4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
43 #include <asm/tlbflush.h>
44 #include <asm/div64.h>
46 #include <linux/swapops.h>
51 /* Incremented by the number of inactive pages that were scanned */
52 unsigned long nr_scanned
;
54 /* This context's GFP mask */
59 /* Can pages be swapped as part of reclaim? */
62 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
63 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
64 * In this context, it doesn't matter that we scan the
65 * whole list at once. */
70 int all_unreclaimable
;
74 /* Which cgroup do we reclaim from */
75 struct mem_cgroup
*mem_cgroup
;
77 /* Pluggable isolate pages callback */
78 unsigned long (*isolate_pages
)(unsigned long nr
, struct list_head
*dst
,
79 unsigned long *scanned
, int order
, int mode
,
80 struct zone
*z
, struct mem_cgroup
*mem_cont
,
84 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
86 #ifdef ARCH_HAS_PREFETCH
87 #define prefetch_prev_lru_page(_page, _base, _field) \
89 if ((_page)->lru.prev != _base) { \
92 prev = lru_to_page(&(_page->lru)); \
93 prefetch(&prev->_field); \
97 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
100 #ifdef ARCH_HAS_PREFETCHW
101 #define prefetchw_prev_lru_page(_page, _base, _field) \
103 if ((_page)->lru.prev != _base) { \
106 prev = lru_to_page(&(_page->lru)); \
107 prefetchw(&prev->_field); \
111 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
115 * From 0 .. 100. Higher means more swappy.
117 int vm_swappiness
= 60;
118 long vm_total_pages
; /* The total number of pages which the VM controls */
120 static LIST_HEAD(shrinker_list
);
121 static DECLARE_RWSEM(shrinker_rwsem
);
123 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
124 #define scan_global_lru(sc) (!(sc)->mem_cgroup)
126 #define scan_global_lru(sc) (1)
130 * Add a shrinker callback to be called from the vm
132 void register_shrinker(struct shrinker
*shrinker
)
135 down_write(&shrinker_rwsem
);
136 list_add_tail(&shrinker
->list
, &shrinker_list
);
137 up_write(&shrinker_rwsem
);
139 EXPORT_SYMBOL(register_shrinker
);
144 void unregister_shrinker(struct shrinker
*shrinker
)
146 down_write(&shrinker_rwsem
);
147 list_del(&shrinker
->list
);
148 up_write(&shrinker_rwsem
);
150 EXPORT_SYMBOL(unregister_shrinker
);
152 #define SHRINK_BATCH 128
154 * Call the shrink functions to age shrinkable caches
156 * Here we assume it costs one seek to replace a lru page and that it also
157 * takes a seek to recreate a cache object. With this in mind we age equal
158 * percentages of the lru and ageable caches. This should balance the seeks
159 * generated by these structures.
161 * If the vm encountered mapped pages on the LRU it increase the pressure on
162 * slab to avoid swapping.
164 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
166 * `lru_pages' represents the number of on-LRU pages in all the zones which
167 * are eligible for the caller's allocation attempt. It is used for balancing
168 * slab reclaim versus page reclaim.
170 * Returns the number of slab objects which we shrunk.
172 unsigned long shrink_slab(unsigned long scanned
, gfp_t gfp_mask
,
173 unsigned long lru_pages
)
175 struct shrinker
*shrinker
;
176 unsigned long ret
= 0;
179 scanned
= SWAP_CLUSTER_MAX
;
181 if (!down_read_trylock(&shrinker_rwsem
))
182 return 1; /* Assume we'll be able to shrink next time */
184 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
185 unsigned long long delta
;
186 unsigned long total_scan
;
187 unsigned long max_pass
= (*shrinker
->shrink
)(0, gfp_mask
);
189 delta
= (4 * scanned
) / shrinker
->seeks
;
191 do_div(delta
, lru_pages
+ 1);
192 shrinker
->nr
+= delta
;
193 if (shrinker
->nr
< 0) {
194 printk(KERN_ERR
"%s: nr=%ld\n",
195 __func__
, shrinker
->nr
);
196 shrinker
->nr
= max_pass
;
200 * Avoid risking looping forever due to too large nr value:
201 * never try to free more than twice the estimate number of
204 if (shrinker
->nr
> max_pass
* 2)
205 shrinker
->nr
= max_pass
* 2;
207 total_scan
= shrinker
->nr
;
210 while (total_scan
>= SHRINK_BATCH
) {
211 long this_scan
= SHRINK_BATCH
;
215 nr_before
= (*shrinker
->shrink
)(0, gfp_mask
);
216 shrink_ret
= (*shrinker
->shrink
)(this_scan
, gfp_mask
);
217 if (shrink_ret
== -1)
219 if (shrink_ret
< nr_before
)
220 ret
+= nr_before
- shrink_ret
;
221 count_vm_events(SLABS_SCANNED
, this_scan
);
222 total_scan
-= this_scan
;
227 shrinker
->nr
+= total_scan
;
229 up_read(&shrinker_rwsem
);
233 /* Called without lock on whether page is mapped, so answer is unstable */
234 static inline int page_mapping_inuse(struct page
*page
)
236 struct address_space
*mapping
;
238 /* Page is in somebody's page tables. */
239 if (page_mapped(page
))
242 /* Be more reluctant to reclaim swapcache than pagecache */
243 if (PageSwapCache(page
))
246 mapping
= page_mapping(page
);
250 /* File is mmap'd by somebody? */
251 return mapping_mapped(mapping
);
254 static inline int is_page_cache_freeable(struct page
*page
)
256 return page_count(page
) - !!PagePrivate(page
) == 2;
259 static int may_write_to_queue(struct backing_dev_info
*bdi
)
261 if (current
->flags
& PF_SWAPWRITE
)
263 if (!bdi_write_congested(bdi
))
265 if (bdi
== current
->backing_dev_info
)
271 * We detected a synchronous write error writing a page out. Probably
272 * -ENOSPC. We need to propagate that into the address_space for a subsequent
273 * fsync(), msync() or close().
275 * The tricky part is that after writepage we cannot touch the mapping: nothing
276 * prevents it from being freed up. But we have a ref on the page and once
277 * that page is locked, the mapping is pinned.
279 * We're allowed to run sleeping lock_page() here because we know the caller has
282 static void handle_write_error(struct address_space
*mapping
,
283 struct page
*page
, int error
)
286 if (page_mapping(page
) == mapping
)
287 mapping_set_error(mapping
, error
);
291 /* Request for sync pageout. */
297 /* possible outcome of pageout() */
299 /* failed to write page out, page is locked */
301 /* move page to the active list, page is locked */
303 /* page has been sent to the disk successfully, page is unlocked */
305 /* page is clean and locked */
310 * pageout is called by shrink_page_list() for each dirty page.
311 * Calls ->writepage().
313 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
314 enum pageout_io sync_writeback
)
317 * If the page is dirty, only perform writeback if that write
318 * will be non-blocking. To prevent this allocation from being
319 * stalled by pagecache activity. But note that there may be
320 * stalls if we need to run get_block(). We could test
321 * PagePrivate for that.
323 * If this process is currently in generic_file_write() against
324 * this page's queue, we can perform writeback even if that
327 * If the page is swapcache, write it back even if that would
328 * block, for some throttling. This happens by accident, because
329 * swap_backing_dev_info is bust: it doesn't reflect the
330 * congestion state of the swapdevs. Easy to fix, if needed.
331 * See swapfile.c:page_queue_congested().
333 if (!is_page_cache_freeable(page
))
337 * Some data journaling orphaned pages can have
338 * page->mapping == NULL while being dirty with clean buffers.
340 if (PagePrivate(page
)) {
341 if (try_to_free_buffers(page
)) {
342 ClearPageDirty(page
);
343 printk("%s: orphaned page\n", __func__
);
349 if (mapping
->a_ops
->writepage
== NULL
)
350 return PAGE_ACTIVATE
;
351 if (!may_write_to_queue(mapping
->backing_dev_info
))
354 if (clear_page_dirty_for_io(page
)) {
356 struct writeback_control wbc
= {
357 .sync_mode
= WB_SYNC_NONE
,
358 .nr_to_write
= SWAP_CLUSTER_MAX
,
360 .range_end
= LLONG_MAX
,
365 SetPageReclaim(page
);
366 res
= mapping
->a_ops
->writepage(page
, &wbc
);
368 handle_write_error(mapping
, page
, res
);
369 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
370 ClearPageReclaim(page
);
371 return PAGE_ACTIVATE
;
375 * Wait on writeback if requested to. This happens when
376 * direct reclaiming a large contiguous area and the
377 * first attempt to free a range of pages fails.
379 if (PageWriteback(page
) && sync_writeback
== PAGEOUT_IO_SYNC
)
380 wait_on_page_writeback(page
);
382 if (!PageWriteback(page
)) {
383 /* synchronous write or broken a_ops? */
384 ClearPageReclaim(page
);
386 inc_zone_page_state(page
, NR_VMSCAN_WRITE
);
394 * Same as remove_mapping, but if the page is removed from the mapping, it
395 * gets returned with a refcount of 0.
397 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
)
399 BUG_ON(!PageLocked(page
));
400 BUG_ON(mapping
!= page_mapping(page
));
402 spin_lock_irq(&mapping
->tree_lock
);
404 * The non racy check for a busy page.
406 * Must be careful with the order of the tests. When someone has
407 * a ref to the page, it may be possible that they dirty it then
408 * drop the reference. So if PageDirty is tested before page_count
409 * here, then the following race may occur:
411 * get_user_pages(&page);
412 * [user mapping goes away]
414 * !PageDirty(page) [good]
415 * SetPageDirty(page);
417 * !page_count(page) [good, discard it]
419 * [oops, our write_to data is lost]
421 * Reversing the order of the tests ensures such a situation cannot
422 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
423 * load is not satisfied before that of page->_count.
425 * Note that if SetPageDirty is always performed via set_page_dirty,
426 * and thus under tree_lock, then this ordering is not required.
428 if (!page_freeze_refs(page
, 2))
430 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
431 if (unlikely(PageDirty(page
))) {
432 page_unfreeze_refs(page
, 2);
436 if (PageSwapCache(page
)) {
437 swp_entry_t swap
= { .val
= page_private(page
) };
438 __delete_from_swap_cache(page
);
439 spin_unlock_irq(&mapping
->tree_lock
);
442 __remove_from_page_cache(page
);
443 spin_unlock_irq(&mapping
->tree_lock
);
449 spin_unlock_irq(&mapping
->tree_lock
);
454 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
455 * someone else has a ref on the page, abort and return 0. If it was
456 * successfully detached, return 1. Assumes the caller has a single ref on
459 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
461 if (__remove_mapping(mapping
, page
)) {
463 * Unfreezing the refcount with 1 rather than 2 effectively
464 * drops the pagecache ref for us without requiring another
467 page_unfreeze_refs(page
, 1);
474 * shrink_page_list() returns the number of reclaimed pages
476 static unsigned long shrink_page_list(struct list_head
*page_list
,
477 struct scan_control
*sc
,
478 enum pageout_io sync_writeback
)
480 LIST_HEAD(ret_pages
);
481 struct pagevec freed_pvec
;
483 unsigned long nr_reclaimed
= 0;
487 pagevec_init(&freed_pvec
, 1);
488 while (!list_empty(page_list
)) {
489 struct address_space
*mapping
;
496 page
= lru_to_page(page_list
);
497 list_del(&page
->lru
);
499 if (TestSetPageLocked(page
))
502 VM_BUG_ON(PageActive(page
));
506 if (!sc
->may_swap
&& page_mapped(page
))
509 /* Double the slab pressure for mapped and swapcache pages */
510 if (page_mapped(page
) || PageSwapCache(page
))
513 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
514 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
516 if (PageWriteback(page
)) {
518 * Synchronous reclaim is performed in two passes,
519 * first an asynchronous pass over the list to
520 * start parallel writeback, and a second synchronous
521 * pass to wait for the IO to complete. Wait here
522 * for any page for which writeback has already
525 if (sync_writeback
== PAGEOUT_IO_SYNC
&& may_enter_fs
)
526 wait_on_page_writeback(page
);
531 referenced
= page_referenced(page
, 1, sc
->mem_cgroup
);
532 /* In active use or really unfreeable? Activate it. */
533 if (sc
->order
<= PAGE_ALLOC_COSTLY_ORDER
&&
534 referenced
&& page_mapping_inuse(page
))
535 goto activate_locked
;
539 * Anonymous process memory has backing store?
540 * Try to allocate it some swap space here.
542 if (PageAnon(page
) && !PageSwapCache(page
))
543 if (!add_to_swap(page
, GFP_ATOMIC
))
544 goto activate_locked
;
545 #endif /* CONFIG_SWAP */
547 mapping
= page_mapping(page
);
550 * The page is mapped into the page tables of one or more
551 * processes. Try to unmap it here.
553 if (page_mapped(page
) && mapping
) {
554 switch (try_to_unmap(page
, 0)) {
556 goto activate_locked
;
560 ; /* try to free the page below */
564 if (PageDirty(page
)) {
565 if (sc
->order
<= PAGE_ALLOC_COSTLY_ORDER
&& referenced
)
569 if (!sc
->may_writepage
)
572 /* Page is dirty, try to write it out here */
573 switch (pageout(page
, mapping
, sync_writeback
)) {
577 goto activate_locked
;
579 if (PageWriteback(page
) || PageDirty(page
))
582 * A synchronous write - probably a ramdisk. Go
583 * ahead and try to reclaim the page.
585 if (TestSetPageLocked(page
))
587 if (PageDirty(page
) || PageWriteback(page
))
589 mapping
= page_mapping(page
);
591 ; /* try to free the page below */
596 * If the page has buffers, try to free the buffer mappings
597 * associated with this page. If we succeed we try to free
600 * We do this even if the page is PageDirty().
601 * try_to_release_page() does not perform I/O, but it is
602 * possible for a page to have PageDirty set, but it is actually
603 * clean (all its buffers are clean). This happens if the
604 * buffers were written out directly, with submit_bh(). ext3
605 * will do this, as well as the blockdev mapping.
606 * try_to_release_page() will discover that cleanness and will
607 * drop the buffers and mark the page clean - it can be freed.
609 * Rarely, pages can have buffers and no ->mapping. These are
610 * the pages which were not successfully invalidated in
611 * truncate_complete_page(). We try to drop those buffers here
612 * and if that worked, and the page is no longer mapped into
613 * process address space (page_count == 1) it can be freed.
614 * Otherwise, leave the page on the LRU so it is swappable.
616 if (PagePrivate(page
)) {
617 if (!try_to_release_page(page
, sc
->gfp_mask
))
618 goto activate_locked
;
619 if (!mapping
&& page_count(page
) == 1) {
621 if (put_page_testzero(page
))
625 * rare race with speculative reference.
626 * the speculative reference will free
627 * this page shortly, so we may
628 * increment nr_reclaimed here (and
629 * leave it off the LRU).
637 if (!mapping
|| !__remove_mapping(mapping
, page
))
643 if (!pagevec_add(&freed_pvec
, page
)) {
644 __pagevec_free(&freed_pvec
);
645 pagevec_reinit(&freed_pvec
);
655 list_add(&page
->lru
, &ret_pages
);
656 VM_BUG_ON(PageLRU(page
));
658 list_splice(&ret_pages
, page_list
);
659 if (pagevec_count(&freed_pvec
))
660 __pagevec_free(&freed_pvec
);
661 count_vm_events(PGACTIVATE
, pgactivate
);
665 /* LRU Isolation modes. */
666 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
667 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */
668 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
671 * Attempt to remove the specified page from its LRU. Only take this page
672 * if it is of the appropriate PageActive status. Pages which are being
673 * freed elsewhere are also ignored.
675 * page: page to consider
676 * mode: one of the LRU isolation modes defined above
678 * returns 0 on success, -ve errno on failure.
680 int __isolate_lru_page(struct page
*page
, int mode
)
684 /* Only take pages on the LRU. */
689 * When checking the active state, we need to be sure we are
690 * dealing with comparible boolean values. Take the logical not
693 if (mode
!= ISOLATE_BOTH
&& (!PageActive(page
) != !mode
))
697 if (likely(get_page_unless_zero(page
))) {
699 * Be careful not to clear PageLRU until after we're
700 * sure the page is not being freed elsewhere -- the
701 * page release code relies on it.
711 * zone->lru_lock is heavily contended. Some of the functions that
712 * shrink the lists perform better by taking out a batch of pages
713 * and working on them outside the LRU lock.
715 * For pagecache intensive workloads, this function is the hottest
716 * spot in the kernel (apart from copy_*_user functions).
718 * Appropriate locks must be held before calling this function.
720 * @nr_to_scan: The number of pages to look through on the list.
721 * @src: The LRU list to pull pages off.
722 * @dst: The temp list to put pages on to.
723 * @scanned: The number of pages that were scanned.
724 * @order: The caller's attempted allocation order
725 * @mode: One of the LRU isolation modes
727 * returns how many pages were moved onto *@dst.
729 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
730 struct list_head
*src
, struct list_head
*dst
,
731 unsigned long *scanned
, int order
, int mode
)
733 unsigned long nr_taken
= 0;
736 for (scan
= 0; scan
< nr_to_scan
&& !list_empty(src
); scan
++) {
739 unsigned long end_pfn
;
740 unsigned long page_pfn
;
743 page
= lru_to_page(src
);
744 prefetchw_prev_lru_page(page
, src
, flags
);
746 VM_BUG_ON(!PageLRU(page
));
748 switch (__isolate_lru_page(page
, mode
)) {
750 list_move(&page
->lru
, dst
);
755 /* else it is being freed elsewhere */
756 list_move(&page
->lru
, src
);
767 * Attempt to take all pages in the order aligned region
768 * surrounding the tag page. Only take those pages of
769 * the same active state as that tag page. We may safely
770 * round the target page pfn down to the requested order
771 * as the mem_map is guarenteed valid out to MAX_ORDER,
772 * where that page is in a different zone we will detect
773 * it from its zone id and abort this block scan.
775 zone_id
= page_zone_id(page
);
776 page_pfn
= page_to_pfn(page
);
777 pfn
= page_pfn
& ~((1 << order
) - 1);
778 end_pfn
= pfn
+ (1 << order
);
779 for (; pfn
< end_pfn
; pfn
++) {
780 struct page
*cursor_page
;
782 /* The target page is in the block, ignore it. */
783 if (unlikely(pfn
== page_pfn
))
786 /* Avoid holes within the zone. */
787 if (unlikely(!pfn_valid_within(pfn
)))
790 cursor_page
= pfn_to_page(pfn
);
791 /* Check that we have not crossed a zone boundary. */
792 if (unlikely(page_zone_id(cursor_page
) != zone_id
))
794 switch (__isolate_lru_page(cursor_page
, mode
)) {
796 list_move(&cursor_page
->lru
, dst
);
802 /* else it is being freed elsewhere */
803 list_move(&cursor_page
->lru
, src
);
814 static unsigned long isolate_pages_global(unsigned long nr
,
815 struct list_head
*dst
,
816 unsigned long *scanned
, int order
,
817 int mode
, struct zone
*z
,
818 struct mem_cgroup
*mem_cont
,
822 return isolate_lru_pages(nr
, &z
->active_list
, dst
,
823 scanned
, order
, mode
);
825 return isolate_lru_pages(nr
, &z
->inactive_list
, dst
,
826 scanned
, order
, mode
);
830 * clear_active_flags() is a helper for shrink_active_list(), clearing
831 * any active bits from the pages in the list.
833 static unsigned long clear_active_flags(struct list_head
*page_list
)
838 list_for_each_entry(page
, page_list
, lru
)
839 if (PageActive(page
)) {
840 ClearPageActive(page
);
848 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
851 static unsigned long shrink_inactive_list(unsigned long max_scan
,
852 struct zone
*zone
, struct scan_control
*sc
)
854 LIST_HEAD(page_list
);
856 unsigned long nr_scanned
= 0;
857 unsigned long nr_reclaimed
= 0;
859 pagevec_init(&pvec
, 1);
862 spin_lock_irq(&zone
->lru_lock
);
865 unsigned long nr_taken
;
866 unsigned long nr_scan
;
867 unsigned long nr_freed
;
868 unsigned long nr_active
;
870 nr_taken
= sc
->isolate_pages(sc
->swap_cluster_max
,
871 &page_list
, &nr_scan
, sc
->order
,
872 (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)?
873 ISOLATE_BOTH
: ISOLATE_INACTIVE
,
874 zone
, sc
->mem_cgroup
, 0);
875 nr_active
= clear_active_flags(&page_list
);
876 __count_vm_events(PGDEACTIVATE
, nr_active
);
878 __mod_zone_page_state(zone
, NR_ACTIVE
, -nr_active
);
879 __mod_zone_page_state(zone
, NR_INACTIVE
,
880 -(nr_taken
- nr_active
));
881 if (scan_global_lru(sc
))
882 zone
->pages_scanned
+= nr_scan
;
883 spin_unlock_irq(&zone
->lru_lock
);
885 nr_scanned
+= nr_scan
;
886 nr_freed
= shrink_page_list(&page_list
, sc
, PAGEOUT_IO_ASYNC
);
889 * If we are direct reclaiming for contiguous pages and we do
890 * not reclaim everything in the list, try again and wait
891 * for IO to complete. This will stall high-order allocations
892 * but that should be acceptable to the caller
894 if (nr_freed
< nr_taken
&& !current_is_kswapd() &&
895 sc
->order
> PAGE_ALLOC_COSTLY_ORDER
) {
896 congestion_wait(WRITE
, HZ
/10);
899 * The attempt at page out may have made some
900 * of the pages active, mark them inactive again.
902 nr_active
= clear_active_flags(&page_list
);
903 count_vm_events(PGDEACTIVATE
, nr_active
);
905 nr_freed
+= shrink_page_list(&page_list
, sc
,
909 nr_reclaimed
+= nr_freed
;
911 if (current_is_kswapd()) {
912 __count_zone_vm_events(PGSCAN_KSWAPD
, zone
, nr_scan
);
913 __count_vm_events(KSWAPD_STEAL
, nr_freed
);
914 } else if (scan_global_lru(sc
))
915 __count_zone_vm_events(PGSCAN_DIRECT
, zone
, nr_scan
);
917 __count_zone_vm_events(PGSTEAL
, zone
, nr_freed
);
922 spin_lock(&zone
->lru_lock
);
924 * Put back any unfreeable pages.
926 while (!list_empty(&page_list
)) {
927 page
= lru_to_page(&page_list
);
928 VM_BUG_ON(PageLRU(page
));
930 list_del(&page
->lru
);
931 if (PageActive(page
))
932 add_page_to_active_list(zone
, page
);
934 add_page_to_inactive_list(zone
, page
);
935 if (!pagevec_add(&pvec
, page
)) {
936 spin_unlock_irq(&zone
->lru_lock
);
937 __pagevec_release(&pvec
);
938 spin_lock_irq(&zone
->lru_lock
);
941 } while (nr_scanned
< max_scan
);
942 spin_unlock(&zone
->lru_lock
);
945 pagevec_release(&pvec
);
950 * We are about to scan this zone at a certain priority level. If that priority
951 * level is smaller (ie: more urgent) than the previous priority, then note
952 * that priority level within the zone. This is done so that when the next
953 * process comes in to scan this zone, it will immediately start out at this
954 * priority level rather than having to build up its own scanning priority.
955 * Here, this priority affects only the reclaim-mapped threshold.
957 static inline void note_zone_scanning_priority(struct zone
*zone
, int priority
)
959 if (priority
< zone
->prev_priority
)
960 zone
->prev_priority
= priority
;
963 static inline int zone_is_near_oom(struct zone
*zone
)
965 return zone
->pages_scanned
>= (zone_page_state(zone
, NR_ACTIVE
)
966 + zone_page_state(zone
, NR_INACTIVE
))*3;
970 * Determine we should try to reclaim mapped pages.
971 * This is called only when sc->mem_cgroup is NULL.
973 static int calc_reclaim_mapped(struct scan_control
*sc
, struct zone
*zone
,
980 int reclaim_mapped
= 0;
983 if (scan_global_lru(sc
) && zone_is_near_oom(zone
))
986 * `distress' is a measure of how much trouble we're having
987 * reclaiming pages. 0 -> no problems. 100 -> great trouble.
989 if (scan_global_lru(sc
))
990 prev_priority
= zone
->prev_priority
;
992 prev_priority
= mem_cgroup_get_reclaim_priority(sc
->mem_cgroup
);
994 distress
= 100 >> min(prev_priority
, priority
);
997 * The point of this algorithm is to decide when to start
998 * reclaiming mapped memory instead of just pagecache. Work out
1002 if (scan_global_lru(sc
))
1003 mapped_ratio
= ((global_page_state(NR_FILE_MAPPED
) +
1004 global_page_state(NR_ANON_PAGES
)) * 100) /
1007 mapped_ratio
= mem_cgroup_calc_mapped_ratio(sc
->mem_cgroup
);
1010 * Now decide how much we really want to unmap some pages. The
1011 * mapped ratio is downgraded - just because there's a lot of
1012 * mapped memory doesn't necessarily mean that page reclaim
1015 * The distress ratio is important - we don't want to start
1018 * A 100% value of vm_swappiness overrides this algorithm
1021 swap_tendency
= mapped_ratio
/ 2 + distress
+ sc
->swappiness
;
1024 * If there's huge imbalance between active and inactive
1025 * (think active 100 times larger than inactive) we should
1026 * become more permissive, or the system will take too much
1027 * cpu before it start swapping during memory pressure.
1028 * Distress is about avoiding early-oom, this is about
1029 * making swappiness graceful despite setting it to low
1032 * Avoid div by zero with nr_inactive+1, and max resulting
1033 * value is vm_total_pages.
1035 if (scan_global_lru(sc
)) {
1036 imbalance
= zone_page_state(zone
, NR_ACTIVE
);
1037 imbalance
/= zone_page_state(zone
, NR_INACTIVE
) + 1;
1039 imbalance
= mem_cgroup_reclaim_imbalance(sc
->mem_cgroup
);
1042 * Reduce the effect of imbalance if swappiness is low,
1043 * this means for a swappiness very low, the imbalance
1044 * must be much higher than 100 for this logic to make
1047 * Max temporary value is vm_total_pages*100.
1049 imbalance
*= (vm_swappiness
+ 1);
1053 * If not much of the ram is mapped, makes the imbalance
1054 * less relevant, it's high priority we refill the inactive
1055 * list with mapped pages only in presence of high ratio of
1058 * Max temporary value is vm_total_pages*100.
1060 imbalance
*= mapped_ratio
;
1063 /* apply imbalance feedback to swap_tendency */
1064 swap_tendency
+= imbalance
;
1067 * Now use this metric to decide whether to start moving mapped
1068 * memory onto the inactive list.
1070 if (swap_tendency
>= 100)
1073 return reclaim_mapped
;
1077 * This moves pages from the active list to the inactive list.
1079 * We move them the other way if the page is referenced by one or more
1080 * processes, from rmap.
1082 * If the pages are mostly unmapped, the processing is fast and it is
1083 * appropriate to hold zone->lru_lock across the whole operation. But if
1084 * the pages are mapped, the processing is slow (page_referenced()) so we
1085 * should drop zone->lru_lock around each page. It's impossible to balance
1086 * this, so instead we remove the pages from the LRU while processing them.
1087 * It is safe to rely on PG_active against the non-LRU pages in here because
1088 * nobody will play with that bit on a non-LRU page.
1090 * The downside is that we have to touch page->_count against each page.
1091 * But we had to alter page->flags anyway.
1095 static void shrink_active_list(unsigned long nr_pages
, struct zone
*zone
,
1096 struct scan_control
*sc
, int priority
)
1098 unsigned long pgmoved
;
1099 int pgdeactivate
= 0;
1100 unsigned long pgscanned
;
1101 LIST_HEAD(l_hold
); /* The pages which were snipped off */
1102 LIST_HEAD(l_inactive
); /* Pages to go onto the inactive_list */
1103 LIST_HEAD(l_active
); /* Pages to go onto the active_list */
1105 struct pagevec pvec
;
1106 int reclaim_mapped
= 0;
1109 reclaim_mapped
= calc_reclaim_mapped(sc
, zone
, priority
);
1112 spin_lock_irq(&zone
->lru_lock
);
1113 pgmoved
= sc
->isolate_pages(nr_pages
, &l_hold
, &pgscanned
, sc
->order
,
1114 ISOLATE_ACTIVE
, zone
,
1117 * zone->pages_scanned is used for detect zone's oom
1118 * mem_cgroup remembers nr_scan by itself.
1120 if (scan_global_lru(sc
))
1121 zone
->pages_scanned
+= pgscanned
;
1123 __mod_zone_page_state(zone
, NR_ACTIVE
, -pgmoved
);
1124 spin_unlock_irq(&zone
->lru_lock
);
1126 while (!list_empty(&l_hold
)) {
1128 page
= lru_to_page(&l_hold
);
1129 list_del(&page
->lru
);
1130 if (page_mapped(page
)) {
1131 if (!reclaim_mapped
||
1132 (total_swap_pages
== 0 && PageAnon(page
)) ||
1133 page_referenced(page
, 0, sc
->mem_cgroup
)) {
1134 list_add(&page
->lru
, &l_active
);
1138 list_add(&page
->lru
, &l_inactive
);
1141 pagevec_init(&pvec
, 1);
1143 spin_lock_irq(&zone
->lru_lock
);
1144 while (!list_empty(&l_inactive
)) {
1145 page
= lru_to_page(&l_inactive
);
1146 prefetchw_prev_lru_page(page
, &l_inactive
, flags
);
1147 VM_BUG_ON(PageLRU(page
));
1149 VM_BUG_ON(!PageActive(page
));
1150 ClearPageActive(page
);
1152 list_move(&page
->lru
, &zone
->inactive_list
);
1153 mem_cgroup_move_lists(page
, false);
1155 if (!pagevec_add(&pvec
, page
)) {
1156 __mod_zone_page_state(zone
, NR_INACTIVE
, pgmoved
);
1157 spin_unlock_irq(&zone
->lru_lock
);
1158 pgdeactivate
+= pgmoved
;
1160 if (buffer_heads_over_limit
)
1161 pagevec_strip(&pvec
);
1162 __pagevec_release(&pvec
);
1163 spin_lock_irq(&zone
->lru_lock
);
1166 __mod_zone_page_state(zone
, NR_INACTIVE
, pgmoved
);
1167 pgdeactivate
+= pgmoved
;
1168 if (buffer_heads_over_limit
) {
1169 spin_unlock_irq(&zone
->lru_lock
);
1170 pagevec_strip(&pvec
);
1171 spin_lock_irq(&zone
->lru_lock
);
1175 while (!list_empty(&l_active
)) {
1176 page
= lru_to_page(&l_active
);
1177 prefetchw_prev_lru_page(page
, &l_active
, flags
);
1178 VM_BUG_ON(PageLRU(page
));
1180 VM_BUG_ON(!PageActive(page
));
1182 list_move(&page
->lru
, &zone
->active_list
);
1183 mem_cgroup_move_lists(page
, true);
1185 if (!pagevec_add(&pvec
, page
)) {
1186 __mod_zone_page_state(zone
, NR_ACTIVE
, pgmoved
);
1188 spin_unlock_irq(&zone
->lru_lock
);
1189 __pagevec_release(&pvec
);
1190 spin_lock_irq(&zone
->lru_lock
);
1193 __mod_zone_page_state(zone
, NR_ACTIVE
, pgmoved
);
1195 __count_zone_vm_events(PGREFILL
, zone
, pgscanned
);
1196 __count_vm_events(PGDEACTIVATE
, pgdeactivate
);
1197 spin_unlock_irq(&zone
->lru_lock
);
1199 pagevec_release(&pvec
);
1203 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1205 static unsigned long shrink_zone(int priority
, struct zone
*zone
,
1206 struct scan_control
*sc
)
1208 unsigned long nr_active
;
1209 unsigned long nr_inactive
;
1210 unsigned long nr_to_scan
;
1211 unsigned long nr_reclaimed
= 0;
1213 if (scan_global_lru(sc
)) {
1215 * Add one to nr_to_scan just to make sure that the kernel
1216 * will slowly sift through the active list.
1218 zone
->nr_scan_active
+=
1219 (zone_page_state(zone
, NR_ACTIVE
) >> priority
) + 1;
1220 nr_active
= zone
->nr_scan_active
;
1221 zone
->nr_scan_inactive
+=
1222 (zone_page_state(zone
, NR_INACTIVE
) >> priority
) + 1;
1223 nr_inactive
= zone
->nr_scan_inactive
;
1224 if (nr_inactive
>= sc
->swap_cluster_max
)
1225 zone
->nr_scan_inactive
= 0;
1229 if (nr_active
>= sc
->swap_cluster_max
)
1230 zone
->nr_scan_active
= 0;
1235 * This reclaim occurs not because zone memory shortage but
1236 * because memory controller hits its limit.
1237 * Then, don't modify zone reclaim related data.
1239 nr_active
= mem_cgroup_calc_reclaim_active(sc
->mem_cgroup
,
1242 nr_inactive
= mem_cgroup_calc_reclaim_inactive(sc
->mem_cgroup
,
1247 while (nr_active
|| nr_inactive
) {
1249 nr_to_scan
= min(nr_active
,
1250 (unsigned long)sc
->swap_cluster_max
);
1251 nr_active
-= nr_to_scan
;
1252 shrink_active_list(nr_to_scan
, zone
, sc
, priority
);
1256 nr_to_scan
= min(nr_inactive
,
1257 (unsigned long)sc
->swap_cluster_max
);
1258 nr_inactive
-= nr_to_scan
;
1259 nr_reclaimed
+= shrink_inactive_list(nr_to_scan
, zone
,
1264 throttle_vm_writeout(sc
->gfp_mask
);
1265 return nr_reclaimed
;
1269 * This is the direct reclaim path, for page-allocating processes. We only
1270 * try to reclaim pages from zones which will satisfy the caller's allocation
1273 * We reclaim from a zone even if that zone is over pages_high. Because:
1274 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1276 * b) The zones may be over pages_high but they must go *over* pages_high to
1277 * satisfy the `incremental min' zone defense algorithm.
1279 * Returns the number of reclaimed pages.
1281 * If a zone is deemed to be full of pinned pages then just give it a light
1282 * scan then give up on it.
1284 static unsigned long shrink_zones(int priority
, struct zonelist
*zonelist
,
1285 struct scan_control
*sc
)
1287 enum zone_type high_zoneidx
= gfp_zone(sc
->gfp_mask
);
1288 unsigned long nr_reclaimed
= 0;
1292 sc
->all_unreclaimable
= 1;
1293 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1294 if (!populated_zone(zone
))
1297 * Take care memory controller reclaiming has small influence
1300 if (scan_global_lru(sc
)) {
1301 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1303 note_zone_scanning_priority(zone
, priority
);
1305 if (zone_is_all_unreclaimable(zone
) &&
1306 priority
!= DEF_PRIORITY
)
1307 continue; /* Let kswapd poll it */
1308 sc
->all_unreclaimable
= 0;
1311 * Ignore cpuset limitation here. We just want to reduce
1312 * # of used pages by us regardless of memory shortage.
1314 sc
->all_unreclaimable
= 0;
1315 mem_cgroup_note_reclaim_priority(sc
->mem_cgroup
,
1319 nr_reclaimed
+= shrink_zone(priority
, zone
, sc
);
1322 return nr_reclaimed
;
1326 * This is the main entry point to direct page reclaim.
1328 * If a full scan of the inactive list fails to free enough memory then we
1329 * are "out of memory" and something needs to be killed.
1331 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1332 * high - the zone may be full of dirty or under-writeback pages, which this
1333 * caller can't do much about. We kick pdflush and take explicit naps in the
1334 * hope that some of these pages can be written. But if the allocating task
1335 * holds filesystem locks which prevent writeout this might not work, and the
1336 * allocation attempt will fail.
1338 * returns: 0, if no pages reclaimed
1339 * else, the number of pages reclaimed
1341 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
1342 struct scan_control
*sc
)
1345 unsigned long ret
= 0;
1346 unsigned long total_scanned
= 0;
1347 unsigned long nr_reclaimed
= 0;
1348 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1349 unsigned long lru_pages
= 0;
1352 enum zone_type high_zoneidx
= gfp_zone(sc
->gfp_mask
);
1354 delayacct_freepages_start();
1356 if (scan_global_lru(sc
))
1357 count_vm_event(ALLOCSTALL
);
1359 * mem_cgroup will not do shrink_slab.
1361 if (scan_global_lru(sc
)) {
1362 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1364 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1367 lru_pages
+= zone_page_state(zone
, NR_ACTIVE
)
1368 + zone_page_state(zone
, NR_INACTIVE
);
1372 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1375 disable_swap_token();
1376 nr_reclaimed
+= shrink_zones(priority
, zonelist
, sc
);
1378 * Don't shrink slabs when reclaiming memory from
1379 * over limit cgroups
1381 if (scan_global_lru(sc
)) {
1382 shrink_slab(sc
->nr_scanned
, sc
->gfp_mask
, lru_pages
);
1383 if (reclaim_state
) {
1384 nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1385 reclaim_state
->reclaimed_slab
= 0;
1388 total_scanned
+= sc
->nr_scanned
;
1389 if (nr_reclaimed
>= sc
->swap_cluster_max
) {
1395 * Try to write back as many pages as we just scanned. This
1396 * tends to cause slow streaming writers to write data to the
1397 * disk smoothly, at the dirtying rate, which is nice. But
1398 * that's undesirable in laptop mode, where we *want* lumpy
1399 * writeout. So in laptop mode, write out the whole world.
1401 if (total_scanned
> sc
->swap_cluster_max
+
1402 sc
->swap_cluster_max
/ 2) {
1403 wakeup_pdflush(laptop_mode
? 0 : total_scanned
);
1404 sc
->may_writepage
= 1;
1407 /* Take a nap, wait for some writeback to complete */
1408 if (sc
->nr_scanned
&& priority
< DEF_PRIORITY
- 2)
1409 congestion_wait(WRITE
, HZ
/10);
1411 /* top priority shrink_zones still had more to do? don't OOM, then */
1412 if (!sc
->all_unreclaimable
&& scan_global_lru(sc
))
1416 * Now that we've scanned all the zones at this priority level, note
1417 * that level within the zone so that the next thread which performs
1418 * scanning of this zone will immediately start out at this priority
1419 * level. This affects only the decision whether or not to bring
1420 * mapped pages onto the inactive list.
1425 if (scan_global_lru(sc
)) {
1426 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1428 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1431 zone
->prev_priority
= priority
;
1434 mem_cgroup_record_reclaim_priority(sc
->mem_cgroup
, priority
);
1436 delayacct_freepages_end();
1441 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
1444 struct scan_control sc
= {
1445 .gfp_mask
= gfp_mask
,
1446 .may_writepage
= !laptop_mode
,
1447 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1449 .swappiness
= vm_swappiness
,
1452 .isolate_pages
= isolate_pages_global
,
1455 return do_try_to_free_pages(zonelist
, &sc
);
1458 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1460 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*mem_cont
,
1463 struct scan_control sc
= {
1464 .may_writepage
= !laptop_mode
,
1466 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1467 .swappiness
= vm_swappiness
,
1469 .mem_cgroup
= mem_cont
,
1470 .isolate_pages
= mem_cgroup_isolate_pages
,
1472 struct zonelist
*zonelist
;
1474 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
1475 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
1476 zonelist
= NODE_DATA(numa_node_id())->node_zonelists
;
1477 return do_try_to_free_pages(zonelist
, &sc
);
1482 * For kswapd, balance_pgdat() will work across all this node's zones until
1483 * they are all at pages_high.
1485 * Returns the number of pages which were actually freed.
1487 * There is special handling here for zones which are full of pinned pages.
1488 * This can happen if the pages are all mlocked, or if they are all used by
1489 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1490 * What we do is to detect the case where all pages in the zone have been
1491 * scanned twice and there has been zero successful reclaim. Mark the zone as
1492 * dead and from now on, only perform a short scan. Basically we're polling
1493 * the zone for when the problem goes away.
1495 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1496 * zones which have free_pages > pages_high, but once a zone is found to have
1497 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1498 * of the number of free pages in the lower zones. This interoperates with
1499 * the page allocator fallback scheme to ensure that aging of pages is balanced
1502 static unsigned long balance_pgdat(pg_data_t
*pgdat
, int order
)
1507 unsigned long total_scanned
;
1508 unsigned long nr_reclaimed
;
1509 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1510 struct scan_control sc
= {
1511 .gfp_mask
= GFP_KERNEL
,
1513 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1514 .swappiness
= vm_swappiness
,
1517 .isolate_pages
= isolate_pages_global
,
1520 * temp_priority is used to remember the scanning priority at which
1521 * this zone was successfully refilled to free_pages == pages_high.
1523 int temp_priority
[MAX_NR_ZONES
];
1528 sc
.may_writepage
= !laptop_mode
;
1529 count_vm_event(PAGEOUTRUN
);
1531 for (i
= 0; i
< pgdat
->nr_zones
; i
++)
1532 temp_priority
[i
] = DEF_PRIORITY
;
1534 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1535 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
1536 unsigned long lru_pages
= 0;
1538 /* The swap token gets in the way of swapout... */
1540 disable_swap_token();
1545 * Scan in the highmem->dma direction for the highest
1546 * zone which needs scanning
1548 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
1549 struct zone
*zone
= pgdat
->node_zones
+ i
;
1551 if (!populated_zone(zone
))
1554 if (zone_is_all_unreclaimable(zone
) &&
1555 priority
!= DEF_PRIORITY
)
1558 if (!zone_watermark_ok(zone
, order
, zone
->pages_high
,
1567 for (i
= 0; i
<= end_zone
; i
++) {
1568 struct zone
*zone
= pgdat
->node_zones
+ i
;
1570 lru_pages
+= zone_page_state(zone
, NR_ACTIVE
)
1571 + zone_page_state(zone
, NR_INACTIVE
);
1575 * Now scan the zone in the dma->highmem direction, stopping
1576 * at the last zone which needs scanning.
1578 * We do this because the page allocator works in the opposite
1579 * direction. This prevents the page allocator from allocating
1580 * pages behind kswapd's direction of progress, which would
1581 * cause too much scanning of the lower zones.
1583 for (i
= 0; i
<= end_zone
; i
++) {
1584 struct zone
*zone
= pgdat
->node_zones
+ i
;
1587 if (!populated_zone(zone
))
1590 if (zone_is_all_unreclaimable(zone
) &&
1591 priority
!= DEF_PRIORITY
)
1594 if (!zone_watermark_ok(zone
, order
, zone
->pages_high
,
1597 temp_priority
[i
] = priority
;
1599 note_zone_scanning_priority(zone
, priority
);
1601 * We put equal pressure on every zone, unless one
1602 * zone has way too many pages free already.
1604 if (!zone_watermark_ok(zone
, order
, 8*zone
->pages_high
,
1606 nr_reclaimed
+= shrink_zone(priority
, zone
, &sc
);
1607 reclaim_state
->reclaimed_slab
= 0;
1608 nr_slab
= shrink_slab(sc
.nr_scanned
, GFP_KERNEL
,
1610 nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1611 total_scanned
+= sc
.nr_scanned
;
1612 if (zone_is_all_unreclaimable(zone
))
1614 if (nr_slab
== 0 && zone
->pages_scanned
>=
1615 (zone_page_state(zone
, NR_ACTIVE
)
1616 + zone_page_state(zone
, NR_INACTIVE
)) * 6)
1618 ZONE_ALL_UNRECLAIMABLE
);
1620 * If we've done a decent amount of scanning and
1621 * the reclaim ratio is low, start doing writepage
1622 * even in laptop mode
1624 if (total_scanned
> SWAP_CLUSTER_MAX
* 2 &&
1625 total_scanned
> nr_reclaimed
+ nr_reclaimed
/ 2)
1626 sc
.may_writepage
= 1;
1629 break; /* kswapd: all done */
1631 * OK, kswapd is getting into trouble. Take a nap, then take
1632 * another pass across the zones.
1634 if (total_scanned
&& priority
< DEF_PRIORITY
- 2)
1635 congestion_wait(WRITE
, HZ
/10);
1638 * We do this so kswapd doesn't build up large priorities for
1639 * example when it is freeing in parallel with allocators. It
1640 * matches the direct reclaim path behaviour in terms of impact
1641 * on zone->*_priority.
1643 if (nr_reclaimed
>= SWAP_CLUSTER_MAX
)
1648 * Note within each zone the priority level at which this zone was
1649 * brought into a happy state. So that the next thread which scans this
1650 * zone will start out at that priority level.
1652 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
1653 struct zone
*zone
= pgdat
->node_zones
+ i
;
1655 zone
->prev_priority
= temp_priority
[i
];
1657 if (!all_zones_ok
) {
1665 return nr_reclaimed
;
1669 * The background pageout daemon, started as a kernel thread
1670 * from the init process.
1672 * This basically trickles out pages so that we have _some_
1673 * free memory available even if there is no other activity
1674 * that frees anything up. This is needed for things like routing
1675 * etc, where we otherwise might have all activity going on in
1676 * asynchronous contexts that cannot page things out.
1678 * If there are applications that are active memory-allocators
1679 * (most normal use), this basically shouldn't matter.
1681 static int kswapd(void *p
)
1683 unsigned long order
;
1684 pg_data_t
*pgdat
= (pg_data_t
*)p
;
1685 struct task_struct
*tsk
= current
;
1687 struct reclaim_state reclaim_state
= {
1688 .reclaimed_slab
= 0,
1690 node_to_cpumask_ptr(cpumask
, pgdat
->node_id
);
1692 if (!cpus_empty(*cpumask
))
1693 set_cpus_allowed_ptr(tsk
, cpumask
);
1694 current
->reclaim_state
= &reclaim_state
;
1697 * Tell the memory management that we're a "memory allocator",
1698 * and that if we need more memory we should get access to it
1699 * regardless (see "__alloc_pages()"). "kswapd" should
1700 * never get caught in the normal page freeing logic.
1702 * (Kswapd normally doesn't need memory anyway, but sometimes
1703 * you need a small amount of memory in order to be able to
1704 * page out something else, and this flag essentially protects
1705 * us from recursively trying to free more memory as we're
1706 * trying to free the first piece of memory in the first place).
1708 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
1713 unsigned long new_order
;
1715 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
1716 new_order
= pgdat
->kswapd_max_order
;
1717 pgdat
->kswapd_max_order
= 0;
1718 if (order
< new_order
) {
1720 * Don't sleep if someone wants a larger 'order'
1725 if (!freezing(current
))
1728 order
= pgdat
->kswapd_max_order
;
1730 finish_wait(&pgdat
->kswapd_wait
, &wait
);
1732 if (!try_to_freeze()) {
1733 /* We can speed up thawing tasks if we don't call
1734 * balance_pgdat after returning from the refrigerator
1736 balance_pgdat(pgdat
, order
);
1743 * A zone is low on free memory, so wake its kswapd task to service it.
1745 void wakeup_kswapd(struct zone
*zone
, int order
)
1749 if (!populated_zone(zone
))
1752 pgdat
= zone
->zone_pgdat
;
1753 if (zone_watermark_ok(zone
, order
, zone
->pages_low
, 0, 0))
1755 if (pgdat
->kswapd_max_order
< order
)
1756 pgdat
->kswapd_max_order
= order
;
1757 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1759 if (!waitqueue_active(&pgdat
->kswapd_wait
))
1761 wake_up_interruptible(&pgdat
->kswapd_wait
);
1766 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
1767 * from LRU lists system-wide, for given pass and priority, and returns the
1768 * number of reclaimed pages
1770 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1772 static unsigned long shrink_all_zones(unsigned long nr_pages
, int prio
,
1773 int pass
, struct scan_control
*sc
)
1776 unsigned long nr_to_scan
, ret
= 0;
1778 for_each_zone(zone
) {
1780 if (!populated_zone(zone
))
1783 if (zone_is_all_unreclaimable(zone
) && prio
!= DEF_PRIORITY
)
1786 /* For pass = 0 we don't shrink the active list */
1788 zone
->nr_scan_active
+=
1789 (zone_page_state(zone
, NR_ACTIVE
) >> prio
) + 1;
1790 if (zone
->nr_scan_active
>= nr_pages
|| pass
> 3) {
1791 zone
->nr_scan_active
= 0;
1792 nr_to_scan
= min(nr_pages
,
1793 zone_page_state(zone
, NR_ACTIVE
));
1794 shrink_active_list(nr_to_scan
, zone
, sc
, prio
);
1798 zone
->nr_scan_inactive
+=
1799 (zone_page_state(zone
, NR_INACTIVE
) >> prio
) + 1;
1800 if (zone
->nr_scan_inactive
>= nr_pages
|| pass
> 3) {
1801 zone
->nr_scan_inactive
= 0;
1802 nr_to_scan
= min(nr_pages
,
1803 zone_page_state(zone
, NR_INACTIVE
));
1804 ret
+= shrink_inactive_list(nr_to_scan
, zone
, sc
);
1805 if (ret
>= nr_pages
)
1813 static unsigned long count_lru_pages(void)
1815 return global_page_state(NR_ACTIVE
) + global_page_state(NR_INACTIVE
);
1819 * Try to free `nr_pages' of memory, system-wide, and return the number of
1822 * Rather than trying to age LRUs the aim is to preserve the overall
1823 * LRU order by reclaiming preferentially
1824 * inactive > active > active referenced > active mapped
1826 unsigned long shrink_all_memory(unsigned long nr_pages
)
1828 unsigned long lru_pages
, nr_slab
;
1829 unsigned long ret
= 0;
1831 struct reclaim_state reclaim_state
;
1832 struct scan_control sc
= {
1833 .gfp_mask
= GFP_KERNEL
,
1835 .swap_cluster_max
= nr_pages
,
1837 .swappiness
= vm_swappiness
,
1838 .isolate_pages
= isolate_pages_global
,
1841 current
->reclaim_state
= &reclaim_state
;
1843 lru_pages
= count_lru_pages();
1844 nr_slab
= global_page_state(NR_SLAB_RECLAIMABLE
);
1845 /* If slab caches are huge, it's better to hit them first */
1846 while (nr_slab
>= lru_pages
) {
1847 reclaim_state
.reclaimed_slab
= 0;
1848 shrink_slab(nr_pages
, sc
.gfp_mask
, lru_pages
);
1849 if (!reclaim_state
.reclaimed_slab
)
1852 ret
+= reclaim_state
.reclaimed_slab
;
1853 if (ret
>= nr_pages
)
1856 nr_slab
-= reclaim_state
.reclaimed_slab
;
1860 * We try to shrink LRUs in 5 passes:
1861 * 0 = Reclaim from inactive_list only
1862 * 1 = Reclaim from active list but don't reclaim mapped
1863 * 2 = 2nd pass of type 1
1864 * 3 = Reclaim mapped (normal reclaim)
1865 * 4 = 2nd pass of type 3
1867 for (pass
= 0; pass
< 5; pass
++) {
1870 /* Force reclaiming mapped pages in the passes #3 and #4 */
1873 sc
.swappiness
= 100;
1876 for (prio
= DEF_PRIORITY
; prio
>= 0; prio
--) {
1877 unsigned long nr_to_scan
= nr_pages
- ret
;
1880 ret
+= shrink_all_zones(nr_to_scan
, prio
, pass
, &sc
);
1881 if (ret
>= nr_pages
)
1884 reclaim_state
.reclaimed_slab
= 0;
1885 shrink_slab(sc
.nr_scanned
, sc
.gfp_mask
,
1887 ret
+= reclaim_state
.reclaimed_slab
;
1888 if (ret
>= nr_pages
)
1891 if (sc
.nr_scanned
&& prio
< DEF_PRIORITY
- 2)
1892 congestion_wait(WRITE
, HZ
/ 10);
1897 * If ret = 0, we could not shrink LRUs, but there may be something
1902 reclaim_state
.reclaimed_slab
= 0;
1903 shrink_slab(nr_pages
, sc
.gfp_mask
, count_lru_pages());
1904 ret
+= reclaim_state
.reclaimed_slab
;
1905 } while (ret
< nr_pages
&& reclaim_state
.reclaimed_slab
> 0);
1909 current
->reclaim_state
= NULL
;
1915 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1916 not required for correctness. So if the last cpu in a node goes
1917 away, we get changed to run anywhere: as the first one comes back,
1918 restore their cpu bindings. */
1919 static int __devinit
cpu_callback(struct notifier_block
*nfb
,
1920 unsigned long action
, void *hcpu
)
1924 if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
) {
1925 for_each_node_state(nid
, N_HIGH_MEMORY
) {
1926 pg_data_t
*pgdat
= NODE_DATA(nid
);
1927 node_to_cpumask_ptr(mask
, pgdat
->node_id
);
1929 if (any_online_cpu(*mask
) < nr_cpu_ids
)
1930 /* One of our CPUs online: restore mask */
1931 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
1938 * This kswapd start function will be called by init and node-hot-add.
1939 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1941 int kswapd_run(int nid
)
1943 pg_data_t
*pgdat
= NODE_DATA(nid
);
1949 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
1950 if (IS_ERR(pgdat
->kswapd
)) {
1951 /* failure at boot is fatal */
1952 BUG_ON(system_state
== SYSTEM_BOOTING
);
1953 printk("Failed to start kswapd on node %d\n",nid
);
1959 static int __init
kswapd_init(void)
1964 for_each_node_state(nid
, N_HIGH_MEMORY
)
1966 hotcpu_notifier(cpu_callback
, 0);
1970 module_init(kswapd_init
)
1976 * If non-zero call zone_reclaim when the number of free pages falls below
1979 int zone_reclaim_mode __read_mostly
;
1981 #define RECLAIM_OFF 0
1982 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1983 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
1984 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
1987 * Priority for ZONE_RECLAIM. This determines the fraction of pages
1988 * of a node considered for each zone_reclaim. 4 scans 1/16th of
1991 #define ZONE_RECLAIM_PRIORITY 4
1994 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
1997 int sysctl_min_unmapped_ratio
= 1;
2000 * If the number of slab pages in a zone grows beyond this percentage then
2001 * slab reclaim needs to occur.
2003 int sysctl_min_slab_ratio
= 5;
2006 * Try to free up some pages from this zone through reclaim.
2008 static int __zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
2010 /* Minimum pages needed in order to stay on node */
2011 const unsigned long nr_pages
= 1 << order
;
2012 struct task_struct
*p
= current
;
2013 struct reclaim_state reclaim_state
;
2015 unsigned long nr_reclaimed
= 0;
2016 struct scan_control sc
= {
2017 .may_writepage
= !!(zone_reclaim_mode
& RECLAIM_WRITE
),
2018 .may_swap
= !!(zone_reclaim_mode
& RECLAIM_SWAP
),
2019 .swap_cluster_max
= max_t(unsigned long, nr_pages
,
2021 .gfp_mask
= gfp_mask
,
2022 .swappiness
= vm_swappiness
,
2023 .isolate_pages
= isolate_pages_global
,
2025 unsigned long slab_reclaimable
;
2027 disable_swap_token();
2030 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2031 * and we also need to be able to write out pages for RECLAIM_WRITE
2034 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
2035 reclaim_state
.reclaimed_slab
= 0;
2036 p
->reclaim_state
= &reclaim_state
;
2038 if (zone_page_state(zone
, NR_FILE_PAGES
) -
2039 zone_page_state(zone
, NR_FILE_MAPPED
) >
2040 zone
->min_unmapped_pages
) {
2042 * Free memory by calling shrink zone with increasing
2043 * priorities until we have enough memory freed.
2045 priority
= ZONE_RECLAIM_PRIORITY
;
2047 note_zone_scanning_priority(zone
, priority
);
2048 nr_reclaimed
+= shrink_zone(priority
, zone
, &sc
);
2050 } while (priority
>= 0 && nr_reclaimed
< nr_pages
);
2053 slab_reclaimable
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
2054 if (slab_reclaimable
> zone
->min_slab_pages
) {
2056 * shrink_slab() does not currently allow us to determine how
2057 * many pages were freed in this zone. So we take the current
2058 * number of slab pages and shake the slab until it is reduced
2059 * by the same nr_pages that we used for reclaiming unmapped
2062 * Note that shrink_slab will free memory on all zones and may
2065 while (shrink_slab(sc
.nr_scanned
, gfp_mask
, order
) &&
2066 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) >
2067 slab_reclaimable
- nr_pages
)
2071 * Update nr_reclaimed by the number of slab pages we
2072 * reclaimed from this zone.
2074 nr_reclaimed
+= slab_reclaimable
-
2075 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
2078 p
->reclaim_state
= NULL
;
2079 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
2080 return nr_reclaimed
>= nr_pages
;
2083 int zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
2089 * Zone reclaim reclaims unmapped file backed pages and
2090 * slab pages if we are over the defined limits.
2092 * A small portion of unmapped file backed pages is needed for
2093 * file I/O otherwise pages read by file I/O will be immediately
2094 * thrown out if the zone is overallocated. So we do not reclaim
2095 * if less than a specified percentage of the zone is used by
2096 * unmapped file backed pages.
2098 if (zone_page_state(zone
, NR_FILE_PAGES
) -
2099 zone_page_state(zone
, NR_FILE_MAPPED
) <= zone
->min_unmapped_pages
2100 && zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)
2101 <= zone
->min_slab_pages
)
2104 if (zone_is_all_unreclaimable(zone
))
2108 * Do not scan if the allocation should not be delayed.
2110 if (!(gfp_mask
& __GFP_WAIT
) || (current
->flags
& PF_MEMALLOC
))
2114 * Only run zone reclaim on the local zone or on zones that do not
2115 * have associated processors. This will favor the local processor
2116 * over remote processors and spread off node memory allocations
2117 * as wide as possible.
2119 node_id
= zone_to_nid(zone
);
2120 if (node_state(node_id
, N_CPU
) && node_id
!= numa_node_id())
2123 if (zone_test_and_set_flag(zone
, ZONE_RECLAIM_LOCKED
))
2125 ret
= __zone_reclaim(zone
, gfp_mask
, order
);
2126 zone_clear_flag(zone
, ZONE_RECLAIM_LOCKED
);