(req);
1862 /* Cancel pending Set-Config requests for a device whose configuration
1863 * was just changed
1865 static void cancel_async_set_config(struct usb_device *udev)
1867 struct set_config_request *req;
1869 spin_lock(&set_config_lock);
1870 list_for_each_entry(req, &set_config_list, node) {
1871 if (req->udev == udev)
1872 req->config = -999; /* Mark as cancelled */
1874 spin_unlock(&set_config_lock);
1878 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1879 * @udev: the device whose configuration is being updated
1880 * @config: the configuration being chosen.
1881 * Context: In process context, must be able to sleep
1883 * Device interface drivers are not allowed to change device configurations.
1884 * This is because changing configurations will destroy the interface the
1885 * driver is bound to and create new ones; it would be like a floppy-disk
1886 * driver telling the computer to replace the floppy-disk drive with a
1887 * tape drive!
1889 * Still, in certain specialized circumstances the need may arise. This
1890 * routine gets around the normal restrictions by using a work thread to
1891 * submit the change-config request.
1893 * Returns 0 if the request was succesfully queued, error code otherwise.
1894 * The caller has no way to know whether the queued request will eventually
1895 * succeed.
1897 int usb_driver_set_configuration(struct usb_device *udev, int config)
1899 struct set_config_request *req;
1901 req = kmalloc(sizeof(*req), GFP_KERNEL);
1902 if (!req)
1903 return -ENOMEM;
1904 req->udev = udev;
1905 req->config = config;
1906 INIT_WORK(&req->work, driver_set_config_work);
1908 spin_lock(&set_config_lock);
1909 list_add(&req->node, &set_config_list);
1910 spin_unlock(&set_config_lock);
1912 usb_get_dev(udev);
1913 schedule_work(&req->work);
1914 return 0;
1916 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);