PCI Hotplug: acpiphp: don't store a pci_dev in acpiphp_func
[linux-2.6/mini2440.git] / drivers / net / ixgbe / ixgbe_common.c
blob186a65069b3329e0d9525b08072a6fce8e1a7518
1 /*******************************************************************************
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/sched.h>
32 #include "ixgbe.h"
33 #include "ixgbe_common.h"
34 #include "ixgbe_phy.h"
36 static s32 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw);
37 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
38 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
39 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
40 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
41 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
42 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
43 u16 count);
44 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
45 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
46 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
48 static u16 ixgbe_calc_eeprom_checksum(struct ixgbe_hw *hw);
50 static void ixgbe_enable_rar(struct ixgbe_hw *hw, u32 index);
51 static void ixgbe_disable_rar(struct ixgbe_hw *hw, u32 index);
52 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
53 static void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq);
55 /**
56 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
57 * @hw: pointer to hardware structure
59 * Starts the hardware by filling the bus info structure and media type, clears
60 * all on chip counters, initializes receive address registers, multicast
61 * table, VLAN filter table, calls routine to set up link and flow control
62 * settings, and leaves transmit and receive units disabled and uninitialized
63 **/
64 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
66 u32 ctrl_ext;
68 /* Set the media type */
69 hw->phy.media_type = hw->mac.ops.get_media_type(hw);
71 /* Identify the PHY */
72 hw->phy.ops.identify(hw);
75 * Store MAC address from RAR0, clear receive address registers, and
76 * clear the multicast table
78 hw->mac.ops.init_rx_addrs(hw);
80 /* Clear the VLAN filter table */
81 hw->mac.ops.clear_vfta(hw);
83 /* Clear statistics registers */
84 hw->mac.ops.clear_hw_cntrs(hw);
86 /* Set No Snoop Disable */
87 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
88 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
89 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
90 IXGBE_WRITE_FLUSH(hw);
92 /* Clear adapter stopped flag */
93 hw->adapter_stopped = false;
95 return 0;
98 /**
99 * ixgbe_init_hw_generic - Generic hardware initialization
100 * @hw: pointer to hardware structure
102 * Initialize the hardware by resetting the hardware, filling the bus info
103 * structure and media type, clears all on chip counters, initializes receive
104 * address registers, multicast table, VLAN filter table, calls routine to set
105 * up link and flow control settings, and leaves transmit and receive units
106 * disabled and uninitialized
108 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
110 /* Reset the hardware */
111 hw->mac.ops.reset_hw(hw);
113 /* Start the HW */
114 hw->mac.ops.start_hw(hw);
116 return 0;
120 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
121 * @hw: pointer to hardware structure
123 * Clears all hardware statistics counters by reading them from the hardware
124 * Statistics counters are clear on read.
126 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
128 u16 i = 0;
130 IXGBE_READ_REG(hw, IXGBE_CRCERRS);
131 IXGBE_READ_REG(hw, IXGBE_ILLERRC);
132 IXGBE_READ_REG(hw, IXGBE_ERRBC);
133 IXGBE_READ_REG(hw, IXGBE_MSPDC);
134 for (i = 0; i < 8; i++)
135 IXGBE_READ_REG(hw, IXGBE_MPC(i));
137 IXGBE_READ_REG(hw, IXGBE_MLFC);
138 IXGBE_READ_REG(hw, IXGBE_MRFC);
139 IXGBE_READ_REG(hw, IXGBE_RLEC);
140 IXGBE_READ_REG(hw, IXGBE_LXONTXC);
141 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
142 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
143 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
145 for (i = 0; i < 8; i++) {
146 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
147 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
148 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
149 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
152 IXGBE_READ_REG(hw, IXGBE_PRC64);
153 IXGBE_READ_REG(hw, IXGBE_PRC127);
154 IXGBE_READ_REG(hw, IXGBE_PRC255);
155 IXGBE_READ_REG(hw, IXGBE_PRC511);
156 IXGBE_READ_REG(hw, IXGBE_PRC1023);
157 IXGBE_READ_REG(hw, IXGBE_PRC1522);
158 IXGBE_READ_REG(hw, IXGBE_GPRC);
159 IXGBE_READ_REG(hw, IXGBE_BPRC);
160 IXGBE_READ_REG(hw, IXGBE_MPRC);
161 IXGBE_READ_REG(hw, IXGBE_GPTC);
162 IXGBE_READ_REG(hw, IXGBE_GORCL);
163 IXGBE_READ_REG(hw, IXGBE_GORCH);
164 IXGBE_READ_REG(hw, IXGBE_GOTCL);
165 IXGBE_READ_REG(hw, IXGBE_GOTCH);
166 for (i = 0; i < 8; i++)
167 IXGBE_READ_REG(hw, IXGBE_RNBC(i));
168 IXGBE_READ_REG(hw, IXGBE_RUC);
169 IXGBE_READ_REG(hw, IXGBE_RFC);
170 IXGBE_READ_REG(hw, IXGBE_ROC);
171 IXGBE_READ_REG(hw, IXGBE_RJC);
172 IXGBE_READ_REG(hw, IXGBE_MNGPRC);
173 IXGBE_READ_REG(hw, IXGBE_MNGPDC);
174 IXGBE_READ_REG(hw, IXGBE_MNGPTC);
175 IXGBE_READ_REG(hw, IXGBE_TORL);
176 IXGBE_READ_REG(hw, IXGBE_TORH);
177 IXGBE_READ_REG(hw, IXGBE_TPR);
178 IXGBE_READ_REG(hw, IXGBE_TPT);
179 IXGBE_READ_REG(hw, IXGBE_PTC64);
180 IXGBE_READ_REG(hw, IXGBE_PTC127);
181 IXGBE_READ_REG(hw, IXGBE_PTC255);
182 IXGBE_READ_REG(hw, IXGBE_PTC511);
183 IXGBE_READ_REG(hw, IXGBE_PTC1023);
184 IXGBE_READ_REG(hw, IXGBE_PTC1522);
185 IXGBE_READ_REG(hw, IXGBE_MPTC);
186 IXGBE_READ_REG(hw, IXGBE_BPTC);
187 for (i = 0; i < 16; i++) {
188 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
189 IXGBE_READ_REG(hw, IXGBE_QBRC(i));
190 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
191 IXGBE_READ_REG(hw, IXGBE_QBTC(i));
194 return 0;
198 * ixgbe_read_pba_num_generic - Reads part number from EEPROM
199 * @hw: pointer to hardware structure
200 * @pba_num: stores the part number from the EEPROM
202 * Reads the part number from the EEPROM.
204 s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
206 s32 ret_val;
207 u16 data;
209 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
210 if (ret_val) {
211 hw_dbg(hw, "NVM Read Error\n");
212 return ret_val;
214 *pba_num = (u32)(data << 16);
216 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
217 if (ret_val) {
218 hw_dbg(hw, "NVM Read Error\n");
219 return ret_val;
221 *pba_num |= data;
223 return 0;
227 * ixgbe_get_mac_addr_generic - Generic get MAC address
228 * @hw: pointer to hardware structure
229 * @mac_addr: Adapter MAC address
231 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
232 * A reset of the adapter must be performed prior to calling this function
233 * in order for the MAC address to have been loaded from the EEPROM into RAR0
235 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
237 u32 rar_high;
238 u32 rar_low;
239 u16 i;
241 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
242 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
244 for (i = 0; i < 4; i++)
245 mac_addr[i] = (u8)(rar_low >> (i*8));
247 for (i = 0; i < 2; i++)
248 mac_addr[i+4] = (u8)(rar_high >> (i*8));
250 return 0;
254 * ixgbe_get_bus_info_generic - Generic set PCI bus info
255 * @hw: pointer to hardware structure
257 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
259 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
261 struct ixgbe_adapter *adapter = hw->back;
262 struct ixgbe_mac_info *mac = &hw->mac;
263 u16 link_status;
265 hw->bus.type = ixgbe_bus_type_pci_express;
267 /* Get the negotiated link width and speed from PCI config space */
268 pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS,
269 &link_status);
271 switch (link_status & IXGBE_PCI_LINK_WIDTH) {
272 case IXGBE_PCI_LINK_WIDTH_1:
273 hw->bus.width = ixgbe_bus_width_pcie_x1;
274 break;
275 case IXGBE_PCI_LINK_WIDTH_2:
276 hw->bus.width = ixgbe_bus_width_pcie_x2;
277 break;
278 case IXGBE_PCI_LINK_WIDTH_4:
279 hw->bus.width = ixgbe_bus_width_pcie_x4;
280 break;
281 case IXGBE_PCI_LINK_WIDTH_8:
282 hw->bus.width = ixgbe_bus_width_pcie_x8;
283 break;
284 default:
285 hw->bus.width = ixgbe_bus_width_unknown;
286 break;
289 switch (link_status & IXGBE_PCI_LINK_SPEED) {
290 case IXGBE_PCI_LINK_SPEED_2500:
291 hw->bus.speed = ixgbe_bus_speed_2500;
292 break;
293 case IXGBE_PCI_LINK_SPEED_5000:
294 hw->bus.speed = ixgbe_bus_speed_5000;
295 break;
296 default:
297 hw->bus.speed = ixgbe_bus_speed_unknown;
298 break;
301 mac->ops.set_lan_id(hw);
303 return 0;
307 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
308 * @hw: pointer to the HW structure
310 * Determines the LAN function id by reading memory-mapped registers
311 * and swaps the port value if requested.
313 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
315 struct ixgbe_bus_info *bus = &hw->bus;
316 u32 reg;
318 reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
319 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
320 bus->lan_id = bus->func;
322 /* check for a port swap */
323 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
324 if (reg & IXGBE_FACTPS_LFS)
325 bus->func ^= 0x1;
329 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
330 * @hw: pointer to hardware structure
332 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
333 * disables transmit and receive units. The adapter_stopped flag is used by
334 * the shared code and drivers to determine if the adapter is in a stopped
335 * state and should not touch the hardware.
337 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
339 u32 number_of_queues;
340 u32 reg_val;
341 u16 i;
344 * Set the adapter_stopped flag so other driver functions stop touching
345 * the hardware
347 hw->adapter_stopped = true;
349 /* Disable the receive unit */
350 reg_val = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
351 reg_val &= ~(IXGBE_RXCTRL_RXEN);
352 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, reg_val);
353 IXGBE_WRITE_FLUSH(hw);
354 msleep(2);
356 /* Clear interrupt mask to stop from interrupts being generated */
357 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
359 /* Clear any pending interrupts */
360 IXGBE_READ_REG(hw, IXGBE_EICR);
362 /* Disable the transmit unit. Each queue must be disabled. */
363 number_of_queues = hw->mac.max_tx_queues;
364 for (i = 0; i < number_of_queues; i++) {
365 reg_val = IXGBE_READ_REG(hw, IXGBE_TXDCTL(i));
366 if (reg_val & IXGBE_TXDCTL_ENABLE) {
367 reg_val &= ~IXGBE_TXDCTL_ENABLE;
368 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), reg_val);
373 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
374 * access and verify no pending requests
376 if (ixgbe_disable_pcie_master(hw) != 0)
377 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
379 return 0;
383 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
384 * @hw: pointer to hardware structure
385 * @index: led number to turn on
387 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
389 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
391 /* To turn on the LED, set mode to ON. */
392 led_reg &= ~IXGBE_LED_MODE_MASK(index);
393 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
394 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
395 IXGBE_WRITE_FLUSH(hw);
397 return 0;
401 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
402 * @hw: pointer to hardware structure
403 * @index: led number to turn off
405 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
407 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
409 /* To turn off the LED, set mode to OFF. */
410 led_reg &= ~IXGBE_LED_MODE_MASK(index);
411 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
412 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
413 IXGBE_WRITE_FLUSH(hw);
415 return 0;
419 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
420 * @hw: pointer to hardware structure
422 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
423 * ixgbe_hw struct in order to set up EEPROM access.
425 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
427 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
428 u32 eec;
429 u16 eeprom_size;
431 if (eeprom->type == ixgbe_eeprom_uninitialized) {
432 eeprom->type = ixgbe_eeprom_none;
433 /* Set default semaphore delay to 10ms which is a well
434 * tested value */
435 eeprom->semaphore_delay = 10;
438 * Check for EEPROM present first.
439 * If not present leave as none
441 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
442 if (eec & IXGBE_EEC_PRES) {
443 eeprom->type = ixgbe_eeprom_spi;
446 * SPI EEPROM is assumed here. This code would need to
447 * change if a future EEPROM is not SPI.
449 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
450 IXGBE_EEC_SIZE_SHIFT);
451 eeprom->word_size = 1 << (eeprom_size +
452 IXGBE_EEPROM_WORD_SIZE_SHIFT);
455 if (eec & IXGBE_EEC_ADDR_SIZE)
456 eeprom->address_bits = 16;
457 else
458 eeprom->address_bits = 8;
459 hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
460 "%d\n", eeprom->type, eeprom->word_size,
461 eeprom->address_bits);
464 return 0;
468 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
469 * @hw: pointer to hardware structure
470 * @offset: offset within the EEPROM to be written to
471 * @data: 16 bit word to be written to the EEPROM
473 * If ixgbe_eeprom_update_checksum is not called after this function, the
474 * EEPROM will most likely contain an invalid checksum.
476 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
478 s32 status;
479 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
481 hw->eeprom.ops.init_params(hw);
483 if (offset >= hw->eeprom.word_size) {
484 status = IXGBE_ERR_EEPROM;
485 goto out;
488 /* Prepare the EEPROM for writing */
489 status = ixgbe_acquire_eeprom(hw);
491 if (status == 0) {
492 if (ixgbe_ready_eeprom(hw) != 0) {
493 ixgbe_release_eeprom(hw);
494 status = IXGBE_ERR_EEPROM;
498 if (status == 0) {
499 ixgbe_standby_eeprom(hw);
501 /* Send the WRITE ENABLE command (8 bit opcode ) */
502 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_WREN_OPCODE_SPI,
503 IXGBE_EEPROM_OPCODE_BITS);
505 ixgbe_standby_eeprom(hw);
508 * Some SPI eeproms use the 8th address bit embedded in the
509 * opcode
511 if ((hw->eeprom.address_bits == 8) && (offset >= 128))
512 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
514 /* Send the Write command (8-bit opcode + addr) */
515 ixgbe_shift_out_eeprom_bits(hw, write_opcode,
516 IXGBE_EEPROM_OPCODE_BITS);
517 ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
518 hw->eeprom.address_bits);
520 /* Send the data */
521 data = (data >> 8) | (data << 8);
522 ixgbe_shift_out_eeprom_bits(hw, data, 16);
523 ixgbe_standby_eeprom(hw);
525 msleep(hw->eeprom.semaphore_delay);
526 /* Done with writing - release the EEPROM */
527 ixgbe_release_eeprom(hw);
530 out:
531 return status;
535 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
536 * @hw: pointer to hardware structure
537 * @offset: offset within the EEPROM to be read
538 * @data: read 16 bit value from EEPROM
540 * Reads 16 bit value from EEPROM through bit-bang method
542 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
543 u16 *data)
545 s32 status;
546 u16 word_in;
547 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
549 hw->eeprom.ops.init_params(hw);
551 if (offset >= hw->eeprom.word_size) {
552 status = IXGBE_ERR_EEPROM;
553 goto out;
556 /* Prepare the EEPROM for reading */
557 status = ixgbe_acquire_eeprom(hw);
559 if (status == 0) {
560 if (ixgbe_ready_eeprom(hw) != 0) {
561 ixgbe_release_eeprom(hw);
562 status = IXGBE_ERR_EEPROM;
566 if (status == 0) {
567 ixgbe_standby_eeprom(hw);
570 * Some SPI eeproms use the 8th address bit embedded in the
571 * opcode
573 if ((hw->eeprom.address_bits == 8) && (offset >= 128))
574 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
576 /* Send the READ command (opcode + addr) */
577 ixgbe_shift_out_eeprom_bits(hw, read_opcode,
578 IXGBE_EEPROM_OPCODE_BITS);
579 ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
580 hw->eeprom.address_bits);
582 /* Read the data. */
583 word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
584 *data = (word_in >> 8) | (word_in << 8);
586 /* End this read operation */
587 ixgbe_release_eeprom(hw);
590 out:
591 return status;
595 * ixgbe_read_eeprom_generic - Read EEPROM word using EERD
596 * @hw: pointer to hardware structure
597 * @offset: offset of word in the EEPROM to read
598 * @data: word read from the EEPROM
600 * Reads a 16 bit word from the EEPROM using the EERD register.
602 s32 ixgbe_read_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
604 u32 eerd;
605 s32 status;
607 hw->eeprom.ops.init_params(hw);
609 if (offset >= hw->eeprom.word_size) {
610 status = IXGBE_ERR_EEPROM;
611 goto out;
614 eerd = (offset << IXGBE_EEPROM_READ_ADDR_SHIFT) +
615 IXGBE_EEPROM_READ_REG_START;
617 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
618 status = ixgbe_poll_eeprom_eerd_done(hw);
620 if (status == 0)
621 *data = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
622 IXGBE_EEPROM_READ_REG_DATA);
623 else
624 hw_dbg(hw, "Eeprom read timed out\n");
626 out:
627 return status;
631 * ixgbe_poll_eeprom_eerd_done - Poll EERD status
632 * @hw: pointer to hardware structure
634 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
636 static s32 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw)
638 u32 i;
639 u32 reg;
640 s32 status = IXGBE_ERR_EEPROM;
642 for (i = 0; i < IXGBE_EERD_ATTEMPTS; i++) {
643 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
644 if (reg & IXGBE_EEPROM_READ_REG_DONE) {
645 status = 0;
646 break;
648 udelay(5);
650 return status;
654 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
655 * @hw: pointer to hardware structure
657 * Prepares EEPROM for access using bit-bang method. This function should
658 * be called before issuing a command to the EEPROM.
660 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
662 s32 status = 0;
663 u32 eec = 0;
664 u32 i;
666 if (ixgbe_acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
667 status = IXGBE_ERR_SWFW_SYNC;
669 if (status == 0) {
670 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
672 /* Request EEPROM Access */
673 eec |= IXGBE_EEC_REQ;
674 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
676 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
677 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
678 if (eec & IXGBE_EEC_GNT)
679 break;
680 udelay(5);
683 /* Release if grant not acquired */
684 if (!(eec & IXGBE_EEC_GNT)) {
685 eec &= ~IXGBE_EEC_REQ;
686 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
687 hw_dbg(hw, "Could not acquire EEPROM grant\n");
689 ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
690 status = IXGBE_ERR_EEPROM;
694 /* Setup EEPROM for Read/Write */
695 if (status == 0) {
696 /* Clear CS and SK */
697 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
698 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
699 IXGBE_WRITE_FLUSH(hw);
700 udelay(1);
702 return status;
706 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
707 * @hw: pointer to hardware structure
709 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
711 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
713 s32 status = IXGBE_ERR_EEPROM;
714 u32 timeout;
715 u32 i;
716 u32 swsm;
718 /* Set timeout value based on size of EEPROM */
719 timeout = hw->eeprom.word_size + 1;
721 /* Get SMBI software semaphore between device drivers first */
722 for (i = 0; i < timeout; i++) {
724 * If the SMBI bit is 0 when we read it, then the bit will be
725 * set and we have the semaphore
727 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
728 if (!(swsm & IXGBE_SWSM_SMBI)) {
729 status = 0;
730 break;
732 msleep(1);
735 /* Now get the semaphore between SW/FW through the SWESMBI bit */
736 if (status == 0) {
737 for (i = 0; i < timeout; i++) {
738 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
740 /* Set the SW EEPROM semaphore bit to request access */
741 swsm |= IXGBE_SWSM_SWESMBI;
742 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
745 * If we set the bit successfully then we got the
746 * semaphore.
748 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
749 if (swsm & IXGBE_SWSM_SWESMBI)
750 break;
752 udelay(50);
756 * Release semaphores and return error if SW EEPROM semaphore
757 * was not granted because we don't have access to the EEPROM
759 if (i >= timeout) {
760 hw_dbg(hw, "Driver can't access the Eeprom - Semaphore "
761 "not granted.\n");
762 ixgbe_release_eeprom_semaphore(hw);
763 status = IXGBE_ERR_EEPROM;
767 return status;
771 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
772 * @hw: pointer to hardware structure
774 * This function clears hardware semaphore bits.
776 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
778 u32 swsm;
780 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
782 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
783 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
784 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
785 IXGBE_WRITE_FLUSH(hw);
789 * ixgbe_ready_eeprom - Polls for EEPROM ready
790 * @hw: pointer to hardware structure
792 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
794 s32 status = 0;
795 u16 i;
796 u8 spi_stat_reg;
799 * Read "Status Register" repeatedly until the LSB is cleared. The
800 * EEPROM will signal that the command has been completed by clearing
801 * bit 0 of the internal status register. If it's not cleared within
802 * 5 milliseconds, then error out.
804 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
805 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
806 IXGBE_EEPROM_OPCODE_BITS);
807 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
808 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
809 break;
811 udelay(5);
812 ixgbe_standby_eeprom(hw);
816 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
817 * devices (and only 0-5mSec on 5V devices)
819 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
820 hw_dbg(hw, "SPI EEPROM Status error\n");
821 status = IXGBE_ERR_EEPROM;
824 return status;
828 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
829 * @hw: pointer to hardware structure
831 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
833 u32 eec;
835 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
837 /* Toggle CS to flush commands */
838 eec |= IXGBE_EEC_CS;
839 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
840 IXGBE_WRITE_FLUSH(hw);
841 udelay(1);
842 eec &= ~IXGBE_EEC_CS;
843 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
844 IXGBE_WRITE_FLUSH(hw);
845 udelay(1);
849 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
850 * @hw: pointer to hardware structure
851 * @data: data to send to the EEPROM
852 * @count: number of bits to shift out
854 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
855 u16 count)
857 u32 eec;
858 u32 mask;
859 u32 i;
861 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
864 * Mask is used to shift "count" bits of "data" out to the EEPROM
865 * one bit at a time. Determine the starting bit based on count
867 mask = 0x01 << (count - 1);
869 for (i = 0; i < count; i++) {
871 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
872 * "1", and then raising and then lowering the clock (the SK
873 * bit controls the clock input to the EEPROM). A "0" is
874 * shifted out to the EEPROM by setting "DI" to "0" and then
875 * raising and then lowering the clock.
877 if (data & mask)
878 eec |= IXGBE_EEC_DI;
879 else
880 eec &= ~IXGBE_EEC_DI;
882 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
883 IXGBE_WRITE_FLUSH(hw);
885 udelay(1);
887 ixgbe_raise_eeprom_clk(hw, &eec);
888 ixgbe_lower_eeprom_clk(hw, &eec);
891 * Shift mask to signify next bit of data to shift in to the
892 * EEPROM
894 mask = mask >> 1;
897 /* We leave the "DI" bit set to "0" when we leave this routine. */
898 eec &= ~IXGBE_EEC_DI;
899 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
900 IXGBE_WRITE_FLUSH(hw);
904 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
905 * @hw: pointer to hardware structure
907 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
909 u32 eec;
910 u32 i;
911 u16 data = 0;
914 * In order to read a register from the EEPROM, we need to shift
915 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
916 * the clock input to the EEPROM (setting the SK bit), and then reading
917 * the value of the "DO" bit. During this "shifting in" process the
918 * "DI" bit should always be clear.
920 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
922 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
924 for (i = 0; i < count; i++) {
925 data = data << 1;
926 ixgbe_raise_eeprom_clk(hw, &eec);
928 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
930 eec &= ~(IXGBE_EEC_DI);
931 if (eec & IXGBE_EEC_DO)
932 data |= 1;
934 ixgbe_lower_eeprom_clk(hw, &eec);
937 return data;
941 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
942 * @hw: pointer to hardware structure
943 * @eec: EEC register's current value
945 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
948 * Raise the clock input to the EEPROM
949 * (setting the SK bit), then delay
951 *eec = *eec | IXGBE_EEC_SK;
952 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
953 IXGBE_WRITE_FLUSH(hw);
954 udelay(1);
958 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
959 * @hw: pointer to hardware structure
960 * @eecd: EECD's current value
962 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
965 * Lower the clock input to the EEPROM (clearing the SK bit), then
966 * delay
968 *eec = *eec & ~IXGBE_EEC_SK;
969 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
970 IXGBE_WRITE_FLUSH(hw);
971 udelay(1);
975 * ixgbe_release_eeprom - Release EEPROM, release semaphores
976 * @hw: pointer to hardware structure
978 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
980 u32 eec;
982 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
984 eec |= IXGBE_EEC_CS; /* Pull CS high */
985 eec &= ~IXGBE_EEC_SK; /* Lower SCK */
987 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
988 IXGBE_WRITE_FLUSH(hw);
990 udelay(1);
992 /* Stop requesting EEPROM access */
993 eec &= ~IXGBE_EEC_REQ;
994 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
996 ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1000 * ixgbe_calc_eeprom_checksum - Calculates and returns the checksum
1001 * @hw: pointer to hardware structure
1003 static u16 ixgbe_calc_eeprom_checksum(struct ixgbe_hw *hw)
1005 u16 i;
1006 u16 j;
1007 u16 checksum = 0;
1008 u16 length = 0;
1009 u16 pointer = 0;
1010 u16 word = 0;
1012 /* Include 0x0-0x3F in the checksum */
1013 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1014 if (hw->eeprom.ops.read(hw, i, &word) != 0) {
1015 hw_dbg(hw, "EEPROM read failed\n");
1016 break;
1018 checksum += word;
1021 /* Include all data from pointers except for the fw pointer */
1022 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1023 hw->eeprom.ops.read(hw, i, &pointer);
1025 /* Make sure the pointer seems valid */
1026 if (pointer != 0xFFFF && pointer != 0) {
1027 hw->eeprom.ops.read(hw, pointer, &length);
1029 if (length != 0xFFFF && length != 0) {
1030 for (j = pointer+1; j <= pointer+length; j++) {
1031 hw->eeprom.ops.read(hw, j, &word);
1032 checksum += word;
1038 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1040 return checksum;
1044 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1045 * @hw: pointer to hardware structure
1046 * @checksum_val: calculated checksum
1048 * Performs checksum calculation and validates the EEPROM checksum. If the
1049 * caller does not need checksum_val, the value can be NULL.
1051 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1052 u16 *checksum_val)
1054 s32 status;
1055 u16 checksum;
1056 u16 read_checksum = 0;
1059 * Read the first word from the EEPROM. If this times out or fails, do
1060 * not continue or we could be in for a very long wait while every
1061 * EEPROM read fails
1063 status = hw->eeprom.ops.read(hw, 0, &checksum);
1065 if (status == 0) {
1066 checksum = ixgbe_calc_eeprom_checksum(hw);
1068 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1071 * Verify read checksum from EEPROM is the same as
1072 * calculated checksum
1074 if (read_checksum != checksum)
1075 status = IXGBE_ERR_EEPROM_CHECKSUM;
1077 /* If the user cares, return the calculated checksum */
1078 if (checksum_val)
1079 *checksum_val = checksum;
1080 } else {
1081 hw_dbg(hw, "EEPROM read failed\n");
1084 return status;
1088 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1089 * @hw: pointer to hardware structure
1091 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1093 s32 status;
1094 u16 checksum;
1097 * Read the first word from the EEPROM. If this times out or fails, do
1098 * not continue or we could be in for a very long wait while every
1099 * EEPROM read fails
1101 status = hw->eeprom.ops.read(hw, 0, &checksum);
1103 if (status == 0) {
1104 checksum = ixgbe_calc_eeprom_checksum(hw);
1105 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1106 checksum);
1107 } else {
1108 hw_dbg(hw, "EEPROM read failed\n");
1111 return status;
1115 * ixgbe_validate_mac_addr - Validate MAC address
1116 * @mac_addr: pointer to MAC address.
1118 * Tests a MAC address to ensure it is a valid Individual Address
1120 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
1122 s32 status = 0;
1124 /* Make sure it is not a multicast address */
1125 if (IXGBE_IS_MULTICAST(mac_addr))
1126 status = IXGBE_ERR_INVALID_MAC_ADDR;
1127 /* Not a broadcast address */
1128 else if (IXGBE_IS_BROADCAST(mac_addr))
1129 status = IXGBE_ERR_INVALID_MAC_ADDR;
1130 /* Reject the zero address */
1131 else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
1132 mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0)
1133 status = IXGBE_ERR_INVALID_MAC_ADDR;
1135 return status;
1139 * ixgbe_set_rar_generic - Set Rx address register
1140 * @hw: pointer to hardware structure
1141 * @index: Receive address register to write
1142 * @addr: Address to put into receive address register
1143 * @vmdq: VMDq "set" or "pool" index
1144 * @enable_addr: set flag that address is active
1146 * Puts an ethernet address into a receive address register.
1148 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1149 u32 enable_addr)
1151 u32 rar_low, rar_high;
1152 u32 rar_entries = hw->mac.num_rar_entries;
1154 /* setup VMDq pool selection before this RAR gets enabled */
1155 hw->mac.ops.set_vmdq(hw, index, vmdq);
1157 /* Make sure we are using a valid rar index range */
1158 if (index < rar_entries) {
1160 * HW expects these in little endian so we reverse the byte
1161 * order from network order (big endian) to little endian
1163 rar_low = ((u32)addr[0] |
1164 ((u32)addr[1] << 8) |
1165 ((u32)addr[2] << 16) |
1166 ((u32)addr[3] << 24));
1168 * Some parts put the VMDq setting in the extra RAH bits,
1169 * so save everything except the lower 16 bits that hold part
1170 * of the address and the address valid bit.
1172 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1173 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1174 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1176 if (enable_addr != 0)
1177 rar_high |= IXGBE_RAH_AV;
1179 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1180 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1181 } else {
1182 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1185 return 0;
1189 * ixgbe_clear_rar_generic - Remove Rx address register
1190 * @hw: pointer to hardware structure
1191 * @index: Receive address register to write
1193 * Clears an ethernet address from a receive address register.
1195 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1197 u32 rar_high;
1198 u32 rar_entries = hw->mac.num_rar_entries;
1200 /* Make sure we are using a valid rar index range */
1201 if (index < rar_entries) {
1203 * Some parts put the VMDq setting in the extra RAH bits,
1204 * so save everything except the lower 16 bits that hold part
1205 * of the address and the address valid bit.
1207 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1208 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1210 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1211 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1212 } else {
1213 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1216 /* clear VMDq pool/queue selection for this RAR */
1217 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1219 return 0;
1223 * ixgbe_enable_rar - Enable Rx address register
1224 * @hw: pointer to hardware structure
1225 * @index: index into the RAR table
1227 * Enables the select receive address register.
1229 static void ixgbe_enable_rar(struct ixgbe_hw *hw, u32 index)
1231 u32 rar_high;
1233 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1234 rar_high |= IXGBE_RAH_AV;
1235 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1239 * ixgbe_disable_rar - Disable Rx address register
1240 * @hw: pointer to hardware structure
1241 * @index: index into the RAR table
1243 * Disables the select receive address register.
1245 static void ixgbe_disable_rar(struct ixgbe_hw *hw, u32 index)
1247 u32 rar_high;
1249 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1250 rar_high &= (~IXGBE_RAH_AV);
1251 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1255 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1256 * @hw: pointer to hardware structure
1258 * Places the MAC address in receive address register 0 and clears the rest
1259 * of the receive address registers. Clears the multicast table. Assumes
1260 * the receiver is in reset when the routine is called.
1262 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1264 u32 i;
1265 u32 rar_entries = hw->mac.num_rar_entries;
1268 * If the current mac address is valid, assume it is a software override
1269 * to the permanent address.
1270 * Otherwise, use the permanent address from the eeprom.
1272 if (ixgbe_validate_mac_addr(hw->mac.addr) ==
1273 IXGBE_ERR_INVALID_MAC_ADDR) {
1274 /* Get the MAC address from the RAR0 for later reference */
1275 hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1277 hw_dbg(hw, " Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
1278 hw->mac.addr[0], hw->mac.addr[1],
1279 hw->mac.addr[2]);
1280 hw_dbg(hw, "%.2X %.2X %.2X\n", hw->mac.addr[3],
1281 hw->mac.addr[4], hw->mac.addr[5]);
1282 } else {
1283 /* Setup the receive address. */
1284 hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1285 hw_dbg(hw, " New MAC Addr =%.2X %.2X %.2X ",
1286 hw->mac.addr[0], hw->mac.addr[1],
1287 hw->mac.addr[2]);
1288 hw_dbg(hw, "%.2X %.2X %.2X\n", hw->mac.addr[3],
1289 hw->mac.addr[4], hw->mac.addr[5]);
1291 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1293 hw->addr_ctrl.overflow_promisc = 0;
1295 hw->addr_ctrl.rar_used_count = 1;
1297 /* Zero out the other receive addresses. */
1298 hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1299 for (i = 1; i < rar_entries; i++) {
1300 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1301 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1304 /* Clear the MTA */
1305 hw->addr_ctrl.mc_addr_in_rar_count = 0;
1306 hw->addr_ctrl.mta_in_use = 0;
1307 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1309 hw_dbg(hw, " Clearing MTA\n");
1310 for (i = 0; i < hw->mac.mcft_size; i++)
1311 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1313 if (hw->mac.ops.init_uta_tables)
1314 hw->mac.ops.init_uta_tables(hw);
1316 return 0;
1320 * ixgbe_add_uc_addr - Adds a secondary unicast address.
1321 * @hw: pointer to hardware structure
1322 * @addr: new address
1324 * Adds it to unused receive address register or goes into promiscuous mode.
1326 static void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
1328 u32 rar_entries = hw->mac.num_rar_entries;
1329 u32 rar;
1331 hw_dbg(hw, " UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
1332 addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
1335 * Place this address in the RAR if there is room,
1336 * else put the controller into promiscuous mode
1338 if (hw->addr_ctrl.rar_used_count < rar_entries) {
1339 rar = hw->addr_ctrl.rar_used_count -
1340 hw->addr_ctrl.mc_addr_in_rar_count;
1341 hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
1342 hw_dbg(hw, "Added a secondary address to RAR[%d]\n", rar);
1343 hw->addr_ctrl.rar_used_count++;
1344 } else {
1345 hw->addr_ctrl.overflow_promisc++;
1348 hw_dbg(hw, "ixgbe_add_uc_addr Complete\n");
1352 * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
1353 * @hw: pointer to hardware structure
1354 * @addr_list: the list of new addresses
1355 * @addr_count: number of addresses
1356 * @next: iterator function to walk the address list
1358 * The given list replaces any existing list. Clears the secondary addrs from
1359 * receive address registers. Uses unused receive address registers for the
1360 * first secondary addresses, and falls back to promiscuous mode as needed.
1362 * Drivers using secondary unicast addresses must set user_set_promisc when
1363 * manually putting the device into promiscuous mode.
1365 s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
1366 u32 addr_count, ixgbe_mc_addr_itr next)
1368 u8 *addr;
1369 u32 i;
1370 u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
1371 u32 uc_addr_in_use;
1372 u32 fctrl;
1373 u32 vmdq;
1376 * Clear accounting of old secondary address list,
1377 * don't count RAR[0]
1379 uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
1380 hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
1381 hw->addr_ctrl.overflow_promisc = 0;
1383 /* Zero out the other receive addresses */
1384 hw_dbg(hw, "Clearing RAR[1-%d]\n", uc_addr_in_use);
1385 for (i = 1; i <= uc_addr_in_use; i++) {
1386 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1387 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1390 /* Add the new addresses */
1391 for (i = 0; i < addr_count; i++) {
1392 hw_dbg(hw, " Adding the secondary addresses:\n");
1393 addr = next(hw, &addr_list, &vmdq);
1394 ixgbe_add_uc_addr(hw, addr, vmdq);
1397 if (hw->addr_ctrl.overflow_promisc) {
1398 /* enable promisc if not already in overflow or set by user */
1399 if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
1400 hw_dbg(hw, " Entering address overflow promisc mode\n");
1401 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
1402 fctrl |= IXGBE_FCTRL_UPE;
1403 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
1405 } else {
1406 /* only disable if set by overflow, not by user */
1407 if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
1408 hw_dbg(hw, " Leaving address overflow promisc mode\n");
1409 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
1410 fctrl &= ~IXGBE_FCTRL_UPE;
1411 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
1415 hw_dbg(hw, "ixgbe_update_uc_addr_list_generic Complete\n");
1416 return 0;
1420 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
1421 * @hw: pointer to hardware structure
1422 * @mc_addr: the multicast address
1424 * Extracts the 12 bits, from a multicast address, to determine which
1425 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
1426 * incoming rx multicast addresses, to determine the bit-vector to check in
1427 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1428 * by the MO field of the MCSTCTRL. The MO field is set during initialization
1429 * to mc_filter_type.
1431 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1433 u32 vector = 0;
1435 switch (hw->mac.mc_filter_type) {
1436 case 0: /* use bits [47:36] of the address */
1437 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1438 break;
1439 case 1: /* use bits [46:35] of the address */
1440 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1441 break;
1442 case 2: /* use bits [45:34] of the address */
1443 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1444 break;
1445 case 3: /* use bits [43:32] of the address */
1446 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1447 break;
1448 default: /* Invalid mc_filter_type */
1449 hw_dbg(hw, "MC filter type param set incorrectly\n");
1450 break;
1453 /* vector can only be 12-bits or boundary will be exceeded */
1454 vector &= 0xFFF;
1455 return vector;
1459 * ixgbe_set_mta - Set bit-vector in multicast table
1460 * @hw: pointer to hardware structure
1461 * @hash_value: Multicast address hash value
1463 * Sets the bit-vector in the multicast table.
1465 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1467 u32 vector;
1468 u32 vector_bit;
1469 u32 vector_reg;
1470 u32 mta_reg;
1472 hw->addr_ctrl.mta_in_use++;
1474 vector = ixgbe_mta_vector(hw, mc_addr);
1475 hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1478 * The MTA is a register array of 128 32-bit registers. It is treated
1479 * like an array of 4096 bits. We want to set bit
1480 * BitArray[vector_value]. So we figure out what register the bit is
1481 * in, read it, OR in the new bit, then write back the new value. The
1482 * register is determined by the upper 7 bits of the vector value and
1483 * the bit within that register are determined by the lower 5 bits of
1484 * the value.
1486 vector_reg = (vector >> 5) & 0x7F;
1487 vector_bit = vector & 0x1F;
1488 mta_reg = IXGBE_READ_REG(hw, IXGBE_MTA(vector_reg));
1489 mta_reg |= (1 << vector_bit);
1490 IXGBE_WRITE_REG(hw, IXGBE_MTA(vector_reg), mta_reg);
1494 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1495 * @hw: pointer to hardware structure
1496 * @mc_addr_list: the list of new multicast addresses
1497 * @mc_addr_count: number of addresses
1498 * @next: iterator function to walk the multicast address list
1500 * The given list replaces any existing list. Clears the MC addrs from receive
1501 * address registers and the multicast table. Uses unused receive address
1502 * registers for the first multicast addresses, and hashes the rest into the
1503 * multicast table.
1505 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
1506 u32 mc_addr_count, ixgbe_mc_addr_itr next)
1508 u32 i;
1509 u32 vmdq;
1512 * Set the new number of MC addresses that we are being requested to
1513 * use.
1515 hw->addr_ctrl.num_mc_addrs = mc_addr_count;
1516 hw->addr_ctrl.mta_in_use = 0;
1518 /* Clear the MTA */
1519 hw_dbg(hw, " Clearing MTA\n");
1520 for (i = 0; i < hw->mac.mcft_size; i++)
1521 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1523 /* Add the new addresses */
1524 for (i = 0; i < mc_addr_count; i++) {
1525 hw_dbg(hw, " Adding the multicast addresses:\n");
1526 ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
1529 /* Enable mta */
1530 if (hw->addr_ctrl.mta_in_use > 0)
1531 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
1532 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
1534 hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
1535 return 0;
1539 * ixgbe_enable_mc_generic - Enable multicast address in RAR
1540 * @hw: pointer to hardware structure
1542 * Enables multicast address in RAR and the use of the multicast hash table.
1544 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
1546 u32 i;
1547 u32 rar_entries = hw->mac.num_rar_entries;
1548 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
1550 if (a->mc_addr_in_rar_count > 0)
1551 for (i = (rar_entries - a->mc_addr_in_rar_count);
1552 i < rar_entries; i++)
1553 ixgbe_enable_rar(hw, i);
1555 if (a->mta_in_use > 0)
1556 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
1557 hw->mac.mc_filter_type);
1559 return 0;
1563 * ixgbe_disable_mc_generic - Disable multicast address in RAR
1564 * @hw: pointer to hardware structure
1566 * Disables multicast address in RAR and the use of the multicast hash table.
1568 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
1570 u32 i;
1571 u32 rar_entries = hw->mac.num_rar_entries;
1572 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
1574 if (a->mc_addr_in_rar_count > 0)
1575 for (i = (rar_entries - a->mc_addr_in_rar_count);
1576 i < rar_entries; i++)
1577 ixgbe_disable_rar(hw, i);
1579 if (a->mta_in_use > 0)
1580 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1582 return 0;
1586 * ixgbe_fc_enable - Enable flow control
1587 * @hw: pointer to hardware structure
1588 * @packetbuf_num: packet buffer number (0-7)
1590 * Enable flow control according to the current settings.
1592 s32 ixgbe_fc_enable(struct ixgbe_hw *hw, s32 packetbuf_num)
1594 s32 ret_val = 0;
1595 u32 mflcn_reg;
1596 u32 fccfg_reg;
1597 u32 reg;
1599 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
1600 mflcn_reg &= ~(IXGBE_MFLCN_RFCE | IXGBE_MFLCN_RPFCE);
1602 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
1603 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
1606 * The possible values of fc.current_mode are:
1607 * 0: Flow control is completely disabled
1608 * 1: Rx flow control is enabled (we can receive pause frames,
1609 * but not send pause frames).
1610 * 2: Tx flow control is enabled (we can send pause frames but
1611 * we do not support receiving pause frames).
1612 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1613 * 4: Priority Flow Control is enabled.
1614 * other: Invalid.
1616 switch (hw->fc.current_mode) {
1617 case ixgbe_fc_none:
1618 /* Flow control completely disabled by software override. */
1619 break;
1620 case ixgbe_fc_rx_pause:
1622 * Rx Flow control is enabled and Tx Flow control is
1623 * disabled by software override. Since there really
1624 * isn't a way to advertise that we are capable of RX
1625 * Pause ONLY, we will advertise that we support both
1626 * symmetric and asymmetric Rx PAUSE. Later, we will
1627 * disable the adapter's ability to send PAUSE frames.
1629 mflcn_reg |= IXGBE_MFLCN_RFCE;
1630 break;
1631 case ixgbe_fc_tx_pause:
1633 * Tx Flow control is enabled, and Rx Flow control is
1634 * disabled by software override.
1636 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
1637 break;
1638 case ixgbe_fc_full:
1639 /* Flow control (both Rx and Tx) is enabled by SW override. */
1640 mflcn_reg |= IXGBE_MFLCN_RFCE;
1641 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
1642 break;
1643 #ifdef CONFIG_DCB
1644 case ixgbe_fc_pfc:
1645 goto out;
1646 break;
1647 #endif
1648 default:
1649 hw_dbg(hw, "Flow control param set incorrectly\n");
1650 ret_val = -IXGBE_ERR_CONFIG;
1651 goto out;
1652 break;
1655 /* Enable 802.3x based flow control settings. */
1656 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
1657 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
1659 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
1660 if (hw->fc.current_mode & ixgbe_fc_tx_pause) {
1661 if (hw->fc.send_xon)
1662 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(packetbuf_num),
1663 (hw->fc.low_water | IXGBE_FCRTL_XONE));
1664 else
1665 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(packetbuf_num),
1666 hw->fc.low_water);
1668 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(packetbuf_num),
1669 (hw->fc.high_water | IXGBE_FCRTH_FCEN));
1672 /* Configure pause time (2 TCs per register) */
1673 reg = IXGBE_READ_REG(hw, IXGBE_FCTTV(packetbuf_num));
1674 if ((packetbuf_num & 1) == 0)
1675 reg = (reg & 0xFFFF0000) | hw->fc.pause_time;
1676 else
1677 reg = (reg & 0x0000FFFF) | (hw->fc.pause_time << 16);
1678 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(packetbuf_num / 2), reg);
1680 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, (hw->fc.pause_time >> 1));
1682 out:
1683 return ret_val;
1687 * ixgbe_fc_autoneg - Configure flow control
1688 * @hw: pointer to hardware structure
1690 * Negotiates flow control capabilities with link partner using autoneg and
1691 * applies the results.
1693 s32 ixgbe_fc_autoneg(struct ixgbe_hw *hw)
1695 s32 ret_val = 0;
1696 u32 i, reg, pcs_anadv_reg, pcs_lpab_reg;
1698 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
1701 * The possible values of fc.current_mode are:
1702 * 0: Flow control is completely disabled
1703 * 1: Rx flow control is enabled (we can receive pause frames,
1704 * but not send pause frames).
1705 * 2: Tx flow control is enabled (we can send pause frames but
1706 * we do not support receiving pause frames).
1707 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1708 * 4: Priority Flow Control is enabled.
1709 * other: Invalid.
1711 switch (hw->fc.current_mode) {
1712 case ixgbe_fc_none:
1713 /* Flow control completely disabled by software override. */
1714 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
1715 break;
1716 case ixgbe_fc_rx_pause:
1718 * Rx Flow control is enabled and Tx Flow control is
1719 * disabled by software override. Since there really
1720 * isn't a way to advertise that we are capable of RX
1721 * Pause ONLY, we will advertise that we support both
1722 * symmetric and asymmetric Rx PAUSE. Later, we will
1723 * disable the adapter's ability to send PAUSE frames.
1725 reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
1726 break;
1727 case ixgbe_fc_tx_pause:
1729 * Tx Flow control is enabled, and Rx Flow control is
1730 * disabled by software override.
1732 reg |= (IXGBE_PCS1GANA_ASM_PAUSE);
1733 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE);
1734 break;
1735 case ixgbe_fc_full:
1736 /* Flow control (both Rx and Tx) is enabled by SW override. */
1737 reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
1738 break;
1739 #ifdef CONFIG_DCB
1740 case ixgbe_fc_pfc:
1741 goto out;
1742 break;
1743 #endif
1744 default:
1745 hw_dbg(hw, "Flow control param set incorrectly\n");
1746 ret_val = -IXGBE_ERR_CONFIG;
1747 goto out;
1748 break;
1751 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
1752 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
1754 /* Set PCS register for autoneg */
1755 /* Enable and restart autoneg */
1756 reg |= IXGBE_PCS1GLCTL_AN_ENABLE | IXGBE_PCS1GLCTL_AN_RESTART;
1758 /* Disable AN timeout */
1759 if (hw->fc.strict_ieee)
1760 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
1762 hw_dbg(hw, "Configuring Autoneg; PCS_LCTL = 0x%08X\n", reg);
1763 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
1765 /* See if autonegotiation has succeeded */
1766 hw->mac.autoneg_succeeded = 0;
1767 for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
1768 msleep(10);
1769 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
1770 if ((reg & (IXGBE_PCS1GLSTA_LINK_OK |
1771 IXGBE_PCS1GLSTA_AN_COMPLETE)) ==
1772 (IXGBE_PCS1GLSTA_LINK_OK |
1773 IXGBE_PCS1GLSTA_AN_COMPLETE)) {
1774 if (!(reg & IXGBE_PCS1GLSTA_AN_TIMED_OUT))
1775 hw->mac.autoneg_succeeded = 1;
1776 break;
1780 if (!hw->mac.autoneg_succeeded) {
1781 /* Autoneg failed to achieve a link, so we turn fc off */
1782 hw->fc.current_mode = ixgbe_fc_none;
1783 hw_dbg(hw, "Flow Control = NONE.\n");
1784 goto out;
1788 * Read the AN advertisement and LP ability registers and resolve
1789 * local flow control settings accordingly
1791 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
1792 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
1793 if ((pcs_anadv_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
1794 (pcs_lpab_reg & IXGBE_PCS1GANA_SYM_PAUSE)) {
1796 * Now we need to check if the user selected Rx ONLY
1797 * of pause frames. In this case, we had to advertise
1798 * FULL flow control because we could not advertise RX
1799 * ONLY. Hence, we must now check to see if we need to
1800 * turn OFF the TRANSMISSION of PAUSE frames.
1802 if (hw->fc.requested_mode == ixgbe_fc_full) {
1803 hw->fc.current_mode = ixgbe_fc_full;
1804 hw_dbg(hw, "Flow Control = FULL.\n");
1805 } else {
1806 hw->fc.current_mode = ixgbe_fc_rx_pause;
1807 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
1809 } else if (!(pcs_anadv_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
1810 (pcs_anadv_reg & IXGBE_PCS1GANA_ASM_PAUSE) &&
1811 (pcs_lpab_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
1812 (pcs_lpab_reg & IXGBE_PCS1GANA_ASM_PAUSE)) {
1813 hw->fc.current_mode = ixgbe_fc_tx_pause;
1814 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
1815 } else if ((pcs_anadv_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
1816 (pcs_anadv_reg & IXGBE_PCS1GANA_ASM_PAUSE) &&
1817 !(pcs_lpab_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
1818 (pcs_lpab_reg & IXGBE_PCS1GANA_ASM_PAUSE)) {
1819 hw->fc.current_mode = ixgbe_fc_rx_pause;
1820 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
1821 } else {
1822 hw->fc.current_mode = ixgbe_fc_none;
1823 hw_dbg(hw, "Flow Control = NONE.\n");
1826 out:
1827 return ret_val;
1831 * ixgbe_setup_fc_generic - Set up flow control
1832 * @hw: pointer to hardware structure
1834 * Sets up flow control.
1836 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw, s32 packetbuf_num)
1838 s32 ret_val = 0;
1839 ixgbe_link_speed speed;
1840 bool link_up;
1842 #ifdef CONFIG_DCB
1843 if (hw->fc.requested_mode == ixgbe_fc_pfc) {
1844 hw->fc.current_mode = hw->fc.requested_mode;
1845 goto out;
1848 #endif
1849 /* Validate the packetbuf configuration */
1850 if (packetbuf_num < 0 || packetbuf_num > 7) {
1851 hw_dbg(hw, "Invalid packet buffer number [%d], expected range "
1852 "is 0-7\n", packetbuf_num);
1853 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
1854 goto out;
1858 * Validate the water mark configuration. Zero water marks are invalid
1859 * because it causes the controller to just blast out fc packets.
1861 if (!hw->fc.low_water || !hw->fc.high_water || !hw->fc.pause_time) {
1862 hw_dbg(hw, "Invalid water mark configuration\n");
1863 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
1864 goto out;
1868 * Validate the requested mode. Strict IEEE mode does not allow
1869 * ixgbe_fc_rx_pause because it will cause testing anomalies.
1871 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
1872 hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict "
1873 "IEEE mode\n");
1874 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
1875 goto out;
1879 * 10gig parts do not have a word in the EEPROM to determine the
1880 * default flow control setting, so we explicitly set it to full.
1882 if (hw->fc.requested_mode == ixgbe_fc_default)
1883 hw->fc.requested_mode = ixgbe_fc_full;
1886 * Save off the requested flow control mode for use later. Depending
1887 * on the link partner's capabilities, we may or may not use this mode.
1889 hw->fc.current_mode = hw->fc.requested_mode;
1891 /* Decide whether to use autoneg or not. */
1892 hw->mac.ops.check_link(hw, &speed, &link_up, false);
1893 if (!hw->fc.disable_fc_autoneg && hw->phy.multispeed_fiber &&
1894 (speed == IXGBE_LINK_SPEED_1GB_FULL))
1895 ret_val = ixgbe_fc_autoneg(hw);
1897 if (ret_val)
1898 goto out;
1900 ret_val = ixgbe_fc_enable(hw, packetbuf_num);
1902 out:
1903 return ret_val;
1907 * ixgbe_disable_pcie_master - Disable PCI-express master access
1908 * @hw: pointer to hardware structure
1910 * Disables PCI-Express master access and verifies there are no pending
1911 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
1912 * bit hasn't caused the master requests to be disabled, else 0
1913 * is returned signifying master requests disabled.
1915 s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
1917 u32 i;
1918 u32 reg_val;
1919 u32 number_of_queues;
1920 s32 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
1922 /* Disable the receive unit by stopping each queue */
1923 number_of_queues = hw->mac.max_rx_queues;
1924 for (i = 0; i < number_of_queues; i++) {
1925 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1926 if (reg_val & IXGBE_RXDCTL_ENABLE) {
1927 reg_val &= ~IXGBE_RXDCTL_ENABLE;
1928 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1932 reg_val = IXGBE_READ_REG(hw, IXGBE_CTRL);
1933 reg_val |= IXGBE_CTRL_GIO_DIS;
1934 IXGBE_WRITE_REG(hw, IXGBE_CTRL, reg_val);
1936 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
1937 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO)) {
1938 status = 0;
1939 break;
1941 udelay(100);
1944 return status;
1949 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
1950 * @hw: pointer to hardware structure
1951 * @mask: Mask to specify which semaphore to acquire
1953 * Acquires the SWFW semaphore thought the GSSR register for the specified
1954 * function (CSR, PHY0, PHY1, EEPROM, Flash)
1956 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
1958 u32 gssr;
1959 u32 swmask = mask;
1960 u32 fwmask = mask << 5;
1961 s32 timeout = 200;
1963 while (timeout) {
1964 if (ixgbe_get_eeprom_semaphore(hw))
1965 return -IXGBE_ERR_SWFW_SYNC;
1967 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
1968 if (!(gssr & (fwmask | swmask)))
1969 break;
1972 * Firmware currently using resource (fwmask) or other software
1973 * thread currently using resource (swmask)
1975 ixgbe_release_eeprom_semaphore(hw);
1976 msleep(5);
1977 timeout--;
1980 if (!timeout) {
1981 hw_dbg(hw, "Driver can't access resource, GSSR timeout.\n");
1982 return -IXGBE_ERR_SWFW_SYNC;
1985 gssr |= swmask;
1986 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
1988 ixgbe_release_eeprom_semaphore(hw);
1989 return 0;
1993 * ixgbe_release_swfw_sync - Release SWFW semaphore
1994 * @hw: pointer to hardware structure
1995 * @mask: Mask to specify which semaphore to release
1997 * Releases the SWFW semaphore thought the GSSR register for the specified
1998 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2000 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2002 u32 gssr;
2003 u32 swmask = mask;
2005 ixgbe_get_eeprom_semaphore(hw);
2007 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2008 gssr &= ~swmask;
2009 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2011 ixgbe_release_eeprom_semaphore(hw);
2015 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2016 * @hw: pointer to hardware structure
2017 * @regval: register value to write to RXCTRL
2019 * Enables the Rx DMA unit
2021 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2023 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2025 return 0;
2029 * ixgbe_blink_led_start_generic - Blink LED based on index.
2030 * @hw: pointer to hardware structure
2031 * @index: led number to blink
2033 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2035 ixgbe_link_speed speed = 0;
2036 bool link_up = 0;
2037 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2038 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2041 * Link must be up to auto-blink the LEDs;
2042 * Force it if link is down.
2044 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2046 if (!link_up) {
2047 autoc_reg |= IXGBE_AUTOC_FLU;
2048 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2049 msleep(10);
2052 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2053 led_reg |= IXGBE_LED_BLINK(index);
2054 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2055 IXGBE_WRITE_FLUSH(hw);
2057 return 0;
2061 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2062 * @hw: pointer to hardware structure
2063 * @index: led number to stop blinking
2065 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2067 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2068 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2070 autoc_reg &= ~IXGBE_AUTOC_FLU;
2071 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2072 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2074 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2075 led_reg &= ~IXGBE_LED_BLINK(index);
2076 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2077 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2078 IXGBE_WRITE_FLUSH(hw);
2080 return 0;