4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
39 * FIXME: remove all knowledge of the buffer layer from the core VM
41 #include <linux/buffer_head.h> /* for generic_osync_inode */
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
50 * Shared mappings now work. 15.8.1995 Bruno.
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61 * ->i_mmap_lock (vmtruncate)
62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
67 * ->i_mmap_lock (truncate->unmap_mapping_range)
71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 * ->lock_page (access_process_vm)
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
81 * ->i_alloc_sem (various)
84 * ->sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
88 * ->anon_vma.lock (vma_adjust)
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * ->inode_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (zap_pte_range->set_page_dirty)
103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
106 * ->dcache_lock (proc_pid_lookup)
110 * Remove a page from the page cache and free it. Caller has to make
111 * sure the page is locked and that nobody else uses it - or that usage
112 * is safe. The caller must hold the mapping's tree_lock.
114 void __remove_from_page_cache(struct page
*page
)
116 struct address_space
*mapping
= page
->mapping
;
118 mem_cgroup_uncharge_cache_page(page
);
119 radix_tree_delete(&mapping
->page_tree
, page
->index
);
120 page
->mapping
= NULL
;
122 __dec_zone_page_state(page
, NR_FILE_PAGES
);
123 BUG_ON(page_mapped(page
));
126 * Some filesystems seem to re-dirty the page even after
127 * the VM has canceled the dirty bit (eg ext3 journaling).
129 * Fix it up by doing a final dirty accounting check after
130 * having removed the page entirely.
132 if (PageDirty(page
) && mapping_cap_account_dirty(mapping
)) {
133 dec_zone_page_state(page
, NR_FILE_DIRTY
);
134 dec_bdi_stat(mapping
->backing_dev_info
, BDI_RECLAIMABLE
);
138 void remove_from_page_cache(struct page
*page
)
140 struct address_space
*mapping
= page
->mapping
;
142 BUG_ON(!PageLocked(page
));
144 spin_lock_irq(&mapping
->tree_lock
);
145 __remove_from_page_cache(page
);
146 spin_unlock_irq(&mapping
->tree_lock
);
149 static int sync_page(void *word
)
151 struct address_space
*mapping
;
154 page
= container_of((unsigned long *)word
, struct page
, flags
);
157 * page_mapping() is being called without PG_locked held.
158 * Some knowledge of the state and use of the page is used to
159 * reduce the requirements down to a memory barrier.
160 * The danger here is of a stale page_mapping() return value
161 * indicating a struct address_space different from the one it's
162 * associated with when it is associated with one.
163 * After smp_mb(), it's either the correct page_mapping() for
164 * the page, or an old page_mapping() and the page's own
165 * page_mapping() has gone NULL.
166 * The ->sync_page() address_space operation must tolerate
167 * page_mapping() going NULL. By an amazing coincidence,
168 * this comes about because none of the users of the page
169 * in the ->sync_page() methods make essential use of the
170 * page_mapping(), merely passing the page down to the backing
171 * device's unplug functions when it's non-NULL, which in turn
172 * ignore it for all cases but swap, where only page_private(page) is
173 * of interest. When page_mapping() does go NULL, the entire
174 * call stack gracefully ignores the page and returns.
178 mapping
= page_mapping(page
);
179 if (mapping
&& mapping
->a_ops
&& mapping
->a_ops
->sync_page
)
180 mapping
->a_ops
->sync_page(page
);
185 static int sync_page_killable(void *word
)
188 return fatal_signal_pending(current
) ? -EINTR
: 0;
192 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
193 * @mapping: address space structure to write
194 * @start: offset in bytes where the range starts
195 * @end: offset in bytes where the range ends (inclusive)
196 * @sync_mode: enable synchronous operation
198 * Start writeback against all of a mapping's dirty pages that lie
199 * within the byte offsets <start, end> inclusive.
201 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
202 * opposed to a regular memory cleansing writeback. The difference between
203 * these two operations is that if a dirty page/buffer is encountered, it must
204 * be waited upon, and not just skipped over.
206 int __filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
207 loff_t end
, int sync_mode
)
210 struct writeback_control wbc
= {
211 .sync_mode
= sync_mode
,
212 .nr_to_write
= mapping
->nrpages
* 2,
213 .range_start
= start
,
217 if (!mapping_cap_writeback_dirty(mapping
))
220 ret
= do_writepages(mapping
, &wbc
);
224 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
227 return __filemap_fdatawrite_range(mapping
, 0, LLONG_MAX
, sync_mode
);
230 int filemap_fdatawrite(struct address_space
*mapping
)
232 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
234 EXPORT_SYMBOL(filemap_fdatawrite
);
236 int filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
239 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
241 EXPORT_SYMBOL(filemap_fdatawrite_range
);
244 * filemap_flush - mostly a non-blocking flush
245 * @mapping: target address_space
247 * This is a mostly non-blocking flush. Not suitable for data-integrity
248 * purposes - I/O may not be started against all dirty pages.
250 int filemap_flush(struct address_space
*mapping
)
252 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
254 EXPORT_SYMBOL(filemap_flush
);
257 * wait_on_page_writeback_range - wait for writeback to complete
258 * @mapping: target address_space
259 * @start: beginning page index
260 * @end: ending page index
262 * Wait for writeback to complete against pages indexed by start->end
265 int wait_on_page_writeback_range(struct address_space
*mapping
,
266 pgoff_t start
, pgoff_t end
)
276 pagevec_init(&pvec
, 0);
278 while ((index
<= end
) &&
279 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
280 PAGECACHE_TAG_WRITEBACK
,
281 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1)) != 0) {
284 for (i
= 0; i
< nr_pages
; i
++) {
285 struct page
*page
= pvec
.pages
[i
];
287 /* until radix tree lookup accepts end_index */
288 if (page
->index
> end
)
291 wait_on_page_writeback(page
);
295 pagevec_release(&pvec
);
299 /* Check for outstanding write errors */
300 if (test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
302 if (test_and_clear_bit(AS_EIO
, &mapping
->flags
))
309 * sync_page_range - write and wait on all pages in the passed range
310 * @inode: target inode
311 * @mapping: target address_space
312 * @pos: beginning offset in pages to write
313 * @count: number of bytes to write
315 * Write and wait upon all the pages in the passed range. This is a "data
316 * integrity" operation. It waits upon in-flight writeout before starting and
317 * waiting upon new writeout. If there was an IO error, return it.
319 * We need to re-take i_mutex during the generic_osync_inode list walk because
320 * it is otherwise livelockable.
322 int sync_page_range(struct inode
*inode
, struct address_space
*mapping
,
323 loff_t pos
, loff_t count
)
325 pgoff_t start
= pos
>> PAGE_CACHE_SHIFT
;
326 pgoff_t end
= (pos
+ count
- 1) >> PAGE_CACHE_SHIFT
;
329 if (!mapping_cap_writeback_dirty(mapping
) || !count
)
331 ret
= filemap_fdatawrite_range(mapping
, pos
, pos
+ count
- 1);
333 mutex_lock(&inode
->i_mutex
);
334 ret
= generic_osync_inode(inode
, mapping
, OSYNC_METADATA
);
335 mutex_unlock(&inode
->i_mutex
);
338 ret
= wait_on_page_writeback_range(mapping
, start
, end
);
341 EXPORT_SYMBOL(sync_page_range
);
344 * sync_page_range_nolock - write & wait on all pages in the passed range without locking
345 * @inode: target inode
346 * @mapping: target address_space
347 * @pos: beginning offset in pages to write
348 * @count: number of bytes to write
350 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
351 * as it forces O_SYNC writers to different parts of the same file
352 * to be serialised right until io completion.
354 int sync_page_range_nolock(struct inode
*inode
, struct address_space
*mapping
,
355 loff_t pos
, loff_t count
)
357 pgoff_t start
= pos
>> PAGE_CACHE_SHIFT
;
358 pgoff_t end
= (pos
+ count
- 1) >> PAGE_CACHE_SHIFT
;
361 if (!mapping_cap_writeback_dirty(mapping
) || !count
)
363 ret
= filemap_fdatawrite_range(mapping
, pos
, pos
+ count
- 1);
365 ret
= generic_osync_inode(inode
, mapping
, OSYNC_METADATA
);
367 ret
= wait_on_page_writeback_range(mapping
, start
, end
);
370 EXPORT_SYMBOL(sync_page_range_nolock
);
373 * filemap_fdatawait - wait for all under-writeback pages to complete
374 * @mapping: address space structure to wait for
376 * Walk the list of under-writeback pages of the given address space
377 * and wait for all of them.
379 int filemap_fdatawait(struct address_space
*mapping
)
381 loff_t i_size
= i_size_read(mapping
->host
);
386 return wait_on_page_writeback_range(mapping
, 0,
387 (i_size
- 1) >> PAGE_CACHE_SHIFT
);
389 EXPORT_SYMBOL(filemap_fdatawait
);
391 int filemap_write_and_wait(struct address_space
*mapping
)
395 if (mapping
->nrpages
) {
396 err
= filemap_fdatawrite(mapping
);
398 * Even if the above returned error, the pages may be
399 * written partially (e.g. -ENOSPC), so we wait for it.
400 * But the -EIO is special case, it may indicate the worst
401 * thing (e.g. bug) happened, so we avoid waiting for it.
404 int err2
= filemap_fdatawait(mapping
);
411 EXPORT_SYMBOL(filemap_write_and_wait
);
414 * filemap_write_and_wait_range - write out & wait on a file range
415 * @mapping: the address_space for the pages
416 * @lstart: offset in bytes where the range starts
417 * @lend: offset in bytes where the range ends (inclusive)
419 * Write out and wait upon file offsets lstart->lend, inclusive.
421 * Note that `lend' is inclusive (describes the last byte to be written) so
422 * that this function can be used to write to the very end-of-file (end = -1).
424 int filemap_write_and_wait_range(struct address_space
*mapping
,
425 loff_t lstart
, loff_t lend
)
429 if (mapping
->nrpages
) {
430 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
432 /* See comment of filemap_write_and_wait() */
434 int err2
= wait_on_page_writeback_range(mapping
,
435 lstart
>> PAGE_CACHE_SHIFT
,
436 lend
>> PAGE_CACHE_SHIFT
);
445 * add_to_page_cache_locked - add a locked page to the pagecache
447 * @mapping: the page's address_space
448 * @offset: page index
449 * @gfp_mask: page allocation mode
451 * This function is used to add a page to the pagecache. It must be locked.
452 * This function does not add the page to the LRU. The caller must do that.
454 int add_to_page_cache_locked(struct page
*page
, struct address_space
*mapping
,
455 pgoff_t offset
, gfp_t gfp_mask
)
459 VM_BUG_ON(!PageLocked(page
));
461 error
= mem_cgroup_cache_charge(page
, current
->mm
,
462 gfp_mask
& ~__GFP_HIGHMEM
);
466 error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
468 page_cache_get(page
);
469 page
->mapping
= mapping
;
470 page
->index
= offset
;
472 spin_lock_irq(&mapping
->tree_lock
);
473 error
= radix_tree_insert(&mapping
->page_tree
, offset
, page
);
474 if (likely(!error
)) {
476 __inc_zone_page_state(page
, NR_FILE_PAGES
);
478 page
->mapping
= NULL
;
479 mem_cgroup_uncharge_cache_page(page
);
480 page_cache_release(page
);
483 spin_unlock_irq(&mapping
->tree_lock
);
484 radix_tree_preload_end();
486 mem_cgroup_uncharge_cache_page(page
);
490 EXPORT_SYMBOL(add_to_page_cache_locked
);
492 int add_to_page_cache_lru(struct page
*page
, struct address_space
*mapping
,
493 pgoff_t offset
, gfp_t gfp_mask
)
495 int ret
= add_to_page_cache(page
, mapping
, offset
, gfp_mask
);
502 struct page
*__page_cache_alloc(gfp_t gfp
)
504 if (cpuset_do_page_mem_spread()) {
505 int n
= cpuset_mem_spread_node();
506 return alloc_pages_node(n
, gfp
, 0);
508 return alloc_pages(gfp
, 0);
510 EXPORT_SYMBOL(__page_cache_alloc
);
513 static int __sleep_on_page_lock(void *word
)
520 * In order to wait for pages to become available there must be
521 * waitqueues associated with pages. By using a hash table of
522 * waitqueues where the bucket discipline is to maintain all
523 * waiters on the same queue and wake all when any of the pages
524 * become available, and for the woken contexts to check to be
525 * sure the appropriate page became available, this saves space
526 * at a cost of "thundering herd" phenomena during rare hash
529 static wait_queue_head_t
*page_waitqueue(struct page
*page
)
531 const struct zone
*zone
= page_zone(page
);
533 return &zone
->wait_table
[hash_ptr(page
, zone
->wait_table_bits
)];
536 static inline void wake_up_page(struct page
*page
, int bit
)
538 __wake_up_bit(page_waitqueue(page
), &page
->flags
, bit
);
541 void wait_on_page_bit(struct page
*page
, int bit_nr
)
543 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
545 if (test_bit(bit_nr
, &page
->flags
))
546 __wait_on_bit(page_waitqueue(page
), &wait
, sync_page
,
547 TASK_UNINTERRUPTIBLE
);
549 EXPORT_SYMBOL(wait_on_page_bit
);
552 * unlock_page - unlock a locked page
555 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
556 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
557 * mechananism between PageLocked pages and PageWriteback pages is shared.
558 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
560 * The first mb is necessary to safely close the critical section opened by the
561 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
562 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
563 * parallel wait_on_page_locked()).
565 void unlock_page(struct page
*page
)
567 smp_mb__before_clear_bit();
568 if (!TestClearPageLocked(page
))
570 smp_mb__after_clear_bit();
571 wake_up_page(page
, PG_locked
);
573 EXPORT_SYMBOL(unlock_page
);
576 * end_page_writeback - end writeback against a page
579 void end_page_writeback(struct page
*page
)
581 if (TestClearPageReclaim(page
))
582 rotate_reclaimable_page(page
);
584 if (!test_clear_page_writeback(page
))
587 smp_mb__after_clear_bit();
588 wake_up_page(page
, PG_writeback
);
590 EXPORT_SYMBOL(end_page_writeback
);
593 * __lock_page - get a lock on the page, assuming we need to sleep to get it
594 * @page: the page to lock
596 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
597 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
598 * chances are that on the second loop, the block layer's plug list is empty,
599 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
601 void __lock_page(struct page
*page
)
603 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
605 __wait_on_bit_lock(page_waitqueue(page
), &wait
, sync_page
,
606 TASK_UNINTERRUPTIBLE
);
608 EXPORT_SYMBOL(__lock_page
);
610 int __lock_page_killable(struct page
*page
)
612 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
614 return __wait_on_bit_lock(page_waitqueue(page
), &wait
,
615 sync_page_killable
, TASK_KILLABLE
);
619 * __lock_page_nosync - get a lock on the page, without calling sync_page()
620 * @page: the page to lock
622 * Variant of lock_page that does not require the caller to hold a reference
623 * on the page's mapping.
625 void __lock_page_nosync(struct page
*page
)
627 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
628 __wait_on_bit_lock(page_waitqueue(page
), &wait
, __sleep_on_page_lock
,
629 TASK_UNINTERRUPTIBLE
);
633 * find_get_page - find and get a page reference
634 * @mapping: the address_space to search
635 * @offset: the page index
637 * Is there a pagecache struct page at the given (mapping, offset) tuple?
638 * If yes, increment its refcount and return it; if no, return NULL.
640 struct page
*find_get_page(struct address_space
*mapping
, pgoff_t offset
)
648 pagep
= radix_tree_lookup_slot(&mapping
->page_tree
, offset
);
650 page
= radix_tree_deref_slot(pagep
);
651 if (unlikely(!page
|| page
== RADIX_TREE_RETRY
))
654 if (!page_cache_get_speculative(page
))
658 * Has the page moved?
659 * This is part of the lockless pagecache protocol. See
660 * include/linux/pagemap.h for details.
662 if (unlikely(page
!= *pagep
)) {
663 page_cache_release(page
);
671 EXPORT_SYMBOL(find_get_page
);
674 * find_lock_page - locate, pin and lock a pagecache page
675 * @mapping: the address_space to search
676 * @offset: the page index
678 * Locates the desired pagecache page, locks it, increments its reference
679 * count and returns its address.
681 * Returns zero if the page was not present. find_lock_page() may sleep.
683 struct page
*find_lock_page(struct address_space
*mapping
, pgoff_t offset
)
688 page
= find_get_page(mapping
, offset
);
691 /* Has the page been truncated? */
692 if (unlikely(page
->mapping
!= mapping
)) {
694 page_cache_release(page
);
697 VM_BUG_ON(page
->index
!= offset
);
701 EXPORT_SYMBOL(find_lock_page
);
704 * find_or_create_page - locate or add a pagecache page
705 * @mapping: the page's address_space
706 * @index: the page's index into the mapping
707 * @gfp_mask: page allocation mode
709 * Locates a page in the pagecache. If the page is not present, a new page
710 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
711 * LRU list. The returned page is locked and has its reference count
714 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
717 * find_or_create_page() returns the desired page's address, or zero on
720 struct page
*find_or_create_page(struct address_space
*mapping
,
721 pgoff_t index
, gfp_t gfp_mask
)
726 page
= find_lock_page(mapping
, index
);
728 page
= __page_cache_alloc(gfp_mask
);
731 err
= add_to_page_cache_lru(page
, mapping
, index
, gfp_mask
);
733 page_cache_release(page
);
741 EXPORT_SYMBOL(find_or_create_page
);
744 * find_get_pages - gang pagecache lookup
745 * @mapping: The address_space to search
746 * @start: The starting page index
747 * @nr_pages: The maximum number of pages
748 * @pages: Where the resulting pages are placed
750 * find_get_pages() will search for and return a group of up to
751 * @nr_pages pages in the mapping. The pages are placed at @pages.
752 * find_get_pages() takes a reference against the returned pages.
754 * The search returns a group of mapping-contiguous pages with ascending
755 * indexes. There may be holes in the indices due to not-present pages.
757 * find_get_pages() returns the number of pages which were found.
759 unsigned find_get_pages(struct address_space
*mapping
, pgoff_t start
,
760 unsigned int nr_pages
, struct page
**pages
)
764 unsigned int nr_found
;
768 nr_found
= radix_tree_gang_lookup_slot(&mapping
->page_tree
,
769 (void ***)pages
, start
, nr_pages
);
771 for (i
= 0; i
< nr_found
; i
++) {
774 page
= radix_tree_deref_slot((void **)pages
[i
]);
778 * this can only trigger if nr_found == 1, making livelock
781 if (unlikely(page
== RADIX_TREE_RETRY
))
784 if (!page_cache_get_speculative(page
))
787 /* Has the page moved? */
788 if (unlikely(page
!= *((void **)pages
[i
]))) {
789 page_cache_release(page
);
801 * find_get_pages_contig - gang contiguous pagecache lookup
802 * @mapping: The address_space to search
803 * @index: The starting page index
804 * @nr_pages: The maximum number of pages
805 * @pages: Where the resulting pages are placed
807 * find_get_pages_contig() works exactly like find_get_pages(), except
808 * that the returned number of pages are guaranteed to be contiguous.
810 * find_get_pages_contig() returns the number of pages which were found.
812 unsigned find_get_pages_contig(struct address_space
*mapping
, pgoff_t index
,
813 unsigned int nr_pages
, struct page
**pages
)
817 unsigned int nr_found
;
821 nr_found
= radix_tree_gang_lookup_slot(&mapping
->page_tree
,
822 (void ***)pages
, index
, nr_pages
);
824 for (i
= 0; i
< nr_found
; i
++) {
827 page
= radix_tree_deref_slot((void **)pages
[i
]);
831 * this can only trigger if nr_found == 1, making livelock
834 if (unlikely(page
== RADIX_TREE_RETRY
))
837 if (page
->mapping
== NULL
|| page
->index
!= index
)
840 if (!page_cache_get_speculative(page
))
843 /* Has the page moved? */
844 if (unlikely(page
!= *((void **)pages
[i
]))) {
845 page_cache_release(page
);
856 EXPORT_SYMBOL(find_get_pages_contig
);
859 * find_get_pages_tag - find and return pages that match @tag
860 * @mapping: the address_space to search
861 * @index: the starting page index
862 * @tag: the tag index
863 * @nr_pages: the maximum number of pages
864 * @pages: where the resulting pages are placed
866 * Like find_get_pages, except we only return pages which are tagged with
867 * @tag. We update @index to index the next page for the traversal.
869 unsigned find_get_pages_tag(struct address_space
*mapping
, pgoff_t
*index
,
870 int tag
, unsigned int nr_pages
, struct page
**pages
)
874 unsigned int nr_found
;
878 nr_found
= radix_tree_gang_lookup_tag_slot(&mapping
->page_tree
,
879 (void ***)pages
, *index
, nr_pages
, tag
);
881 for (i
= 0; i
< nr_found
; i
++) {
884 page
= radix_tree_deref_slot((void **)pages
[i
]);
888 * this can only trigger if nr_found == 1, making livelock
891 if (unlikely(page
== RADIX_TREE_RETRY
))
894 if (!page_cache_get_speculative(page
))
897 /* Has the page moved? */
898 if (unlikely(page
!= *((void **)pages
[i
]))) {
899 page_cache_release(page
);
909 *index
= pages
[ret
- 1]->index
+ 1;
913 EXPORT_SYMBOL(find_get_pages_tag
);
916 * grab_cache_page_nowait - returns locked page at given index in given cache
917 * @mapping: target address_space
918 * @index: the page index
920 * Same as grab_cache_page(), but do not wait if the page is unavailable.
921 * This is intended for speculative data generators, where the data can
922 * be regenerated if the page couldn't be grabbed. This routine should
923 * be safe to call while holding the lock for another page.
925 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
926 * and deadlock against the caller's locked page.
929 grab_cache_page_nowait(struct address_space
*mapping
, pgoff_t index
)
931 struct page
*page
= find_get_page(mapping
, index
);
934 if (!TestSetPageLocked(page
))
936 page_cache_release(page
);
939 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) & ~__GFP_FS
);
940 if (page
&& add_to_page_cache_lru(page
, mapping
, index
, GFP_KERNEL
)) {
941 page_cache_release(page
);
946 EXPORT_SYMBOL(grab_cache_page_nowait
);
949 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
950 * a _large_ part of the i/o request. Imagine the worst scenario:
952 * ---R__________________________________________B__________
953 * ^ reading here ^ bad block(assume 4k)
955 * read(R) => miss => readahead(R...B) => media error => frustrating retries
956 * => failing the whole request => read(R) => read(R+1) =>
957 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
958 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
959 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
961 * It is going insane. Fix it by quickly scaling down the readahead size.
963 static void shrink_readahead_size_eio(struct file
*filp
,
964 struct file_ra_state
*ra
)
973 * do_generic_file_read - generic file read routine
974 * @filp: the file to read
975 * @ppos: current file position
976 * @desc: read_descriptor
977 * @actor: read method
979 * This is a generic file read routine, and uses the
980 * mapping->a_ops->readpage() function for the actual low-level stuff.
982 * This is really ugly. But the goto's actually try to clarify some
983 * of the logic when it comes to error handling etc.
985 static void do_generic_file_read(struct file
*filp
, loff_t
*ppos
,
986 read_descriptor_t
*desc
, read_actor_t actor
)
988 struct address_space
*mapping
= filp
->f_mapping
;
989 struct inode
*inode
= mapping
->host
;
990 struct file_ra_state
*ra
= &filp
->f_ra
;
994 unsigned long offset
; /* offset into pagecache page */
995 unsigned int prev_offset
;
998 index
= *ppos
>> PAGE_CACHE_SHIFT
;
999 prev_index
= ra
->prev_pos
>> PAGE_CACHE_SHIFT
;
1000 prev_offset
= ra
->prev_pos
& (PAGE_CACHE_SIZE
-1);
1001 last_index
= (*ppos
+ desc
->count
+ PAGE_CACHE_SIZE
-1) >> PAGE_CACHE_SHIFT
;
1002 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1008 unsigned long nr
, ret
;
1012 page
= find_get_page(mapping
, index
);
1014 page_cache_sync_readahead(mapping
,
1016 index
, last_index
- index
);
1017 page
= find_get_page(mapping
, index
);
1018 if (unlikely(page
== NULL
))
1019 goto no_cached_page
;
1021 if (PageReadahead(page
)) {
1022 page_cache_async_readahead(mapping
,
1024 index
, last_index
- index
);
1026 if (!PageUptodate(page
)) {
1027 if (inode
->i_blkbits
== PAGE_CACHE_SHIFT
||
1028 !mapping
->a_ops
->is_partially_uptodate
)
1029 goto page_not_up_to_date
;
1030 if (TestSetPageLocked(page
))
1031 goto page_not_up_to_date
;
1032 if (!mapping
->a_ops
->is_partially_uptodate(page
,
1034 goto page_not_up_to_date_locked
;
1039 * i_size must be checked after we know the page is Uptodate.
1041 * Checking i_size after the check allows us to calculate
1042 * the correct value for "nr", which means the zero-filled
1043 * part of the page is not copied back to userspace (unless
1044 * another truncate extends the file - this is desired though).
1047 isize
= i_size_read(inode
);
1048 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1049 if (unlikely(!isize
|| index
> end_index
)) {
1050 page_cache_release(page
);
1054 /* nr is the maximum number of bytes to copy from this page */
1055 nr
= PAGE_CACHE_SIZE
;
1056 if (index
== end_index
) {
1057 nr
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
1059 page_cache_release(page
);
1065 /* If users can be writing to this page using arbitrary
1066 * virtual addresses, take care about potential aliasing
1067 * before reading the page on the kernel side.
1069 if (mapping_writably_mapped(mapping
))
1070 flush_dcache_page(page
);
1073 * When a sequential read accesses a page several times,
1074 * only mark it as accessed the first time.
1076 if (prev_index
!= index
|| offset
!= prev_offset
)
1077 mark_page_accessed(page
);
1081 * Ok, we have the page, and it's up-to-date, so
1082 * now we can copy it to user space...
1084 * The actor routine returns how many bytes were actually used..
1085 * NOTE! This may not be the same as how much of a user buffer
1086 * we filled up (we may be padding etc), so we can only update
1087 * "pos" here (the actor routine has to update the user buffer
1088 * pointers and the remaining count).
1090 ret
= actor(desc
, page
, offset
, nr
);
1092 index
+= offset
>> PAGE_CACHE_SHIFT
;
1093 offset
&= ~PAGE_CACHE_MASK
;
1094 prev_offset
= offset
;
1096 page_cache_release(page
);
1097 if (ret
== nr
&& desc
->count
)
1101 page_not_up_to_date
:
1102 /* Get exclusive access to the page ... */
1103 if (lock_page_killable(page
))
1106 page_not_up_to_date_locked
:
1107 /* Did it get truncated before we got the lock? */
1108 if (!page
->mapping
) {
1110 page_cache_release(page
);
1114 /* Did somebody else fill it already? */
1115 if (PageUptodate(page
)) {
1121 /* Start the actual read. The read will unlock the page. */
1122 error
= mapping
->a_ops
->readpage(filp
, page
);
1124 if (unlikely(error
)) {
1125 if (error
== AOP_TRUNCATED_PAGE
) {
1126 page_cache_release(page
);
1129 goto readpage_error
;
1132 if (!PageUptodate(page
)) {
1133 if (lock_page_killable(page
))
1135 if (!PageUptodate(page
)) {
1136 if (page
->mapping
== NULL
) {
1138 * invalidate_inode_pages got it
1141 page_cache_release(page
);
1145 shrink_readahead_size_eio(filp
, ra
);
1156 /* UHHUH! A synchronous read error occurred. Report it */
1157 desc
->error
= error
;
1158 page_cache_release(page
);
1163 * Ok, it wasn't cached, so we need to create a new
1166 page
= page_cache_alloc_cold(mapping
);
1168 desc
->error
= -ENOMEM
;
1171 error
= add_to_page_cache_lru(page
, mapping
,
1174 page_cache_release(page
);
1175 if (error
== -EEXIST
)
1177 desc
->error
= error
;
1184 ra
->prev_pos
= prev_index
;
1185 ra
->prev_pos
<<= PAGE_CACHE_SHIFT
;
1186 ra
->prev_pos
|= prev_offset
;
1188 *ppos
= ((loff_t
)index
<< PAGE_CACHE_SHIFT
) + offset
;
1190 file_accessed(filp
);
1193 int file_read_actor(read_descriptor_t
*desc
, struct page
*page
,
1194 unsigned long offset
, unsigned long size
)
1197 unsigned long left
, count
= desc
->count
;
1203 * Faults on the destination of a read are common, so do it before
1206 if (!fault_in_pages_writeable(desc
->arg
.buf
, size
)) {
1207 kaddr
= kmap_atomic(page
, KM_USER0
);
1208 left
= __copy_to_user_inatomic(desc
->arg
.buf
,
1209 kaddr
+ offset
, size
);
1210 kunmap_atomic(kaddr
, KM_USER0
);
1215 /* Do it the slow way */
1217 left
= __copy_to_user(desc
->arg
.buf
, kaddr
+ offset
, size
);
1222 desc
->error
= -EFAULT
;
1225 desc
->count
= count
- size
;
1226 desc
->written
+= size
;
1227 desc
->arg
.buf
+= size
;
1232 * Performs necessary checks before doing a write
1233 * @iov: io vector request
1234 * @nr_segs: number of segments in the iovec
1235 * @count: number of bytes to write
1236 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1238 * Adjust number of segments and amount of bytes to write (nr_segs should be
1239 * properly initialized first). Returns appropriate error code that caller
1240 * should return or zero in case that write should be allowed.
1242 int generic_segment_checks(const struct iovec
*iov
,
1243 unsigned long *nr_segs
, size_t *count
, int access_flags
)
1247 for (seg
= 0; seg
< *nr_segs
; seg
++) {
1248 const struct iovec
*iv
= &iov
[seg
];
1251 * If any segment has a negative length, or the cumulative
1252 * length ever wraps negative then return -EINVAL.
1255 if (unlikely((ssize_t
)(cnt
|iv
->iov_len
) < 0))
1257 if (access_ok(access_flags
, iv
->iov_base
, iv
->iov_len
))
1262 cnt
-= iv
->iov_len
; /* This segment is no good */
1268 EXPORT_SYMBOL(generic_segment_checks
);
1271 * generic_file_aio_read - generic filesystem read routine
1272 * @iocb: kernel I/O control block
1273 * @iov: io vector request
1274 * @nr_segs: number of segments in the iovec
1275 * @pos: current file position
1277 * This is the "read()" routine for all filesystems
1278 * that can use the page cache directly.
1281 generic_file_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
1282 unsigned long nr_segs
, loff_t pos
)
1284 struct file
*filp
= iocb
->ki_filp
;
1288 loff_t
*ppos
= &iocb
->ki_pos
;
1291 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1295 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1296 if (filp
->f_flags
& O_DIRECT
) {
1298 struct address_space
*mapping
;
1299 struct inode
*inode
;
1301 mapping
= filp
->f_mapping
;
1302 inode
= mapping
->host
;
1304 goto out
; /* skip atime */
1305 size
= i_size_read(inode
);
1307 retval
= filemap_write_and_wait(mapping
);
1309 retval
= mapping
->a_ops
->direct_IO(READ
, iocb
,
1313 *ppos
= pos
+ retval
;
1315 file_accessed(filp
);
1321 for (seg
= 0; seg
< nr_segs
; seg
++) {
1322 read_descriptor_t desc
;
1325 desc
.arg
.buf
= iov
[seg
].iov_base
;
1326 desc
.count
= iov
[seg
].iov_len
;
1327 if (desc
.count
== 0)
1330 do_generic_file_read(filp
, ppos
, &desc
, file_read_actor
);
1331 retval
+= desc
.written
;
1333 retval
= retval
?: desc
.error
;
1342 EXPORT_SYMBOL(generic_file_aio_read
);
1345 do_readahead(struct address_space
*mapping
, struct file
*filp
,
1346 pgoff_t index
, unsigned long nr
)
1348 if (!mapping
|| !mapping
->a_ops
|| !mapping
->a_ops
->readpage
)
1351 force_page_cache_readahead(mapping
, filp
, index
,
1352 max_sane_readahead(nr
));
1356 asmlinkage ssize_t
sys_readahead(int fd
, loff_t offset
, size_t count
)
1364 if (file
->f_mode
& FMODE_READ
) {
1365 struct address_space
*mapping
= file
->f_mapping
;
1366 pgoff_t start
= offset
>> PAGE_CACHE_SHIFT
;
1367 pgoff_t end
= (offset
+ count
- 1) >> PAGE_CACHE_SHIFT
;
1368 unsigned long len
= end
- start
+ 1;
1369 ret
= do_readahead(mapping
, file
, start
, len
);
1378 * page_cache_read - adds requested page to the page cache if not already there
1379 * @file: file to read
1380 * @offset: page index
1382 * This adds the requested page to the page cache if it isn't already there,
1383 * and schedules an I/O to read in its contents from disk.
1385 static int page_cache_read(struct file
*file
, pgoff_t offset
)
1387 struct address_space
*mapping
= file
->f_mapping
;
1392 page
= page_cache_alloc_cold(mapping
);
1396 ret
= add_to_page_cache_lru(page
, mapping
, offset
, GFP_KERNEL
);
1398 ret
= mapping
->a_ops
->readpage(file
, page
);
1399 else if (ret
== -EEXIST
)
1400 ret
= 0; /* losing race to add is OK */
1402 page_cache_release(page
);
1404 } while (ret
== AOP_TRUNCATED_PAGE
);
1409 #define MMAP_LOTSAMISS (100)
1412 * filemap_fault - read in file data for page fault handling
1413 * @vma: vma in which the fault was taken
1414 * @vmf: struct vm_fault containing details of the fault
1416 * filemap_fault() is invoked via the vma operations vector for a
1417 * mapped memory region to read in file data during a page fault.
1419 * The goto's are kind of ugly, but this streamlines the normal case of having
1420 * it in the page cache, and handles the special cases reasonably without
1421 * having a lot of duplicated code.
1423 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1426 struct file
*file
= vma
->vm_file
;
1427 struct address_space
*mapping
= file
->f_mapping
;
1428 struct file_ra_state
*ra
= &file
->f_ra
;
1429 struct inode
*inode
= mapping
->host
;
1432 int did_readaround
= 0;
1435 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1436 if (vmf
->pgoff
>= size
)
1437 return VM_FAULT_SIGBUS
;
1439 /* If we don't want any read-ahead, don't bother */
1440 if (VM_RandomReadHint(vma
))
1441 goto no_cached_page
;
1444 * Do we have something in the page cache already?
1447 page
= find_lock_page(mapping
, vmf
->pgoff
);
1449 * For sequential accesses, we use the generic readahead logic.
1451 if (VM_SequentialReadHint(vma
)) {
1453 page_cache_sync_readahead(mapping
, ra
, file
,
1455 page
= find_lock_page(mapping
, vmf
->pgoff
);
1457 goto no_cached_page
;
1459 if (PageReadahead(page
)) {
1460 page_cache_async_readahead(mapping
, ra
, file
, page
,
1466 unsigned long ra_pages
;
1471 * Do we miss much more than hit in this file? If so,
1472 * stop bothering with read-ahead. It will only hurt.
1474 if (ra
->mmap_miss
> MMAP_LOTSAMISS
)
1475 goto no_cached_page
;
1478 * To keep the pgmajfault counter straight, we need to
1479 * check did_readaround, as this is an inner loop.
1481 if (!did_readaround
) {
1482 ret
= VM_FAULT_MAJOR
;
1483 count_vm_event(PGMAJFAULT
);
1486 ra_pages
= max_sane_readahead(file
->f_ra
.ra_pages
);
1490 if (vmf
->pgoff
> ra_pages
/ 2)
1491 start
= vmf
->pgoff
- ra_pages
/ 2;
1492 do_page_cache_readahead(mapping
, file
, start
, ra_pages
);
1494 page
= find_lock_page(mapping
, vmf
->pgoff
);
1496 goto no_cached_page
;
1499 if (!did_readaround
)
1503 * We have a locked page in the page cache, now we need to check
1504 * that it's up-to-date. If not, it is going to be due to an error.
1506 if (unlikely(!PageUptodate(page
)))
1507 goto page_not_uptodate
;
1509 /* Must recheck i_size under page lock */
1510 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1511 if (unlikely(vmf
->pgoff
>= size
)) {
1513 page_cache_release(page
);
1514 return VM_FAULT_SIGBUS
;
1518 * Found the page and have a reference on it.
1520 mark_page_accessed(page
);
1521 ra
->prev_pos
= (loff_t
)page
->index
<< PAGE_CACHE_SHIFT
;
1523 return ret
| VM_FAULT_LOCKED
;
1527 * We're only likely to ever get here if MADV_RANDOM is in
1530 error
= page_cache_read(file
, vmf
->pgoff
);
1533 * The page we want has now been added to the page cache.
1534 * In the unlikely event that someone removed it in the
1535 * meantime, we'll just come back here and read it again.
1541 * An error return from page_cache_read can result if the
1542 * system is low on memory, or a problem occurs while trying
1545 if (error
== -ENOMEM
)
1546 return VM_FAULT_OOM
;
1547 return VM_FAULT_SIGBUS
;
1551 if (!did_readaround
) {
1552 ret
= VM_FAULT_MAJOR
;
1553 count_vm_event(PGMAJFAULT
);
1557 * Umm, take care of errors if the page isn't up-to-date.
1558 * Try to re-read it _once_. We do this synchronously,
1559 * because there really aren't any performance issues here
1560 * and we need to check for errors.
1562 ClearPageError(page
);
1563 error
= mapping
->a_ops
->readpage(file
, page
);
1565 wait_on_page_locked(page
);
1566 if (!PageUptodate(page
))
1569 page_cache_release(page
);
1571 if (!error
|| error
== AOP_TRUNCATED_PAGE
)
1574 /* Things didn't work out. Return zero to tell the mm layer so. */
1575 shrink_readahead_size_eio(file
, ra
);
1576 return VM_FAULT_SIGBUS
;
1578 EXPORT_SYMBOL(filemap_fault
);
1580 struct vm_operations_struct generic_file_vm_ops
= {
1581 .fault
= filemap_fault
,
1584 /* This is used for a general mmap of a disk file */
1586 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1588 struct address_space
*mapping
= file
->f_mapping
;
1590 if (!mapping
->a_ops
->readpage
)
1592 file_accessed(file
);
1593 vma
->vm_ops
= &generic_file_vm_ops
;
1594 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1599 * This is for filesystems which do not implement ->writepage.
1601 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1603 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_MAYWRITE
))
1605 return generic_file_mmap(file
, vma
);
1608 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1612 int generic_file_readonly_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1616 #endif /* CONFIG_MMU */
1618 EXPORT_SYMBOL(generic_file_mmap
);
1619 EXPORT_SYMBOL(generic_file_readonly_mmap
);
1621 static struct page
*__read_cache_page(struct address_space
*mapping
,
1623 int (*filler
)(void *,struct page
*),
1629 page
= find_get_page(mapping
, index
);
1631 page
= page_cache_alloc_cold(mapping
);
1633 return ERR_PTR(-ENOMEM
);
1634 err
= add_to_page_cache_lru(page
, mapping
, index
, GFP_KERNEL
);
1635 if (unlikely(err
)) {
1636 page_cache_release(page
);
1639 /* Presumably ENOMEM for radix tree node */
1640 return ERR_PTR(err
);
1642 err
= filler(data
, page
);
1644 page_cache_release(page
);
1645 page
= ERR_PTR(err
);
1652 * read_cache_page_async - read into page cache, fill it if needed
1653 * @mapping: the page's address_space
1654 * @index: the page index
1655 * @filler: function to perform the read
1656 * @data: destination for read data
1658 * Same as read_cache_page, but don't wait for page to become unlocked
1659 * after submitting it to the filler.
1661 * Read into the page cache. If a page already exists, and PageUptodate() is
1662 * not set, try to fill the page but don't wait for it to become unlocked.
1664 * If the page does not get brought uptodate, return -EIO.
1666 struct page
*read_cache_page_async(struct address_space
*mapping
,
1668 int (*filler
)(void *,struct page
*),
1675 page
= __read_cache_page(mapping
, index
, filler
, data
);
1678 if (PageUptodate(page
))
1682 if (!page
->mapping
) {
1684 page_cache_release(page
);
1687 if (PageUptodate(page
)) {
1691 err
= filler(data
, page
);
1693 page_cache_release(page
);
1694 return ERR_PTR(err
);
1697 mark_page_accessed(page
);
1700 EXPORT_SYMBOL(read_cache_page_async
);
1703 * read_cache_page - read into page cache, fill it if needed
1704 * @mapping: the page's address_space
1705 * @index: the page index
1706 * @filler: function to perform the read
1707 * @data: destination for read data
1709 * Read into the page cache. If a page already exists, and PageUptodate() is
1710 * not set, try to fill the page then wait for it to become unlocked.
1712 * If the page does not get brought uptodate, return -EIO.
1714 struct page
*read_cache_page(struct address_space
*mapping
,
1716 int (*filler
)(void *,struct page
*),
1721 page
= read_cache_page_async(mapping
, index
, filler
, data
);
1724 wait_on_page_locked(page
);
1725 if (!PageUptodate(page
)) {
1726 page_cache_release(page
);
1727 page
= ERR_PTR(-EIO
);
1732 EXPORT_SYMBOL(read_cache_page
);
1735 * The logic we want is
1737 * if suid or (sgid and xgrp)
1740 int should_remove_suid(struct dentry
*dentry
)
1742 mode_t mode
= dentry
->d_inode
->i_mode
;
1745 /* suid always must be killed */
1746 if (unlikely(mode
& S_ISUID
))
1747 kill
= ATTR_KILL_SUID
;
1750 * sgid without any exec bits is just a mandatory locking mark; leave
1751 * it alone. If some exec bits are set, it's a real sgid; kill it.
1753 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1754 kill
|= ATTR_KILL_SGID
;
1756 if (unlikely(kill
&& !capable(CAP_FSETID
)))
1761 EXPORT_SYMBOL(should_remove_suid
);
1763 static int __remove_suid(struct dentry
*dentry
, int kill
)
1765 struct iattr newattrs
;
1767 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1768 return notify_change(dentry
, &newattrs
);
1771 int file_remove_suid(struct file
*file
)
1773 struct dentry
*dentry
= file
->f_path
.dentry
;
1774 int killsuid
= should_remove_suid(dentry
);
1775 int killpriv
= security_inode_need_killpriv(dentry
);
1781 error
= security_inode_killpriv(dentry
);
1782 if (!error
&& killsuid
)
1783 error
= __remove_suid(dentry
, killsuid
);
1787 EXPORT_SYMBOL(file_remove_suid
);
1789 static size_t __iovec_copy_from_user_inatomic(char *vaddr
,
1790 const struct iovec
*iov
, size_t base
, size_t bytes
)
1792 size_t copied
= 0, left
= 0;
1795 char __user
*buf
= iov
->iov_base
+ base
;
1796 int copy
= min(bytes
, iov
->iov_len
- base
);
1799 left
= __copy_from_user_inatomic_nocache(vaddr
, buf
, copy
);
1808 return copied
- left
;
1812 * Copy as much as we can into the page and return the number of bytes which
1813 * were sucessfully copied. If a fault is encountered then return the number of
1814 * bytes which were copied.
1816 size_t iov_iter_copy_from_user_atomic(struct page
*page
,
1817 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
1822 BUG_ON(!in_atomic());
1823 kaddr
= kmap_atomic(page
, KM_USER0
);
1824 if (likely(i
->nr_segs
== 1)) {
1826 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1827 left
= __copy_from_user_inatomic_nocache(kaddr
+ offset
,
1829 copied
= bytes
- left
;
1831 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
1832 i
->iov
, i
->iov_offset
, bytes
);
1834 kunmap_atomic(kaddr
, KM_USER0
);
1838 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic
);
1841 * This has the same sideeffects and return value as
1842 * iov_iter_copy_from_user_atomic().
1843 * The difference is that it attempts to resolve faults.
1844 * Page must not be locked.
1846 size_t iov_iter_copy_from_user(struct page
*page
,
1847 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
1853 if (likely(i
->nr_segs
== 1)) {
1855 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1856 left
= __copy_from_user_nocache(kaddr
+ offset
, buf
, bytes
);
1857 copied
= bytes
- left
;
1859 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
1860 i
->iov
, i
->iov_offset
, bytes
);
1865 EXPORT_SYMBOL(iov_iter_copy_from_user
);
1867 void iov_iter_advance(struct iov_iter
*i
, size_t bytes
)
1869 BUG_ON(i
->count
< bytes
);
1871 if (likely(i
->nr_segs
== 1)) {
1872 i
->iov_offset
+= bytes
;
1875 const struct iovec
*iov
= i
->iov
;
1876 size_t base
= i
->iov_offset
;
1879 * The !iov->iov_len check ensures we skip over unlikely
1880 * zero-length segments (without overruning the iovec).
1882 while (bytes
|| unlikely(i
->count
&& !iov
->iov_len
)) {
1885 copy
= min(bytes
, iov
->iov_len
- base
);
1886 BUG_ON(!i
->count
|| i
->count
< copy
);
1890 if (iov
->iov_len
== base
) {
1896 i
->iov_offset
= base
;
1899 EXPORT_SYMBOL(iov_iter_advance
);
1902 * Fault in the first iovec of the given iov_iter, to a maximum length
1903 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1904 * accessed (ie. because it is an invalid address).
1906 * writev-intensive code may want this to prefault several iovecs -- that
1907 * would be possible (callers must not rely on the fact that _only_ the
1908 * first iovec will be faulted with the current implementation).
1910 int iov_iter_fault_in_readable(struct iov_iter
*i
, size_t bytes
)
1912 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1913 bytes
= min(bytes
, i
->iov
->iov_len
- i
->iov_offset
);
1914 return fault_in_pages_readable(buf
, bytes
);
1916 EXPORT_SYMBOL(iov_iter_fault_in_readable
);
1919 * Return the count of just the current iov_iter segment.
1921 size_t iov_iter_single_seg_count(struct iov_iter
*i
)
1923 const struct iovec
*iov
= i
->iov
;
1924 if (i
->nr_segs
== 1)
1927 return min(i
->count
, iov
->iov_len
- i
->iov_offset
);
1929 EXPORT_SYMBOL(iov_iter_single_seg_count
);
1932 * Performs necessary checks before doing a write
1934 * Can adjust writing position or amount of bytes to write.
1935 * Returns appropriate error code that caller should return or
1936 * zero in case that write should be allowed.
1938 inline int generic_write_checks(struct file
*file
, loff_t
*pos
, size_t *count
, int isblk
)
1940 struct inode
*inode
= file
->f_mapping
->host
;
1941 unsigned long limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
1943 if (unlikely(*pos
< 0))
1947 /* FIXME: this is for backwards compatibility with 2.4 */
1948 if (file
->f_flags
& O_APPEND
)
1949 *pos
= i_size_read(inode
);
1951 if (limit
!= RLIM_INFINITY
) {
1952 if (*pos
>= limit
) {
1953 send_sig(SIGXFSZ
, current
, 0);
1956 if (*count
> limit
- (typeof(limit
))*pos
) {
1957 *count
= limit
- (typeof(limit
))*pos
;
1965 if (unlikely(*pos
+ *count
> MAX_NON_LFS
&&
1966 !(file
->f_flags
& O_LARGEFILE
))) {
1967 if (*pos
>= MAX_NON_LFS
) {
1970 if (*count
> MAX_NON_LFS
- (unsigned long)*pos
) {
1971 *count
= MAX_NON_LFS
- (unsigned long)*pos
;
1976 * Are we about to exceed the fs block limit ?
1978 * If we have written data it becomes a short write. If we have
1979 * exceeded without writing data we send a signal and return EFBIG.
1980 * Linus frestrict idea will clean these up nicely..
1982 if (likely(!isblk
)) {
1983 if (unlikely(*pos
>= inode
->i_sb
->s_maxbytes
)) {
1984 if (*count
|| *pos
> inode
->i_sb
->s_maxbytes
) {
1987 /* zero-length writes at ->s_maxbytes are OK */
1990 if (unlikely(*pos
+ *count
> inode
->i_sb
->s_maxbytes
))
1991 *count
= inode
->i_sb
->s_maxbytes
- *pos
;
1995 if (bdev_read_only(I_BDEV(inode
)))
1997 isize
= i_size_read(inode
);
1998 if (*pos
>= isize
) {
1999 if (*count
|| *pos
> isize
)
2003 if (*pos
+ *count
> isize
)
2004 *count
= isize
- *pos
;
2011 EXPORT_SYMBOL(generic_write_checks
);
2013 int pagecache_write_begin(struct file
*file
, struct address_space
*mapping
,
2014 loff_t pos
, unsigned len
, unsigned flags
,
2015 struct page
**pagep
, void **fsdata
)
2017 const struct address_space_operations
*aops
= mapping
->a_ops
;
2019 if (aops
->write_begin
) {
2020 return aops
->write_begin(file
, mapping
, pos
, len
, flags
,
2024 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
2025 unsigned offset
= pos
& (PAGE_CACHE_SIZE
- 1);
2026 struct inode
*inode
= mapping
->host
;
2029 page
= __grab_cache_page(mapping
, index
);
2034 if (flags
& AOP_FLAG_UNINTERRUPTIBLE
&& !PageUptodate(page
)) {
2036 * There is no way to resolve a short write situation
2037 * for a !Uptodate page (except by double copying in
2038 * the caller done by generic_perform_write_2copy).
2040 * Instead, we have to bring it uptodate here.
2042 ret
= aops
->readpage(file
, page
);
2043 page_cache_release(page
);
2045 if (ret
== AOP_TRUNCATED_PAGE
)
2052 ret
= aops
->prepare_write(file
, page
, offset
, offset
+len
);
2055 page_cache_release(page
);
2056 if (pos
+ len
> inode
->i_size
)
2057 vmtruncate(inode
, inode
->i_size
);
2062 EXPORT_SYMBOL(pagecache_write_begin
);
2064 int pagecache_write_end(struct file
*file
, struct address_space
*mapping
,
2065 loff_t pos
, unsigned len
, unsigned copied
,
2066 struct page
*page
, void *fsdata
)
2068 const struct address_space_operations
*aops
= mapping
->a_ops
;
2071 if (aops
->write_end
) {
2072 mark_page_accessed(page
);
2073 ret
= aops
->write_end(file
, mapping
, pos
, len
, copied
,
2076 unsigned offset
= pos
& (PAGE_CACHE_SIZE
- 1);
2077 struct inode
*inode
= mapping
->host
;
2079 flush_dcache_page(page
);
2080 ret
= aops
->commit_write(file
, page
, offset
, offset
+len
);
2082 mark_page_accessed(page
);
2083 page_cache_release(page
);
2086 if (pos
+ len
> inode
->i_size
)
2087 vmtruncate(inode
, inode
->i_size
);
2089 ret
= min_t(size_t, copied
, ret
);
2096 EXPORT_SYMBOL(pagecache_write_end
);
2099 generic_file_direct_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2100 unsigned long *nr_segs
, loff_t pos
, loff_t
*ppos
,
2101 size_t count
, size_t ocount
)
2103 struct file
*file
= iocb
->ki_filp
;
2104 struct address_space
*mapping
= file
->f_mapping
;
2105 struct inode
*inode
= mapping
->host
;
2110 if (count
!= ocount
)
2111 *nr_segs
= iov_shorten((struct iovec
*)iov
, *nr_segs
, count
);
2114 * Unmap all mmappings of the file up-front.
2116 * This will cause any pte dirty bits to be propagated into the
2117 * pageframes for the subsequent filemap_write_and_wait().
2119 write_len
= iov_length(iov
, *nr_segs
);
2120 end
= (pos
+ write_len
- 1) >> PAGE_CACHE_SHIFT
;
2121 if (mapping_mapped(mapping
))
2122 unmap_mapping_range(mapping
, pos
, write_len
, 0);
2124 written
= filemap_write_and_wait(mapping
);
2129 * After a write we want buffered reads to be sure to go to disk to get
2130 * the new data. We invalidate clean cached page from the region we're
2131 * about to write. We do this *before* the write so that we can return
2132 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2134 if (mapping
->nrpages
) {
2135 written
= invalidate_inode_pages2_range(mapping
,
2136 pos
>> PAGE_CACHE_SHIFT
, end
);
2141 written
= mapping
->a_ops
->direct_IO(WRITE
, iocb
, iov
, pos
, *nr_segs
);
2144 * Finally, try again to invalidate clean pages which might have been
2145 * cached by non-direct readahead, or faulted in by get_user_pages()
2146 * if the source of the write was an mmap'ed region of the file
2147 * we're writing. Either one is a pretty crazy thing to do,
2148 * so we don't support it 100%. If this invalidation
2149 * fails, tough, the write still worked...
2151 if (mapping
->nrpages
) {
2152 invalidate_inode_pages2_range(mapping
,
2153 pos
>> PAGE_CACHE_SHIFT
, end
);
2157 loff_t end
= pos
+ written
;
2158 if (end
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
2159 i_size_write(inode
, end
);
2160 mark_inode_dirty(inode
);
2166 * Sync the fs metadata but not the minor inode changes and
2167 * of course not the data as we did direct DMA for the IO.
2168 * i_mutex is held, which protects generic_osync_inode() from
2169 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
2172 if ((written
>= 0 || written
== -EIOCBQUEUED
) &&
2173 ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2174 int err
= generic_osync_inode(inode
, mapping
, OSYNC_METADATA
);
2180 EXPORT_SYMBOL(generic_file_direct_write
);
2183 * Find or create a page at the given pagecache position. Return the locked
2184 * page. This function is specifically for buffered writes.
2186 struct page
*__grab_cache_page(struct address_space
*mapping
, pgoff_t index
)
2191 page
= find_lock_page(mapping
, index
);
2195 page
= page_cache_alloc(mapping
);
2198 status
= add_to_page_cache_lru(page
, mapping
, index
, GFP_KERNEL
);
2199 if (unlikely(status
)) {
2200 page_cache_release(page
);
2201 if (status
== -EEXIST
)
2207 EXPORT_SYMBOL(__grab_cache_page
);
2209 static ssize_t
generic_perform_write_2copy(struct file
*file
,
2210 struct iov_iter
*i
, loff_t pos
)
2212 struct address_space
*mapping
= file
->f_mapping
;
2213 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2214 struct inode
*inode
= mapping
->host
;
2216 ssize_t written
= 0;
2219 struct page
*src_page
;
2221 pgoff_t index
; /* Pagecache index for current page */
2222 unsigned long offset
; /* Offset into pagecache page */
2223 unsigned long bytes
; /* Bytes to write to page */
2224 size_t copied
; /* Bytes copied from user */
2226 offset
= (pos
& (PAGE_CACHE_SIZE
- 1));
2227 index
= pos
>> PAGE_CACHE_SHIFT
;
2228 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2232 * a non-NULL src_page indicates that we're doing the
2233 * copy via get_user_pages and kmap.
2238 * Bring in the user page that we will copy from _first_.
2239 * Otherwise there's a nasty deadlock on copying from the
2240 * same page as we're writing to, without it being marked
2243 * Not only is this an optimisation, but it is also required
2244 * to check that the address is actually valid, when atomic
2245 * usercopies are used, below.
2247 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
2252 page
= __grab_cache_page(mapping
, index
);
2259 * non-uptodate pages cannot cope with short copies, and we
2260 * cannot take a pagefault with the destination page locked.
2261 * So pin the source page to copy it.
2263 if (!PageUptodate(page
) && !segment_eq(get_fs(), KERNEL_DS
)) {
2266 src_page
= alloc_page(GFP_KERNEL
);
2268 page_cache_release(page
);
2274 * Cannot get_user_pages with a page locked for the
2275 * same reason as we can't take a page fault with a
2276 * page locked (as explained below).
2278 copied
= iov_iter_copy_from_user(src_page
, i
,
2280 if (unlikely(copied
== 0)) {
2282 page_cache_release(page
);
2283 page_cache_release(src_page
);
2290 * Can't handle the page going uptodate here, because
2291 * that means we would use non-atomic usercopies, which
2292 * zero out the tail of the page, which can cause
2293 * zeroes to become transiently visible. We could just
2294 * use a non-zeroing copy, but the APIs aren't too
2297 if (unlikely(!page
->mapping
|| PageUptodate(page
))) {
2299 page_cache_release(page
);
2300 page_cache_release(src_page
);
2305 status
= a_ops
->prepare_write(file
, page
, offset
, offset
+bytes
);
2306 if (unlikely(status
))
2307 goto fs_write_aop_error
;
2311 * Must not enter the pagefault handler here, because
2312 * we hold the page lock, so we might recursively
2313 * deadlock on the same lock, or get an ABBA deadlock
2314 * against a different lock, or against the mmap_sem
2315 * (which nests outside the page lock). So increment
2316 * preempt count, and use _atomic usercopies.
2318 * The page is uptodate so we are OK to encounter a
2319 * short copy: if unmodified parts of the page are
2320 * marked dirty and written out to disk, it doesn't
2323 pagefault_disable();
2324 copied
= iov_iter_copy_from_user_atomic(page
, i
,
2329 src
= kmap_atomic(src_page
, KM_USER0
);
2330 dst
= kmap_atomic(page
, KM_USER1
);
2331 memcpy(dst
+ offset
, src
+ offset
, bytes
);
2332 kunmap_atomic(dst
, KM_USER1
);
2333 kunmap_atomic(src
, KM_USER0
);
2336 flush_dcache_page(page
);
2338 status
= a_ops
->commit_write(file
, page
, offset
, offset
+bytes
);
2339 if (unlikely(status
< 0))
2340 goto fs_write_aop_error
;
2341 if (unlikely(status
> 0)) /* filesystem did partial write */
2342 copied
= min_t(size_t, copied
, status
);
2345 mark_page_accessed(page
);
2346 page_cache_release(page
);
2348 page_cache_release(src_page
);
2350 iov_iter_advance(i
, copied
);
2354 balance_dirty_pages_ratelimited(mapping
);
2360 page_cache_release(page
);
2362 page_cache_release(src_page
);
2365 * prepare_write() may have instantiated a few blocks
2366 * outside i_size. Trim these off again. Don't need
2367 * i_size_read because we hold i_mutex.
2369 if (pos
+ bytes
> inode
->i_size
)
2370 vmtruncate(inode
, inode
->i_size
);
2372 } while (iov_iter_count(i
));
2374 return written
? written
: status
;
2377 static ssize_t
generic_perform_write(struct file
*file
,
2378 struct iov_iter
*i
, loff_t pos
)
2380 struct address_space
*mapping
= file
->f_mapping
;
2381 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2383 ssize_t written
= 0;
2384 unsigned int flags
= 0;
2387 * Copies from kernel address space cannot fail (NFSD is a big user).
2389 if (segment_eq(get_fs(), KERNEL_DS
))
2390 flags
|= AOP_FLAG_UNINTERRUPTIBLE
;
2394 pgoff_t index
; /* Pagecache index for current page */
2395 unsigned long offset
; /* Offset into pagecache page */
2396 unsigned long bytes
; /* Bytes to write to page */
2397 size_t copied
; /* Bytes copied from user */
2400 offset
= (pos
& (PAGE_CACHE_SIZE
- 1));
2401 index
= pos
>> PAGE_CACHE_SHIFT
;
2402 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2408 * Bring in the user page that we will copy from _first_.
2409 * Otherwise there's a nasty deadlock on copying from the
2410 * same page as we're writing to, without it being marked
2413 * Not only is this an optimisation, but it is also required
2414 * to check that the address is actually valid, when atomic
2415 * usercopies are used, below.
2417 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
2422 status
= a_ops
->write_begin(file
, mapping
, pos
, bytes
, flags
,
2424 if (unlikely(status
))
2427 pagefault_disable();
2428 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
2430 flush_dcache_page(page
);
2432 status
= a_ops
->write_end(file
, mapping
, pos
, bytes
, copied
,
2434 if (unlikely(status
< 0))
2440 iov_iter_advance(i
, copied
);
2441 if (unlikely(copied
== 0)) {
2443 * If we were unable to copy any data at all, we must
2444 * fall back to a single segment length write.
2446 * If we didn't fallback here, we could livelock
2447 * because not all segments in the iov can be copied at
2448 * once without a pagefault.
2450 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2451 iov_iter_single_seg_count(i
));
2457 balance_dirty_pages_ratelimited(mapping
);
2459 } while (iov_iter_count(i
));
2461 return written
? written
: status
;
2465 generic_file_buffered_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2466 unsigned long nr_segs
, loff_t pos
, loff_t
*ppos
,
2467 size_t count
, ssize_t written
)
2469 struct file
*file
= iocb
->ki_filp
;
2470 struct address_space
*mapping
= file
->f_mapping
;
2471 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2472 struct inode
*inode
= mapping
->host
;
2476 iov_iter_init(&i
, iov
, nr_segs
, count
, written
);
2477 if (a_ops
->write_begin
)
2478 status
= generic_perform_write(file
, &i
, pos
);
2480 status
= generic_perform_write_2copy(file
, &i
, pos
);
2482 if (likely(status
>= 0)) {
2484 *ppos
= pos
+ status
;
2487 * For now, when the user asks for O_SYNC, we'll actually give
2490 if (unlikely((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2491 if (!a_ops
->writepage
|| !is_sync_kiocb(iocb
))
2492 status
= generic_osync_inode(inode
, mapping
,
2493 OSYNC_METADATA
|OSYNC_DATA
);
2498 * If we get here for O_DIRECT writes then we must have fallen through
2499 * to buffered writes (block instantiation inside i_size). So we sync
2500 * the file data here, to try to honour O_DIRECT expectations.
2502 if (unlikely(file
->f_flags
& O_DIRECT
) && written
)
2503 status
= filemap_write_and_wait(mapping
);
2505 return written
? written
: status
;
2507 EXPORT_SYMBOL(generic_file_buffered_write
);
2510 __generic_file_aio_write_nolock(struct kiocb
*iocb
, const struct iovec
*iov
,
2511 unsigned long nr_segs
, loff_t
*ppos
)
2513 struct file
*file
= iocb
->ki_filp
;
2514 struct address_space
* mapping
= file
->f_mapping
;
2515 size_t ocount
; /* original count */
2516 size_t count
; /* after file limit checks */
2517 struct inode
*inode
= mapping
->host
;
2523 err
= generic_segment_checks(iov
, &nr_segs
, &ocount
, VERIFY_READ
);
2530 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
2532 /* We can write back this queue in page reclaim */
2533 current
->backing_dev_info
= mapping
->backing_dev_info
;
2536 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
2543 err
= file_remove_suid(file
);
2547 file_update_time(file
);
2549 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2550 if (unlikely(file
->f_flags
& O_DIRECT
)) {
2552 ssize_t written_buffered
;
2554 written
= generic_file_direct_write(iocb
, iov
, &nr_segs
, pos
,
2555 ppos
, count
, ocount
);
2556 if (written
< 0 || written
== count
)
2559 * direct-io write to a hole: fall through to buffered I/O
2560 * for completing the rest of the request.
2564 written_buffered
= generic_file_buffered_write(iocb
, iov
,
2565 nr_segs
, pos
, ppos
, count
,
2568 * If generic_file_buffered_write() retuned a synchronous error
2569 * then we want to return the number of bytes which were
2570 * direct-written, or the error code if that was zero. Note
2571 * that this differs from normal direct-io semantics, which
2572 * will return -EFOO even if some bytes were written.
2574 if (written_buffered
< 0) {
2575 err
= written_buffered
;
2580 * We need to ensure that the page cache pages are written to
2581 * disk and invalidated to preserve the expected O_DIRECT
2584 endbyte
= pos
+ written_buffered
- written
- 1;
2585 err
= do_sync_mapping_range(file
->f_mapping
, pos
, endbyte
,
2586 SYNC_FILE_RANGE_WAIT_BEFORE
|
2587 SYNC_FILE_RANGE_WRITE
|
2588 SYNC_FILE_RANGE_WAIT_AFTER
);
2590 written
= written_buffered
;
2591 invalidate_mapping_pages(mapping
,
2592 pos
>> PAGE_CACHE_SHIFT
,
2593 endbyte
>> PAGE_CACHE_SHIFT
);
2596 * We don't know how much we wrote, so just return
2597 * the number of bytes which were direct-written
2601 written
= generic_file_buffered_write(iocb
, iov
, nr_segs
,
2602 pos
, ppos
, count
, written
);
2605 current
->backing_dev_info
= NULL
;
2606 return written
? written
: err
;
2609 ssize_t
generic_file_aio_write_nolock(struct kiocb
*iocb
,
2610 const struct iovec
*iov
, unsigned long nr_segs
, loff_t pos
)
2612 struct file
*file
= iocb
->ki_filp
;
2613 struct address_space
*mapping
= file
->f_mapping
;
2614 struct inode
*inode
= mapping
->host
;
2617 BUG_ON(iocb
->ki_pos
!= pos
);
2619 ret
= __generic_file_aio_write_nolock(iocb
, iov
, nr_segs
,
2622 if (ret
> 0 && ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2625 err
= sync_page_range_nolock(inode
, mapping
, pos
, ret
);
2631 EXPORT_SYMBOL(generic_file_aio_write_nolock
);
2633 ssize_t
generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2634 unsigned long nr_segs
, loff_t pos
)
2636 struct file
*file
= iocb
->ki_filp
;
2637 struct address_space
*mapping
= file
->f_mapping
;
2638 struct inode
*inode
= mapping
->host
;
2641 BUG_ON(iocb
->ki_pos
!= pos
);
2643 mutex_lock(&inode
->i_mutex
);
2644 ret
= __generic_file_aio_write_nolock(iocb
, iov
, nr_segs
,
2646 mutex_unlock(&inode
->i_mutex
);
2648 if (ret
> 0 && ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2651 err
= sync_page_range(inode
, mapping
, pos
, ret
);
2657 EXPORT_SYMBOL(generic_file_aio_write
);
2660 * try_to_release_page() - release old fs-specific metadata on a page
2662 * @page: the page which the kernel is trying to free
2663 * @gfp_mask: memory allocation flags (and I/O mode)
2665 * The address_space is to try to release any data against the page
2666 * (presumably at page->private). If the release was successful, return `1'.
2667 * Otherwise return zero.
2669 * The @gfp_mask argument specifies whether I/O may be performed to release
2670 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2673 int try_to_release_page(struct page
*page
, gfp_t gfp_mask
)
2675 struct address_space
* const mapping
= page
->mapping
;
2677 BUG_ON(!PageLocked(page
));
2678 if (PageWriteback(page
))
2681 if (mapping
&& mapping
->a_ops
->releasepage
)
2682 return mapping
->a_ops
->releasepage(page
, gfp_mask
);
2683 return try_to_free_buffers(page
);
2686 EXPORT_SYMBOL(try_to_release_page
);