firewire: fw-sbp2: correctly align page tables
[linux-2.6/mini2440.git] / drivers / firewire / fw-sbp2.c
blob212674d723e35a21ac556c0da78805ac8bfb4ee8
1 /*
2 * SBP2 driver (SCSI over IEEE1394)
4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 * The basic structure of this driver is based on the old storage driver,
23 * drivers/ieee1394/sbp2.c, originally written by
24 * James Goodwin <jamesg@filanet.com>
25 * with later contributions and ongoing maintenance from
26 * Ben Collins <bcollins@debian.org>,
27 * Stefan Richter <stefanr@s5r6.in-berlin.de>
28 * and many others.
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mod_devicetable.h>
35 #include <linux/device.h>
36 #include <linux/scatterlist.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/blkdev.h>
39 #include <linux/string.h>
40 #include <linux/timer.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_dbg.h>
45 #include <scsi/scsi_device.h>
46 #include <scsi/scsi_host.h>
48 #include "fw-transaction.h"
49 #include "fw-topology.h"
50 #include "fw-device.h"
53 * So far only bridges from Oxford Semiconductor are known to support
54 * concurrent logins. Depending on firmware, four or two concurrent logins
55 * are possible on OXFW911 and newer Oxsemi bridges.
57 * Concurrent logins are useful together with cluster filesystems.
59 static int sbp2_param_exclusive_login = 1;
60 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
61 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
62 "(default = Y, use N for concurrent initiators)");
64 /* I don't know why the SCSI stack doesn't define something like this... */
65 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
67 static const char sbp2_driver_name[] = "sbp2";
69 struct sbp2_device {
70 struct kref kref;
71 struct fw_unit *unit;
72 struct fw_address_handler address_handler;
73 struct list_head orb_list;
74 u64 management_agent_address;
75 u64 command_block_agent_address;
76 u32 workarounds;
77 int login_id;
80 * We cache these addresses and only update them once we've
81 * logged in or reconnected to the sbp2 device. That way, any
82 * IO to the device will automatically fail and get retried if
83 * it happens in a window where the device is not ready to
84 * handle it (e.g. after a bus reset but before we reconnect).
86 int node_id;
87 int address_high;
88 int generation;
90 int retries;
91 struct delayed_work work;
94 #define SBP2_MAX_SG_ELEMENT_LENGTH 0xf000
95 #define SBP2_MAX_SECTORS 255 /* Max sectors supported */
96 #define SBP2_ORB_TIMEOUT 2000 /* Timeout in ms */
98 #define SBP2_ORB_NULL 0x80000000
100 #define SBP2_DIRECTION_TO_MEDIA 0x0
101 #define SBP2_DIRECTION_FROM_MEDIA 0x1
103 /* Unit directory keys */
104 #define SBP2_COMMAND_SET_SPECIFIER 0x38
105 #define SBP2_COMMAND_SET 0x39
106 #define SBP2_COMMAND_SET_REVISION 0x3b
107 #define SBP2_FIRMWARE_REVISION 0x3c
109 /* Flags for detected oddities and brokeness */
110 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
111 #define SBP2_WORKAROUND_INQUIRY_36 0x2
112 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4
113 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8
114 #define SBP2_WORKAROUND_OVERRIDE 0x100
116 /* Management orb opcodes */
117 #define SBP2_LOGIN_REQUEST 0x0
118 #define SBP2_QUERY_LOGINS_REQUEST 0x1
119 #define SBP2_RECONNECT_REQUEST 0x3
120 #define SBP2_SET_PASSWORD_REQUEST 0x4
121 #define SBP2_LOGOUT_REQUEST 0x7
122 #define SBP2_ABORT_TASK_REQUEST 0xb
123 #define SBP2_ABORT_TASK_SET 0xc
124 #define SBP2_LOGICAL_UNIT_RESET 0xe
125 #define SBP2_TARGET_RESET_REQUEST 0xf
127 /* Offsets for command block agent registers */
128 #define SBP2_AGENT_STATE 0x00
129 #define SBP2_AGENT_RESET 0x04
130 #define SBP2_ORB_POINTER 0x08
131 #define SBP2_DOORBELL 0x10
132 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
134 /* Status write response codes */
135 #define SBP2_STATUS_REQUEST_COMPLETE 0x0
136 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1
137 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2
138 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3
140 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
141 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
142 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
143 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
144 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
145 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
146 #define STATUS_GET_ORB_LOW(v) ((v).orb_low)
147 #define STATUS_GET_DATA(v) ((v).data)
149 struct sbp2_status {
150 u32 status;
151 u32 orb_low;
152 u8 data[24];
155 struct sbp2_pointer {
156 u32 high;
157 u32 low;
160 struct sbp2_orb {
161 struct fw_transaction t;
162 dma_addr_t request_bus;
163 int rcode;
164 struct sbp2_pointer pointer;
165 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
166 struct list_head link;
169 #define MANAGEMENT_ORB_LUN(v) ((v))
170 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
171 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
172 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
173 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
174 #define MANAGEMENT_ORB_NOTIFY ((1) << 31)
176 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
177 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
179 struct sbp2_management_orb {
180 struct sbp2_orb base;
181 struct {
182 struct sbp2_pointer password;
183 struct sbp2_pointer response;
184 u32 misc;
185 u32 length;
186 struct sbp2_pointer status_fifo;
187 } request;
188 __be32 response[4];
189 dma_addr_t response_bus;
190 struct completion done;
191 struct sbp2_status status;
194 #define LOGIN_RESPONSE_GET_LOGIN_ID(v) ((v).misc & 0xffff)
195 #define LOGIN_RESPONSE_GET_LENGTH(v) (((v).misc >> 16) & 0xffff)
197 struct sbp2_login_response {
198 u32 misc;
199 struct sbp2_pointer command_block_agent;
200 u32 reconnect_hold;
202 #define COMMAND_ORB_DATA_SIZE(v) ((v))
203 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
204 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
205 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
206 #define COMMAND_ORB_SPEED(v) ((v) << 24)
207 #define COMMAND_ORB_DIRECTION(v) ((v) << 27)
208 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
209 #define COMMAND_ORB_NOTIFY ((1) << 31)
211 struct sbp2_command_orb {
212 struct sbp2_orb base;
213 struct {
214 struct sbp2_pointer next;
215 struct sbp2_pointer data_descriptor;
216 u32 misc;
217 u8 command_block[12];
218 } request;
219 struct scsi_cmnd *cmd;
220 scsi_done_fn_t done;
221 struct fw_unit *unit;
223 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
224 dma_addr_t page_table_bus;
228 * List of devices with known bugs.
230 * The firmware_revision field, masked with 0xffff00, is the best
231 * indicator for the type of bridge chip of a device. It yields a few
232 * false positives but this did not break correctly behaving devices
233 * so far. We use ~0 as a wildcard, since the 24 bit values we get
234 * from the config rom can never match that.
236 static const struct {
237 u32 firmware_revision;
238 u32 model;
239 unsigned workarounds;
240 } sbp2_workarounds_table[] = {
241 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
242 .firmware_revision = 0x002800,
243 .model = 0x001010,
244 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
245 SBP2_WORKAROUND_MODE_SENSE_8,
247 /* Initio bridges, actually only needed for some older ones */ {
248 .firmware_revision = 0x000200,
249 .model = ~0,
250 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
252 /* Symbios bridge */ {
253 .firmware_revision = 0xa0b800,
254 .model = ~0,
255 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
259 * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
260 * these iPods do not feature the read_capacity bug according
261 * to one report. Read_capacity behaviour as well as model_id
262 * could change due to Apple-supplied firmware updates though.
265 /* iPod 4th generation. */ {
266 .firmware_revision = 0x0a2700,
267 .model = 0x000021,
268 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
270 /* iPod mini */ {
271 .firmware_revision = 0x0a2700,
272 .model = 0x000023,
273 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
275 /* iPod Photo */ {
276 .firmware_revision = 0x0a2700,
277 .model = 0x00007e,
278 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
282 static void
283 sbp2_status_write(struct fw_card *card, struct fw_request *request,
284 int tcode, int destination, int source,
285 int generation, int speed,
286 unsigned long long offset,
287 void *payload, size_t length, void *callback_data)
289 struct sbp2_device *sd = callback_data;
290 struct sbp2_orb *orb;
291 struct sbp2_status status;
292 size_t header_size;
293 unsigned long flags;
295 if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
296 length == 0 || length > sizeof(status)) {
297 fw_send_response(card, request, RCODE_TYPE_ERROR);
298 return;
301 header_size = min(length, 2 * sizeof(u32));
302 fw_memcpy_from_be32(&status, payload, header_size);
303 if (length > header_size)
304 memcpy(status.data, payload + 8, length - header_size);
305 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
306 fw_notify("non-orb related status write, not handled\n");
307 fw_send_response(card, request, RCODE_COMPLETE);
308 return;
311 /* Lookup the orb corresponding to this status write. */
312 spin_lock_irqsave(&card->lock, flags);
313 list_for_each_entry(orb, &sd->orb_list, link) {
314 if (STATUS_GET_ORB_HIGH(status) == 0 &&
315 STATUS_GET_ORB_LOW(status) == orb->request_bus &&
316 orb->rcode == RCODE_COMPLETE) {
317 list_del(&orb->link);
318 break;
321 spin_unlock_irqrestore(&card->lock, flags);
323 if (&orb->link != &sd->orb_list)
324 orb->callback(orb, &status);
325 else
326 fw_error("status write for unknown orb\n");
328 fw_send_response(card, request, RCODE_COMPLETE);
331 static void
332 complete_transaction(struct fw_card *card, int rcode,
333 void *payload, size_t length, void *data)
335 struct sbp2_orb *orb = data;
336 unsigned long flags;
338 orb->rcode = rcode;
339 if (rcode != RCODE_COMPLETE) {
340 spin_lock_irqsave(&card->lock, flags);
341 list_del(&orb->link);
342 spin_unlock_irqrestore(&card->lock, flags);
343 orb->callback(orb, NULL);
347 static void
348 sbp2_send_orb(struct sbp2_orb *orb, struct fw_unit *unit,
349 int node_id, int generation, u64 offset)
351 struct fw_device *device = fw_device(unit->device.parent);
352 struct sbp2_device *sd = unit->device.driver_data;
353 unsigned long flags;
355 orb->pointer.high = 0;
356 orb->pointer.low = orb->request_bus;
357 fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
359 spin_lock_irqsave(&device->card->lock, flags);
360 list_add_tail(&orb->link, &sd->orb_list);
361 spin_unlock_irqrestore(&device->card->lock, flags);
363 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
364 node_id, generation, device->max_speed, offset,
365 &orb->pointer, sizeof(orb->pointer),
366 complete_transaction, orb);
369 static int sbp2_cancel_orbs(struct fw_unit *unit)
371 struct fw_device *device = fw_device(unit->device.parent);
372 struct sbp2_device *sd = unit->device.driver_data;
373 struct sbp2_orb *orb, *next;
374 struct list_head list;
375 unsigned long flags;
376 int retval = -ENOENT;
378 INIT_LIST_HEAD(&list);
379 spin_lock_irqsave(&device->card->lock, flags);
380 list_splice_init(&sd->orb_list, &list);
381 spin_unlock_irqrestore(&device->card->lock, flags);
383 list_for_each_entry_safe(orb, next, &list, link) {
384 retval = 0;
385 if (fw_cancel_transaction(device->card, &orb->t) == 0)
386 continue;
388 orb->rcode = RCODE_CANCELLED;
389 orb->callback(orb, NULL);
392 return retval;
395 static void
396 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
398 struct sbp2_management_orb *orb =
399 container_of(base_orb, struct sbp2_management_orb, base);
401 if (status)
402 memcpy(&orb->status, status, sizeof(*status));
403 complete(&orb->done);
406 static int
407 sbp2_send_management_orb(struct fw_unit *unit, int node_id, int generation,
408 int function, int lun, void *response)
410 struct fw_device *device = fw_device(unit->device.parent);
411 struct sbp2_device *sd = unit->device.driver_data;
412 struct sbp2_management_orb *orb;
413 int retval = -ENOMEM;
415 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
416 if (orb == NULL)
417 return -ENOMEM;
420 * The sbp2 device is going to send a block read request to
421 * read out the request from host memory, so map it for dma.
423 orb->base.request_bus =
424 dma_map_single(device->card->device, &orb->request,
425 sizeof(orb->request), DMA_TO_DEVICE);
426 if (dma_mapping_error(orb->base.request_bus))
427 goto out;
429 orb->response_bus =
430 dma_map_single(device->card->device, &orb->response,
431 sizeof(orb->response), DMA_FROM_DEVICE);
432 if (dma_mapping_error(orb->response_bus))
433 goto out;
435 orb->request.response.high = 0;
436 orb->request.response.low = orb->response_bus;
438 orb->request.misc =
439 MANAGEMENT_ORB_NOTIFY |
440 MANAGEMENT_ORB_FUNCTION(function) |
441 MANAGEMENT_ORB_LUN(lun);
442 orb->request.length =
443 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
445 orb->request.status_fifo.high = sd->address_handler.offset >> 32;
446 orb->request.status_fifo.low = sd->address_handler.offset;
448 if (function == SBP2_LOGIN_REQUEST) {
449 orb->request.misc |=
450 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login) |
451 MANAGEMENT_ORB_RECONNECT(0);
454 fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
456 init_completion(&orb->done);
457 orb->base.callback = complete_management_orb;
459 sbp2_send_orb(&orb->base, unit,
460 node_id, generation, sd->management_agent_address);
462 wait_for_completion_timeout(&orb->done,
463 msecs_to_jiffies(SBP2_ORB_TIMEOUT));
465 retval = -EIO;
466 if (sbp2_cancel_orbs(unit) == 0) {
467 fw_error("orb reply timed out, rcode=0x%02x\n",
468 orb->base.rcode);
469 goto out;
472 if (orb->base.rcode != RCODE_COMPLETE) {
473 fw_error("management write failed, rcode 0x%02x\n",
474 orb->base.rcode);
475 goto out;
478 if (STATUS_GET_RESPONSE(orb->status) != 0 ||
479 STATUS_GET_SBP_STATUS(orb->status) != 0) {
480 fw_error("error status: %d:%d\n",
481 STATUS_GET_RESPONSE(orb->status),
482 STATUS_GET_SBP_STATUS(orb->status));
483 goto out;
486 retval = 0;
487 out:
488 dma_unmap_single(device->card->device, orb->base.request_bus,
489 sizeof(orb->request), DMA_TO_DEVICE);
490 dma_unmap_single(device->card->device, orb->response_bus,
491 sizeof(orb->response), DMA_FROM_DEVICE);
493 if (response)
494 fw_memcpy_from_be32(response,
495 orb->response, sizeof(orb->response));
496 kfree(orb);
498 return retval;
501 static void
502 complete_agent_reset_write(struct fw_card *card, int rcode,
503 void *payload, size_t length, void *data)
505 struct fw_transaction *t = data;
507 kfree(t);
510 static int sbp2_agent_reset(struct fw_unit *unit)
512 struct fw_device *device = fw_device(unit->device.parent);
513 struct sbp2_device *sd = unit->device.driver_data;
514 struct fw_transaction *t;
515 static u32 zero;
517 t = kzalloc(sizeof(*t), GFP_ATOMIC);
518 if (t == NULL)
519 return -ENOMEM;
521 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
522 sd->node_id, sd->generation, device->max_speed,
523 sd->command_block_agent_address + SBP2_AGENT_RESET,
524 &zero, sizeof(zero), complete_agent_reset_write, t);
526 return 0;
529 static void sbp2_reconnect(struct work_struct *work);
530 static struct scsi_host_template scsi_driver_template;
532 static void release_sbp2_device(struct kref *kref)
534 struct sbp2_device *sd = container_of(kref, struct sbp2_device, kref);
535 struct Scsi_Host *host =
536 container_of((void *)sd, struct Scsi_Host, hostdata[0]);
538 scsi_remove_host(host);
539 sbp2_send_management_orb(sd->unit, sd->node_id, sd->generation,
540 SBP2_LOGOUT_REQUEST, sd->login_id, NULL);
541 fw_core_remove_address_handler(&sd->address_handler);
542 fw_notify("removed sbp2 unit %s\n", sd->unit->device.bus_id);
543 put_device(&sd->unit->device);
544 scsi_host_put(host);
547 static void sbp2_login(struct work_struct *work)
549 struct sbp2_device *sd =
550 container_of(work, struct sbp2_device, work.work);
551 struct Scsi_Host *host =
552 container_of((void *)sd, struct Scsi_Host, hostdata[0]);
553 struct fw_unit *unit = sd->unit;
554 struct fw_device *device = fw_device(unit->device.parent);
555 struct sbp2_login_response response;
556 int generation, node_id, local_node_id, lun, retval;
558 /* FIXME: Make this work for multi-lun devices. */
559 lun = 0;
561 generation = device->card->generation;
562 node_id = device->node->node_id;
563 local_node_id = device->card->local_node->node_id;
565 if (sbp2_send_management_orb(unit, node_id, generation,
566 SBP2_LOGIN_REQUEST, lun, &response) < 0) {
567 if (sd->retries++ < 5) {
568 schedule_delayed_work(&sd->work, DIV_ROUND_UP(HZ, 5));
569 } else {
570 fw_error("failed to login to %s\n",
571 unit->device.bus_id);
572 kref_put(&sd->kref, release_sbp2_device);
574 return;
577 sd->generation = generation;
578 sd->node_id = node_id;
579 sd->address_high = local_node_id << 16;
581 /* Get command block agent offset and login id. */
582 sd->command_block_agent_address =
583 ((u64) (response.command_block_agent.high & 0xffff) << 32) |
584 response.command_block_agent.low;
585 sd->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
587 fw_notify("logged in to sbp2 unit %s (%d retries)\n",
588 unit->device.bus_id, sd->retries);
589 fw_notify(" - management_agent_address: 0x%012llx\n",
590 (unsigned long long) sd->management_agent_address);
591 fw_notify(" - command_block_agent_address: 0x%012llx\n",
592 (unsigned long long) sd->command_block_agent_address);
593 fw_notify(" - status write address: 0x%012llx\n",
594 (unsigned long long) sd->address_handler.offset);
596 #if 0
597 /* FIXME: The linux1394 sbp2 does this last step. */
598 sbp2_set_busy_timeout(scsi_id);
599 #endif
601 PREPARE_DELAYED_WORK(&sd->work, sbp2_reconnect);
602 sbp2_agent_reset(unit);
604 /* FIXME: Loop over luns here. */
605 lun = 0;
606 retval = scsi_add_device(host, 0, 0, lun);
607 if (retval < 0) {
608 sbp2_send_management_orb(unit, sd->node_id, sd->generation,
609 SBP2_LOGOUT_REQUEST, sd->login_id,
610 NULL);
612 * Set this back to sbp2_login so we fall back and
613 * retry login on bus reset.
615 PREPARE_DELAYED_WORK(&sd->work, sbp2_login);
617 kref_put(&sd->kref, release_sbp2_device);
620 static int sbp2_probe(struct device *dev)
622 struct fw_unit *unit = fw_unit(dev);
623 struct fw_device *device = fw_device(unit->device.parent);
624 struct sbp2_device *sd;
625 struct fw_csr_iterator ci;
626 struct Scsi_Host *host;
627 int i, key, value, err;
628 u32 model, firmware_revision;
630 err = -ENOMEM;
631 host = scsi_host_alloc(&scsi_driver_template, sizeof(*sd));
632 if (host == NULL)
633 goto fail;
635 sd = (struct sbp2_device *) host->hostdata;
636 unit->device.driver_data = sd;
637 sd->unit = unit;
638 INIT_LIST_HEAD(&sd->orb_list);
639 kref_init(&sd->kref);
641 sd->address_handler.length = 0x100;
642 sd->address_handler.address_callback = sbp2_status_write;
643 sd->address_handler.callback_data = sd;
645 err = fw_core_add_address_handler(&sd->address_handler,
646 &fw_high_memory_region);
647 if (err < 0)
648 goto fail_host;
650 err = fw_device_enable_phys_dma(device);
651 if (err < 0)
652 goto fail_address_handler;
654 err = scsi_add_host(host, &unit->device);
655 if (err < 0)
656 goto fail_address_handler;
659 * Scan unit directory to get management agent address,
660 * firmware revison and model. Initialize firmware_revision
661 * and model to values that wont match anything in our table.
663 firmware_revision = 0xff000000;
664 model = 0xff000000;
665 fw_csr_iterator_init(&ci, unit->directory);
666 while (fw_csr_iterator_next(&ci, &key, &value)) {
667 switch (key) {
668 case CSR_DEPENDENT_INFO | CSR_OFFSET:
669 sd->management_agent_address =
670 0xfffff0000000ULL + 4 * value;
671 break;
672 case SBP2_FIRMWARE_REVISION:
673 firmware_revision = value;
674 break;
675 case CSR_MODEL:
676 model = value;
677 break;
681 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
682 if (sbp2_workarounds_table[i].firmware_revision !=
683 (firmware_revision & 0xffffff00))
684 continue;
685 if (sbp2_workarounds_table[i].model != model &&
686 sbp2_workarounds_table[i].model != ~0)
687 continue;
688 sd->workarounds |= sbp2_workarounds_table[i].workarounds;
689 break;
692 if (sd->workarounds)
693 fw_notify("Workarounds for node %s: 0x%x "
694 "(firmware_revision 0x%06x, model_id 0x%06x)\n",
695 unit->device.bus_id,
696 sd->workarounds, firmware_revision, model);
698 get_device(&unit->device);
701 * We schedule work to do the login so we can easily
702 * reschedule retries. Always get the ref before scheduling
703 * work.
705 INIT_DELAYED_WORK(&sd->work, sbp2_login);
706 if (schedule_delayed_work(&sd->work, 0))
707 kref_get(&sd->kref);
709 return 0;
711 fail_address_handler:
712 fw_core_remove_address_handler(&sd->address_handler);
713 fail_host:
714 scsi_host_put(host);
715 fail:
716 return err;
719 static int sbp2_remove(struct device *dev)
721 struct fw_unit *unit = fw_unit(dev);
722 struct sbp2_device *sd = unit->device.driver_data;
724 kref_put(&sd->kref, release_sbp2_device);
726 return 0;
729 static void sbp2_reconnect(struct work_struct *work)
731 struct sbp2_device *sd =
732 container_of(work, struct sbp2_device, work.work);
733 struct fw_unit *unit = sd->unit;
734 struct fw_device *device = fw_device(unit->device.parent);
735 int generation, node_id, local_node_id;
737 generation = device->card->generation;
738 node_id = device->node->node_id;
739 local_node_id = device->card->local_node->node_id;
741 if (sbp2_send_management_orb(unit, node_id, generation,
742 SBP2_RECONNECT_REQUEST,
743 sd->login_id, NULL) < 0) {
744 if (sd->retries++ >= 5) {
745 fw_error("failed to reconnect to %s\n",
746 unit->device.bus_id);
747 /* Fall back and try to log in again. */
748 sd->retries = 0;
749 PREPARE_DELAYED_WORK(&sd->work, sbp2_login);
751 schedule_delayed_work(&sd->work, DIV_ROUND_UP(HZ, 5));
752 return;
755 sd->generation = generation;
756 sd->node_id = node_id;
757 sd->address_high = local_node_id << 16;
759 fw_notify("reconnected to unit %s (%d retries)\n",
760 unit->device.bus_id, sd->retries);
761 sbp2_agent_reset(unit);
762 sbp2_cancel_orbs(unit);
763 kref_put(&sd->kref, release_sbp2_device);
766 static void sbp2_update(struct fw_unit *unit)
768 struct fw_device *device = fw_device(unit->device.parent);
769 struct sbp2_device *sd = unit->device.driver_data;
771 sd->retries = 0;
772 fw_device_enable_phys_dma(device);
773 if (schedule_delayed_work(&sd->work, 0))
774 kref_get(&sd->kref);
777 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
778 #define SBP2_SW_VERSION_ENTRY 0x00010483
780 static const struct fw_device_id sbp2_id_table[] = {
782 .match_flags = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
783 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
784 .version = SBP2_SW_VERSION_ENTRY,
789 static struct fw_driver sbp2_driver = {
790 .driver = {
791 .owner = THIS_MODULE,
792 .name = sbp2_driver_name,
793 .bus = &fw_bus_type,
794 .probe = sbp2_probe,
795 .remove = sbp2_remove,
797 .update = sbp2_update,
798 .id_table = sbp2_id_table,
801 static unsigned int
802 sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
804 int sam_status;
806 sense_data[0] = 0x70;
807 sense_data[1] = 0x0;
808 sense_data[2] = sbp2_status[1];
809 sense_data[3] = sbp2_status[4];
810 sense_data[4] = sbp2_status[5];
811 sense_data[5] = sbp2_status[6];
812 sense_data[6] = sbp2_status[7];
813 sense_data[7] = 10;
814 sense_data[8] = sbp2_status[8];
815 sense_data[9] = sbp2_status[9];
816 sense_data[10] = sbp2_status[10];
817 sense_data[11] = sbp2_status[11];
818 sense_data[12] = sbp2_status[2];
819 sense_data[13] = sbp2_status[3];
820 sense_data[14] = sbp2_status[12];
821 sense_data[15] = sbp2_status[13];
823 sam_status = sbp2_status[0] & 0x3f;
825 switch (sam_status) {
826 case SAM_STAT_GOOD:
827 case SAM_STAT_CHECK_CONDITION:
828 case SAM_STAT_CONDITION_MET:
829 case SAM_STAT_BUSY:
830 case SAM_STAT_RESERVATION_CONFLICT:
831 case SAM_STAT_COMMAND_TERMINATED:
832 return DID_OK << 16 | sam_status;
834 default:
835 return DID_ERROR << 16;
839 static void
840 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
842 struct sbp2_command_orb *orb =
843 container_of(base_orb, struct sbp2_command_orb, base);
844 struct fw_unit *unit = orb->unit;
845 struct fw_device *device = fw_device(unit->device.parent);
846 struct scatterlist *sg;
847 int result;
849 if (status != NULL) {
850 if (STATUS_GET_DEAD(*status))
851 sbp2_agent_reset(unit);
853 switch (STATUS_GET_RESPONSE(*status)) {
854 case SBP2_STATUS_REQUEST_COMPLETE:
855 result = DID_OK << 16;
856 break;
857 case SBP2_STATUS_TRANSPORT_FAILURE:
858 result = DID_BUS_BUSY << 16;
859 break;
860 case SBP2_STATUS_ILLEGAL_REQUEST:
861 case SBP2_STATUS_VENDOR_DEPENDENT:
862 default:
863 result = DID_ERROR << 16;
864 break;
867 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
868 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
869 orb->cmd->sense_buffer);
870 } else {
872 * If the orb completes with status == NULL, something
873 * went wrong, typically a bus reset happened mid-orb
874 * or when sending the write (less likely).
876 result = DID_BUS_BUSY << 16;
879 dma_unmap_single(device->card->device, orb->base.request_bus,
880 sizeof(orb->request), DMA_TO_DEVICE);
882 if (orb->cmd->use_sg > 0) {
883 sg = (struct scatterlist *)orb->cmd->request_buffer;
884 dma_unmap_sg(device->card->device, sg, orb->cmd->use_sg,
885 orb->cmd->sc_data_direction);
888 if (orb->page_table_bus != 0)
889 dma_unmap_single(device->card->device, orb->page_table_bus,
890 sizeof(orb->page_table_bus), DMA_TO_DEVICE);
892 orb->cmd->result = result;
893 orb->done(orb->cmd);
894 kfree(orb);
897 static int sbp2_command_orb_map_scatterlist(struct sbp2_command_orb *orb)
899 struct sbp2_device *sd =
900 (struct sbp2_device *)orb->cmd->device->host->hostdata;
901 struct fw_unit *unit = sd->unit;
902 struct fw_device *device = fw_device(unit->device.parent);
903 struct scatterlist *sg;
904 int sg_len, l, i, j, count;
905 size_t size;
906 dma_addr_t sg_addr;
908 sg = (struct scatterlist *)orb->cmd->request_buffer;
909 count = dma_map_sg(device->card->device, sg, orb->cmd->use_sg,
910 orb->cmd->sc_data_direction);
911 if (count == 0)
912 goto fail;
915 * Handle the special case where there is only one element in
916 * the scatter list by converting it to an immediate block
917 * request. This is also a workaround for broken devices such
918 * as the second generation iPod which doesn't support page
919 * tables.
921 if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
922 orb->request.data_descriptor.high = sd->address_high;
923 orb->request.data_descriptor.low = sg_dma_address(sg);
924 orb->request.misc |=
925 COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
926 return 0;
930 * Convert the scatterlist to an sbp2 page table. If any
931 * scatterlist entries are too big for sbp2, we split them as we
932 * go. Even if we ask the block I/O layer to not give us sg
933 * elements larger than 65535 bytes, some IOMMUs may merge sg elements
934 * during DMA mapping, and Linux currently doesn't prevent this.
936 for (i = 0, j = 0; i < count; i++) {
937 sg_len = sg_dma_len(sg + i);
938 sg_addr = sg_dma_address(sg + i);
939 while (sg_len) {
940 l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
941 orb->page_table[j].low = sg_addr;
942 orb->page_table[j].high = (l << 16);
943 sg_addr += l;
944 sg_len -= l;
945 j++;
949 size = sizeof(orb->page_table[0]) * j;
952 * The data_descriptor pointer is the one case where we need
953 * to fill in the node ID part of the address. All other
954 * pointers assume that the data referenced reside on the
955 * initiator (i.e. us), but data_descriptor can refer to data
956 * on other nodes so we need to put our ID in descriptor.high.
959 orb->page_table_bus =
960 dma_map_single(device->card->device, orb->page_table,
961 size, DMA_TO_DEVICE);
962 if (dma_mapping_error(orb->page_table_bus))
963 goto fail_page_table;
964 orb->request.data_descriptor.high = sd->address_high;
965 orb->request.data_descriptor.low = orb->page_table_bus;
966 orb->request.misc |=
967 COMMAND_ORB_PAGE_TABLE_PRESENT |
968 COMMAND_ORB_DATA_SIZE(j);
970 fw_memcpy_to_be32(orb->page_table, orb->page_table, size);
972 return 0;
974 fail_page_table:
975 dma_unmap_sg(device->card->device, sg, orb->cmd->use_sg,
976 orb->cmd->sc_data_direction);
977 fail:
978 return -ENOMEM;
981 /* SCSI stack integration */
983 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
985 struct sbp2_device *sd =
986 (struct sbp2_device *)cmd->device->host->hostdata;
987 struct fw_unit *unit = sd->unit;
988 struct fw_device *device = fw_device(unit->device.parent);
989 struct sbp2_command_orb *orb;
992 * Bidirectional commands are not yet implemented, and unknown
993 * transfer direction not handled.
995 if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
996 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
997 cmd->result = DID_ERROR << 16;
998 done(cmd);
999 return 0;
1002 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1003 if (orb == NULL) {
1004 fw_notify("failed to alloc orb\n");
1005 goto fail_alloc;
1008 /* Initialize rcode to something not RCODE_COMPLETE. */
1009 orb->base.rcode = -1;
1010 orb->base.request_bus =
1011 dma_map_single(device->card->device, &orb->request,
1012 sizeof(orb->request), DMA_TO_DEVICE);
1013 if (dma_mapping_error(orb->base.request_bus))
1014 goto fail_mapping;
1016 orb->unit = unit;
1017 orb->done = done;
1018 orb->cmd = cmd;
1020 orb->request.next.high = SBP2_ORB_NULL;
1021 orb->request.next.low = 0x0;
1023 * At speed 100 we can do 512 bytes per packet, at speed 200,
1024 * 1024 bytes per packet etc. The SBP-2 max_payload field
1025 * specifies the max payload size as 2 ^ (max_payload + 2), so
1026 * if we set this to max_speed + 7, we get the right value.
1028 orb->request.misc =
1029 COMMAND_ORB_MAX_PAYLOAD(device->max_speed + 7) |
1030 COMMAND_ORB_SPEED(device->max_speed) |
1031 COMMAND_ORB_NOTIFY;
1033 if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1034 orb->request.misc |=
1035 COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
1036 else if (cmd->sc_data_direction == DMA_TO_DEVICE)
1037 orb->request.misc |=
1038 COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
1040 if (cmd->use_sg && sbp2_command_orb_map_scatterlist(orb) < 0)
1041 goto fail_map_payload;
1043 fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
1045 memset(orb->request.command_block,
1046 0, sizeof(orb->request.command_block));
1047 memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));
1049 orb->base.callback = complete_command_orb;
1051 sbp2_send_orb(&orb->base, unit, sd->node_id, sd->generation,
1052 sd->command_block_agent_address + SBP2_ORB_POINTER);
1054 return 0;
1056 fail_map_payload:
1057 dma_unmap_single(device->card->device, orb->base.request_bus,
1058 sizeof(orb->request), DMA_TO_DEVICE);
1059 fail_mapping:
1060 kfree(orb);
1061 fail_alloc:
1062 return SCSI_MLQUEUE_HOST_BUSY;
1065 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1067 struct sbp2_device *sd = (struct sbp2_device *)sdev->host->hostdata;
1069 sdev->allow_restart = 1;
1071 if (sd->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1072 sdev->inquiry_len = 36;
1073 return 0;
1076 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1078 struct sbp2_device *sd = (struct sbp2_device *)sdev->host->hostdata;
1079 struct fw_unit *unit = sd->unit;
1081 sdev->use_10_for_rw = 1;
1083 if (sdev->type == TYPE_ROM)
1084 sdev->use_10_for_ms = 1;
1085 if (sdev->type == TYPE_DISK &&
1086 sd->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1087 sdev->skip_ms_page_8 = 1;
1088 if (sd->workarounds & SBP2_WORKAROUND_FIX_CAPACITY) {
1089 fw_notify("setting fix_capacity for %s\n", unit->device.bus_id);
1090 sdev->fix_capacity = 1;
1092 if (sd->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1093 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1094 return 0;
1098 * Called by scsi stack when something has really gone wrong. Usually
1099 * called when a command has timed-out for some reason.
1101 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1103 struct sbp2_device *sd =
1104 (struct sbp2_device *)cmd->device->host->hostdata;
1105 struct fw_unit *unit = sd->unit;
1107 fw_notify("sbp2_scsi_abort\n");
1108 sbp2_agent_reset(unit);
1109 sbp2_cancel_orbs(unit);
1111 return SUCCESS;
1115 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1116 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
1118 * This is the concatenation of target port identifier and logical unit
1119 * identifier as per SAM-2...SAM-4 annex A.
1121 static ssize_t
1122 sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
1123 char *buf)
1125 struct scsi_device *sdev = to_scsi_device(dev);
1126 struct sbp2_device *sd;
1127 struct fw_unit *unit;
1128 struct fw_device *device;
1129 u32 directory_id;
1130 struct fw_csr_iterator ci;
1131 int key, value, lun;
1133 if (!sdev)
1134 return 0;
1135 sd = (struct sbp2_device *)sdev->host->hostdata;
1136 unit = sd->unit;
1137 device = fw_device(unit->device.parent);
1139 /* implicit directory ID */
1140 directory_id = ((unit->directory - device->config_rom) * 4
1141 + CSR_CONFIG_ROM) & 0xffffff;
1143 /* explicit directory ID, overrides implicit ID if present */
1144 fw_csr_iterator_init(&ci, unit->directory);
1145 while (fw_csr_iterator_next(&ci, &key, &value))
1146 if (key == CSR_DIRECTORY_ID) {
1147 directory_id = value;
1148 break;
1151 /* FIXME: Make this work for multi-lun devices. */
1152 lun = 0;
1154 return sprintf(buf, "%08x%08x:%06x:%04x\n",
1155 device->config_rom[3], device->config_rom[4],
1156 directory_id, lun);
1159 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1161 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1162 &dev_attr_ieee1394_id,
1163 NULL
1166 static struct scsi_host_template scsi_driver_template = {
1167 .module = THIS_MODULE,
1168 .name = "SBP-2 IEEE-1394",
1169 .proc_name = (char *)sbp2_driver_name,
1170 .queuecommand = sbp2_scsi_queuecommand,
1171 .slave_alloc = sbp2_scsi_slave_alloc,
1172 .slave_configure = sbp2_scsi_slave_configure,
1173 .eh_abort_handler = sbp2_scsi_abort,
1174 .this_id = -1,
1175 .sg_tablesize = SG_ALL,
1176 .use_clustering = ENABLE_CLUSTERING,
1177 .cmd_per_lun = 1,
1178 .can_queue = 1,
1179 .sdev_attrs = sbp2_scsi_sysfs_attrs,
1182 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1183 MODULE_DESCRIPTION("SCSI over IEEE1394");
1184 MODULE_LICENSE("GPL");
1185 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1187 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1188 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1189 MODULE_ALIAS("sbp2");
1190 #endif
1192 static int __init sbp2_init(void)
1194 return driver_register(&sbp2_driver.driver);
1197 static void __exit sbp2_cleanup(void)
1199 driver_unregister(&sbp2_driver.driver);
1202 module_init(sbp2_init);
1203 module_exit(sbp2_cleanup);