1 #include <linux/kernel.h>
2 #include <linux/sched.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/timer.h>
6 #include <linux/acpi_pmtmr.h>
7 #include <linux/cpufreq.h>
9 #include <linux/delay.h>
10 #include <linux/clocksource.h>
11 #include <linux/percpu.h>
12 #include <linux/timex.h>
15 #include <asm/timer.h>
16 #include <asm/vgtod.h>
18 #include <asm/delay.h>
19 #include <asm/hypervisor.h>
21 #include <asm/x86_init.h>
23 unsigned int __read_mostly cpu_khz
; /* TSC clocks / usec, not used here */
24 EXPORT_SYMBOL(cpu_khz
);
26 unsigned int __read_mostly tsc_khz
;
27 EXPORT_SYMBOL(tsc_khz
);
30 * TSC can be unstable due to cpufreq or due to unsynced TSCs
32 static int __read_mostly tsc_unstable
;
34 /* native_sched_clock() is called before tsc_init(), so
35 we must start with the TSC soft disabled to prevent
36 erroneous rdtsc usage on !cpu_has_tsc processors */
37 static int __read_mostly tsc_disabled
= -1;
39 static int tsc_clocksource_reliable
;
41 * Scheduler clock - returns current time in nanosec units.
43 u64
native_sched_clock(void)
48 * Fall back to jiffies if there's no TSC available:
49 * ( But note that we still use it if the TSC is marked
50 * unstable. We do this because unlike Time Of Day,
51 * the scheduler clock tolerates small errors and it's
52 * very important for it to be as fast as the platform
55 if (unlikely(tsc_disabled
)) {
56 /* No locking but a rare wrong value is not a big deal: */
57 return (jiffies_64
- INITIAL_JIFFIES
) * (1000000000 / HZ
);
60 /* read the Time Stamp Counter: */
63 /* return the value in ns */
64 return __cycles_2_ns(this_offset
);
67 /* We need to define a real function for sched_clock, to override the
68 weak default version */
69 #ifdef CONFIG_PARAVIRT
70 unsigned long long sched_clock(void)
72 return paravirt_sched_clock();
76 sched_clock(void) __attribute__((alias("native_sched_clock")));
79 int check_tsc_unstable(void)
83 EXPORT_SYMBOL_GPL(check_tsc_unstable
);
86 int __init
notsc_setup(char *str
)
88 printk(KERN_WARNING
"notsc: Kernel compiled with CONFIG_X86_TSC, "
89 "cannot disable TSC completely.\n");
95 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
98 int __init
notsc_setup(char *str
)
100 setup_clear_cpu_cap(X86_FEATURE_TSC
);
105 __setup("notsc", notsc_setup
);
107 static int __init
tsc_setup(char *str
)
109 if (!strcmp(str
, "reliable"))
110 tsc_clocksource_reliable
= 1;
114 __setup("tsc=", tsc_setup
);
116 #define MAX_RETRIES 5
117 #define SMI_TRESHOLD 50000
120 * Read TSC and the reference counters. Take care of SMI disturbance
122 static u64
tsc_read_refs(u64
*p
, int hpet
)
127 for (i
= 0; i
< MAX_RETRIES
; i
++) {
130 *p
= hpet_readl(HPET_COUNTER
) & 0xFFFFFFFF;
132 *p
= acpi_pm_read_early();
134 if ((t2
- t1
) < SMI_TRESHOLD
)
141 * Calculate the TSC frequency from HPET reference
143 static unsigned long calc_hpet_ref(u64 deltatsc
, u64 hpet1
, u64 hpet2
)
148 hpet2
+= 0x100000000ULL
;
150 tmp
= ((u64
)hpet2
* hpet_readl(HPET_PERIOD
));
151 do_div(tmp
, 1000000);
152 do_div(deltatsc
, tmp
);
154 return (unsigned long) deltatsc
;
158 * Calculate the TSC frequency from PMTimer reference
160 static unsigned long calc_pmtimer_ref(u64 deltatsc
, u64 pm1
, u64 pm2
)
168 pm2
+= (u64
)ACPI_PM_OVRRUN
;
170 tmp
= pm2
* 1000000000LL;
171 do_div(tmp
, PMTMR_TICKS_PER_SEC
);
172 do_div(deltatsc
, tmp
);
174 return (unsigned long) deltatsc
;
178 #define CAL_LATCH (CLOCK_TICK_RATE / (1000 / CAL_MS))
179 #define CAL_PIT_LOOPS 1000
182 #define CAL2_LATCH (CLOCK_TICK_RATE / (1000 / CAL2_MS))
183 #define CAL2_PIT_LOOPS 5000
187 * Try to calibrate the TSC against the Programmable
188 * Interrupt Timer and return the frequency of the TSC
191 * Return ULONG_MAX on failure to calibrate.
193 static unsigned long pit_calibrate_tsc(u32 latch
, unsigned long ms
, int loopmin
)
195 u64 tsc
, t1
, t2
, delta
;
196 unsigned long tscmin
, tscmax
;
199 /* Set the Gate high, disable speaker */
200 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
203 * Setup CTC channel 2* for mode 0, (interrupt on terminal
204 * count mode), binary count. Set the latch register to 50ms
205 * (LSB then MSB) to begin countdown.
208 outb(latch
& 0xff, 0x42);
209 outb(latch
>> 8, 0x42);
211 tsc
= t1
= t2
= get_cycles();
216 while ((inb(0x61) & 0x20) == 0) {
220 if ((unsigned long) delta
< tscmin
)
221 tscmin
= (unsigned int) delta
;
222 if ((unsigned long) delta
> tscmax
)
223 tscmax
= (unsigned int) delta
;
230 * If we were not able to read the PIT more than loopmin
231 * times, then we have been hit by a massive SMI
233 * If the maximum is 10 times larger than the minimum,
234 * then we got hit by an SMI as well.
236 if (pitcnt
< loopmin
|| tscmax
> 10 * tscmin
)
239 /* Calculate the PIT value */
246 * This reads the current MSB of the PIT counter, and
247 * checks if we are running on sufficiently fast and
248 * non-virtualized hardware.
250 * Our expectations are:
252 * - the PIT is running at roughly 1.19MHz
254 * - each IO is going to take about 1us on real hardware,
255 * but we allow it to be much faster (by a factor of 10) or
256 * _slightly_ slower (ie we allow up to a 2us read+counter
257 * update - anything else implies a unacceptably slow CPU
258 * or PIT for the fast calibration to work.
260 * - with 256 PIT ticks to read the value, we have 214us to
261 * see the same MSB (and overhead like doing a single TSC
262 * read per MSB value etc).
264 * - We're doing 2 reads per loop (LSB, MSB), and we expect
265 * them each to take about a microsecond on real hardware.
266 * So we expect a count value of around 100. But we'll be
267 * generous, and accept anything over 50.
269 * - if the PIT is stuck, and we see *many* more reads, we
270 * return early (and the next caller of pit_expect_msb()
271 * then consider it a failure when they don't see the
272 * next expected value).
274 * These expectations mean that we know that we have seen the
275 * transition from one expected value to another with a fairly
276 * high accuracy, and we didn't miss any events. We can thus
277 * use the TSC value at the transitions to calculate a pretty
278 * good value for the TSC frequencty.
280 static inline int pit_verify_msb(unsigned char val
)
284 return inb(0x42) == val
;
287 static inline int pit_expect_msb(unsigned char val
, u64
*tscp
, unsigned long *deltap
)
292 for (count
= 0; count
< 50000; count
++) {
293 if (!pit_verify_msb(val
))
297 *deltap
= get_cycles() - tsc
;
301 * We require _some_ success, but the quality control
302 * will be based on the error terms on the TSC values.
308 * How many MSB values do we want to see? We aim for
309 * a maximum error rate of 500ppm (in practice the
310 * real error is much smaller), but refuse to spend
311 * more than 25ms on it.
313 #define MAX_QUICK_PIT_MS 25
314 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
316 static unsigned long quick_pit_calibrate(void)
320 unsigned long d1
, d2
;
322 /* Set the Gate high, disable speaker */
323 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
326 * Counter 2, mode 0 (one-shot), binary count
328 * NOTE! Mode 2 decrements by two (and then the
329 * output is flipped each time, giving the same
330 * final output frequency as a decrement-by-one),
331 * so mode 0 is much better when looking at the
336 /* Start at 0xffff */
341 * The PIT starts counting at the next edge, so we
342 * need to delay for a microsecond. The easiest way
343 * to do that is to just read back the 16-bit counter
348 if (pit_expect_msb(0xff, &tsc
, &d1
)) {
349 for (i
= 1; i
<= MAX_QUICK_PIT_ITERATIONS
; i
++) {
350 if (!pit_expect_msb(0xff-i
, &delta
, &d2
))
354 * Iterate until the error is less than 500 ppm
357 if (d1
+d2
>= delta
>> 11)
361 * Check the PIT one more time to verify that
362 * all TSC reads were stable wrt the PIT.
364 * This also guarantees serialization of the
365 * last cycle read ('d2') in pit_expect_msb.
367 if (!pit_verify_msb(0xfe - i
))
372 printk("Fast TSC calibration failed\n");
377 * Ok, if we get here, then we've seen the
378 * MSB of the PIT decrement 'i' times, and the
379 * error has shrunk to less than 500 ppm.
381 * As a result, we can depend on there not being
382 * any odd delays anywhere, and the TSC reads are
383 * reliable (within the error). We also adjust the
384 * delta to the middle of the error bars, just
385 * because it looks nicer.
387 * kHz = ticks / time-in-seconds / 1000;
388 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
389 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
391 delta
+= (long)(d2
- d1
)/2;
392 delta
*= PIT_TICK_RATE
;
393 do_div(delta
, i
*256*1000);
394 printk("Fast TSC calibration using PIT\n");
399 * native_calibrate_tsc - calibrate the tsc on boot
401 unsigned long native_calibrate_tsc(void)
403 u64 tsc1
, tsc2
, delta
, ref1
, ref2
;
404 unsigned long tsc_pit_min
= ULONG_MAX
, tsc_ref_min
= ULONG_MAX
;
405 unsigned long flags
, latch
, ms
, fast_calibrate
;
406 int hpet
= is_hpet_enabled(), i
, loopmin
;
408 local_irq_save(flags
);
409 fast_calibrate
= quick_pit_calibrate();
410 local_irq_restore(flags
);
412 return fast_calibrate
;
415 * Run 5 calibration loops to get the lowest frequency value
416 * (the best estimate). We use two different calibration modes
419 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
420 * load a timeout of 50ms. We read the time right after we
421 * started the timer and wait until the PIT count down reaches
422 * zero. In each wait loop iteration we read the TSC and check
423 * the delta to the previous read. We keep track of the min
424 * and max values of that delta. The delta is mostly defined
425 * by the IO time of the PIT access, so we can detect when a
426 * SMI/SMM disturbance happend between the two reads. If the
427 * maximum time is significantly larger than the minimum time,
428 * then we discard the result and have another try.
430 * 2) Reference counter. If available we use the HPET or the
431 * PMTIMER as a reference to check the sanity of that value.
432 * We use separate TSC readouts and check inside of the
433 * reference read for a SMI/SMM disturbance. We dicard
434 * disturbed values here as well. We do that around the PIT
435 * calibration delay loop as we have to wait for a certain
436 * amount of time anyway.
439 /* Preset PIT loop values */
442 loopmin
= CAL_PIT_LOOPS
;
444 for (i
= 0; i
< 3; i
++) {
445 unsigned long tsc_pit_khz
;
448 * Read the start value and the reference count of
449 * hpet/pmtimer when available. Then do the PIT
450 * calibration, which will take at least 50ms, and
451 * read the end value.
453 local_irq_save(flags
);
454 tsc1
= tsc_read_refs(&ref1
, hpet
);
455 tsc_pit_khz
= pit_calibrate_tsc(latch
, ms
, loopmin
);
456 tsc2
= tsc_read_refs(&ref2
, hpet
);
457 local_irq_restore(flags
);
459 /* Pick the lowest PIT TSC calibration so far */
460 tsc_pit_min
= min(tsc_pit_min
, tsc_pit_khz
);
462 /* hpet or pmtimer available ? */
463 if (!hpet
&& !ref1
&& !ref2
)
466 /* Check, whether the sampling was disturbed by an SMI */
467 if (tsc1
== ULLONG_MAX
|| tsc2
== ULLONG_MAX
)
470 tsc2
= (tsc2
- tsc1
) * 1000000LL;
472 tsc2
= calc_hpet_ref(tsc2
, ref1
, ref2
);
474 tsc2
= calc_pmtimer_ref(tsc2
, ref1
, ref2
);
476 tsc_ref_min
= min(tsc_ref_min
, (unsigned long) tsc2
);
478 /* Check the reference deviation */
479 delta
= ((u64
) tsc_pit_min
) * 100;
480 do_div(delta
, tsc_ref_min
);
483 * If both calibration results are inside a 10% window
484 * then we can be sure, that the calibration
485 * succeeded. We break out of the loop right away. We
486 * use the reference value, as it is more precise.
488 if (delta
>= 90 && delta
<= 110) {
490 "TSC: PIT calibration matches %s. %d loops\n",
491 hpet
? "HPET" : "PMTIMER", i
+ 1);
496 * Check whether PIT failed more than once. This
497 * happens in virtualized environments. We need to
498 * give the virtual PC a slightly longer timeframe for
499 * the HPET/PMTIMER to make the result precise.
501 if (i
== 1 && tsc_pit_min
== ULONG_MAX
) {
504 loopmin
= CAL2_PIT_LOOPS
;
509 * Now check the results.
511 if (tsc_pit_min
== ULONG_MAX
) {
512 /* PIT gave no useful value */
513 printk(KERN_WARNING
"TSC: Unable to calibrate against PIT\n");
515 /* We don't have an alternative source, disable TSC */
516 if (!hpet
&& !ref1
&& !ref2
) {
517 printk("TSC: No reference (HPET/PMTIMER) available\n");
521 /* The alternative source failed as well, disable TSC */
522 if (tsc_ref_min
== ULONG_MAX
) {
523 printk(KERN_WARNING
"TSC: HPET/PMTIMER calibration "
528 /* Use the alternative source */
529 printk(KERN_INFO
"TSC: using %s reference calibration\n",
530 hpet
? "HPET" : "PMTIMER");
535 /* We don't have an alternative source, use the PIT calibration value */
536 if (!hpet
&& !ref1
&& !ref2
) {
537 printk(KERN_INFO
"TSC: Using PIT calibration value\n");
541 /* The alternative source failed, use the PIT calibration value */
542 if (tsc_ref_min
== ULONG_MAX
) {
543 printk(KERN_WARNING
"TSC: HPET/PMTIMER calibration failed. "
544 "Using PIT calibration\n");
549 * The calibration values differ too much. In doubt, we use
550 * the PIT value as we know that there are PMTIMERs around
551 * running at double speed. At least we let the user know:
553 printk(KERN_WARNING
"TSC: PIT calibration deviates from %s: %lu %lu.\n",
554 hpet
? "HPET" : "PMTIMER", tsc_pit_min
, tsc_ref_min
);
555 printk(KERN_INFO
"TSC: Using PIT calibration value\n");
559 int recalibrate_cpu_khz(void)
562 unsigned long cpu_khz_old
= cpu_khz
;
565 tsc_khz
= x86_platform
.calibrate_tsc();
567 cpu_data(0).loops_per_jiffy
=
568 cpufreq_scale(cpu_data(0).loops_per_jiffy
,
569 cpu_khz_old
, cpu_khz
);
578 EXPORT_SYMBOL(recalibrate_cpu_khz
);
581 /* Accelerators for sched_clock()
582 * convert from cycles(64bits) => nanoseconds (64bits)
584 * ns = cycles / (freq / ns_per_sec)
585 * ns = cycles * (ns_per_sec / freq)
586 * ns = cycles * (10^9 / (cpu_khz * 10^3))
587 * ns = cycles * (10^6 / cpu_khz)
589 * Then we use scaling math (suggested by george@mvista.com) to get:
590 * ns = cycles * (10^6 * SC / cpu_khz) / SC
591 * ns = cycles * cyc2ns_scale / SC
593 * And since SC is a constant power of two, we can convert the div
596 * We can use khz divisor instead of mhz to keep a better precision, since
597 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
598 * (mathieu.desnoyers@polymtl.ca)
600 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
603 DEFINE_PER_CPU(unsigned long, cyc2ns
);
604 DEFINE_PER_CPU(unsigned long long, cyc2ns_offset
);
606 static void set_cyc2ns_scale(unsigned long cpu_khz
, int cpu
)
608 unsigned long long tsc_now
, ns_now
, *offset
;
609 unsigned long flags
, *scale
;
611 local_irq_save(flags
);
612 sched_clock_idle_sleep_event();
614 scale
= &per_cpu(cyc2ns
, cpu
);
615 offset
= &per_cpu(cyc2ns_offset
, cpu
);
618 ns_now
= __cycles_2_ns(tsc_now
);
621 *scale
= (NSEC_PER_MSEC
<< CYC2NS_SCALE_FACTOR
)/cpu_khz
;
622 *offset
= ns_now
- (tsc_now
* *scale
>> CYC2NS_SCALE_FACTOR
);
625 sched_clock_idle_wakeup_event(0);
626 local_irq_restore(flags
);
629 #ifdef CONFIG_CPU_FREQ
631 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
634 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
635 * not that important because current Opteron setups do not support
636 * scaling on SMP anyroads.
638 * Should fix up last_tsc too. Currently gettimeofday in the
639 * first tick after the change will be slightly wrong.
642 static unsigned int ref_freq
;
643 static unsigned long loops_per_jiffy_ref
;
644 static unsigned long tsc_khz_ref
;
646 static int time_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
649 struct cpufreq_freqs
*freq
= data
;
652 if (cpu_has(&cpu_data(freq
->cpu
), X86_FEATURE_CONSTANT_TSC
))
655 lpj
= &boot_cpu_data
.loops_per_jiffy
;
657 if (!(freq
->flags
& CPUFREQ_CONST_LOOPS
))
658 lpj
= &cpu_data(freq
->cpu
).loops_per_jiffy
;
662 ref_freq
= freq
->old
;
663 loops_per_jiffy_ref
= *lpj
;
664 tsc_khz_ref
= tsc_khz
;
666 if ((val
== CPUFREQ_PRECHANGE
&& freq
->old
< freq
->new) ||
667 (val
== CPUFREQ_POSTCHANGE
&& freq
->old
> freq
->new) ||
668 (val
== CPUFREQ_RESUMECHANGE
)) {
669 *lpj
= cpufreq_scale(loops_per_jiffy_ref
, ref_freq
, freq
->new);
671 tsc_khz
= cpufreq_scale(tsc_khz_ref
, ref_freq
, freq
->new);
672 if (!(freq
->flags
& CPUFREQ_CONST_LOOPS
))
673 mark_tsc_unstable("cpufreq changes");
676 set_cyc2ns_scale(tsc_khz
, freq
->cpu
);
681 static struct notifier_block time_cpufreq_notifier_block
= {
682 .notifier_call
= time_cpufreq_notifier
685 static int __init
cpufreq_tsc(void)
689 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
691 cpufreq_register_notifier(&time_cpufreq_notifier_block
,
692 CPUFREQ_TRANSITION_NOTIFIER
);
696 core_initcall(cpufreq_tsc
);
698 #endif /* CONFIG_CPU_FREQ */
700 /* clocksource code */
702 static struct clocksource clocksource_tsc
;
705 * We compare the TSC to the cycle_last value in the clocksource
706 * structure to avoid a nasty time-warp. This can be observed in a
707 * very small window right after one CPU updated cycle_last under
708 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
709 * is smaller than the cycle_last reference value due to a TSC which
710 * is slighty behind. This delta is nowhere else observable, but in
711 * that case it results in a forward time jump in the range of hours
712 * due to the unsigned delta calculation of the time keeping core
713 * code, which is necessary to support wrapping clocksources like pm
716 static cycle_t
read_tsc(struct clocksource
*cs
)
718 cycle_t ret
= (cycle_t
)get_cycles();
720 return ret
>= clocksource_tsc
.cycle_last
?
721 ret
: clocksource_tsc
.cycle_last
;
725 static cycle_t __vsyscall_fn
vread_tsc(void)
730 * Surround the RDTSC by barriers, to make sure it's not
731 * speculated to outside the seqlock critical section and
732 * does not cause time warps:
735 ret
= (cycle_t
)vget_cycles();
738 return ret
>= __vsyscall_gtod_data
.clock
.cycle_last
?
739 ret
: __vsyscall_gtod_data
.clock
.cycle_last
;
743 static void resume_tsc(void)
745 clocksource_tsc
.cycle_last
= 0;
748 static struct clocksource clocksource_tsc
= {
752 .resume
= resume_tsc
,
753 .mask
= CLOCKSOURCE_MASK(64),
755 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
|
756 CLOCK_SOURCE_MUST_VERIFY
,
762 void mark_tsc_unstable(char *reason
)
766 printk(KERN_INFO
"Marking TSC unstable due to %s\n", reason
);
767 /* Change only the rating, when not registered */
768 if (clocksource_tsc
.mult
)
769 clocksource_mark_unstable(&clocksource_tsc
);
771 clocksource_tsc
.flags
|= CLOCK_SOURCE_UNSTABLE
;
772 clocksource_tsc
.rating
= 0;
777 EXPORT_SYMBOL_GPL(mark_tsc_unstable
);
779 static int __init
dmi_mark_tsc_unstable(const struct dmi_system_id
*d
)
781 printk(KERN_NOTICE
"%s detected: marking TSC unstable.\n",
787 /* List of systems that have known TSC problems */
788 static struct dmi_system_id __initdata bad_tsc_dmi_table
[] = {
790 .callback
= dmi_mark_tsc_unstable
,
791 .ident
= "IBM Thinkpad 380XD",
793 DMI_MATCH(DMI_BOARD_VENDOR
, "IBM"),
794 DMI_MATCH(DMI_BOARD_NAME
, "2635FA0"),
800 static void __init
check_system_tsc_reliable(void)
802 #ifdef CONFIG_MGEODE_LX
803 /* RTSC counts during suspend */
804 #define RTSC_SUSP 0x100
805 unsigned long res_low
, res_high
;
807 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0
, &res_low
, &res_high
);
808 /* Geode_LX - the OLPC CPU has a possibly a very reliable TSC */
809 if (res_low
& RTSC_SUSP
)
810 tsc_clocksource_reliable
= 1;
812 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE
))
813 tsc_clocksource_reliable
= 1;
817 * Make an educated guess if the TSC is trustworthy and synchronized
820 __cpuinit
int unsynchronized_tsc(void)
822 if (!cpu_has_tsc
|| tsc_unstable
)
826 if (apic_is_clustered_box())
830 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
833 * Intel systems are normally all synchronized.
834 * Exceptions must mark TSC as unstable:
836 if (boot_cpu_data
.x86_vendor
!= X86_VENDOR_INTEL
) {
837 /* assume multi socket systems are not synchronized: */
838 if (num_possible_cpus() > 1)
845 static void __init
init_tsc_clocksource(void)
847 clocksource_tsc
.mult
= clocksource_khz2mult(tsc_khz
,
848 clocksource_tsc
.shift
);
849 if (tsc_clocksource_reliable
)
850 clocksource_tsc
.flags
&= ~CLOCK_SOURCE_MUST_VERIFY
;
851 /* lower the rating if we already know its unstable: */
852 if (check_tsc_unstable()) {
853 clocksource_tsc
.rating
= 0;
854 clocksource_tsc
.flags
&= ~CLOCK_SOURCE_IS_CONTINUOUS
;
856 clocksource_register(&clocksource_tsc
);
861 * calibrate_cpu is used on systems with fixed rate TSCs to determine
862 * processor frequency
864 #define TICK_COUNT 100000000
865 static unsigned long __init
calibrate_cpu(void)
867 int tsc_start
, tsc_now
;
869 unsigned long evntsel3
= 0, pmc3
= 0, pmc_now
= 0;
872 for (i
= 0; i
< 4; i
++)
873 if (avail_to_resrv_perfctr_nmi_bit(i
))
875 no_ctr_free
= (i
== 4);
877 WARN(1, KERN_WARNING
"Warning: AMD perfctrs busy ... "
878 "cpu_khz value may be incorrect.\n");
880 rdmsrl(MSR_K7_EVNTSEL3
, evntsel3
);
881 wrmsrl(MSR_K7_EVNTSEL3
, 0);
882 rdmsrl(MSR_K7_PERFCTR3
, pmc3
);
884 reserve_perfctr_nmi(MSR_K7_PERFCTR0
+ i
);
885 reserve_evntsel_nmi(MSR_K7_EVNTSEL0
+ i
);
887 local_irq_save(flags
);
888 /* start measuring cycles, incrementing from 0 */
889 wrmsrl(MSR_K7_PERFCTR0
+ i
, 0);
890 wrmsrl(MSR_K7_EVNTSEL0
+ i
, 1 << 22 | 3 << 16 | 0x76);
893 rdmsrl(MSR_K7_PERFCTR0
+ i
, pmc_now
);
894 tsc_now
= get_cycles();
895 } while ((tsc_now
- tsc_start
) < TICK_COUNT
);
897 local_irq_restore(flags
);
899 wrmsrl(MSR_K7_EVNTSEL3
, 0);
900 wrmsrl(MSR_K7_PERFCTR3
, pmc3
);
901 wrmsrl(MSR_K7_EVNTSEL3
, evntsel3
);
903 release_perfctr_nmi(MSR_K7_PERFCTR0
+ i
);
904 release_evntsel_nmi(MSR_K7_EVNTSEL0
+ i
);
907 return pmc_now
* tsc_khz
/ (tsc_now
- tsc_start
);
910 static inline unsigned long calibrate_cpu(void) { return cpu_khz
; }
913 void __init
tsc_init(void)
918 x86_init
.timers
.tsc_pre_init();
923 tsc_khz
= x86_platform
.calibrate_tsc();
927 mark_tsc_unstable("could not calculate TSC khz");
931 if (cpu_has(&boot_cpu_data
, X86_FEATURE_CONSTANT_TSC
) &&
932 (boot_cpu_data
.x86_vendor
== X86_VENDOR_AMD
))
933 cpu_khz
= calibrate_cpu();
935 printk("Detected %lu.%03lu MHz processor.\n",
936 (unsigned long)cpu_khz
/ 1000,
937 (unsigned long)cpu_khz
% 1000);
940 * Secondary CPUs do not run through tsc_init(), so set up
941 * all the scale factors for all CPUs, assuming the same
942 * speed as the bootup CPU. (cpufreq notifiers will fix this
943 * up if their speed diverges)
945 for_each_possible_cpu(cpu
)
946 set_cyc2ns_scale(cpu_khz
, cpu
);
948 if (tsc_disabled
> 0)
951 /* now allow native_sched_clock() to use rdtsc */
954 lpj
= ((u64
)tsc_khz
* 1000);
959 /* Check and install the TSC clocksource */
960 dmi_check_system(bad_tsc_dmi_table
);
962 if (unsynchronized_tsc())
963 mark_tsc_unstable("TSCs unsynchronized");
965 check_system_tsc_reliable();
966 init_tsc_clocksource();