Merge branch 'mini2440-dev-unlikely' into mini2440-dev
[linux-2.6/mini2440.git] / drivers / net / wireless / rt2x00 / rt2500pci.c
blob2e872ac6982673018733f66654afccb7cdf6bf69
1 /*
2 Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 Module: rt2500pci
23 Abstract: rt2500pci device specific routines.
24 Supported chipsets: RT2560.
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt2500pci.h"
40 * Register access.
41 * All access to the CSR registers will go through the methods
42 * rt2x00pci_register_read and rt2x00pci_register_write.
43 * BBP and RF register require indirect register access,
44 * and use the CSR registers BBPCSR and RFCSR to achieve this.
45 * These indirect registers work with busy bits,
46 * and we will try maximal REGISTER_BUSY_COUNT times to access
47 * the register while taking a REGISTER_BUSY_DELAY us delay
48 * between each attampt. When the busy bit is still set at that time,
49 * the access attempt is considered to have failed,
50 * and we will print an error.
52 #define WAIT_FOR_BBP(__dev, __reg) \
53 rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
54 #define WAIT_FOR_RF(__dev, __reg) \
55 rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
57 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
58 const unsigned int word, const u8 value)
60 u32 reg;
62 mutex_lock(&rt2x00dev->csr_mutex);
65 * Wait until the BBP becomes available, afterwards we
66 * can safely write the new data into the register.
68 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
69 reg = 0;
70 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
71 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
72 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
73 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
75 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
78 mutex_unlock(&rt2x00dev->csr_mutex);
81 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
82 const unsigned int word, u8 *value)
84 u32 reg;
86 mutex_lock(&rt2x00dev->csr_mutex);
89 * Wait until the BBP becomes available, afterwards we
90 * can safely write the read request into the register.
91 * After the data has been written, we wait until hardware
92 * returns the correct value, if at any time the register
93 * doesn't become available in time, reg will be 0xffffffff
94 * which means we return 0xff to the caller.
96 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
97 reg = 0;
98 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
99 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
100 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
102 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
104 WAIT_FOR_BBP(rt2x00dev, &reg);
107 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
109 mutex_unlock(&rt2x00dev->csr_mutex);
112 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
113 const unsigned int word, const u32 value)
115 u32 reg;
117 mutex_lock(&rt2x00dev->csr_mutex);
120 * Wait until the RF becomes available, afterwards we
121 * can safely write the new data into the register.
123 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
124 reg = 0;
125 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
126 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
127 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
128 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
130 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
131 rt2x00_rf_write(rt2x00dev, word, value);
134 mutex_unlock(&rt2x00dev->csr_mutex);
137 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
139 struct rt2x00_dev *rt2x00dev = eeprom->data;
140 u32 reg;
142 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
144 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
145 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
146 eeprom->reg_data_clock =
147 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
148 eeprom->reg_chip_select =
149 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
152 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
154 struct rt2x00_dev *rt2x00dev = eeprom->data;
155 u32 reg = 0;
157 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
158 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
159 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
160 !!eeprom->reg_data_clock);
161 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
162 !!eeprom->reg_chip_select);
164 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
167 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
168 static const struct rt2x00debug rt2500pci_rt2x00debug = {
169 .owner = THIS_MODULE,
170 .csr = {
171 .read = rt2x00pci_register_read,
172 .write = rt2x00pci_register_write,
173 .flags = RT2X00DEBUGFS_OFFSET,
174 .word_base = CSR_REG_BASE,
175 .word_size = sizeof(u32),
176 .word_count = CSR_REG_SIZE / sizeof(u32),
178 .eeprom = {
179 .read = rt2x00_eeprom_read,
180 .write = rt2x00_eeprom_write,
181 .word_base = EEPROM_BASE,
182 .word_size = sizeof(u16),
183 .word_count = EEPROM_SIZE / sizeof(u16),
185 .bbp = {
186 .read = rt2500pci_bbp_read,
187 .write = rt2500pci_bbp_write,
188 .word_base = BBP_BASE,
189 .word_size = sizeof(u8),
190 .word_count = BBP_SIZE / sizeof(u8),
192 .rf = {
193 .read = rt2x00_rf_read,
194 .write = rt2500pci_rf_write,
195 .word_base = RF_BASE,
196 .word_size = sizeof(u32),
197 .word_count = RF_SIZE / sizeof(u32),
200 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
202 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
204 u32 reg;
206 rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
207 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
210 #ifdef CONFIG_RT2X00_LIB_LEDS
211 static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
212 enum led_brightness brightness)
214 struct rt2x00_led *led =
215 container_of(led_cdev, struct rt2x00_led, led_dev);
216 unsigned int enabled = brightness != LED_OFF;
217 u32 reg;
219 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
221 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
222 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
223 else if (led->type == LED_TYPE_ACTIVITY)
224 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
226 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
229 static int rt2500pci_blink_set(struct led_classdev *led_cdev,
230 unsigned long *delay_on,
231 unsigned long *delay_off)
233 struct rt2x00_led *led =
234 container_of(led_cdev, struct rt2x00_led, led_dev);
235 u32 reg;
237 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
238 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
239 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
240 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
242 return 0;
245 static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
246 struct rt2x00_led *led,
247 enum led_type type)
249 led->rt2x00dev = rt2x00dev;
250 led->type = type;
251 led->led_dev.brightness_set = rt2500pci_brightness_set;
252 led->led_dev.blink_set = rt2500pci_blink_set;
253 led->flags = LED_INITIALIZED;
255 #endif /* CONFIG_RT2X00_LIB_LEDS */
258 * Configuration handlers.
260 static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
261 const unsigned int filter_flags)
263 u32 reg;
266 * Start configuration steps.
267 * Note that the version error will always be dropped
268 * and broadcast frames will always be accepted since
269 * there is no filter for it at this time.
271 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
272 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
273 !(filter_flags & FIF_FCSFAIL));
274 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
275 !(filter_flags & FIF_PLCPFAIL));
276 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
277 !(filter_flags & FIF_CONTROL));
278 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
279 !(filter_flags & FIF_PROMISC_IN_BSS));
280 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
281 !(filter_flags & FIF_PROMISC_IN_BSS) &&
282 !rt2x00dev->intf_ap_count);
283 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
284 rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
285 !(filter_flags & FIF_ALLMULTI));
286 rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
287 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
290 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
291 struct rt2x00_intf *intf,
292 struct rt2x00intf_conf *conf,
293 const unsigned int flags)
295 struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, QID_BEACON);
296 unsigned int bcn_preload;
297 u32 reg;
299 if (flags & CONFIG_UPDATE_TYPE) {
301 * Enable beacon config
303 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
304 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
305 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
306 rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
307 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
310 * Enable synchronisation.
312 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
313 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
314 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
315 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
316 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
319 if (flags & CONFIG_UPDATE_MAC)
320 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
321 conf->mac, sizeof(conf->mac));
323 if (flags & CONFIG_UPDATE_BSSID)
324 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
325 conf->bssid, sizeof(conf->bssid));
328 static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
329 struct rt2x00lib_erp *erp)
331 int preamble_mask;
332 u32 reg;
335 * When short preamble is enabled, we should set bit 0x08
337 preamble_mask = erp->short_preamble << 3;
339 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
340 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
341 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
342 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
343 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
344 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
346 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
347 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
348 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
349 rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10));
350 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
352 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
353 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
354 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
355 rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20));
356 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
358 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
359 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
360 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
361 rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55));
362 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
364 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
365 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
366 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
367 rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110));
368 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
370 rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
372 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
373 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
374 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
376 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
377 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL, erp->beacon_int * 16);
378 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION, erp->beacon_int * 16);
379 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
381 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
382 rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
383 rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
384 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
386 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
387 rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
388 rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
389 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
392 static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
393 struct antenna_setup *ant)
395 u32 reg;
396 u8 r14;
397 u8 r2;
400 * We should never come here because rt2x00lib is supposed
401 * to catch this and send us the correct antenna explicitely.
403 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
404 ant->tx == ANTENNA_SW_DIVERSITY);
406 rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
407 rt2500pci_bbp_read(rt2x00dev, 14, &r14);
408 rt2500pci_bbp_read(rt2x00dev, 2, &r2);
411 * Configure the TX antenna.
413 switch (ant->tx) {
414 case ANTENNA_A:
415 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
416 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
417 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
418 break;
419 case ANTENNA_B:
420 default:
421 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
422 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
423 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
424 break;
428 * Configure the RX antenna.
430 switch (ant->rx) {
431 case ANTENNA_A:
432 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
433 break;
434 case ANTENNA_B:
435 default:
436 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
437 break;
441 * RT2525E and RT5222 need to flip TX I/Q
443 if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
444 rt2x00_rf(&rt2x00dev->chip, RF5222)) {
445 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
446 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
447 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
450 * RT2525E does not need RX I/Q Flip.
452 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
453 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
454 } else {
455 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
456 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
459 rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
460 rt2500pci_bbp_write(rt2x00dev, 14, r14);
461 rt2500pci_bbp_write(rt2x00dev, 2, r2);
464 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
465 struct rf_channel *rf, const int txpower)
467 u8 r70;
470 * Set TXpower.
472 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
475 * Switch on tuning bits.
476 * For RT2523 devices we do not need to update the R1 register.
478 if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
479 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
480 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
483 * For RT2525 we should first set the channel to half band higher.
485 if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
486 static const u32 vals[] = {
487 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
488 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
489 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
490 0x00080d2e, 0x00080d3a
493 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
494 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
495 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
496 if (rf->rf4)
497 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
500 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
501 rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
502 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
503 if (rf->rf4)
504 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
507 * Channel 14 requires the Japan filter bit to be set.
509 r70 = 0x46;
510 rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
511 rt2500pci_bbp_write(rt2x00dev, 70, r70);
513 msleep(1);
516 * Switch off tuning bits.
517 * For RT2523 devices we do not need to update the R1 register.
519 if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
520 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
521 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
524 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
525 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
528 * Clear false CRC during channel switch.
530 rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
533 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
534 const int txpower)
536 u32 rf3;
538 rt2x00_rf_read(rt2x00dev, 3, &rf3);
539 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
540 rt2500pci_rf_write(rt2x00dev, 3, rf3);
543 static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
544 struct rt2x00lib_conf *libconf)
546 u32 reg;
548 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
549 rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
550 libconf->conf->long_frame_max_tx_count);
551 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
552 libconf->conf->short_frame_max_tx_count);
553 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
556 static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
557 struct rt2x00lib_conf *libconf)
559 enum dev_state state =
560 (libconf->conf->flags & IEEE80211_CONF_PS) ?
561 STATE_SLEEP : STATE_AWAKE;
562 u32 reg;
564 if (state == STATE_SLEEP) {
565 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
566 rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
567 (rt2x00dev->beacon_int - 20) * 16);
568 rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
569 libconf->conf->listen_interval - 1);
571 /* We must first disable autowake before it can be enabled */
572 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
573 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
575 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
576 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
579 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
582 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
583 struct rt2x00lib_conf *libconf,
584 const unsigned int flags)
586 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
587 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
588 libconf->conf->power_level);
589 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
590 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
591 rt2500pci_config_txpower(rt2x00dev,
592 libconf->conf->power_level);
593 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
594 rt2500pci_config_retry_limit(rt2x00dev, libconf);
595 if (flags & IEEE80211_CONF_CHANGE_PS)
596 rt2500pci_config_ps(rt2x00dev, libconf);
600 * Link tuning
602 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
603 struct link_qual *qual)
605 u32 reg;
608 * Update FCS error count from register.
610 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
611 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
614 * Update False CCA count from register.
616 rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
617 qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
620 static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
621 struct link_qual *qual, u8 vgc_level)
623 if (qual->vgc_level_reg != vgc_level) {
624 rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
625 qual->vgc_level_reg = vgc_level;
629 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
630 struct link_qual *qual)
632 rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
635 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
636 struct link_qual *qual, const u32 count)
639 * To prevent collisions with MAC ASIC on chipsets
640 * up to version C the link tuning should halt after 20
641 * seconds while being associated.
643 if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
644 rt2x00dev->intf_associated && count > 20)
645 return;
648 * Chipset versions C and lower should directly continue
649 * to the dynamic CCA tuning. Chipset version D and higher
650 * should go straight to dynamic CCA tuning when they
651 * are not associated.
653 if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D ||
654 !rt2x00dev->intf_associated)
655 goto dynamic_cca_tune;
658 * A too low RSSI will cause too much false CCA which will
659 * then corrupt the R17 tuning. To remidy this the tuning should
660 * be stopped (While making sure the R17 value will not exceed limits)
662 if (qual->rssi < -80 && count > 20) {
663 if (qual->vgc_level_reg >= 0x41)
664 rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
665 return;
669 * Special big-R17 for short distance
671 if (qual->rssi >= -58) {
672 rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
673 return;
677 * Special mid-R17 for middle distance
679 if (qual->rssi >= -74) {
680 rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
681 return;
685 * Leave short or middle distance condition, restore r17
686 * to the dynamic tuning range.
688 if (qual->vgc_level_reg >= 0x41) {
689 rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
690 return;
693 dynamic_cca_tune:
696 * R17 is inside the dynamic tuning range,
697 * start tuning the link based on the false cca counter.
699 if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40) {
700 rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
701 qual->vgc_level = qual->vgc_level_reg;
702 } else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32) {
703 rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
704 qual->vgc_level = qual->vgc_level_reg;
709 * Initialization functions.
711 static bool rt2500pci_get_entry_state(struct queue_entry *entry)
713 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
714 u32 word;
716 if (entry->queue->qid == QID_RX) {
717 rt2x00_desc_read(entry_priv->desc, 0, &word);
719 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
720 } else {
721 rt2x00_desc_read(entry_priv->desc, 0, &word);
723 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
724 rt2x00_get_field32(word, TXD_W0_VALID));
728 static void rt2500pci_clear_entry(struct queue_entry *entry)
730 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
731 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
732 u32 word;
734 if (entry->queue->qid == QID_RX) {
735 rt2x00_desc_read(entry_priv->desc, 1, &word);
736 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
737 rt2x00_desc_write(entry_priv->desc, 1, word);
739 rt2x00_desc_read(entry_priv->desc, 0, &word);
740 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
741 rt2x00_desc_write(entry_priv->desc, 0, word);
742 } else {
743 rt2x00_desc_read(entry_priv->desc, 0, &word);
744 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
745 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
746 rt2x00_desc_write(entry_priv->desc, 0, word);
750 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
752 struct queue_entry_priv_pci *entry_priv;
753 u32 reg;
756 * Initialize registers.
758 rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
759 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
760 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
761 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
762 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
763 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
765 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
766 rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
767 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
768 entry_priv->desc_dma);
769 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
771 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
772 rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
773 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
774 entry_priv->desc_dma);
775 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
777 entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
778 rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
779 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
780 entry_priv->desc_dma);
781 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
783 entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
784 rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
785 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
786 entry_priv->desc_dma);
787 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
789 rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
790 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
791 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
792 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
794 entry_priv = rt2x00dev->rx->entries[0].priv_data;
795 rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
796 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
797 entry_priv->desc_dma);
798 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
800 return 0;
803 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
805 u32 reg;
807 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
808 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
809 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
810 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
812 rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
813 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
814 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
815 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
816 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
818 rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
819 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
820 rt2x00dev->rx->data_size / 128);
821 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
824 * Always use CWmin and CWmax set in descriptor.
826 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
827 rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
828 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
830 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
831 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
832 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
833 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
834 rt2x00_set_field32(&reg, CSR14_TCFP, 0);
835 rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
836 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
837 rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
838 rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
839 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
841 rt2x00pci_register_write(rt2x00dev, CNT3, 0);
843 rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
844 rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
845 rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
846 rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
847 rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
848 rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
849 rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
850 rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
851 rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
852 rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
854 rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
855 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
856 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
857 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
858 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
859 rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
861 rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
862 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
863 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
864 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
865 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
866 rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
868 rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
869 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
870 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
871 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
872 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
873 rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
875 rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
876 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
877 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
878 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
879 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
880 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
881 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
882 rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
883 rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
884 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
886 rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
887 rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
888 rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
889 rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
890 rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
891 rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
892 rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
893 rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
894 rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
896 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
898 rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
899 rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
901 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
902 return -EBUSY;
904 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
905 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
907 rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
908 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
909 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
911 rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
912 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
913 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
914 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
915 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
916 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
917 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
918 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
920 rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
922 rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
924 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
925 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
926 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
927 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
928 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
930 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
931 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
932 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
933 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
936 * We must clear the FCS and FIFO error count.
937 * These registers are cleared on read,
938 * so we may pass a useless variable to store the value.
940 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
941 rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
943 return 0;
946 static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
948 unsigned int i;
949 u8 value;
951 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
952 rt2500pci_bbp_read(rt2x00dev, 0, &value);
953 if ((value != 0xff) && (value != 0x00))
954 return 0;
955 udelay(REGISTER_BUSY_DELAY);
958 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
959 return -EACCES;
962 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
964 unsigned int i;
965 u16 eeprom;
966 u8 reg_id;
967 u8 value;
969 if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
970 return -EACCES;
972 rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
973 rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
974 rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
975 rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
976 rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
977 rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
978 rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
979 rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
980 rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
981 rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
982 rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
983 rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
984 rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
985 rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
986 rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
987 rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
988 rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
989 rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
990 rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
991 rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
992 rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
993 rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
994 rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
995 rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
996 rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
997 rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
998 rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
999 rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1000 rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1001 rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1003 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1004 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1006 if (eeprom != 0xffff && eeprom != 0x0000) {
1007 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1008 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1009 rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1013 return 0;
1017 * Device state switch handlers.
1019 static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1020 enum dev_state state)
1022 u32 reg;
1024 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1025 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
1026 (state == STATE_RADIO_RX_OFF) ||
1027 (state == STATE_RADIO_RX_OFF_LINK));
1028 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1031 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1032 enum dev_state state)
1034 int mask = (state == STATE_RADIO_IRQ_OFF);
1035 u32 reg;
1038 * When interrupts are being enabled, the interrupt registers
1039 * should clear the register to assure a clean state.
1041 if (state == STATE_RADIO_IRQ_ON) {
1042 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1043 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1047 * Only toggle the interrupts bits we are going to use.
1048 * Non-checked interrupt bits are disabled by default.
1050 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1051 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1052 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1053 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1054 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1055 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1056 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1059 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1062 * Initialize all registers.
1064 if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
1065 rt2500pci_init_registers(rt2x00dev) ||
1066 rt2500pci_init_bbp(rt2x00dev)))
1067 return -EIO;
1069 return 0;
1072 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1075 * Disable power
1077 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1080 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1081 enum dev_state state)
1083 u32 reg;
1084 unsigned int i;
1085 char put_to_sleep;
1086 char bbp_state;
1087 char rf_state;
1089 put_to_sleep = (state != STATE_AWAKE);
1091 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1092 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1093 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1094 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1095 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1096 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1099 * Device is not guaranteed to be in the requested state yet.
1100 * We must wait until the register indicates that the
1101 * device has entered the correct state.
1103 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1104 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1105 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1106 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1107 if (bbp_state == state && rf_state == state)
1108 return 0;
1109 msleep(10);
1112 return -EBUSY;
1115 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1116 enum dev_state state)
1118 int retval = 0;
1120 switch (state) {
1121 case STATE_RADIO_ON:
1122 retval = rt2500pci_enable_radio(rt2x00dev);
1123 break;
1124 case STATE_RADIO_OFF:
1125 rt2500pci_disable_radio(rt2x00dev);
1126 break;
1127 case STATE_RADIO_RX_ON:
1128 case STATE_RADIO_RX_ON_LINK:
1129 case STATE_RADIO_RX_OFF:
1130 case STATE_RADIO_RX_OFF_LINK:
1131 rt2500pci_toggle_rx(rt2x00dev, state);
1132 break;
1133 case STATE_RADIO_IRQ_ON:
1134 case STATE_RADIO_IRQ_OFF:
1135 rt2500pci_toggle_irq(rt2x00dev, state);
1136 break;
1137 case STATE_DEEP_SLEEP:
1138 case STATE_SLEEP:
1139 case STATE_STANDBY:
1140 case STATE_AWAKE:
1141 retval = rt2500pci_set_state(rt2x00dev, state);
1142 break;
1143 default:
1144 retval = -ENOTSUPP;
1145 break;
1148 if (unlikely(retval))
1149 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1150 state, retval);
1152 return retval;
1156 * TX descriptor initialization
1158 static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1159 struct sk_buff *skb,
1160 struct txentry_desc *txdesc)
1162 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1163 struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
1164 __le32 *txd = skbdesc->desc;
1165 u32 word;
1168 * Start writing the descriptor words.
1170 rt2x00_desc_read(entry_priv->desc, 1, &word);
1171 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1172 rt2x00_desc_write(entry_priv->desc, 1, word);
1174 rt2x00_desc_read(txd, 2, &word);
1175 rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1176 rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
1177 rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
1178 rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
1179 rt2x00_desc_write(txd, 2, word);
1181 rt2x00_desc_read(txd, 3, &word);
1182 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1183 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1184 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
1185 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
1186 rt2x00_desc_write(txd, 3, word);
1188 rt2x00_desc_read(txd, 10, &word);
1189 rt2x00_set_field32(&word, TXD_W10_RTS,
1190 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1191 rt2x00_desc_write(txd, 10, word);
1193 rt2x00_desc_read(txd, 0, &word);
1194 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1195 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1196 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1197 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1198 rt2x00_set_field32(&word, TXD_W0_ACK,
1199 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1200 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1201 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1202 rt2x00_set_field32(&word, TXD_W0_OFDM,
1203 (txdesc->rate_mode == RATE_MODE_OFDM));
1204 rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1205 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1206 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1207 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1208 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1209 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1210 rt2x00_desc_write(txd, 0, word);
1214 * TX data initialization
1216 static void rt2500pci_write_beacon(struct queue_entry *entry)
1218 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1219 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1220 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1221 u32 word;
1222 u32 reg;
1225 * Disable beaconing while we are reloading the beacon data,
1226 * otherwise we might be sending out invalid data.
1228 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1229 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1230 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1233 * Replace rt2x00lib allocated descriptor with the
1234 * pointer to the _real_ hardware descriptor.
1235 * After that, map the beacon to DMA and update the
1236 * descriptor.
1238 memcpy(entry_priv->desc, skbdesc->desc, skbdesc->desc_len);
1239 skbdesc->desc = entry_priv->desc;
1241 rt2x00queue_map_txskb(rt2x00dev, entry->skb);
1243 rt2x00_desc_read(entry_priv->desc, 1, &word);
1244 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1245 rt2x00_desc_write(entry_priv->desc, 1, word);
1248 static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1249 const enum data_queue_qid queue)
1251 u32 reg;
1253 if (queue == QID_BEACON) {
1254 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1255 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1256 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1257 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1258 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1259 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1261 return;
1264 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1265 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
1266 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
1267 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
1268 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1271 static void rt2500pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
1272 const enum data_queue_qid qid)
1274 u32 reg;
1276 if (qid == QID_BEACON) {
1277 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1278 } else {
1279 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1280 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1281 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1286 * RX control handlers
1288 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1289 struct rxdone_entry_desc *rxdesc)
1291 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1292 u32 word0;
1293 u32 word2;
1295 rt2x00_desc_read(entry_priv->desc, 0, &word0);
1296 rt2x00_desc_read(entry_priv->desc, 2, &word2);
1298 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1299 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1300 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1301 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1304 * Obtain the status about this packet.
1305 * When frame was received with an OFDM bitrate,
1306 * the signal is the PLCP value. If it was received with
1307 * a CCK bitrate the signal is the rate in 100kbit/s.
1309 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1310 rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1311 entry->queue->rt2x00dev->rssi_offset;
1312 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1314 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1315 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1316 else
1317 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1318 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1319 rxdesc->dev_flags |= RXDONE_MY_BSS;
1323 * Interrupt functions.
1325 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1326 const enum data_queue_qid queue_idx)
1328 struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1329 struct queue_entry_priv_pci *entry_priv;
1330 struct queue_entry *entry;
1331 struct txdone_entry_desc txdesc;
1332 u32 word;
1334 while (!rt2x00queue_empty(queue)) {
1335 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1336 entry_priv = entry->priv_data;
1337 rt2x00_desc_read(entry_priv->desc, 0, &word);
1339 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1340 !rt2x00_get_field32(word, TXD_W0_VALID))
1341 break;
1344 * Obtain the status about this packet.
1346 txdesc.flags = 0;
1347 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1348 case 0: /* Success */
1349 case 1: /* Success with retry */
1350 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1351 break;
1352 case 2: /* Failure, excessive retries */
1353 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1354 /* Don't break, this is a failed frame! */
1355 default: /* Failure */
1356 __set_bit(TXDONE_FAILURE, &txdesc.flags);
1358 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1360 rt2x00lib_txdone(entry, &txdesc);
1364 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1366 struct rt2x00_dev *rt2x00dev = dev_instance;
1367 u32 reg;
1370 * Get the interrupt sources & saved to local variable.
1371 * Write register value back to clear pending interrupts.
1373 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1374 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1376 if (!reg)
1377 return IRQ_NONE;
1379 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1380 return IRQ_HANDLED;
1383 * Handle interrupts, walk through all bits
1384 * and run the tasks, the bits are checked in order of
1385 * priority.
1389 * 1 - Beacon timer expired interrupt.
1391 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1392 rt2x00lib_beacondone(rt2x00dev);
1395 * 2 - Rx ring done interrupt.
1397 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1398 rt2x00pci_rxdone(rt2x00dev);
1401 * 3 - Atim ring transmit done interrupt.
1403 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1404 rt2500pci_txdone(rt2x00dev, QID_ATIM);
1407 * 4 - Priority ring transmit done interrupt.
1409 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1410 rt2500pci_txdone(rt2x00dev, QID_AC_BE);
1413 * 5 - Tx ring transmit done interrupt.
1415 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1416 rt2500pci_txdone(rt2x00dev, QID_AC_BK);
1418 return IRQ_HANDLED;
1422 * Device probe functions.
1424 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1426 struct eeprom_93cx6 eeprom;
1427 u32 reg;
1428 u16 word;
1429 u8 *mac;
1431 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1433 eeprom.data = rt2x00dev;
1434 eeprom.register_read = rt2500pci_eepromregister_read;
1435 eeprom.register_write = rt2500pci_eepromregister_write;
1436 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1437 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1438 eeprom.reg_data_in = 0;
1439 eeprom.reg_data_out = 0;
1440 eeprom.reg_data_clock = 0;
1441 eeprom.reg_chip_select = 0;
1443 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1444 EEPROM_SIZE / sizeof(u16));
1447 * Start validation of the data that has been read.
1449 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1450 if (!is_valid_ether_addr(mac)) {
1451 random_ether_addr(mac);
1452 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1455 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1456 if (word == 0xffff) {
1457 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1458 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1459 ANTENNA_SW_DIVERSITY);
1460 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1461 ANTENNA_SW_DIVERSITY);
1462 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1463 LED_MODE_DEFAULT);
1464 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1465 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1466 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1467 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1468 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1471 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1472 if (word == 0xffff) {
1473 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1474 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1475 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1476 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1477 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1480 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1481 if (word == 0xffff) {
1482 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1483 DEFAULT_RSSI_OFFSET);
1484 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1485 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1488 return 0;
1491 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1493 u32 reg;
1494 u16 value;
1495 u16 eeprom;
1498 * Read EEPROM word for configuration.
1500 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1503 * Identify RF chipset.
1505 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1506 rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1507 rt2x00_set_chip_rf(rt2x00dev, value, reg);
1509 if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1510 !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1511 !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1512 !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1513 !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1514 !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1515 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1516 return -ENODEV;
1520 * Identify default antenna configuration.
1522 rt2x00dev->default_ant.tx =
1523 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1524 rt2x00dev->default_ant.rx =
1525 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1528 * Store led mode, for correct led behaviour.
1530 #ifdef CONFIG_RT2X00_LIB_LEDS
1531 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1533 rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1534 if (value == LED_MODE_TXRX_ACTIVITY ||
1535 value == LED_MODE_DEFAULT ||
1536 value == LED_MODE_ASUS)
1537 rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1538 LED_TYPE_ACTIVITY);
1539 #endif /* CONFIG_RT2X00_LIB_LEDS */
1542 * Detect if this device has an hardware controlled radio.
1544 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1545 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1548 * Check if the BBP tuning should be enabled.
1550 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1552 if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1553 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1556 * Read the RSSI <-> dBm offset information.
1558 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1559 rt2x00dev->rssi_offset =
1560 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1562 return 0;
1566 * RF value list for RF2522
1567 * Supports: 2.4 GHz
1569 static const struct rf_channel rf_vals_bg_2522[] = {
1570 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1571 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1572 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1573 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1574 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1575 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1576 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1577 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1578 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1579 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1580 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1581 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1582 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1583 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1587 * RF value list for RF2523
1588 * Supports: 2.4 GHz
1590 static const struct rf_channel rf_vals_bg_2523[] = {
1591 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1592 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1593 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1594 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1595 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1596 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1597 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1598 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1599 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1600 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1601 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1602 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1603 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1604 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1608 * RF value list for RF2524
1609 * Supports: 2.4 GHz
1611 static const struct rf_channel rf_vals_bg_2524[] = {
1612 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1613 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1614 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1615 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1616 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1617 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1618 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1619 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1620 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1621 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1622 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1623 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1624 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1625 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1629 * RF value list for RF2525
1630 * Supports: 2.4 GHz
1632 static const struct rf_channel rf_vals_bg_2525[] = {
1633 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1634 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1635 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1636 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1637 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1638 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1639 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1640 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1641 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1642 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1643 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1644 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1645 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1646 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1650 * RF value list for RF2525e
1651 * Supports: 2.4 GHz
1653 static const struct rf_channel rf_vals_bg_2525e[] = {
1654 { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1655 { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1656 { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1657 { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1658 { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1659 { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1660 { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1661 { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1662 { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1663 { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1664 { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1665 { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1666 { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1667 { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1671 * RF value list for RF5222
1672 * Supports: 2.4 GHz & 5.2 GHz
1674 static const struct rf_channel rf_vals_5222[] = {
1675 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1676 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1677 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1678 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1679 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1680 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1681 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1682 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1683 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1684 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1685 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1686 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1687 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1688 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1690 /* 802.11 UNI / HyperLan 2 */
1691 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1692 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1693 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1694 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1695 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1696 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1697 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1698 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1700 /* 802.11 HyperLan 2 */
1701 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1702 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1703 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1704 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1705 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1706 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1707 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1708 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1709 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1710 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1712 /* 802.11 UNII */
1713 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1714 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1715 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1716 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1717 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1720 static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1722 struct hw_mode_spec *spec = &rt2x00dev->spec;
1723 struct channel_info *info;
1724 char *tx_power;
1725 unsigned int i;
1728 * Initialize all hw fields.
1730 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1731 IEEE80211_HW_SIGNAL_DBM |
1732 IEEE80211_HW_SUPPORTS_PS |
1733 IEEE80211_HW_PS_NULLFUNC_STACK;
1735 rt2x00dev->hw->extra_tx_headroom = 0;
1737 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1738 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1739 rt2x00_eeprom_addr(rt2x00dev,
1740 EEPROM_MAC_ADDR_0));
1743 * Initialize hw_mode information.
1745 spec->supported_bands = SUPPORT_BAND_2GHZ;
1746 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1748 if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1749 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1750 spec->channels = rf_vals_bg_2522;
1751 } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1752 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1753 spec->channels = rf_vals_bg_2523;
1754 } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1755 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1756 spec->channels = rf_vals_bg_2524;
1757 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1758 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1759 spec->channels = rf_vals_bg_2525;
1760 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1761 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1762 spec->channels = rf_vals_bg_2525e;
1763 } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1764 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1765 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1766 spec->channels = rf_vals_5222;
1770 * Create channel information array
1772 info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1773 if (!info)
1774 return -ENOMEM;
1776 spec->channels_info = info;
1778 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1779 for (i = 0; i < 14; i++)
1780 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1782 if (spec->num_channels > 14) {
1783 for (i = 14; i < spec->num_channels; i++)
1784 info[i].tx_power1 = DEFAULT_TXPOWER;
1787 return 0;
1790 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1792 int retval;
1795 * Allocate eeprom data.
1797 retval = rt2500pci_validate_eeprom(rt2x00dev);
1798 if (retval)
1799 return retval;
1801 retval = rt2500pci_init_eeprom(rt2x00dev);
1802 if (retval)
1803 return retval;
1806 * Initialize hw specifications.
1808 retval = rt2500pci_probe_hw_mode(rt2x00dev);
1809 if (retval)
1810 return retval;
1813 * This device requires the atim queue and DMA-mapped skbs.
1815 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1816 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1819 * Set the rssi offset.
1821 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1823 return 0;
1827 * IEEE80211 stack callback functions.
1829 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1831 struct rt2x00_dev *rt2x00dev = hw->priv;
1832 u64 tsf;
1833 u32 reg;
1835 rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1836 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1837 rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1838 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1840 return tsf;
1843 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1845 struct rt2x00_dev *rt2x00dev = hw->priv;
1846 u32 reg;
1848 rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1849 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1852 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1853 .tx = rt2x00mac_tx,
1854 .start = rt2x00mac_start,
1855 .stop = rt2x00mac_stop,
1856 .add_interface = rt2x00mac_add_interface,
1857 .remove_interface = rt2x00mac_remove_interface,
1858 .config = rt2x00mac_config,
1859 .configure_filter = rt2x00mac_configure_filter,
1860 .set_tim = rt2x00mac_set_tim,
1861 .get_stats = rt2x00mac_get_stats,
1862 .bss_info_changed = rt2x00mac_bss_info_changed,
1863 .conf_tx = rt2x00mac_conf_tx,
1864 .get_tx_stats = rt2x00mac_get_tx_stats,
1865 .get_tsf = rt2500pci_get_tsf,
1866 .tx_last_beacon = rt2500pci_tx_last_beacon,
1867 .rfkill_poll = rt2x00mac_rfkill_poll,
1870 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1871 .irq_handler = rt2500pci_interrupt,
1872 .probe_hw = rt2500pci_probe_hw,
1873 .initialize = rt2x00pci_initialize,
1874 .uninitialize = rt2x00pci_uninitialize,
1875 .get_entry_state = rt2500pci_get_entry_state,
1876 .clear_entry = rt2500pci_clear_entry,
1877 .set_device_state = rt2500pci_set_device_state,
1878 .rfkill_poll = rt2500pci_rfkill_poll,
1879 .link_stats = rt2500pci_link_stats,
1880 .reset_tuner = rt2500pci_reset_tuner,
1881 .link_tuner = rt2500pci_link_tuner,
1882 .write_tx_desc = rt2500pci_write_tx_desc,
1883 .write_tx_data = rt2x00pci_write_tx_data,
1884 .write_beacon = rt2500pci_write_beacon,
1885 .kick_tx_queue = rt2500pci_kick_tx_queue,
1886 .kill_tx_queue = rt2500pci_kill_tx_queue,
1887 .fill_rxdone = rt2500pci_fill_rxdone,
1888 .config_filter = rt2500pci_config_filter,
1889 .config_intf = rt2500pci_config_intf,
1890 .config_erp = rt2500pci_config_erp,
1891 .config_ant = rt2500pci_config_ant,
1892 .config = rt2500pci_config,
1895 static const struct data_queue_desc rt2500pci_queue_rx = {
1896 .entry_num = RX_ENTRIES,
1897 .data_size = DATA_FRAME_SIZE,
1898 .desc_size = RXD_DESC_SIZE,
1899 .priv_size = sizeof(struct queue_entry_priv_pci),
1902 static const struct data_queue_desc rt2500pci_queue_tx = {
1903 .entry_num = TX_ENTRIES,
1904 .data_size = DATA_FRAME_SIZE,
1905 .desc_size = TXD_DESC_SIZE,
1906 .priv_size = sizeof(struct queue_entry_priv_pci),
1909 static const struct data_queue_desc rt2500pci_queue_bcn = {
1910 .entry_num = BEACON_ENTRIES,
1911 .data_size = MGMT_FRAME_SIZE,
1912 .desc_size = TXD_DESC_SIZE,
1913 .priv_size = sizeof(struct queue_entry_priv_pci),
1916 static const struct data_queue_desc rt2500pci_queue_atim = {
1917 .entry_num = ATIM_ENTRIES,
1918 .data_size = DATA_FRAME_SIZE,
1919 .desc_size = TXD_DESC_SIZE,
1920 .priv_size = sizeof(struct queue_entry_priv_pci),
1923 static const struct rt2x00_ops rt2500pci_ops = {
1924 .name = KBUILD_MODNAME,
1925 .max_sta_intf = 1,
1926 .max_ap_intf = 1,
1927 .eeprom_size = EEPROM_SIZE,
1928 .rf_size = RF_SIZE,
1929 .tx_queues = NUM_TX_QUEUES,
1930 .rx = &rt2500pci_queue_rx,
1931 .tx = &rt2500pci_queue_tx,
1932 .bcn = &rt2500pci_queue_bcn,
1933 .atim = &rt2500pci_queue_atim,
1934 .lib = &rt2500pci_rt2x00_ops,
1935 .hw = &rt2500pci_mac80211_ops,
1936 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1937 .debugfs = &rt2500pci_rt2x00debug,
1938 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1942 * RT2500pci module information.
1944 static struct pci_device_id rt2500pci_device_table[] = {
1945 { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1946 { 0, }
1949 MODULE_AUTHOR(DRV_PROJECT);
1950 MODULE_VERSION(DRV_VERSION);
1951 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1952 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1953 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1954 MODULE_LICENSE("GPL");
1956 static struct pci_driver rt2500pci_driver = {
1957 .name = KBUILD_MODNAME,
1958 .id_table = rt2500pci_device_table,
1959 .probe = rt2x00pci_probe,
1960 .remove = __devexit_p(rt2x00pci_remove),
1961 .suspend = rt2x00pci_suspend,
1962 .resume = rt2x00pci_resume,
1965 static int __init rt2500pci_init(void)
1967 return pci_register_driver(&rt2500pci_driver);
1970 static void __exit rt2500pci_exit(void)
1972 pci_unregister_driver(&rt2500pci_driver);
1975 module_init(rt2500pci_init);
1976 module_exit(rt2500pci_exit);