Merge branch 'mini2440-dev-unlikely' into mini2440-dev
[linux-2.6/mini2440.git] / drivers / firewire / sbp2.c
blob98dbbda3ad4140d89867e46b1c62d477a37c7179
1 /*
2 * SBP2 driver (SCSI over IEEE1394)
4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 * The basic structure of this driver is based on the old storage driver,
23 * drivers/ieee1394/sbp2.c, originally written by
24 * James Goodwin <jamesg@filanet.com>
25 * with later contributions and ongoing maintenance from
26 * Ben Collins <bcollins@debian.org>,
27 * Stefan Richter <stefanr@s5r6.in-berlin.de>
28 * and many others.
31 #include <linux/blkdev.h>
32 #include <linux/bug.h>
33 #include <linux/completion.h>
34 #include <linux/delay.h>
35 #include <linux/device.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/firewire.h>
38 #include <linux/firewire-constants.h>
39 #include <linux/init.h>
40 #include <linux/jiffies.h>
41 #include <linux/kernel.h>
42 #include <linux/kref.h>
43 #include <linux/list.h>
44 #include <linux/mod_devicetable.h>
45 #include <linux/module.h>
46 #include <linux/moduleparam.h>
47 #include <linux/scatterlist.h>
48 #include <linux/slab.h>
49 #include <linux/spinlock.h>
50 #include <linux/string.h>
51 #include <linux/stringify.h>
52 #include <linux/workqueue.h>
54 #include <asm/byteorder.h>
55 #include <asm/system.h>
57 #include <scsi/scsi.h>
58 #include <scsi/scsi_cmnd.h>
59 #include <scsi/scsi_device.h>
60 #include <scsi/scsi_host.h>
63 * So far only bridges from Oxford Semiconductor are known to support
64 * concurrent logins. Depending on firmware, four or two concurrent logins
65 * are possible on OXFW911 and newer Oxsemi bridges.
67 * Concurrent logins are useful together with cluster filesystems.
69 static int sbp2_param_exclusive_login = 1;
70 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
71 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
72 "(default = Y, use N for concurrent initiators)");
75 * Flags for firmware oddities
77 * - 128kB max transfer
78 * Limit transfer size. Necessary for some old bridges.
80 * - 36 byte inquiry
81 * When scsi_mod probes the device, let the inquiry command look like that
82 * from MS Windows.
84 * - skip mode page 8
85 * Suppress sending of mode_sense for mode page 8 if the device pretends to
86 * support the SCSI Primary Block commands instead of Reduced Block Commands.
88 * - fix capacity
89 * Tell sd_mod to correct the last sector number reported by read_capacity.
90 * Avoids access beyond actual disk limits on devices with an off-by-one bug.
91 * Don't use this with devices which don't have this bug.
93 * - delay inquiry
94 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
96 * - power condition
97 * Set the power condition field in the START STOP UNIT commands sent by
98 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
99 * Some disks need this to spin down or to resume properly.
101 * - override internal blacklist
102 * Instead of adding to the built-in blacklist, use only the workarounds
103 * specified in the module load parameter.
104 * Useful if a blacklist entry interfered with a non-broken device.
106 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
107 #define SBP2_WORKAROUND_INQUIRY_36 0x2
108 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4
109 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8
110 #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10
111 #define SBP2_INQUIRY_DELAY 12
112 #define SBP2_WORKAROUND_POWER_CONDITION 0x20
113 #define SBP2_WORKAROUND_OVERRIDE 0x100
115 static int sbp2_param_workarounds;
116 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
117 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
118 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
119 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
120 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
121 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
122 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
123 ", set power condition in start stop unit = "
124 __stringify(SBP2_WORKAROUND_POWER_CONDITION)
125 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
126 ", or a combination)");
128 /* I don't know why the SCSI stack doesn't define something like this... */
129 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
131 static const char sbp2_driver_name[] = "sbp2";
134 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
135 * and one struct scsi_device per sbp2_logical_unit.
137 struct sbp2_logical_unit {
138 struct sbp2_target *tgt;
139 struct list_head link;
140 struct fw_address_handler address_handler;
141 struct list_head orb_list;
143 u64 command_block_agent_address;
144 u16 lun;
145 int login_id;
148 * The generation is updated once we've logged in or reconnected
149 * to the logical unit. Thus, I/O to the device will automatically
150 * fail and get retried if it happens in a window where the device
151 * is not ready, e.g. after a bus reset but before we reconnect.
153 int generation;
154 int retries;
155 struct delayed_work work;
156 bool has_sdev;
157 bool blocked;
161 * We create one struct sbp2_target per IEEE 1212 Unit Directory
162 * and one struct Scsi_Host per sbp2_target.
164 struct sbp2_target {
165 struct kref kref;
166 struct fw_unit *unit;
167 const char *bus_id;
168 struct list_head lu_list;
170 u64 management_agent_address;
171 u64 guid;
172 int directory_id;
173 int node_id;
174 int address_high;
175 unsigned int workarounds;
176 unsigned int mgt_orb_timeout;
177 unsigned int max_payload;
179 int dont_block; /* counter for each logical unit */
180 int blocked; /* ditto */
183 static struct fw_device *target_device(struct sbp2_target *tgt)
185 return fw_parent_device(tgt->unit);
188 /* Impossible login_id, to detect logout attempt before successful login */
189 #define INVALID_LOGIN_ID 0x10000
191 #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */
192 #define SBP2_ORB_NULL 0x80000000
193 #define SBP2_RETRY_LIMIT 0xf /* 15 retries */
194 #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */
197 * There is no transport protocol limit to the CDB length, but we implement
198 * a fixed length only. 16 bytes is enough for disks larger than 2 TB.
200 #define SBP2_MAX_CDB_SIZE 16
203 * The default maximum s/g segment size of a FireWire controller is
204 * usually 0x10000, but SBP-2 only allows 0xffff. Since buffers have to
205 * be quadlet-aligned, we set the length limit to 0xffff & ~3.
207 #define SBP2_MAX_SEG_SIZE 0xfffc
209 /* Unit directory keys */
210 #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a
211 #define SBP2_CSR_FIRMWARE_REVISION 0x3c
212 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14
213 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
215 /* Management orb opcodes */
216 #define SBP2_LOGIN_REQUEST 0x0
217 #define SBP2_QUERY_LOGINS_REQUEST 0x1
218 #define SBP2_RECONNECT_REQUEST 0x3
219 #define SBP2_SET_PASSWORD_REQUEST 0x4
220 #define SBP2_LOGOUT_REQUEST 0x7
221 #define SBP2_ABORT_TASK_REQUEST 0xb
222 #define SBP2_ABORT_TASK_SET 0xc
223 #define SBP2_LOGICAL_UNIT_RESET 0xe
224 #define SBP2_TARGET_RESET_REQUEST 0xf
226 /* Offsets for command block agent registers */
227 #define SBP2_AGENT_STATE 0x00
228 #define SBP2_AGENT_RESET 0x04
229 #define SBP2_ORB_POINTER 0x08
230 #define SBP2_DOORBELL 0x10
231 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
233 /* Status write response codes */
234 #define SBP2_STATUS_REQUEST_COMPLETE 0x0
235 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1
236 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2
237 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3
239 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
240 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
241 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
242 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
243 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
244 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
245 #define STATUS_GET_ORB_LOW(v) ((v).orb_low)
246 #define STATUS_GET_DATA(v) ((v).data)
248 struct sbp2_status {
249 u32 status;
250 u32 orb_low;
251 u8 data[24];
254 struct sbp2_pointer {
255 __be32 high;
256 __be32 low;
259 struct sbp2_orb {
260 struct fw_transaction t;
261 struct kref kref;
262 dma_addr_t request_bus;
263 int rcode;
264 struct sbp2_pointer pointer;
265 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
266 struct list_head link;
269 #define MANAGEMENT_ORB_LUN(v) ((v))
270 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
271 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
272 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
273 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
274 #define MANAGEMENT_ORB_NOTIFY ((1) << 31)
276 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
277 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
279 struct sbp2_management_orb {
280 struct sbp2_orb base;
281 struct {
282 struct sbp2_pointer password;
283 struct sbp2_pointer response;
284 __be32 misc;
285 __be32 length;
286 struct sbp2_pointer status_fifo;
287 } request;
288 __be32 response[4];
289 dma_addr_t response_bus;
290 struct completion done;
291 struct sbp2_status status;
294 struct sbp2_login_response {
295 __be32 misc;
296 struct sbp2_pointer command_block_agent;
297 __be32 reconnect_hold;
299 #define COMMAND_ORB_DATA_SIZE(v) ((v))
300 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
301 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
302 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
303 #define COMMAND_ORB_SPEED(v) ((v) << 24)
304 #define COMMAND_ORB_DIRECTION ((1) << 27)
305 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
306 #define COMMAND_ORB_NOTIFY ((1) << 31)
308 struct sbp2_command_orb {
309 struct sbp2_orb base;
310 struct {
311 struct sbp2_pointer next;
312 struct sbp2_pointer data_descriptor;
313 __be32 misc;
314 u8 command_block[SBP2_MAX_CDB_SIZE];
315 } request;
316 struct scsi_cmnd *cmd;
317 scsi_done_fn_t done;
318 struct sbp2_logical_unit *lu;
320 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
321 dma_addr_t page_table_bus;
324 #define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */
325 #define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */
328 * List of devices with known bugs.
330 * The firmware_revision field, masked with 0xffff00, is the best
331 * indicator for the type of bridge chip of a device. It yields a few
332 * false positives but this did not break correctly behaving devices
333 * so far.
335 static const struct {
336 u32 firmware_revision;
337 u32 model;
338 unsigned int workarounds;
339 } sbp2_workarounds_table[] = {
340 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
341 .firmware_revision = 0x002800,
342 .model = 0x001010,
343 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
344 SBP2_WORKAROUND_MODE_SENSE_8 |
345 SBP2_WORKAROUND_POWER_CONDITION,
347 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
348 .firmware_revision = 0x002800,
349 .model = 0x000000,
350 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
352 /* Initio bridges, actually only needed for some older ones */ {
353 .firmware_revision = 0x000200,
354 .model = SBP2_ROM_VALUE_WILDCARD,
355 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
357 /* PL-3507 bridge with Prolific firmware */ {
358 .firmware_revision = 0x012800,
359 .model = SBP2_ROM_VALUE_WILDCARD,
360 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
362 /* Symbios bridge */ {
363 .firmware_revision = 0xa0b800,
364 .model = SBP2_ROM_VALUE_WILDCARD,
365 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
367 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
368 .firmware_revision = 0x002600,
369 .model = SBP2_ROM_VALUE_WILDCARD,
370 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
373 * iPod 2nd generation: needs 128k max transfer size workaround
374 * iPod 3rd generation: needs fix capacity workaround
377 .firmware_revision = 0x0a2700,
378 .model = 0x000000,
379 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS |
380 SBP2_WORKAROUND_FIX_CAPACITY,
382 /* iPod 4th generation */ {
383 .firmware_revision = 0x0a2700,
384 .model = 0x000021,
385 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
387 /* iPod mini */ {
388 .firmware_revision = 0x0a2700,
389 .model = 0x000022,
390 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
392 /* iPod mini */ {
393 .firmware_revision = 0x0a2700,
394 .model = 0x000023,
395 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
397 /* iPod Photo */ {
398 .firmware_revision = 0x0a2700,
399 .model = 0x00007e,
400 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
404 static void free_orb(struct kref *kref)
406 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
408 kfree(orb);
411 static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
412 int tcode, int destination, int source,
413 int generation, int speed,
414 unsigned long long offset,
415 void *payload, size_t length, void *callback_data)
417 struct sbp2_logical_unit *lu = callback_data;
418 struct sbp2_orb *orb;
419 struct sbp2_status status;
420 unsigned long flags;
422 if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
423 length < 8 || length > sizeof(status)) {
424 fw_send_response(card, request, RCODE_TYPE_ERROR);
425 return;
428 status.status = be32_to_cpup(payload);
429 status.orb_low = be32_to_cpup(payload + 4);
430 memset(status.data, 0, sizeof(status.data));
431 if (length > 8)
432 memcpy(status.data, payload + 8, length - 8);
434 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
435 fw_notify("non-orb related status write, not handled\n");
436 fw_send_response(card, request, RCODE_COMPLETE);
437 return;
440 /* Lookup the orb corresponding to this status write. */
441 spin_lock_irqsave(&card->lock, flags);
442 list_for_each_entry(orb, &lu->orb_list, link) {
443 if (STATUS_GET_ORB_HIGH(status) == 0 &&
444 STATUS_GET_ORB_LOW(status) == orb->request_bus) {
445 orb->rcode = RCODE_COMPLETE;
446 list_del(&orb->link);
447 break;
450 spin_unlock_irqrestore(&card->lock, flags);
452 if (&orb->link != &lu->orb_list) {
453 orb->callback(orb, &status);
454 kref_put(&orb->kref, free_orb);
455 } else {
456 fw_error("status write for unknown orb\n");
459 fw_send_response(card, request, RCODE_COMPLETE);
462 static void complete_transaction(struct fw_card *card, int rcode,
463 void *payload, size_t length, void *data)
465 struct sbp2_orb *orb = data;
466 unsigned long flags;
469 * This is a little tricky. We can get the status write for
470 * the orb before we get this callback. The status write
471 * handler above will assume the orb pointer transaction was
472 * successful and set the rcode to RCODE_COMPLETE for the orb.
473 * So this callback only sets the rcode if it hasn't already
474 * been set and only does the cleanup if the transaction
475 * failed and we didn't already get a status write.
477 spin_lock_irqsave(&card->lock, flags);
479 if (orb->rcode == -1)
480 orb->rcode = rcode;
481 if (orb->rcode != RCODE_COMPLETE) {
482 list_del(&orb->link);
483 spin_unlock_irqrestore(&card->lock, flags);
484 orb->callback(orb, NULL);
485 } else {
486 spin_unlock_irqrestore(&card->lock, flags);
489 kref_put(&orb->kref, free_orb);
492 static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
493 int node_id, int generation, u64 offset)
495 struct fw_device *device = target_device(lu->tgt);
496 unsigned long flags;
498 orb->pointer.high = 0;
499 orb->pointer.low = cpu_to_be32(orb->request_bus);
501 spin_lock_irqsave(&device->card->lock, flags);
502 list_add_tail(&orb->link, &lu->orb_list);
503 spin_unlock_irqrestore(&device->card->lock, flags);
505 /* Take a ref for the orb list and for the transaction callback. */
506 kref_get(&orb->kref);
507 kref_get(&orb->kref);
509 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
510 node_id, generation, device->max_speed, offset,
511 &orb->pointer, sizeof(orb->pointer),
512 complete_transaction, orb);
515 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
517 struct fw_device *device = target_device(lu->tgt);
518 struct sbp2_orb *orb, *next;
519 struct list_head list;
520 unsigned long flags;
521 int retval = -ENOENT;
523 INIT_LIST_HEAD(&list);
524 spin_lock_irqsave(&device->card->lock, flags);
525 list_splice_init(&lu->orb_list, &list);
526 spin_unlock_irqrestore(&device->card->lock, flags);
528 list_for_each_entry_safe(orb, next, &list, link) {
529 retval = 0;
530 if (fw_cancel_transaction(device->card, &orb->t) == 0)
531 continue;
533 orb->rcode = RCODE_CANCELLED;
534 orb->callback(orb, NULL);
537 return retval;
540 static void complete_management_orb(struct sbp2_orb *base_orb,
541 struct sbp2_status *status)
543 struct sbp2_management_orb *orb =
544 container_of(base_orb, struct sbp2_management_orb, base);
546 if (status)
547 memcpy(&orb->status, status, sizeof(*status));
548 complete(&orb->done);
551 static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
552 int generation, int function,
553 int lun_or_login_id, void *response)
555 struct fw_device *device = target_device(lu->tgt);
556 struct sbp2_management_orb *orb;
557 unsigned int timeout;
558 int retval = -ENOMEM;
560 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
561 return 0;
563 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
564 if (orb == NULL)
565 return -ENOMEM;
567 kref_init(&orb->base.kref);
568 orb->response_bus =
569 dma_map_single(device->card->device, &orb->response,
570 sizeof(orb->response), DMA_FROM_DEVICE);
571 if (dma_mapping_error(device->card->device, orb->response_bus))
572 goto fail_mapping_response;
574 orb->request.response.high = 0;
575 orb->request.response.low = cpu_to_be32(orb->response_bus);
577 orb->request.misc = cpu_to_be32(
578 MANAGEMENT_ORB_NOTIFY |
579 MANAGEMENT_ORB_FUNCTION(function) |
580 MANAGEMENT_ORB_LUN(lun_or_login_id));
581 orb->request.length = cpu_to_be32(
582 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
584 orb->request.status_fifo.high =
585 cpu_to_be32(lu->address_handler.offset >> 32);
586 orb->request.status_fifo.low =
587 cpu_to_be32(lu->address_handler.offset);
589 if (function == SBP2_LOGIN_REQUEST) {
590 /* Ask for 2^2 == 4 seconds reconnect grace period */
591 orb->request.misc |= cpu_to_be32(
592 MANAGEMENT_ORB_RECONNECT(2) |
593 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
594 timeout = lu->tgt->mgt_orb_timeout;
595 } else {
596 timeout = SBP2_ORB_TIMEOUT;
599 init_completion(&orb->done);
600 orb->base.callback = complete_management_orb;
602 orb->base.request_bus =
603 dma_map_single(device->card->device, &orb->request,
604 sizeof(orb->request), DMA_TO_DEVICE);
605 if (dma_mapping_error(device->card->device, orb->base.request_bus))
606 goto fail_mapping_request;
608 sbp2_send_orb(&orb->base, lu, node_id, generation,
609 lu->tgt->management_agent_address);
611 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
613 retval = -EIO;
614 if (sbp2_cancel_orbs(lu) == 0) {
615 fw_error("%s: orb reply timed out, rcode=0x%02x\n",
616 lu->tgt->bus_id, orb->base.rcode);
617 goto out;
620 if (orb->base.rcode != RCODE_COMPLETE) {
621 fw_error("%s: management write failed, rcode 0x%02x\n",
622 lu->tgt->bus_id, orb->base.rcode);
623 goto out;
626 if (STATUS_GET_RESPONSE(orb->status) != 0 ||
627 STATUS_GET_SBP_STATUS(orb->status) != 0) {
628 fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
629 STATUS_GET_RESPONSE(orb->status),
630 STATUS_GET_SBP_STATUS(orb->status));
631 goto out;
634 retval = 0;
635 out:
636 dma_unmap_single(device->card->device, orb->base.request_bus,
637 sizeof(orb->request), DMA_TO_DEVICE);
638 fail_mapping_request:
639 dma_unmap_single(device->card->device, orb->response_bus,
640 sizeof(orb->response), DMA_FROM_DEVICE);
641 fail_mapping_response:
642 if (response)
643 memcpy(response, orb->response, sizeof(orb->response));
644 kref_put(&orb->base.kref, free_orb);
646 return retval;
649 static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
651 struct fw_device *device = target_device(lu->tgt);
652 __be32 d = 0;
654 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
655 lu->tgt->node_id, lu->generation, device->max_speed,
656 lu->command_block_agent_address + SBP2_AGENT_RESET,
657 &d, sizeof(d));
660 static void complete_agent_reset_write_no_wait(struct fw_card *card,
661 int rcode, void *payload, size_t length, void *data)
663 kfree(data);
666 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
668 struct fw_device *device = target_device(lu->tgt);
669 struct fw_transaction *t;
670 static __be32 d;
672 t = kmalloc(sizeof(*t), GFP_ATOMIC);
673 if (t == NULL)
674 return;
676 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
677 lu->tgt->node_id, lu->generation, device->max_speed,
678 lu->command_block_agent_address + SBP2_AGENT_RESET,
679 &d, sizeof(d), complete_agent_reset_write_no_wait, t);
682 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
685 * We may access dont_block without taking card->lock here:
686 * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
687 * are currently serialized against each other.
688 * And a wrong result in sbp2_conditionally_block()'s access of
689 * dont_block is rather harmless, it simply misses its first chance.
691 --lu->tgt->dont_block;
695 * Blocks lu->tgt if all of the following conditions are met:
696 * - Login, INQUIRY, and high-level SCSI setup of all of the target's
697 * logical units have been finished (indicated by dont_block == 0).
698 * - lu->generation is stale.
700 * Note, scsi_block_requests() must be called while holding card->lock,
701 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
702 * unblock the target.
704 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
706 struct sbp2_target *tgt = lu->tgt;
707 struct fw_card *card = target_device(tgt)->card;
708 struct Scsi_Host *shost =
709 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
710 unsigned long flags;
712 spin_lock_irqsave(&card->lock, flags);
713 if (!tgt->dont_block && !lu->blocked &&
714 lu->generation != card->generation) {
715 lu->blocked = true;
716 if (++tgt->blocked == 1)
717 scsi_block_requests(shost);
719 spin_unlock_irqrestore(&card->lock, flags);
723 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
724 * Note, it is harmless to run scsi_unblock_requests() outside the
725 * card->lock protected section. On the other hand, running it inside
726 * the section might clash with shost->host_lock.
728 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
730 struct sbp2_target *tgt = lu->tgt;
731 struct fw_card *card = target_device(tgt)->card;
732 struct Scsi_Host *shost =
733 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
734 unsigned long flags;
735 bool unblock = false;
737 spin_lock_irqsave(&card->lock, flags);
738 if (lu->blocked && lu->generation == card->generation) {
739 lu->blocked = false;
740 unblock = --tgt->blocked == 0;
742 spin_unlock_irqrestore(&card->lock, flags);
744 if (unblock)
745 scsi_unblock_requests(shost);
749 * Prevents future blocking of tgt and unblocks it.
750 * Note, it is harmless to run scsi_unblock_requests() outside the
751 * card->lock protected section. On the other hand, running it inside
752 * the section might clash with shost->host_lock.
754 static void sbp2_unblock(struct sbp2_target *tgt)
756 struct fw_card *card = target_device(tgt)->card;
757 struct Scsi_Host *shost =
758 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
759 unsigned long flags;
761 spin_lock_irqsave(&card->lock, flags);
762 ++tgt->dont_block;
763 spin_unlock_irqrestore(&card->lock, flags);
765 scsi_unblock_requests(shost);
768 static int sbp2_lun2int(u16 lun)
770 struct scsi_lun eight_bytes_lun;
772 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
773 eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
774 eight_bytes_lun.scsi_lun[1] = lun & 0xff;
776 return scsilun_to_int(&eight_bytes_lun);
779 static void sbp2_release_target(struct kref *kref)
781 struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
782 struct sbp2_logical_unit *lu, *next;
783 struct Scsi_Host *shost =
784 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
785 struct scsi_device *sdev;
786 struct fw_device *device = target_device(tgt);
788 /* prevent deadlocks */
789 sbp2_unblock(tgt);
791 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
792 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
793 if (sdev) {
794 scsi_remove_device(sdev);
795 scsi_device_put(sdev);
797 if (lu->login_id != INVALID_LOGIN_ID) {
798 int generation, node_id;
800 * tgt->node_id may be obsolete here if we failed
801 * during initial login or after a bus reset where
802 * the topology changed.
804 generation = device->generation;
805 smp_rmb(); /* node_id vs. generation */
806 node_id = device->node_id;
807 sbp2_send_management_orb(lu, node_id, generation,
808 SBP2_LOGOUT_REQUEST,
809 lu->login_id, NULL);
811 fw_core_remove_address_handler(&lu->address_handler);
812 list_del(&lu->link);
813 kfree(lu);
815 scsi_remove_host(shost);
816 fw_notify("released %s, target %d:0:0\n", tgt->bus_id, shost->host_no);
818 fw_unit_put(tgt->unit);
819 scsi_host_put(shost);
820 fw_device_put(device);
823 static struct workqueue_struct *sbp2_wq;
825 static void sbp2_target_put(struct sbp2_target *tgt)
827 kref_put(&tgt->kref, sbp2_release_target);
831 * Always get the target's kref when scheduling work on one its units.
832 * Each workqueue job is responsible to call sbp2_target_put() upon return.
834 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
836 kref_get(&lu->tgt->kref);
837 if (!queue_delayed_work(sbp2_wq, &lu->work, delay))
838 sbp2_target_put(lu->tgt);
842 * Write retransmit retry values into the BUSY_TIMEOUT register.
843 * - The single-phase retry protocol is supported by all SBP-2 devices, but the
844 * default retry_limit value is 0 (i.e. never retry transmission). We write a
845 * saner value after logging into the device.
846 * - The dual-phase retry protocol is optional to implement, and if not
847 * supported, writes to the dual-phase portion of the register will be
848 * ignored. We try to write the original 1394-1995 default here.
849 * - In the case of devices that are also SBP-3-compliant, all writes are
850 * ignored, as the register is read-only, but contains single-phase retry of
851 * 15, which is what we're trying to set for all SBP-2 device anyway, so this
852 * write attempt is safe and yields more consistent behavior for all devices.
854 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
855 * and section 6.4 of the SBP-3 spec for further details.
857 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
859 struct fw_device *device = target_device(lu->tgt);
860 __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
862 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
863 lu->tgt->node_id, lu->generation, device->max_speed,
864 CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT,
865 &d, sizeof(d));
868 static void sbp2_reconnect(struct work_struct *work);
870 static void sbp2_login(struct work_struct *work)
872 struct sbp2_logical_unit *lu =
873 container_of(work, struct sbp2_logical_unit, work.work);
874 struct sbp2_target *tgt = lu->tgt;
875 struct fw_device *device = target_device(tgt);
876 struct Scsi_Host *shost;
877 struct scsi_device *sdev;
878 struct sbp2_login_response response;
879 int generation, node_id, local_node_id;
881 if (fw_device_is_shutdown(device))
882 goto out;
884 generation = device->generation;
885 smp_rmb(); /* node IDs must not be older than generation */
886 node_id = device->node_id;
887 local_node_id = device->card->node_id;
889 /* If this is a re-login attempt, log out, or we might be rejected. */
890 if (lu->has_sdev)
891 sbp2_send_management_orb(lu, device->node_id, generation,
892 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
894 if (sbp2_send_management_orb(lu, node_id, generation,
895 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
896 if (lu->retries++ < 5) {
897 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
898 } else {
899 fw_error("%s: failed to login to LUN %04x\n",
900 tgt->bus_id, lu->lun);
901 /* Let any waiting I/O fail from now on. */
902 sbp2_unblock(lu->tgt);
904 goto out;
907 tgt->node_id = node_id;
908 tgt->address_high = local_node_id << 16;
909 smp_wmb(); /* node IDs must not be older than generation */
910 lu->generation = generation;
912 lu->command_block_agent_address =
913 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
914 << 32) | be32_to_cpu(response.command_block_agent.low);
915 lu->login_id = be32_to_cpu(response.misc) & 0xffff;
917 fw_notify("%s: logged in to LUN %04x (%d retries)\n",
918 tgt->bus_id, lu->lun, lu->retries);
920 /* set appropriate retry limit(s) in BUSY_TIMEOUT register */
921 sbp2_set_busy_timeout(lu);
923 PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
924 sbp2_agent_reset(lu);
926 /* This was a re-login. */
927 if (lu->has_sdev) {
928 sbp2_cancel_orbs(lu);
929 sbp2_conditionally_unblock(lu);
930 goto out;
933 if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
934 ssleep(SBP2_INQUIRY_DELAY);
936 shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
937 sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
939 * FIXME: We are unable to perform reconnects while in sbp2_login().
940 * Therefore __scsi_add_device() will get into trouble if a bus reset
941 * happens in parallel. It will either fail or leave us with an
942 * unusable sdev. As a workaround we check for this and retry the
943 * whole login and SCSI probing.
946 /* Reported error during __scsi_add_device() */
947 if (IS_ERR(sdev))
948 goto out_logout_login;
950 /* Unreported error during __scsi_add_device() */
951 smp_rmb(); /* get current card generation */
952 if (generation != device->card->generation) {
953 scsi_remove_device(sdev);
954 scsi_device_put(sdev);
955 goto out_logout_login;
958 /* No error during __scsi_add_device() */
959 lu->has_sdev = true;
960 scsi_device_put(sdev);
961 sbp2_allow_block(lu);
962 goto out;
964 out_logout_login:
965 smp_rmb(); /* generation may have changed */
966 generation = device->generation;
967 smp_rmb(); /* node_id must not be older than generation */
969 sbp2_send_management_orb(lu, device->node_id, generation,
970 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
972 * If a bus reset happened, sbp2_update will have requeued
973 * lu->work already. Reset the work from reconnect to login.
975 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
976 out:
977 sbp2_target_put(tgt);
980 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
982 struct sbp2_logical_unit *lu;
984 lu = kmalloc(sizeof(*lu), GFP_KERNEL);
985 if (!lu)
986 return -ENOMEM;
988 lu->address_handler.length = 0x100;
989 lu->address_handler.address_callback = sbp2_status_write;
990 lu->address_handler.callback_data = lu;
992 if (fw_core_add_address_handler(&lu->address_handler,
993 &fw_high_memory_region) < 0) {
994 kfree(lu);
995 return -ENOMEM;
998 lu->tgt = tgt;
999 lu->lun = lun_entry & 0xffff;
1000 lu->login_id = INVALID_LOGIN_ID;
1001 lu->retries = 0;
1002 lu->has_sdev = false;
1003 lu->blocked = false;
1004 ++tgt->dont_block;
1005 INIT_LIST_HEAD(&lu->orb_list);
1006 INIT_DELAYED_WORK(&lu->work, sbp2_login);
1008 list_add_tail(&lu->link, &tgt->lu_list);
1009 return 0;
1012 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
1014 struct fw_csr_iterator ci;
1015 int key, value;
1017 fw_csr_iterator_init(&ci, directory);
1018 while (fw_csr_iterator_next(&ci, &key, &value))
1019 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1020 sbp2_add_logical_unit(tgt, value) < 0)
1021 return -ENOMEM;
1022 return 0;
1025 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
1026 u32 *model, u32 *firmware_revision)
1028 struct fw_csr_iterator ci;
1029 int key, value;
1031 fw_csr_iterator_init(&ci, directory);
1032 while (fw_csr_iterator_next(&ci, &key, &value)) {
1033 switch (key) {
1035 case CSR_DEPENDENT_INFO | CSR_OFFSET:
1036 tgt->management_agent_address =
1037 CSR_REGISTER_BASE + 4 * value;
1038 break;
1040 case CSR_DIRECTORY_ID:
1041 tgt->directory_id = value;
1042 break;
1044 case CSR_MODEL:
1045 *model = value;
1046 break;
1048 case SBP2_CSR_FIRMWARE_REVISION:
1049 *firmware_revision = value;
1050 break;
1052 case SBP2_CSR_UNIT_CHARACTERISTICS:
1053 /* the timeout value is stored in 500ms units */
1054 tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500;
1055 break;
1057 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1058 if (sbp2_add_logical_unit(tgt, value) < 0)
1059 return -ENOMEM;
1060 break;
1062 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1063 /* Adjust for the increment in the iterator */
1064 if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1065 return -ENOMEM;
1066 break;
1069 return 0;
1073 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
1074 * provided in the config rom. Most devices do provide a value, which
1075 * we'll use for login management orbs, but with some sane limits.
1077 static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt)
1079 unsigned int timeout = tgt->mgt_orb_timeout;
1081 if (timeout > 40000)
1082 fw_notify("%s: %ds mgt_ORB_timeout limited to 40s\n",
1083 tgt->bus_id, timeout / 1000);
1085 tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000);
1088 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1089 u32 firmware_revision)
1091 int i;
1092 unsigned int w = sbp2_param_workarounds;
1094 if (w)
1095 fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
1096 "if you need the workarounds parameter for %s\n",
1097 tgt->bus_id);
1099 if (w & SBP2_WORKAROUND_OVERRIDE)
1100 goto out;
1102 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1104 if (sbp2_workarounds_table[i].firmware_revision !=
1105 (firmware_revision & 0xffffff00))
1106 continue;
1108 if (sbp2_workarounds_table[i].model != model &&
1109 sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1110 continue;
1112 w |= sbp2_workarounds_table[i].workarounds;
1113 break;
1115 out:
1116 if (w)
1117 fw_notify("Workarounds for %s: 0x%x "
1118 "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1119 tgt->bus_id, w, firmware_revision, model);
1120 tgt->workarounds = w;
1123 static struct scsi_host_template scsi_driver_template;
1125 static int sbp2_probe(struct device *dev)
1127 struct fw_unit *unit = fw_unit(dev);
1128 struct fw_device *device = fw_parent_device(unit);
1129 struct sbp2_target *tgt;
1130 struct sbp2_logical_unit *lu;
1131 struct Scsi_Host *shost;
1132 u32 model, firmware_revision;
1134 if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
1135 BUG_ON(dma_set_max_seg_size(device->card->device,
1136 SBP2_MAX_SEG_SIZE));
1138 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1139 if (shost == NULL)
1140 return -ENOMEM;
1142 tgt = (struct sbp2_target *)shost->hostdata;
1143 dev_set_drvdata(&unit->device, tgt);
1144 tgt->unit = unit;
1145 kref_init(&tgt->kref);
1146 INIT_LIST_HEAD(&tgt->lu_list);
1147 tgt->bus_id = dev_name(&unit->device);
1148 tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1150 if (fw_device_enable_phys_dma(device) < 0)
1151 goto fail_shost_put;
1153 shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
1155 if (scsi_add_host(shost, &unit->device) < 0)
1156 goto fail_shost_put;
1158 fw_device_get(device);
1159 fw_unit_get(unit);
1161 /* implicit directory ID */
1162 tgt->directory_id = ((unit->directory - device->config_rom) * 4
1163 + CSR_CONFIG_ROM) & 0xffffff;
1165 firmware_revision = SBP2_ROM_VALUE_MISSING;
1166 model = SBP2_ROM_VALUE_MISSING;
1168 if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1169 &firmware_revision) < 0)
1170 goto fail_tgt_put;
1172 sbp2_clamp_management_orb_timeout(tgt);
1173 sbp2_init_workarounds(tgt, model, firmware_revision);
1176 * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1177 * and so on up to 4096 bytes. The SBP-2 max_payload field
1178 * specifies the max payload size as 2 ^ (max_payload + 2), so
1179 * if we set this to max_speed + 7, we get the right value.
1181 tgt->max_payload = min(device->max_speed + 7, 10U);
1182 tgt->max_payload = min(tgt->max_payload, device->card->max_receive - 1);
1184 /* Do the login in a workqueue so we can easily reschedule retries. */
1185 list_for_each_entry(lu, &tgt->lu_list, link)
1186 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1187 return 0;
1189 fail_tgt_put:
1190 sbp2_target_put(tgt);
1191 return -ENOMEM;
1193 fail_shost_put:
1194 scsi_host_put(shost);
1195 return -ENOMEM;
1198 static int sbp2_remove(struct device *dev)
1200 struct fw_unit *unit = fw_unit(dev);
1201 struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1203 sbp2_target_put(tgt);
1204 return 0;
1207 static void sbp2_reconnect(struct work_struct *work)
1209 struct sbp2_logical_unit *lu =
1210 container_of(work, struct sbp2_logical_unit, work.work);
1211 struct sbp2_target *tgt = lu->tgt;
1212 struct fw_device *device = target_device(tgt);
1213 int generation, node_id, local_node_id;
1215 if (fw_device_is_shutdown(device))
1216 goto out;
1218 generation = device->generation;
1219 smp_rmb(); /* node IDs must not be older than generation */
1220 node_id = device->node_id;
1221 local_node_id = device->card->node_id;
1223 if (sbp2_send_management_orb(lu, node_id, generation,
1224 SBP2_RECONNECT_REQUEST,
1225 lu->login_id, NULL) < 0) {
1227 * If reconnect was impossible even though we are in the
1228 * current generation, fall back and try to log in again.
1230 * We could check for "Function rejected" status, but
1231 * looking at the bus generation as simpler and more general.
1233 smp_rmb(); /* get current card generation */
1234 if (generation == device->card->generation ||
1235 lu->retries++ >= 5) {
1236 fw_error("%s: failed to reconnect\n", tgt->bus_id);
1237 lu->retries = 0;
1238 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
1240 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1241 goto out;
1244 tgt->node_id = node_id;
1245 tgt->address_high = local_node_id << 16;
1246 smp_wmb(); /* node IDs must not be older than generation */
1247 lu->generation = generation;
1249 fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
1250 tgt->bus_id, lu->lun, lu->retries);
1252 sbp2_agent_reset(lu);
1253 sbp2_cancel_orbs(lu);
1254 sbp2_conditionally_unblock(lu);
1255 out:
1256 sbp2_target_put(tgt);
1259 static void sbp2_update(struct fw_unit *unit)
1261 struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1262 struct sbp2_logical_unit *lu;
1264 fw_device_enable_phys_dma(fw_parent_device(unit));
1267 * Fw-core serializes sbp2_update() against sbp2_remove().
1268 * Iteration over tgt->lu_list is therefore safe here.
1270 list_for_each_entry(lu, &tgt->lu_list, link) {
1271 sbp2_conditionally_block(lu);
1272 lu->retries = 0;
1273 sbp2_queue_work(lu, 0);
1277 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1278 #define SBP2_SW_VERSION_ENTRY 0x00010483
1280 static const struct ieee1394_device_id sbp2_id_table[] = {
1282 .match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1283 IEEE1394_MATCH_VERSION,
1284 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1285 .version = SBP2_SW_VERSION_ENTRY,
1290 static struct fw_driver sbp2_driver = {
1291 .driver = {
1292 .owner = THIS_MODULE,
1293 .name = sbp2_driver_name,
1294 .bus = &fw_bus_type,
1295 .probe = sbp2_probe,
1296 .remove = sbp2_remove,
1298 .update = sbp2_update,
1299 .id_table = sbp2_id_table,
1302 static void sbp2_unmap_scatterlist(struct device *card_device,
1303 struct sbp2_command_orb *orb)
1305 if (scsi_sg_count(orb->cmd))
1306 dma_unmap_sg(card_device, scsi_sglist(orb->cmd),
1307 scsi_sg_count(orb->cmd),
1308 orb->cmd->sc_data_direction);
1310 if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1311 dma_unmap_single(card_device, orb->page_table_bus,
1312 sizeof(orb->page_table), DMA_TO_DEVICE);
1315 static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1317 int sam_status;
1319 sense_data[0] = 0x70;
1320 sense_data[1] = 0x0;
1321 sense_data[2] = sbp2_status[1];
1322 sense_data[3] = sbp2_status[4];
1323 sense_data[4] = sbp2_status[5];
1324 sense_data[5] = sbp2_status[6];
1325 sense_data[6] = sbp2_status[7];
1326 sense_data[7] = 10;
1327 sense_data[8] = sbp2_status[8];
1328 sense_data[9] = sbp2_status[9];
1329 sense_data[10] = sbp2_status[10];
1330 sense_data[11] = sbp2_status[11];
1331 sense_data[12] = sbp2_status[2];
1332 sense_data[13] = sbp2_status[3];
1333 sense_data[14] = sbp2_status[12];
1334 sense_data[15] = sbp2_status[13];
1336 sam_status = sbp2_status[0] & 0x3f;
1338 switch (sam_status) {
1339 case SAM_STAT_GOOD:
1340 case SAM_STAT_CHECK_CONDITION:
1341 case SAM_STAT_CONDITION_MET:
1342 case SAM_STAT_BUSY:
1343 case SAM_STAT_RESERVATION_CONFLICT:
1344 case SAM_STAT_COMMAND_TERMINATED:
1345 return DID_OK << 16 | sam_status;
1347 default:
1348 return DID_ERROR << 16;
1352 static void complete_command_orb(struct sbp2_orb *base_orb,
1353 struct sbp2_status *status)
1355 struct sbp2_command_orb *orb =
1356 container_of(base_orb, struct sbp2_command_orb, base);
1357 struct fw_device *device = target_device(orb->lu->tgt);
1358 int result;
1360 if (status != NULL) {
1361 if (STATUS_GET_DEAD(*status))
1362 sbp2_agent_reset_no_wait(orb->lu);
1364 switch (STATUS_GET_RESPONSE(*status)) {
1365 case SBP2_STATUS_REQUEST_COMPLETE:
1366 result = DID_OK << 16;
1367 break;
1368 case SBP2_STATUS_TRANSPORT_FAILURE:
1369 result = DID_BUS_BUSY << 16;
1370 break;
1371 case SBP2_STATUS_ILLEGAL_REQUEST:
1372 case SBP2_STATUS_VENDOR_DEPENDENT:
1373 default:
1374 result = DID_ERROR << 16;
1375 break;
1378 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1379 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1380 orb->cmd->sense_buffer);
1381 } else {
1383 * If the orb completes with status == NULL, something
1384 * went wrong, typically a bus reset happened mid-orb
1385 * or when sending the write (less likely).
1387 result = DID_BUS_BUSY << 16;
1388 sbp2_conditionally_block(orb->lu);
1391 dma_unmap_single(device->card->device, orb->base.request_bus,
1392 sizeof(orb->request), DMA_TO_DEVICE);
1393 sbp2_unmap_scatterlist(device->card->device, orb);
1395 orb->cmd->result = result;
1396 orb->done(orb->cmd);
1399 static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1400 struct fw_device *device, struct sbp2_logical_unit *lu)
1402 struct scatterlist *sg = scsi_sglist(orb->cmd);
1403 int i, n;
1405 n = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1406 orb->cmd->sc_data_direction);
1407 if (n == 0)
1408 goto fail;
1411 * Handle the special case where there is only one element in
1412 * the scatter list by converting it to an immediate block
1413 * request. This is also a workaround for broken devices such
1414 * as the second generation iPod which doesn't support page
1415 * tables.
1417 if (n == 1) {
1418 orb->request.data_descriptor.high =
1419 cpu_to_be32(lu->tgt->address_high);
1420 orb->request.data_descriptor.low =
1421 cpu_to_be32(sg_dma_address(sg));
1422 orb->request.misc |=
1423 cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1424 return 0;
1427 for_each_sg(sg, sg, n, i) {
1428 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1429 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1432 orb->page_table_bus =
1433 dma_map_single(device->card->device, orb->page_table,
1434 sizeof(orb->page_table), DMA_TO_DEVICE);
1435 if (dma_mapping_error(device->card->device, orb->page_table_bus))
1436 goto fail_page_table;
1439 * The data_descriptor pointer is the one case where we need
1440 * to fill in the node ID part of the address. All other
1441 * pointers assume that the data referenced reside on the
1442 * initiator (i.e. us), but data_descriptor can refer to data
1443 * on other nodes so we need to put our ID in descriptor.high.
1445 orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1446 orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus);
1447 orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1448 COMMAND_ORB_DATA_SIZE(n));
1450 return 0;
1452 fail_page_table:
1453 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1454 scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction);
1455 fail:
1456 return -ENOMEM;
1459 /* SCSI stack integration */
1461 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1463 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1464 struct fw_device *device = target_device(lu->tgt);
1465 struct sbp2_command_orb *orb;
1466 int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1469 * Bidirectional commands are not yet implemented, and unknown
1470 * transfer direction not handled.
1472 if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1473 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1474 cmd->result = DID_ERROR << 16;
1475 done(cmd);
1476 return 0;
1479 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1480 if (orb == NULL) {
1481 fw_notify("failed to alloc orb\n");
1482 return SCSI_MLQUEUE_HOST_BUSY;
1485 /* Initialize rcode to something not RCODE_COMPLETE. */
1486 orb->base.rcode = -1;
1487 kref_init(&orb->base.kref);
1489 orb->lu = lu;
1490 orb->done = done;
1491 orb->cmd = cmd;
1493 orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1494 orb->request.misc = cpu_to_be32(
1495 COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1496 COMMAND_ORB_SPEED(device->max_speed) |
1497 COMMAND_ORB_NOTIFY);
1499 if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1500 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1502 generation = device->generation;
1503 smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */
1505 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1506 goto out;
1508 memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1510 orb->base.callback = complete_command_orb;
1511 orb->base.request_bus =
1512 dma_map_single(device->card->device, &orb->request,
1513 sizeof(orb->request), DMA_TO_DEVICE);
1514 if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1515 sbp2_unmap_scatterlist(device->card->device, orb);
1516 goto out;
1519 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1520 lu->command_block_agent_address + SBP2_ORB_POINTER);
1521 retval = 0;
1522 out:
1523 kref_put(&orb->base.kref, free_orb);
1524 return retval;
1527 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1529 struct sbp2_logical_unit *lu = sdev->hostdata;
1531 /* (Re-)Adding logical units via the SCSI stack is not supported. */
1532 if (!lu)
1533 return -ENOSYS;
1535 sdev->allow_restart = 1;
1537 /* SBP-2 requires quadlet alignment of the data buffers. */
1538 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1540 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1541 sdev->inquiry_len = 36;
1543 return 0;
1546 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1548 struct sbp2_logical_unit *lu = sdev->hostdata;
1550 sdev->use_10_for_rw = 1;
1552 if (sbp2_param_exclusive_login)
1553 sdev->manage_start_stop = 1;
1555 if (sdev->type == TYPE_ROM)
1556 sdev->use_10_for_ms = 1;
1558 if (sdev->type == TYPE_DISK &&
1559 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1560 sdev->skip_ms_page_8 = 1;
1562 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1563 sdev->fix_capacity = 1;
1565 if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1566 sdev->start_stop_pwr_cond = 1;
1568 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1569 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1571 blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE);
1573 return 0;
1577 * Called by scsi stack when something has really gone wrong. Usually
1578 * called when a command has timed-out for some reason.
1580 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1582 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1584 fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
1585 sbp2_agent_reset(lu);
1586 sbp2_cancel_orbs(lu);
1588 return SUCCESS;
1592 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1593 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
1595 * This is the concatenation of target port identifier and logical unit
1596 * identifier as per SAM-2...SAM-4 annex A.
1598 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1599 struct device_attribute *attr, char *buf)
1601 struct scsi_device *sdev = to_scsi_device(dev);
1602 struct sbp2_logical_unit *lu;
1604 if (!sdev)
1605 return 0;
1607 lu = sdev->hostdata;
1609 return sprintf(buf, "%016llx:%06x:%04x\n",
1610 (unsigned long long)lu->tgt->guid,
1611 lu->tgt->directory_id, lu->lun);
1614 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1616 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1617 &dev_attr_ieee1394_id,
1618 NULL
1621 static struct scsi_host_template scsi_driver_template = {
1622 .module = THIS_MODULE,
1623 .name = "SBP-2 IEEE-1394",
1624 .proc_name = sbp2_driver_name,
1625 .queuecommand = sbp2_scsi_queuecommand,
1626 .slave_alloc = sbp2_scsi_slave_alloc,
1627 .slave_configure = sbp2_scsi_slave_configure,
1628 .eh_abort_handler = sbp2_scsi_abort,
1629 .this_id = -1,
1630 .sg_tablesize = SG_ALL,
1631 .use_clustering = ENABLE_CLUSTERING,
1632 .cmd_per_lun = 1,
1633 .can_queue = 1,
1634 .sdev_attrs = sbp2_scsi_sysfs_attrs,
1637 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1638 MODULE_DESCRIPTION("SCSI over IEEE1394");
1639 MODULE_LICENSE("GPL");
1640 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1642 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1643 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1644 MODULE_ALIAS("sbp2");
1645 #endif
1647 static int __init sbp2_init(void)
1649 sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1650 if (!sbp2_wq)
1651 return -ENOMEM;
1653 return driver_register(&sbp2_driver.driver);
1656 static void __exit sbp2_cleanup(void)
1658 driver_unregister(&sbp2_driver.driver);
1659 destroy_workqueue(sbp2_wq);
1662 module_init(sbp2_init);
1663 module_exit(sbp2_cleanup);